CN104034790B - Perfluorinated sulfonic acid resin modified SnO 2-coated ZnO nanotube array electrode for detecting dopamine and application - Google Patents
Perfluorinated sulfonic acid resin modified SnO 2-coated ZnO nanotube array electrode for detecting dopamine and application Download PDFInfo
- Publication number
- CN104034790B CN104034790B CN201410261014.9A CN201410261014A CN104034790B CN 104034790 B CN104034790 B CN 104034790B CN 201410261014 A CN201410261014 A CN 201410261014A CN 104034790 B CN104034790 B CN 104034790B
- Authority
- CN
- China
- Prior art keywords
- electrode
- dopamine
- sno
- zno
- array electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
技术领域 technical field
本发明属于纳米材料应用技术领域,尤其涉及一种用于检测多巴胺的全氟磺酸树脂(Nafion)修饰SnO2包覆ZnO的纳米管阵列电极及应用。 The invention belongs to the technical field of nanomaterial application, and in particular relates to a perfluorosulfonic acid resin (Nafion) modified SnO 2 coated ZnO nanotube array electrode for detecting dopamine and its application.
背景技术 Background technique
多巴胺(DA)是一种重要的神经递质,对中枢神经系统、激素系统、心血管系统和肾脏功能起着重要的作用。人体内DA的浓度会伴随一些重大疾病而产生变化,如精神分裂症、帕金森氏症、老年痴呆症、艾滋病感染等。因此,人体内DA浓度的检测对于神经生理学研究、疾病诊断及相关药物的控制有着重要的意义。 Dopamine (DA) is an important neurotransmitter that plays an important role in the central nervous system, hormone system, cardiovascular system and kidney function. The concentration of DA in the human body will change with some major diseases, such as schizophrenia, Parkinson's disease, Alzheimer's disease, AIDS infection and so on. Therefore, the detection of DA concentration in the human body is of great significance for neurophysiological research, disease diagnosis and control of related drugs.
电化学传感器是多巴胺检测的一种重要手段。在电化学传感器中,最重要的组成元件是能够对多巴胺产生响应的电极。由于生物体内的多巴胺浓度极低,同时在多巴胺检测过程中会受到来自于抗坏血酸的强烈干扰,因此需要发展具有高灵敏度和高选择性的多巴胺电化学传感器电极。纳米科技的发展为多巴胺电化学传感器性能的提升提供了良好的机遇。由于其巨大的比表面积和特殊的物理/化学性质,纳米材料已经被用于多巴胺电化学传感器电极的构筑。其中,一维纳米材料如纳米棒、纳米线、纳米带、纳米管等尤为引人关注。这是因为这些一维纳米材料除了拥有巨大的比表面积外,其特殊的一维结构还可以作为电荷传输的“快速通道”,将参与电化学反应的电子快速输送到外电路,从而提高传感器的性能。目前,作为最典型的一维纳米材料,碳纳米管已经被大量用于多巴胺电化学传感器电极(Electroanalysis,2005,17,417;Analyst,2007,132,876;Sensors,2009,9,376;BiosensorsandBioelectronics,2011,26,2917;SensorsandActuatorsB:Chemical,2012,171,1132;ElectrochimicaActa,2013,91,261;ChineseJournalofCatalysis,2014,35,201.)。但在这些电极,碳纳米管通常是杂乱无序地分布在电极表面,其作为电荷输运“快速通道”的作用未能得到充分发挥。 Electrochemical sensors are an important means of dopamine detection. In electrochemical sensors, the most important building blocks are electrodes that respond to dopamine. Due to the extremely low concentration of dopamine in organisms and the strong interference from ascorbic acid in the detection process of dopamine, it is necessary to develop electrochemical sensor electrodes with high sensitivity and high selectivity for dopamine. The development of nanotechnology provides a good opportunity for improving the performance of dopamine electrochemical sensors. Due to their large specific surface area and special physical/chemical properties, nanomaterials have been used in the construction of dopamine electrochemical sensor electrodes. Among them, one-dimensional nanomaterials such as nanorods, nanowires, nanobelts, and nanotubes are particularly attractive. This is because these one-dimensional nanomaterials not only have a huge specific surface area, but their special one-dimensional structure can also serve as a "fast channel" for charge transport, quickly transporting electrons participating in electrochemical reactions to the external circuit, thereby improving sensor performance. performance. At present, as the most typical one-dimensional nanomaterials, carbon nanotubes have been widely used in dopamine electrochemical sensor electrodes (Electroanalysis, 2005, 17, 417; Analyst, 2007, 132, 876; Sensors, 2009, 9, 376; Biosensors and Bioelectronics, 2011, 26, 2917 ; Sensors and Actuators B: Chemical, 2012, 171, 1132; Electrochimica Acta, 2013, 91, 261; Chinese Journal of Catalysis, 2014, 35, 201.). However, in these electrodes, carbon nanotubes are usually distributed on the electrode surface in a disorderly manner, and their role as a "fast channel" for charge transport has not been fully utilized.
发明内容 Contents of the invention
本发明的目的是为了克服现有技术的不足,提供一种用于检测多巴胺的基于全氟磺酸树脂(Nafion)修饰SnO2包覆ZnO的纳米管阵列的多巴胺电化学传感器电极。 The purpose of the present invention is to overcome the deficiencies in the prior art and provide a dopamine electrochemical sensor electrode for detecting dopamine based on perfluorosulfonic acid resin (Nafion) modified SnO 2 coating ZnO nanotube arrays.
本发明的还一目的是提供用于检测多巴胺的基于全氟磺酸树脂(Nafion)修饰SnO2包覆ZnO的纳米管阵列的多巴胺电化学传感器电极的应用。 Still another object of the present invention is to provide the application of the dopamine electrochemical sensor electrode based on perfluorosulfonic acid resin (Nafion) modified SnO 2 coated ZnO nanotube arrays for detecting dopamine.
本发明的用于检测多巴胺的全氟磺酸树脂(Nafion)修饰SnO2包覆ZnO(SnO2ZnO)的纳米管阵列电极,是由导电基底和竖直生长在该导电基底上的全氟磺酸树脂(Nafion)修饰的多晶SnO2纳米颗粒膜包覆单晶ZnO纳米管的阵列构成。 The perfluorosulfonic acid resin (Nafion) modified SnO2 coated ZnO (SnO2ZnO ) nanotube array electrode for detecting dopamine of the present invention is composed of a conductive substrate and a perfluorosulfonic acid grown vertically on the conductive substrate. Acid resin (Nafion) modified polycrystalline SnO 2 nanoparticle film coated single crystal ZnO nanotube arrays.
所述的导电基底可以是ITO玻璃或FTO玻璃。 The conductive substrate can be ITO glass or FTO glass.
所述的多晶SnO2纳米颗粒膜包覆单晶ZnO纳米管,是由多晶SnO2纳米颗粒形成的膜均匀包覆在单晶ZnO纳米管的内壁和外壁。 The polycrystalline SnO 2 nanoparticle film coating the single crystal ZnO nanotube is that the film formed by the polycrystalline SnO 2 nanoparticle evenly covers the inner wall and the outer wall of the single crystal ZnO nanotube.
所述的全氟磺酸树脂(Nafion)修饰是通过将多晶SnO2纳米颗粒膜包覆单晶ZnO纳米管的阵列于质量浓度为5%的Nafion溶液中进行浸泡(一般浸泡的时间为8~15分钟)来实现。 The modification of the perfluorosulfonic acid resin (Nafion) is by soaking the array of polycrystalline SnO nanoparticle film-coated single crystal ZnO nanotubes in a Nafion solution with a mass concentration of 5% (the time of generally soaking is 8 ~15 minutes) to achieve.
本发明的用于检测多巴胺的全氟磺酸树脂(Nafion)修饰SnO2包覆ZnO(SnO2ZnO)的纳米管阵列电极的制备方法为:首先,用电化学沉积法在导电基底(ITO玻璃或FTO玻璃)上制备ZnO纳米棒阵列,将所制备的ZnO纳米棒阵列于无机碱性水溶液中进行刻蚀得到单晶ZnO纳米管阵列;然后,以生长有单晶ZnO纳米管阵列的导电基底为衬底,利用热蒸发法在单晶ZnO纳米管的内外表面制备一层多晶SnO2纳米颗粒膜;将多晶SnO2纳米颗粒膜包覆单晶ZnO纳米管的阵列于质量浓度为5%的Nafion溶液中进行浸泡(一般浸泡的时间为8~15分钟)。 The perfluorosulfonic acid resin (Nafion) used to detect dopamine of the present invention modifies SnO 2 The preparation method of the nanotube array electrode coated with ZnO (SnO 2 ZnO) is as follows: first, use the electrochemical deposition method on the conductive substrate (ITO glass or FTO glass) to prepare ZnO nanorod arrays, and etch the prepared ZnO nanorod arrays in an inorganic alkaline aqueous solution to obtain single crystal ZnO nanotube arrays; then, to grow a conductive substrate with single crystal ZnO nanotube arrays As the substrate, a layer of polycrystalline SnO 2 nanoparticle film was prepared on the inner and outer surfaces of single crystal ZnO nanotubes by thermal evaporation; the polycrystalline SnO 2 nanoparticle film was coated on the array of single crystal ZnO nanotubes at a mass concentration of 5 % Nafion solution for soaking (general soaking time is 8-15 minutes).
本发明的用于检测多巴胺的全氟磺酸树脂(Nafion)修饰SnO2包覆ZnO(SnO2ZnO)的纳米管阵列电极可以对水溶液中的多巴胺进行检测,以本发明的纳米管阵列电极作为工作电极,以铂片电极作为对电极,以饱和甘汞电极作为参比电极,用循环伏安法(CV)或差分脉冲伏安法(DPV)对水溶液中的多巴胺进行检测时,本发明的纳米管阵列电极可以产生极强的电化学信号。 Perfluorosulfonic acid resin (Nafion) modified SnO 2 coated ZnO (SnO 2 ZnO) nanotube array electrode for detecting dopamine of the present invention can detect dopamine in aqueous solution, use nanotube array electrode of the present invention as Working electrode, with platinum sheet electrode as counter electrode, with saturated calomel electrode as reference electrode, when using cyclic voltammetry (CV) or differential pulse voltammetry (DPV) to detect dopamine in aqueous solution, the present invention Nanotube array electrodes can generate extremely strong electrochemical signals.
所述的用循环伏安法(CV)或差分脉冲伏安法(DPV)对水溶液中的多巴胺进行检测,循环伏安法(CV)的线性响应范围为0.1~500μM,差分脉冲伏安法(DPV)的线性响应范围为0.1~2μM。 The described cyclic voltammetry (CV) or differential pulse voltammetry (DPV) detects dopamine in aqueous solution, the linear response range of cyclic voltammetry (CV) is 0.1~500 μ M, differential pulse voltammetry ( DPV) has a linear response range of 0.1-2 μM.
所述的水溶液中的多巴胺的浓度为0.1μM到500μM。 The concentration of dopamine in the aqueous solution is 0.1 μM to 500 μM.
在本发明的多巴胺电化学传感器电极中,Nafion修饰的SnO2包覆ZnO(SnO2ZnO)的纳米管是竖直生长在导电基底上形成有序阵列,发生电化学反应的电子可以沿者所述的纳米管快速输运至外电路,充分发挥了一维纳米材料作为电荷传输“快递通道”的潜能,有效提高了多巴胺电化学传感器的性能。 In the dopamine electrochemical sensor electrode of the present invention, Nafion-modified SnO 2 nanotubes coated with ZnO (SnO 2 ZnO) are vertically grown on the conductive substrate to form an ordered array, and the electrons that undergo electrochemical reactions can be moved along the The above-mentioned nanotubes are quickly transported to the external circuit, which fully exerts the potential of one-dimensional nanomaterials as an "express channel" for charge transport, and effectively improves the performance of the dopamine electrochemical sensor.
附图说明 Description of drawings
图1.本发明实施例1的Nafion修饰的多晶SnO2纳米颗粒膜包覆单晶ZnO纳米管的阵列的SEM图像。 Fig. 1. The SEM image of the array of single crystal ZnO nanotubes coated with polycrystalline SnO2 nanoparticle film of Nafion modified in Example 1 of the present invention.
图2.本发明实施例1制备的单根多晶SnO2纳米颗粒膜包覆单晶ZnO纳米管的HRTEM(a)和SAED(b)图像。 Figure 2. HRTEM (a) and SAED (b) images of a single polycrystalline SnO 2 nanoparticle film coated single crystal ZnO nanotube prepared in Example 1 of the present invention.
图3.本发明实施例2的CV(a)和DPV(b)图。 Figure 3. CV(a) and DPV(b) diagrams of Example 2 of the present invention.
图4.本发明实施例3的CV(a)和DPV(b)图。 Figure 4. CV(a) and DPV(b) diagrams of Example 3 of the present invention.
图5.本发明实施例4的CV(a)和DPV(b)图。 Figure 5. CV(a) and DPV(b) diagrams of Example 4 of the present invention.
图6.本发明实施例5的CV(a)和DPV(b)图。 Figure 6. CV(a) and DPV(b) diagrams of Example 5 of the present invention.
图7.本发明实施例6的CV(a)和DPV(b)图。 Figure 7. CV(a) and DPV(b) diagrams of Example 6 of the present invention.
图8.本发明实施例7的CV图(a)和CV校准曲线(b)、以及DPV图(c)和DPV校准曲线(d)。 Figure 8. The CV diagram (a) and CV calibration curve (b) of Example 7 of the present invention, and the DPV diagram (c) and DPV calibration curve (d).
具体实施方式 detailed description
实施例1. Example 1.
在三电极体系中,以铂片和饱和甘汞电极分别作为对电极和参比电极,以ITO玻璃或FTO玻璃为工作电极。电解液为含有5mM硝酸锌和5mM醋酸铵的水溶液。通过水浴将电解液温度升至85℃并维持在85℃。利用电化学工作站(CHI660C,上海辰华仪器有限公司)向工作电极施加-1V的电位,持续3小时,即得到生长在ITO玻璃或FTO玻璃上的ZnO纳米棒阵列;将此ZnO纳米棒阵列于浓度为0.2M、温度为的85℃氢氧化钠水溶液中浸泡1.5小时,即得到单晶ZnO纳米管阵列。将生长有单晶ZnO纳米管阵列的ITO玻璃或FTO玻璃置于瓷舟中,放在双温区管式炉的低温中心区,在管式炉的高温中心区放置装有2克SnO粉末的瓷舟。用机械泵将体系抽真空,向体系中通入Ar/H2混合气(其中H2的体积含量为5%),流量为50sccm。将管式炉加热,升温速率为20℃/min,使高温中心和低温中心的温度分别达到850℃和600℃,维持此温度1小时后,停止加热;待温度降至室温,取出样品,即得到多晶SnO2纳米颗粒膜包覆单晶ZnO纳米管的阵列,并且由多晶SnO2纳米颗粒形成的膜均匀包覆在单晶ZnO纳米管的内壁和外壁。将此多晶SnO2纳米颗粒膜包覆单晶ZnO纳米管的阵列于质量浓度为5%的Nafion溶液中浸泡10分钟后取出,自然晾干,即在ITO玻璃或FTO玻璃上得到竖直生长有Nafion修饰的多晶SnO2纳米颗粒膜包覆单晶ZnO纳米管的阵列。所制备的Nafion修饰的多晶SnO2纳米颗粒膜包覆单晶ZnO纳米管的阵列的形貌以及单根多晶SnO2纳米颗粒膜包覆单晶ZnO纳米管的结构表征分别如图1和图2所示。该Nafion修饰的多晶SnO2纳米颗粒膜包覆单晶ZnO纳米管的阵列可用于检测水溶液中的多巴胺。 In the three-electrode system, a platinum plate and a saturated calomel electrode were used as the counter electrode and a reference electrode, respectively, and ITO glass or FTO glass was used as the working electrode. The electrolyte solution is an aqueous solution containing 5mM zinc nitrate and 5mM ammonium acetate. The electrolyte temperature was raised to and maintained at 85°C by means of a water bath. Using an electrochemical workstation (CHI660C, Shanghai Chenhua Instrument Co., Ltd.) to apply a potential of -1V to the working electrode for 3 hours, the ZnO nanorod array grown on ITO glass or FTO glass was obtained; this ZnO nanorod array was placed on The single crystal ZnO nanotube array is obtained by immersing for 1.5 hours in an aqueous solution of sodium hydroxide with a concentration of 0.2M and a temperature of 85°C. Place the ITO glass or FTO glass with the single crystal ZnO nanotube array in the porcelain boat, put it in the low-temperature central area of the dual-temperature zone tube furnace, and place the glass containing 2 grams of SnO powder in the high-temperature central area of the tube furnace. porcelain boat. The system was evacuated with a mechanical pump, and Ar/H 2 mixed gas (wherein the volume content of H 2 was 5%) was introduced into the system, and the flow rate was 50 sccm. Heat the tube furnace with a heating rate of 20°C/min, so that the temperatures of the high temperature center and the low temperature center reach 850°C and 600°C respectively, and after maintaining this temperature for 1 hour, stop heating; when the temperature drops to room temperature, take out the sample, that is An array of single crystal ZnO nanotubes coated with polycrystalline SnO 2 nanoparticle films was obtained, and the film formed by polycrystalline SnO 2 nanoparticles uniformly coated the inner and outer walls of single crystal ZnO nanotubes. Soak the polycrystalline SnO nanoparticle film-coated array of single crystal ZnO nanotubes in a Nafion solution with a mass concentration of 5% for 10 minutes, take it out, and let it dry naturally, so that it can grow vertically on ITO glass or FTO glass. Arrays of single-crystalline ZnO nanotubes coated with Nafion-modified polycrystalline SnO2 nanoparticle films. The morphology of the prepared Nafion-modified polycrystalline SnO 2 nanoparticle film-coated single-crystal ZnO nanotube array and the structural characterization of a single polycrystalline SnO 2 nanoparticle film-coated single-crystal ZnO nanotube are shown in Figure 1 and Figure 2 shows. This Nafion-modified polycrystalline SnO2 nanoparticle film-coated array of single-crystalline ZnO nanotubes can be used to detect dopamine in aqueous solution.
实施例2. Example 2.
以实施例1得到的竖直生长在ITO玻璃基底上的Nafion修饰的多晶SnO2纳米颗粒膜包覆单晶ZnO纳米管的阵列为工作电极,以铂片电极作为对电极,以饱和甘汞电极作为参比电极,组成三电极电化学体系。检测对象是含有浓度为0.1μM多巴胺的PBS溶液(pH=7.4)。通过电化学工作站,利用循环伏安法(CV)和差分脉冲伏法(DPV)测试检测对象的电化学响应,结果如图3所示。 The polycrystalline SnO modified by Nafion grown vertically on the ITO glass substrate obtained in Example 1 The array of nanoparticle film-coated single-crystal ZnO nanotubes is the working electrode, the platinum sheet electrode is used as the counter electrode, and the saturated calomel The electrode is used as a reference electrode to form a three-electrode electrochemical system. The detection object is a PBS solution (pH=7.4) containing 0.1 μM dopamine. Through the electrochemical workstation, the electrochemical response of the detection object was tested by cyclic voltammetry (CV) and differential pulse voltmetry (DPV), and the results are shown in FIG. 3 .
实施例3. Example 3.
以实施例1得到的竖直生长在ITO玻璃基底上的Nafion修饰的多晶SnO2纳米颗粒膜包覆单晶ZnO纳米管的阵列为工作电极,以铂片电极作为对电极,以饱和甘汞电极作为参比电极,组成三电极电化学体系。检测对象是含有浓度为2μM多巴胺的PBS溶液(pH=7.4)。通过电化学工作站,利用循环伏安法(CV)和差分脉冲伏法(DPV)测试检测对象的电化学响应,结果如图4所示。 The polycrystalline SnO modified by Nafion grown vertically on the ITO glass substrate obtained in Example 1 The array of nanoparticle film-coated single-crystal ZnO nanotubes is the working electrode, the platinum sheet electrode is used as the counter electrode, and the saturated calomel The electrode is used as a reference electrode to form a three-electrode electrochemical system. The detection object is a PBS solution (pH=7.4) containing 2 μM dopamine. Through the electrochemical workstation, the electrochemical response of the detection object was tested by cyclic voltammetry (CV) and differential pulse voltmetry (DPV), and the results are shown in FIG. 4 .
实施例4. Example 4.
以实施例1得到的竖直生长在ITO玻璃基底上的Nafion修饰的多晶SnO2纳米颗粒膜包覆单晶ZnO纳米管的阵列为工作电极,以铂片电极作为对电极,以饱和甘汞电极作为参比电极,组成三电极电化学体系。检测对象是含有浓度为10μM多巴胺的PBS溶液(pH=7.4)。通过电化学工作站,利用循环伏安法(CV)和差分脉冲伏法(DPV)测试检测对象的电化学响应,结果如图5所示。 The polycrystalline SnO modified by Nafion grown vertically on the ITO glass substrate obtained in Example 1 The array of nanoparticle film-coated single-crystal ZnO nanotubes is the working electrode, the platinum sheet electrode is used as the counter electrode, and the saturated calomel The electrode is used as a reference electrode to form a three-electrode electrochemical system. The detection object is a PBS solution (pH=7.4) containing 10 μM dopamine. Through the electrochemical workstation, the electrochemical response of the detection object was tested by cyclic voltammetry (CV) and differential pulse voltmetry (DPV), and the results are shown in FIG. 5 .
实施例5. Example 5.
以实施例1得到的竖直生长在FTO玻璃基底上的Nafion修饰的多晶SnO2纳米颗粒膜包覆单晶ZnO纳米管的阵列为工作电极,以铂片电极作为对电极,以饱和甘汞电极作为参比电极,组成三电极电化学体系。检测对象是含有浓度为100μM多巴胺的PBS溶液(pH=7.4)。通过电化学工作站,利用循环伏安法(CV)和差分脉冲伏法(DPV)测试检测对象的电化学响应,结果如图6所示。 The polycrystalline SnO modified by Nafion grown vertically on the FTO glass substrate obtained in Example 1 The array of nanoparticle film-coated single-crystal ZnO nanotubes is the working electrode, the platinum plate electrode is used as the counter electrode, and the saturated calomel The electrode is used as a reference electrode to form a three-electrode electrochemical system. The detection object is a PBS solution (pH=7.4) containing dopamine at a concentration of 100 μM. Through the electrochemical workstation, the electrochemical response of the detection object was tested by cyclic voltammetry (CV) and differential pulse voltmetry (DPV), and the results are shown in FIG. 6 .
实施例6. Example 6.
以实施例1得到的竖直生长在ITO玻璃基底上的Nafion修饰的多晶SnO2纳米颗粒膜包覆单晶ZnO纳米管的阵列为工作电极,以铂片电极作为对电极,以饱和甘汞电极作为参比电极,组成三电极电化学体系。检测对象是含有浓度为500μM多巴胺的PBS溶液(pH=7.4)。通过电化学工作站,利用循环伏安法(CV)和差分脉冲伏法(DPV)测试检测对象的电化学响应,结果如图7所示。 The polycrystalline SnO modified by Nafion grown vertically on the ITO glass substrate obtained in Example 1 The array of nanoparticle film-coated single-crystal ZnO nanotubes is the working electrode, the platinum sheet electrode is used as the counter electrode, and the saturated calomel The electrode is used as a reference electrode to form a three-electrode electrochemical system. The detection object is a PBS solution (pH=7.4) containing 500 μM dopamine. Through the electrochemical workstation, the electrochemical response of the detection object was tested by cyclic voltammetry (CV) and differential pulse voltmetry (DPV), and the results are shown in FIG. 7 .
实施例7. Example 7.
以实施例1得到的竖直生长在ITO玻璃基底上的Nafion修饰的多晶SnO2纳米颗粒膜包覆单晶ZnO纳米管的阵列为工作电极,以铂片电极作为对电极,以饱和甘汞电极作为参比电极,组成三电极电化学体系。检测对象是含有浓度为0.1~500μM多巴胺的PBS溶液(pH=7.4)。通过电化学工作站,利用循环伏安法(CV)和差分脉冲伏法(DPV)测试检测对象的电化学响应,结果如图8所示。 The polycrystalline SnO modified by Nafion grown vertically on the ITO glass substrate obtained in Example 1 The array of nanoparticle film-coated single-crystal ZnO nanotubes is the working electrode, the platinum sheet electrode is used as the counter electrode, and the saturated calomel The electrode is used as a reference electrode to form a three-electrode electrochemical system. The detection object is a PBS solution (pH=7.4) containing dopamine at a concentration of 0.1-500 μM. Through the electrochemical workstation, the electrochemical response of the detection object was tested by cyclic voltammetry (CV) and differential pulse voltmetry (DPV), and the results are shown in FIG. 8 .
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410261014.9A CN104034790B (en) | 2014-06-12 | 2014-06-12 | Perfluorinated sulfonic acid resin modified SnO 2-coated ZnO nanotube array electrode for detecting dopamine and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410261014.9A CN104034790B (en) | 2014-06-12 | 2014-06-12 | Perfluorinated sulfonic acid resin modified SnO 2-coated ZnO nanotube array electrode for detecting dopamine and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104034790A CN104034790A (en) | 2014-09-10 |
CN104034790B true CN104034790B (en) | 2016-04-06 |
Family
ID=51465639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410261014.9A Expired - Fee Related CN104034790B (en) | 2014-06-12 | 2014-06-12 | Perfluorinated sulfonic acid resin modified SnO 2-coated ZnO nanotube array electrode for detecting dopamine and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104034790B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105514374B (en) * | 2015-12-11 | 2019-01-01 | 武汉理工大学 | A kind of graphitized carbon cladding manganese OXYFLUORIDE MATERIALS and preparation method thereof |
CN105671654B (en) * | 2016-01-21 | 2018-06-26 | 合肥工业大学 | A kind of ion induction type artificial skin array structure and preparation method thereof |
CN108254426A (en) * | 2017-12-15 | 2018-07-06 | 新乡医学院 | It is prepared for dopamine concentration detection miniature electrochemical in animal brain |
CN108288695B (en) * | 2018-01-11 | 2020-09-01 | 中南大学 | Zinc-based secondary battery negative electrode material and preparation method thereof |
CN108717075B (en) * | 2018-05-21 | 2019-05-10 | 大连理工大学 | Method for detecting uric acid using electrode sheet modified by electrodeposited perfluorosulfonic acid film |
CN111244399B (en) * | 2018-11-28 | 2021-11-26 | 中南大学 | Metal oxide modified zinc oxide tube composite negative electrode material for zinc secondary battery and preparation method thereof |
CN111678963B (en) * | 2020-06-22 | 2021-11-12 | 南京大学 | Ultra-high-sensitivity dopamine biosensor and preparation method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1201146C (en) * | 2002-07-18 | 2005-05-11 | 武汉大学 | Electrochemical sensor for determining dopamine |
AU2003253232A1 (en) * | 2002-07-26 | 2004-02-16 | Ntera Limited | Porous nanostructured film sensor |
CN102507683A (en) * | 2011-10-27 | 2012-06-20 | 西北师范大学 | Modified electrode based on functionalized multi-walled carbon nanotube, electrochemical system and application thereof |
CN102618849B (en) * | 2012-03-15 | 2013-07-10 | 中国科学院理化技术研究所 | One-dimensional ZnO/SnO2Preparation method of core-shell structure nano heterojunction semiconductor material |
-
2014
- 2014-06-12 CN CN201410261014.9A patent/CN104034790B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN104034790A (en) | 2014-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104034790B (en) | Perfluorinated sulfonic acid resin modified SnO 2-coated ZnO nanotube array electrode for detecting dopamine and application | |
Zhang et al. | Nanoparticles-assembled NiO nanosheets templated by graphene oxide film for highly sensitive non-enzymatic glucose sensing | |
Anusha et al. | Simple fabrication of ZnO/Pt/chitosan electrode for enzymatic glucose biosensor | |
Kim et al. | Tailoring the surface area of ZnO nanorods for improved performance in glucose sensors | |
Haldorai et al. | Electrochemical determination of dopamine using a glassy carbon electrode modified with TiN-reduced graphene oxide nanocomposite | |
Cui et al. | Direct electrochemistry and electrocatalysis of glucose oxidase on three-dimensional interpenetrating, porous graphene modified electrode | |
Chu et al. | An amperometric glucose biosensor based on the immobilization of glucose oxidase on the platinum electrode modified with NiO doped ZnO nanorods | |
CN108982622A (en) | Electrochemical sensor and preparation method thereof based on the vertical graphene composite structure of metal organic frame- | |
CN104237345B (en) | Production of low-density carbon nanotube array composite electrode and application of same and in glucose sensor | |
Cui et al. | Sensing hydrogen peroxide using a glassy carbon electrode modified with in-situ electrodeposited platinum-gold bimetallic nanoclusters on a graphene surface | |
CN103265061A (en) | One-dimensional copper oxide nano-array glucose sensor electrode material and preparation method thereof | |
CN112110439A (en) | Preparation method and application of carbon nanotube-wrapped nitrogen-doped porous carbon composite material | |
Dai et al. | Electrospun zirconia-embedded carbon nanofibre for high-sensitive determination of methyl parathion | |
Pak et al. | Cobalt-copper bimetallic nanostructures prepared by glancing angle deposition for non-enzymatic voltammetric determination of glucose | |
CN101776639A (en) | ZnO nanowire biosensor and preparation method thereof | |
Freire et al. | Morphology of ZnO nanoparticles bound to carbon nanotubes affects electrocatalytic oxidation of phenolic compounds | |
Meng et al. | A sensitive non-enzymatic glucose sensor in alkaline media based on Cu/MnO2-modified glassy carbon electrode | |
Abdurhman et al. | Hierarchical nanostructured noble metal/metal oxide/graphene-coated carbon fiber: in situ electrochemical synthesis and use as microelectrode for real-time molecular detection of cancer cells | |
CN103645216A (en) | Carbon dioxide gas sensor and preparation method thereof | |
CN105112913B (en) | A kind of transferable Fe2O3/ Au nano-pore array thin films and preparation method thereof | |
Zhang et al. | Ultrathin zinc oxide nanofilm on zinc substrate for high performance electrochemical sensors | |
CN102539501A (en) | Micro electrode for measuring potential of hydrogen (pH) in cells and preparation method thereof | |
CN106970128A (en) | A kind of flexible ZnO nano crystalline substance compound carbon fiber and graphene oxide glucose detector and preparation method thereof | |
CN107247082A (en) | A kind of preparation method based on pulse electrodeposition carbon nano tube modified electrode | |
CN206696226U (en) | A kind of graphene three dimensional carbon nanotubes Pd nano particle complex hydrogen peroxide non-enzymatic electrochemical sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160406 |
|
CF01 | Termination of patent right due to non-payment of annual fee |