CN104028729A - Vacuum low-pressure casting forming device for titanium alloy component - Google Patents
Vacuum low-pressure casting forming device for titanium alloy component Download PDFInfo
- Publication number
- CN104028729A CN104028729A CN201410202210.9A CN201410202210A CN104028729A CN 104028729 A CN104028729 A CN 104028729A CN 201410202210 A CN201410202210 A CN 201410202210A CN 104028729 A CN104028729 A CN 104028729A
- Authority
- CN
- China
- Prior art keywords
- titanium alloy
- casting
- chamber
- lower chamber
- vacuum low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005266 casting Methods 0.000 title claims abstract description 68
- 229910001069 Ti alloy Inorganic materials 0.000 title claims abstract description 39
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000010949 copper Substances 0.000 claims abstract description 24
- 229910052802 copper Inorganic materials 0.000 claims abstract description 24
- 230000001681 protective effect Effects 0.000 claims abstract description 13
- 238000003723 Smelting Methods 0.000 claims abstract description 9
- 238000004891 communication Methods 0.000 claims abstract description 7
- 238000007711 solidification Methods 0.000 claims abstract description 4
- 230000008023 solidification Effects 0.000 claims abstract description 4
- 238000007789 sealing Methods 0.000 claims description 11
- 238000012544 monitoring process Methods 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 238000009415 formwork Methods 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 4
- 229910000838 Al alloy Inorganic materials 0.000 claims description 3
- 238000013500 data storage Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 2
- 230000001360 synchronised effect Effects 0.000 claims description 2
- 238000004590 computer program Methods 0.000 claims 1
- 238000002955 isolation Methods 0.000 claims 1
- 239000000725 suspension Substances 0.000 claims 1
- 239000007788 liquid Substances 0.000 abstract description 19
- 238000005192 partition Methods 0.000 abstract description 11
- 239000000956 alloy Substances 0.000 abstract description 9
- 229910045601 alloy Inorganic materials 0.000 abstract description 7
- 238000009750 centrifugal casting Methods 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 14
- 239000000498 cooling water Substances 0.000 description 10
- 230000006698 induction Effects 0.000 description 9
- 230000005484 gravity Effects 0.000 description 4
- 238000009413 insulation Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000005495 investment casting Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明提供了一种小型钛合金构件真空低压铸造成形装置,包括设备主体、真空低压铸造气控系统、电控系统。设备主体采用上下室式结构,水冷铜坩埚放置在下室中,铸型放置在上室中,上下室之间有中隔板,中隔板上放置有升液管;真空低压铸造系统与设备主体、真空系统及保护性气体气源系统相连接,并采用数字式组合阀作为流量调节执行机构;电控系统由工业控制计算机和PLC组成。钛合金在熔炼室完成熔炼过程后,通过升降装置抬升水冷铜坩埚至浇注位置,关闭上下室互通阀,由计算机控制通入下室中的保护性气体流量,建立上下室之间的压差,合金液在压差作用下通过升液管充入铸型,完成铸造过程。本发明较传统离心铸造及底漏式吸铸能提高钛合金的充型能力及凝固补缩能力,得到铸造质量更好、壁厚更薄的铸件,为小型钛合金构件的批量化生产提供了一种新的手段。
The invention provides a vacuum low-pressure casting forming device for a small-sized titanium alloy component, which includes an equipment main body, a vacuum low-pressure casting air control system, and an electric control system. The main body of the equipment adopts the structure of upper and lower chambers. The water-cooled copper crucible is placed in the lower chamber, and the casting mold is placed in the upper chamber. There is a middle partition between the upper and lower chambers, and a liquid riser is placed on the middle partition; , Vacuum system and protective gas source system are connected, and a digital combination valve is used as the flow adjustment actuator; the electric control system is composed of industrial control computer and PLC. After the titanium alloy is smelted in the smelting chamber, the water-cooled copper crucible is lifted to the pouring position by the lifting device, the communication valve between the upper and lower chambers is closed, and the protective gas flow into the lower chamber is controlled by the computer to establish the pressure difference between the upper and lower chambers. The alloy liquid is filled into the mold through the liquid riser under the action of the pressure difference to complete the casting process. Compared with traditional centrifugal casting and bottom-drain suction casting, the present invention can improve the filling ability and solidification feeding ability of titanium alloy, and obtain castings with better casting quality and thinner wall thickness, which provides a great support for the mass production of small titanium alloy components. A new approach.
Description
技术领域technical field
本发明涉及钛合金反重力铸造领域,具体地说,涉及一种钛合金构件真空低压铸造成形装置,属于铸造及铸造设备领域。The invention relates to the field of titanium alloy anti-gravity casting, in particular to a vacuum low-pressure casting forming device for titanium alloy components, which belongs to the field of casting and casting equipment.
背景技术Background technique
钛合金具有密度低、比强度高、耐腐蚀等优异的综合性能,是航空航天领域内一种重要的结构材料。离心铸造是钛合金铸造最常用的方法,但是铸造过程中工艺参数不易控制,并且离心力的存在会造成铸件化学成分的不均匀性,最终导致铸件力学性能的不均匀性。在中国专利[201010615723.4:一种小型钛合金或钛铝合金复杂铸件的铸造成形方法]中,该发明提出一种底漏式真空吸铸熔模精密铸造方法成形钛合金铸件的方法,该方法借助重力及真空吸力使合金液沿重力方向充型,属于重力铸造范畴,充型过程中无法对合金液流速及流态进行控制,影响铸件最终的内在质量。在中国专利[200810150364.2:一种钛及钛合金的铸造方法]中,该发明采用了一种类似于真空吸铸的方法,通过快速抽取上炉腔真空,使纯钛或钛合金液沿升液管逆重力方向进入铸型壳中。但真空吸铸的吸铸力有限,合金液的充型动力及凝固补缩压力都较小,无法用于较大铸件的生产。Titanium alloy has excellent comprehensive properties such as low density, high specific strength and corrosion resistance, and is an important structural material in the field of aerospace. Centrifugal casting is the most commonly used method for titanium alloy casting, but the process parameters are not easy to control during the casting process, and the existence of centrifugal force will cause the inhomogeneity of the chemical composition of the casting, which will eventually lead to the inhomogeneity of the mechanical properties of the casting. In the Chinese patent [201010615723.4: A Casting and Forming Method for Small Titanium Alloy or Titanium Aluminum Alloy Complex Castings], the invention proposes a method for forming titanium alloy castings by a bottom-drain vacuum suction casting investment casting method. Gravity and vacuum suction make the alloy liquid fill the mold along the direction of gravity, which belongs to the category of gravity casting. During the filling process, the flow rate and flow state of the alloy liquid cannot be controlled, which affects the final internal quality of the casting. In the Chinese patent [200810150364.2: A Casting Method of Titanium and Titanium Alloy], the invention adopts a method similar to vacuum suction casting, by quickly extracting the vacuum in the upper furnace chamber, the pure titanium or titanium alloy liquid rises along the liquid The tube enters the mold shell against the direction of gravity. However, vacuum suction casting has limited suction casting force, and the filling power and solidification and feeding pressure of alloy liquid are relatively small, so it cannot be used for the production of larger castings.
发明内容Contents of the invention
本发明要解决的技术问题在于提供一种钛合金构件真空低压铸造成形装置,可采用真空低压铸造方法生产钛合金构件。该装置在钛合金真空熔炼完成后,通过坩埚上升完成低压铸造准备工作,然后向下室中通入保护气体,使合金液沿升液管上升进入铸型型腔并凝固成形,完成低压铸造过程。该装置通过控制进入下室的气体流量实现对合金液充型速度的控制,具有充型速度可控、充型平稳、铸造缺陷少的特点。The technical problem to be solved by the present invention is to provide a vacuum low-pressure casting forming device for titanium alloy components, which can produce titanium alloy components by vacuum low-pressure casting. After the vacuum smelting of titanium alloy is completed, the device lifts the crucible to complete the preparatory work for low-pressure casting, and then passes protective gas into the lower chamber, so that the alloy liquid rises along the liquid riser into the mold cavity and solidifies to complete the low-pressure casting process. . The device controls the filling speed of the alloy liquid by controlling the gas flow into the lower chamber, and has the characteristics of controllable filling speed, stable filling and less casting defects.
本发明提供的一种钛合金构件真空低压铸造成形装置,包括设备主体、真空低压造气控系统、电控系统。The invention provides a vacuum low-pressure casting forming device for titanium alloy components, which includes a main body, a vacuum low-pressure casting gas control system, and an electric control system.
设备主体采用上下室式结构,上室及下室分别带有冷却水循环系统。下室内放置有水冷铜坩埚,通过设备主体电极引入点与感应电源相连接。水冷铜坩埚与升降装置相连,可以带动水冷铜坩埚做上下往复运动。铸型放置在上室中,上室内有加热保温装置及模壳固定装置。设备主体通过管道与真空低压铸造气控系统相连接。The main body of the equipment adopts the upper and lower chamber structure, and the upper chamber and the lower chamber are respectively equipped with cooling water circulation systems. A water-cooled copper crucible is placed in the lower chamber, which is connected to the induction power supply through the electrode introduction point of the main body of the equipment. The water-cooled copper crucible is connected with the lifting device, which can drive the water-cooled copper crucible to reciprocate up and down. The casting mold is placed in the upper chamber, and the upper chamber is equipped with a heating and heat preservation device and a mold shell fixing device. The main body of the equipment is connected with the vacuum low-pressure casting air control system through pipelines.
真空低压铸造气控系统包括连接有真空系统的真空控制管路和连接有保护性气体气源系统的管路组成。真空系统由真空罐、机械泵、扩散泵和增压泵组成。保护气体气源系统由储气罐和保护性气体发生装置组成。真空低压铸造气控系统采用数字式组合阀作为流量调节执行机构,由计算机实现流量调节控制。The vacuum low pressure casting air control system consists of a vacuum control pipeline connected with a vacuum system and a pipeline connected with a protective gas source system. The vacuum system consists of vacuum tank, mechanical pump, diffusion pump and booster pump. The protective gas source system consists of a gas storage tank and a protective gas generator. The vacuum low-pressure casting air control system uses a digital combination valve as the flow adjustment actuator, and the flow adjustment control is realized by a computer.
电控系统主要有工业计算机和PLC组成。工业控制计算机主要用作参数设置、数据监控和数据存储;PLC用作现场控制器,负责现场采样、数据运算、控制输出。工业控制计算机和PLC通过RS485通讯口进行连接,实现数据共享。铸造过程采用闭环控制,监视器上设置有监控画面,能实时观测到设定压力和实际压力,以及各元件的工作状态。The electric control system mainly consists of industrial computer and PLC. Industrial control computers are mainly used for parameter setting, data monitoring and data storage; PLC is used as a field controller, responsible for field sampling, data calculation, and control output. The industrial control computer and PLC are connected through the RS485 communication port to realize data sharing. The casting process adopts closed-loop control, and the monitoring screen is set on the monitor, which can observe the set pressure and actual pressure in real time, as well as the working status of each component.
本发明将反重力铸造与钛合金水冷铜坩锅感应熔炼技术结合起来,实现了钛合金构件的真空低压铸造成型,为钛合金构件提供了一种可行的铸造工艺手段。熔炼在真空状态下完成的,铸造和凝固过程在惰性保护气体下完成。真空低压铸造可提高钛合金熔体的充型能力,有利于提高构件在成型过程中的补缩能力和抑制构件在成形过程中产生化学成分偏析的倾向。The invention combines anti-gravity casting with titanium alloy water-cooled copper crucible induction smelting technology, realizes vacuum low-pressure casting molding of titanium alloy components, and provides a feasible casting process means for titanium alloy components. The smelting is done in a vacuum state, and the casting and solidification process is done under an inert protective gas. Vacuum low-pressure casting can improve the filling ability of titanium alloy melt, which is conducive to improving the feeding ability of components during the forming process and inhibiting the tendency of chemical composition segregation of components during the forming process.
附图说明Description of drawings
下面结合附图和实施方式对本发明一种钛合金构件低压铸造成形装置作进一步详细的说明。A low-pressure casting forming device for titanium alloy components of the present invention will be further described in detail below in conjunction with the drawings and embodiments.
图1为本发明的钛合金构件真空低压铸造形装置结构示意图。Fig. 1 is a schematic structural diagram of a vacuum low-pressure casting device for a titanium alloy component of the present invention.
1.下室 2.下室冷却水进出口 3.铜坩埚电极接入点 4.水冷铜坩埚 5.升液管 6.中隔板 7.密封垫 8.锁紧密封机构 9.上室 10.电阻丝 11.电极接口 12.上室冷却水进出口 13.保温层 14.模壳锁紧机构 15.铸型模壳16.上室进排气电磁阀 17.真空系统 18.上下室互通电控截止阀 19.计算机控制系统 20.保护气体气源系统 21.气源电控截止阀 22.数字式组合阀23.排气电控截止阀 24.感应电源 25.冷却水循环系统 26.下室进排气电控截止阀 27.电感应开关 28.位置挡片 29.坩埚升降机构1. Lower chamber 2. Lower chamber cooling water inlet and outlet 3. Copper crucible electrode access point 4. Water-cooled copper crucible 5. Liquid riser 6. Middle partition 7. Gasket 8. Locking and sealing mechanism 9. Upper chamber 10 .Resistance wire 11. Electrode interface 12. Cooling water inlet and outlet of the upper chamber 13. Insulation layer 14. Mold shell locking mechanism 15. Casting mold shell 16. Upper chamber intake and exhaust solenoid valve 17. Vacuum system 18. Communication between upper and lower chambers Electric control stop valve 19. Computer control system 20. Protective gas source system 21. Air source electric control stop valve 22. Digital combination valve 23. Exhaust electric control stop valve 24. Induction power supply 25. Cooling water circulation system 26. Down Chamber intake and exhaust electric control cut-off valve 27. Electric induction switch 28. Position stopper 29. Crucible lifting mechanism
具体实施方式Detailed ways
本实施例是一种钛合金构件真空低压铸造成形装置This embodiment is a vacuum low pressure casting forming device for titanium alloy components
如图1所示,一种钛合金构件真空低压铸造成形装置主要由下室1、下室冷却水进出口2、铜坩埚电极接入点3、水冷铜坩埚4、升液管5、中隔板6、密封垫7、锁紧密封机构8、上室9、电阻10、电极接口11、上室冷却水进出口12、保温层13、模壳锁紧机构14、铸型模壳15、上室进排气电磁阀16、真空系统17、上下室互通电控截止阀18、计算机控制系统19、保护气体气源系统20、气源电控截止阀21、数字式组合阀22、排气电控截止阀23、感应电源24、冷却水循环系统25、下室进排气电控截止阀26、电感应开关27、位置挡片28、坩埚升降机构组成29组成。As shown in Figure 1, a vacuum low-pressure casting forming device for titanium alloy components is mainly composed of a lower chamber 1, a cooling water inlet and outlet 2 in the lower chamber, a copper crucible electrode access point 3, a water-cooled copper crucible 4, a liquid riser 5, and a partition Plate 6, gasket 7, locking and sealing mechanism 8, upper chamber 9, resistor 10, electrode interface 11, upper chamber cooling water inlet and outlet 12, insulation layer 13, mold shell locking mechanism 14, casting mold shell 15, upper Chamber intake and exhaust solenoid valve 16, vacuum system 17, upper and lower chamber communication electric control shut-off valve 18, computer control system 19, protective gas source system 20, gas source electric control shut-off valve 21, digital combined valve 22, exhaust electric control cut-off valve 23, induction power supply 24, cooling water circulation system 25, lower room intake and exhaust electric control cut-off valve 26, electric induction switch 27, position stopper 28, crucible lifting mechanism composition 29.
下室1和上室9采用双层水冷结构,下室冷却水进出口2及上室冷却水进出口12与冷却水循环系统25连接。水冷铜坩埚4放置在下室1内,并通过铜坩埚电极接入点3与感应电源24连接。坩埚升降结构29位于下室1底部中心,与水冷铜坩埚3相连,可实现坩埚的升降运动,并可通过位置挡片28和电感应开关27控制坩埚的上升与下降位置。The lower chamber 1 and the upper chamber 9 adopt a double-layer water cooling structure, and the cooling water inlet and outlet 2 of the lower chamber and the cooling water inlet and outlet 12 of the upper chamber are connected with the cooling water circulation system 25 . The water-cooled copper crucible 4 is placed in the lower chamber 1 and connected to the induction power supply 24 through the copper crucible electrode access point 3 . The crucible lifting structure 29 is located at the center of the bottom of the lower chamber 1 and is connected with the water-cooled copper crucible 3, which can realize the lifting movement of the crucible, and the rising and falling position of the crucible can be controlled by the position stopper 28 and the electric induction switch 27.
中隔板6位于上室1与下室9之间,起隔离上下室和放置铸型作用。升液管5放置在中隔板6中心的孔中,在升液管5法兰的上下端面放置有耐火材料的密封垫7,铸型模壳15放置在升液管6和密封垫7上,并通过模壳锁紧机构14将铸型、升液管和密封垫压紧,实现密封。电阻丝10、电极接口11、保温层13位于上室9内,主要用于对铸型模壳的预热保温。The middle partition 6 is located between the upper chamber 1 and the lower chamber 9, and plays the role of isolating the upper and lower chambers and placing the mold. The riser pipe 5 is placed in the hole in the center of the middle partition 6, and the gasket 7 of refractory material is placed on the upper and lower end faces of the flange of the riser pipe 5, and the casting mold shell 15 is placed on the riser pipe 6 and the gasket 7 , and the casting mould, the riser pipe and the gasket are compressed by the mold case locking mechanism 14 to realize sealing. The resistance wire 10, the electrode interface 11, and the insulation layer 13 are located in the upper chamber 9, and are mainly used for preheating and insulating the casting mold shell.
锁紧密封机构8主要用于下室1和上室9之间的锁紧密封,在液压油缸的驱动下,锁紧密封机构8绕轴向转动,实现上室、下室之间的打开与密封。The locking and sealing mechanism 8 is mainly used for locking and sealing between the lower chamber 1 and the upper chamber 9. Driven by the hydraulic cylinder, the locking and sealing mechanism 8 rotates around the axial direction to realize the opening and closing between the upper chamber and the lower chamber. seal.
上室进排气电磁阀16和真空系统17通过无缝钢管与上室9连接,上下室互通电控截止阀18通过无缝钢管与下室1和上室9连接。气源电控截止阀21、数字式组合阀22、排气电控截止阀23和下室进排气电控截止阀26组成低压铸造气控系统,其中气源电控截止阀21与气源20连接,下室进排气电控截止阀26与下室1连接。其中真空系统20由真空罐、机械泵、扩散泵和增压泵组成,气源系统20由储气罐和保护性气体发生装置组成。The upper chamber intake and exhaust solenoid valve 16 and the vacuum system 17 are connected to the upper chamber 9 through seamless steel pipes, and the upper and lower chamber intercommunication electric control shut-off valves 18 are connected to the lower chamber 1 and upper chamber 9 through seamless steel pipes. Air source electric control shut-off valve 21, digital combined valve 22, exhaust electric control shut-off valve 23 and lower room intake and exhaust electric control shut-off valve 26 form a low-pressure casting air control system, in which the air source electric control shut-off valve 21 is connected with the air source 20 is connected, and the lower chamber intake and exhaust electric control shut-off valve 26 is connected with the lower chamber 1. The vacuum system 20 is composed of a vacuum tank, a mechanical pump, a diffusion pump and a booster pump, and the gas source system 20 is composed of a gas storage tank and a protective gas generating device.
计算机控制系统19主要有工业计算机和PLC组成。工业控制计算机主要用作参数设置、数据监控和数据存储;PLC用作现场控制器,负责现场采样、数据运算、控制输出。工业控制计算机和PLC通过RS485通讯口进行连接,实现数据共享。铸造过程采用闭环控制,监视器上设置有监控画面,能实时观测到设定压力和实际压力,以及各元件的工作状态。Computer control system 19 mainly consists of industrial computer and PLC. Industrial control computers are mainly used for parameter setting, data monitoring and data storage; PLC is used as a field controller, responsible for field sampling, data calculation, and control output. The industrial control computer and PLC are connected through the RS485 communication port to realize data sharing. The casting process adopts closed-loop control, and the monitoring screen is set on the monitor, which can observe the set pressure and actual pressure in real time, as well as the working status of each component.
工作流程:work process:
钛合金熔炼开始前,先将锁紧密封机构8打开,移走上室9和中隔板6,向水冷铜坩埚4中加入钛合金料。将中隔板6放置到锁紧密封机构8后,在中隔板5上放置升液管5,使升液管5处在水冷铜坩埚4上方,并在升液管法兰上下面放置耐火材料的密封垫7。将铸型摸壳15的浇口与升液管口位置对齐,放置于中隔板6上,利用模壳锁紧机构14将模壳固定,实现模壳和升液管与上下腔隔板之间的密封。将上室9放置到锁紧密封机构8中,并锁紧密封,使上下室之间密封隔离。通过电极接口11对电阻丝10通电,实现对铸型模壳的预热保温。Before the titanium alloy smelting starts, the locking and sealing mechanism 8 is opened, the upper chamber 9 and the middle partition 6 are removed, and titanium alloy material is added into the water-cooled copper crucible 4 . After placing the middle partition 6 on the locking and sealing mechanism 8, place the liquid riser 5 on the middle partition 5 so that the liquid riser 5 is above the water-cooled copper crucible 4, and place a refractory pipe above and below the flange of the riser. Material of gasket7. Align the gate of the mold shell 15 with the position of the riser nozzle, place it on the middle partition 6, and use the mold case locking mechanism 14 to fix the mold case, so as to realize the connection between the mold case and the riser pipe and the upper and lower chamber partitions. between the seals. Put the upper chamber 9 into the locking and sealing mechanism 8, and lock and seal, so that the upper and lower chambers are sealed and isolated. The resistance wire 10 is energized through the electrode interface 11 to realize preheating and heat preservation of the casting mold shell.
开启真空系统17并打开上室进排气电磁阀16和上下室互通电控截止阀,实现对上室9和下室1建立同步真空,在真空达到所需的真空度时,通过铜坩埚电极接入点3实现对水冷铜坩埚通电,实现对钛合金料的加热熔炼。由于升液管5处在水冷铜坩埚4上方,靠感应熔炼辐射热对其进行预热,可降低低压铸造过程中升液管15对钛合金熔体的激冷效果。Turn on the vacuum system 17 and open the upper chamber intake and exhaust solenoid valve 16 and the upper and lower chamber interconnection electric control shut-off valve to realize the establishment of synchronous vacuum for the upper chamber 9 and the lower chamber 1. When the vacuum reaches the required vacuum degree, the copper crucible electrode The access point 3 realizes the power supply to the water-cooled copper crucible, and realizes the heating and melting of the titanium alloy material. Since the liquid riser 5 is above the water-cooled copper crucible 4, it is preheated by induction melting radiant heat, which can reduce the chilling effect of the liquid riser 15 on the titanium alloy melt during the low-pressure casting process.
熔炼结束后,开始真空低压铸造。首先根据工艺需求在计算机控制软件中输入相应低压铸造工艺参数,参数输入完毕后,工控机将参数下传至PLC中的存储器中。然后关闭上室进排气电磁阀16和上下室互通电控截止阀18,水冷铜坩埚4在升降机构29的带动下快速上升,使升液管5浸入钛合金熔体之中。打开气源电控截止阀、下室进排气电控截止阀,在计算机控制系统调控下,按照参数设置实时调节数字组合阀22的进气流量,使保护气体以一定的速度充入下室1中,这样,在上、下室之间形成压差,钛合金熔液在压差作用下沿升液管上升并进入铸型型腔中,在一定压差作用下凝固成形,实现钛合金真空低压铸造过程。After smelting, start vacuum low-pressure casting. First, input the corresponding low-pressure casting process parameters in the computer control software according to the process requirements. After the parameters are input, the industrial computer will download the parameters to the memory in the PLC. Then close the upper chamber intake and exhaust solenoid valve 16 and the upper and lower chamber intercommunication electric control shut-off valve 18, and the water-cooled copper crucible 4 rises rapidly under the drive of the lifting mechanism 29, so that the liquid riser 5 is immersed in the titanium alloy melt. Open the air source electric control cut-off valve and the lower chamber intake and exhaust electric control cut-off valve, and under the control of the computer control system, adjust the intake flow of the digital combination valve 22 in real time according to the parameter settings, so that the protective gas can be filled into the lower chamber at a certain speed In 1, in this way, a pressure difference is formed between the upper and lower chambers, and the titanium alloy melt rises along the riser pipe under the action of the pressure difference and enters the mold cavity, and solidifies and forms under a certain pressure difference to realize the titanium alloy Vacuum low pressure casting process.
在钛合金铸件凝固后,关闭气源电控截止阀21,打开上下室互通电控截止阀18,卸除上下室之间的压差,是升液管内未凝固合金液流回坩埚内,启动坩埚升降机构29,带动水冷铜坩埚向下移动到熔炼开始时位置。打开排气电控截止阀23,使上下室破除真空,并恢复到常压状态。松开模壳锁紧机构14,打开锁紧密封机构,吊走上室9,取出铸件,完成浇注过程。After the titanium alloy casting is solidified, close the gas source electric control shut-off valve 21, open the upper and lower chamber communication electric control shut-off valve 18, and remove the pressure difference between the upper and lower chambers, so that the unsolidified alloy liquid in the riser pipe flows back into the crucible, and starts The crucible lifting mechanism 29 drives the water-cooled copper crucible to move down to the position when the smelting starts. Open the exhaust electric control stop valve 23 to break the vacuum in the upper and lower chambers and return to the normal pressure state. Unclamp the formwork locking mechanism 14, open the locking and sealing mechanism, lift the upper chamber 9, take out the casting, and complete the pouring process.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410202210.9A CN104028729A (en) | 2014-05-09 | 2014-05-09 | Vacuum low-pressure casting forming device for titanium alloy component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410202210.9A CN104028729A (en) | 2014-05-09 | 2014-05-09 | Vacuum low-pressure casting forming device for titanium alloy component |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104028729A true CN104028729A (en) | 2014-09-10 |
Family
ID=51459857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410202210.9A Pending CN104028729A (en) | 2014-05-09 | 2014-05-09 | Vacuum low-pressure casting forming device for titanium alloy component |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104028729A (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104690249A (en) * | 2015-03-16 | 2015-06-10 | 河南科技大学 | Copper alloy vacuum counter-pressure casting machine |
CN106392039A (en) * | 2016-11-12 | 2017-02-15 | 山西江淮重工有限责任公司 | Overflow-preventing system for counter-pressure casting machine |
CN106994506A (en) * | 2017-05-18 | 2017-08-01 | 滨州戴森车轮科技有限公司 | A kind of low pressure casting stove with recycling-guard atmosphere |
CN107249784A (en) * | 2015-02-24 | 2017-10-13 | 日产自动车株式会社 | Casting device and casting method |
US20170326631A1 (en) * | 2016-05-10 | 2017-11-16 | Callaway Golf Company | Unit Cell Titanium Casting |
US20170368601A1 (en) * | 2016-06-23 | 2017-12-28 | Callaway Golf Company | Unit Cell Titanium Casting |
US20180043427A1 (en) * | 2016-08-12 | 2018-02-15 | Callaway Golf Company | Unit Cell Titanium Casting |
US20180056383A1 (en) * | 2016-08-31 | 2018-03-01 | Callaway Golf Company | Unit Cell Titanium Casting |
US20180056385A1 (en) * | 2016-08-30 | 2018-03-01 | Callaway Golf Company | Unit Cell Titanium Casting |
US20180141115A1 (en) * | 2016-11-23 | 2018-05-24 | Callaway Golf Company | Unit Cell Titanium Casting |
CN108097922A (en) * | 2017-12-20 | 2018-06-01 | 西北工业大学 | A kind of metal-base composites vacuum low-pressure casting device and casting method |
US20180161864A1 (en) * | 2016-12-09 | 2018-06-14 | Callaway Golf Company | Unit Cell Titanium Casting |
US20180161865A1 (en) * | 2016-12-12 | 2018-06-14 | Callaway Golf Company | Unit Cell Titanium Casting |
US20180169748A1 (en) * | 2016-12-12 | 2018-06-21 | Callaway Golf Company | Unit Cell Titanium Casting |
CN108746553A (en) * | 2018-08-23 | 2018-11-06 | 苏州沧海真空机械有限公司 | Vacuum and the compound aluminum alloy casting apparatus and its method of low pressure |
CN109128097A (en) * | 2018-10-17 | 2019-01-04 | 南昌航空大学 | A kind of Vacuum Differential Pressure Casting classification compression solidification starts melt temperature method of pressurizeing |
CN109382500A (en) * | 2017-08-07 | 2019-02-26 | 北京三未科技发展有限公司 | A kind of all-aluminium piston exempts from cast molding device and forming method |
CN109622908A (en) * | 2019-01-11 | 2019-04-16 | 钢铁研究总院 | A kind of vertical centrifugal fine casting method of lightweight titanium aluminium turbine |
CN109719277A (en) * | 2017-10-30 | 2019-05-07 | 科华控股股份有限公司 | The anti-gravity feeding shell structure of heat resisting steel volute process for suction casting |
CN109943736A (en) * | 2019-04-30 | 2019-06-28 | 北京欧菲金太科技有限责任公司 | A kind of aluminium V-Ti producing device and method |
CN110802216A (en) * | 2018-08-06 | 2020-02-18 | 科华控股股份有限公司 | Anti-gravity vacuum suction casting heat-resistant cast steel casting process and device |
CN111375743A (en) * | 2018-12-29 | 2020-07-07 | 沈阳铸造研究所有限公司 | Casting device and precision casting method for high-temperature alloy part with complex structure |
CN112548074A (en) * | 2019-09-26 | 2021-03-26 | 沈阳铸造研究所有限公司 | Pressure-regulating filling type high-pressure solidification casting device and casting method |
CN113234947A (en) * | 2021-05-19 | 2021-08-10 | 攀枝花学院 | Nano copper-titanium alloy and preparation method thereof |
CN113664183A (en) * | 2021-09-10 | 2021-11-19 | 双鹰(漳州)精密金属制品有限公司 | A vacuum suction casting process and equipment for preventing mold shell from bursting |
CN114061307A (en) * | 2021-11-29 | 2022-02-18 | 沈阳真空技术研究所有限公司 | Cold crucible antigravity precision casting equipment |
CN117206500A (en) * | 2023-11-06 | 2023-12-12 | 南通通力油泵有限公司 | Low-pressure casting die for fuel injection pump body |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01317673A (en) * | 1988-06-17 | 1989-12-22 | Sumikin Osaka Plant Koji Kk | Apparatus for casting titanium and titanium alloy denture |
JPH05228604A (en) * | 1992-02-17 | 1993-09-07 | Isuzu Seisakusho:Kk | Suction pressurized casting apparatus |
CN102398014A (en) * | 2011-11-15 | 2012-04-04 | 上海交通大学 | Low-pressure fine-grain casting device and method |
CN102699311A (en) * | 2012-06-28 | 2012-10-03 | 上海交通大学 | Precesion casting method for high temperature alloy complex thin-walled castings |
CN103624237A (en) * | 2013-12-16 | 2014-03-12 | 河南理工大学 | Magnesium alloy counter-gravity casting device and method |
-
2014
- 2014-05-09 CN CN201410202210.9A patent/CN104028729A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01317673A (en) * | 1988-06-17 | 1989-12-22 | Sumikin Osaka Plant Koji Kk | Apparatus for casting titanium and titanium alloy denture |
JPH05228604A (en) * | 1992-02-17 | 1993-09-07 | Isuzu Seisakusho:Kk | Suction pressurized casting apparatus |
CN102398014A (en) * | 2011-11-15 | 2012-04-04 | 上海交通大学 | Low-pressure fine-grain casting device and method |
CN102699311A (en) * | 2012-06-28 | 2012-10-03 | 上海交通大学 | Precesion casting method for high temperature alloy complex thin-walled castings |
CN103624237A (en) * | 2013-12-16 | 2014-03-12 | 河南理工大学 | Magnesium alloy counter-gravity casting device and method |
Non-Patent Citations (2)
Title |
---|
李强等: "钛合金构件真空吸铸成形控制技术的研究", 《铸造》, vol. 58, no. 08, 31 August 2009 (2009-08-31), pages 784 - 787 * |
李新雷等: "低压差压调压一体化反重力铸造装备技术研究", 《铸造》, vol. 56, no. 07, 10 July 2007 (2007-07-10), pages 727 - 730 * |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10286449B2 (en) | 2015-02-24 | 2019-05-14 | Nissan Motor Co., Ltd. | Casting device and casting method |
CN107249784A (en) * | 2015-02-24 | 2017-10-13 | 日产自动车株式会社 | Casting device and casting method |
CN104690249A (en) * | 2015-03-16 | 2015-06-10 | 河南科技大学 | Copper alloy vacuum counter-pressure casting machine |
US20170326631A1 (en) * | 2016-05-10 | 2017-11-16 | Callaway Golf Company | Unit Cell Titanium Casting |
US20170368601A1 (en) * | 2016-06-23 | 2017-12-28 | Callaway Golf Company | Unit Cell Titanium Casting |
US20180043427A1 (en) * | 2016-08-12 | 2018-02-15 | Callaway Golf Company | Unit Cell Titanium Casting |
US20180056385A1 (en) * | 2016-08-30 | 2018-03-01 | Callaway Golf Company | Unit Cell Titanium Casting |
US20180056383A1 (en) * | 2016-08-31 | 2018-03-01 | Callaway Golf Company | Unit Cell Titanium Casting |
CN106392039A (en) * | 2016-11-12 | 2017-02-15 | 山西江淮重工有限责任公司 | Overflow-preventing system for counter-pressure casting machine |
US20180141115A1 (en) * | 2016-11-23 | 2018-05-24 | Callaway Golf Company | Unit Cell Titanium Casting |
US20180161864A1 (en) * | 2016-12-09 | 2018-06-14 | Callaway Golf Company | Unit Cell Titanium Casting |
US20180161865A1 (en) * | 2016-12-12 | 2018-06-14 | Callaway Golf Company | Unit Cell Titanium Casting |
US20180169748A1 (en) * | 2016-12-12 | 2018-06-21 | Callaway Golf Company | Unit Cell Titanium Casting |
CN106994506A (en) * | 2017-05-18 | 2017-08-01 | 滨州戴森车轮科技有限公司 | A kind of low pressure casting stove with recycling-guard atmosphere |
CN109382500A (en) * | 2017-08-07 | 2019-02-26 | 北京三未科技发展有限公司 | A kind of all-aluminium piston exempts from cast molding device and forming method |
CN109382500B (en) * | 2017-08-07 | 2023-11-07 | 北京三未科技发展有限公司 | Casting-free forming device and forming method for aluminum alloy piston |
CN109719277A (en) * | 2017-10-30 | 2019-05-07 | 科华控股股份有限公司 | The anti-gravity feeding shell structure of heat resisting steel volute process for suction casting |
CN108097922A (en) * | 2017-12-20 | 2018-06-01 | 西北工业大学 | A kind of metal-base composites vacuum low-pressure casting device and casting method |
CN110802216A (en) * | 2018-08-06 | 2020-02-18 | 科华控股股份有限公司 | Anti-gravity vacuum suction casting heat-resistant cast steel casting process and device |
CN108746553A (en) * | 2018-08-23 | 2018-11-06 | 苏州沧海真空机械有限公司 | Vacuum and the compound aluminum alloy casting apparatus and its method of low pressure |
CN109128097A (en) * | 2018-10-17 | 2019-01-04 | 南昌航空大学 | A kind of Vacuum Differential Pressure Casting classification compression solidification starts melt temperature method of pressurizeing |
CN111375743A (en) * | 2018-12-29 | 2020-07-07 | 沈阳铸造研究所有限公司 | Casting device and precision casting method for high-temperature alloy part with complex structure |
CN111375743B (en) * | 2018-12-29 | 2022-05-10 | 沈阳铸造研究所有限公司 | Casting device and precision casting method for superalloy parts with complex structure |
CN109622908B (en) * | 2019-01-11 | 2020-01-07 | 钢铁研究总院 | Vertical centrifugal precision casting method of light titanium-aluminum turbine |
CN109622908A (en) * | 2019-01-11 | 2019-04-16 | 钢铁研究总院 | A kind of vertical centrifugal fine casting method of lightweight titanium aluminium turbine |
CN109943736A (en) * | 2019-04-30 | 2019-06-28 | 北京欧菲金太科技有限责任公司 | A kind of aluminium V-Ti producing device and method |
CN112548074A (en) * | 2019-09-26 | 2021-03-26 | 沈阳铸造研究所有限公司 | Pressure-regulating filling type high-pressure solidification casting device and casting method |
CN113234947A (en) * | 2021-05-19 | 2021-08-10 | 攀枝花学院 | Nano copper-titanium alloy and preparation method thereof |
CN113664183A (en) * | 2021-09-10 | 2021-11-19 | 双鹰(漳州)精密金属制品有限公司 | A vacuum suction casting process and equipment for preventing mold shell from bursting |
CN114061307A (en) * | 2021-11-29 | 2022-02-18 | 沈阳真空技术研究所有限公司 | Cold crucible antigravity precision casting equipment |
CN114061307B (en) * | 2021-11-29 | 2022-07-01 | 沈阳真空技术研究所有限公司 | Cold crucible antigravity precision casting equipment |
CN117206500A (en) * | 2023-11-06 | 2023-12-12 | 南通通力油泵有限公司 | Low-pressure casting die for fuel injection pump body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104028729A (en) | Vacuum low-pressure casting forming device for titanium alloy component | |
CN103934431B (en) | A kind of titanium or titanium alloy complex thin wall castings antigravity building mortion and manufacturing process | |
CN106424637B (en) | A kind of bulk amorphous alloy high vacuum die casting former and technique | |
CN103231017A (en) | High-temperature alloy complex thin-wall casting precise casting device | |
CN108097922A (en) | A kind of metal-base composites vacuum low-pressure casting device and casting method | |
CN103302242A (en) | Precise casing method of tiles of floating wall of combustion chamber of aeroengine | |
CN112317723B (en) | Metal casting method and equipment based on photocuring printing and casting mold differential pressure pouring | |
CN106493303A (en) | Prepare water-degradable aluminium alloy bimetallic water cooling casting mould | |
CN108067604A (en) | A kind of melt stirring-type Multifunctional reverse gravity casting device and casting method | |
CN103302276B (en) | Suction and injection machine for liquid aluminum alloy | |
CN103691911B (en) | A kind of casting method of magnesium alloy and device thereof | |
CN104690249A (en) | Copper alloy vacuum counter-pressure casting machine | |
CN105499523A (en) | Pouring device for metal smelting and pouring method | |
CN201124226Y (en) | Magnesium Alloy Low Pressure Casting Furnace | |
CN104625017A (en) | Double-room heat preservation furnace for low-pressure continuous casting and operation method | |
CN217474826U (en) | Liquid lifting device and flow distribution mechanism for quantitative furnace | |
CN114918403A (en) | Thermal control device and method for pressure regulating precision casting and casting device | |
CN112828264B (en) | Casting device with spiral magnetic field and casting method | |
CN105537527A (en) | Device for preparing turbine blade by using vacuum rapid smelting | |
CN102221447B (en) | Multifunctional continuous casting water model test device | |
CN113290232A (en) | Reverse gravity filling forming method for large-size complex amorphous alloy component | |
CN202655594U (en) | In-cavity semi-solid forming device | |
CN103894588B (en) | A kind of pouring procedure of the casting system for the shaping of high temperature alloy directional solidification | |
CN102672142B (en) | Semi-solid processing accurate forming system for liquid metal in cavity | |
CN206083799U (en) | A New Amorphous Master Alloy Ingot Continuous Casting System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140910 |