CN104022711B - A kind of surface-mount type permagnetic synchronous motor initial position detection method - Google Patents
A kind of surface-mount type permagnetic synchronous motor initial position detection method Download PDFInfo
- Publication number
- CN104022711B CN104022711B CN201410249596.9A CN201410249596A CN104022711B CN 104022711 B CN104022711 B CN 104022711B CN 201410249596 A CN201410249596 A CN 201410249596A CN 104022711 B CN104022711 B CN 104022711B
- Authority
- CN
- China
- Prior art keywords
- axis
- positive direction
- current
- estimated
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 22
- 238000001514 detection method Methods 0.000 title claims abstract description 9
- 238000002347 injection Methods 0.000 claims abstract description 13
- 239000007924 injection Substances 0.000 claims abstract description 13
- 230000009466 transformation Effects 0.000 claims description 5
- 230000003068 static effect Effects 0.000 claims description 4
- 238000004804 winding Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 30
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000006880 cross-coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
Description
技术领域technical field
本发明涉及电机控制领域,尤其涉及一种表贴式永磁同步电机初始位置检测方法。The invention relates to the field of motor control, in particular to a method for detecting the initial position of a surface-mounted permanent magnet synchronous motor.
背景技术Background technique
目前对于表贴式永磁同步电机转子初始位置检测的方法,常见的以di/dt类型和信号注入类型为主。At present, for the initial position detection method of the surface-mounted permanent magnet synchronous motor rotor, the common di/dt type and signal injection type are the main methods.
Yuzawa T,Tanaka K,Moriyama R,et al.An efficient estimation method ofsensorless initial rotor position for surface PM synchronous motor[C]//Electric Machines and Drives Conference,2001.IEMDC2001.IEEEInternational.IEEE,2001:44-49.利用di/dt检测转子位置,通过折半查找的方法迅速估计转子的初始位置,但在辨识过程中需固定电机的转子,且辨识结果受齿槽效应的影响。刘颖,周波,李帅,等.转子磁钢表贴式永磁同步电机转子初始位置检测[J].中国电机工程学报,2011,31(18):48-54.基于SPMSM定子铁心的非线性饱和特性,首先在估计转子同步旋转坐标系的d轴注入高频正弦电压信号,通过闭环调节得到转子位置的初次估计值,再在估计的d轴方向注入正负电压脉冲,利用正负电流作用下直轴等效时间常数的不同判断d轴正方向,这类方法在初始位置估计全过程中需两次注入信号。磁极正方向判断过程需要注入正负电压脉冲再比较电流响应衰减到0所用的时间,这个过程必然花费一定的时间。刘颖,周波,赵承亮,等.基于脉振高频电流注入SPMSM低速无位置传感器控制[J].中国电工技术学报,2012,7(27):139-145.首次采用脉振高频电流注入法实现SPMSM转子位置估计,但是没有提及如何对d轴正方向进行判断。Yuzawa T, Tanaka K, Moriyama R, et al.An efficient estimation method of sensorless initial rotor position for surface PM synchronous motor[C]//Electric Machines and Drives Conference,2001.IEMDC2001.IEEEInternational.IEEE,2001:44-49. The di/dt is used to detect the rotor position, and the initial position of the rotor is quickly estimated by the half-search method, but the rotor of the motor needs to be fixed during the identification process, and the identification result is affected by the cogging effect. Liu Ying, Zhou Bo, Li Shuai, et al. Rotor initial position detection of surface-mounted permanent magnet synchronous motor with rotor magnet[J]. Proceedings of the Chinese Society for Electrical Engineering, 2011, 31(18): 48-54. Based on the SPMSM stator core Linear saturation characteristics, first inject a high-frequency sinusoidal voltage signal into the d-axis of the estimated rotor synchronous rotation coordinate system, obtain the initial estimated value of the rotor position through closed-loop adjustment, and then inject positive and negative voltage pulses in the direction of the estimated d-axis, using positive and negative currents The positive direction of the d-axis is judged by the difference of the equivalent time constant of the direct axis under the action. This type of method needs to inject signals twice in the whole process of initial position estimation. The process of judging the positive direction of the magnetic pole needs to inject positive and negative voltage pulses and then compare the time it takes for the current response to decay to 0. This process will inevitably take a certain amount of time. Liu Ying, Zhou Bo, Zhao Chengliang, et al. Low-speed position sensorless control of SPMSM based on pulse-vibration high-frequency current injection[J]. Chinese Journal of Electrotechnical Society, 2012, 7(27):139-145. The first use of pulse-vibration high-frequency current injection The SPMSM rotor position estimation method is realized, but there is no mention of how to judge the positive direction of the d-axis.
发明内容Contents of the invention
本发明所要解决的技术问题是针对背景技术的缺陷,提供了一种表贴式永磁同步电机初始位置检测方法,全过程只需注入一次信号,使初始位置检测过程得到明显简化。The technical problem to be solved by the present invention is to provide a method for detecting the initial position of a surface-mounted permanent magnet synchronous motor in view of the defects of the background technology. The whole process only needs to inject a signal once, which greatly simplifies the initial position detection process.
本发明为解决上述技术问题采用以下技术方案:The present invention adopts the following technical solutions for solving the problems of the technologies described above:
一种表贴式永磁同步电机初始位置检测方法,包含以下步骤:A method for detecting the initial position of a surface-mounted permanent magnet synchronous motor, comprising the following steps:
步骤A),获取转子位置初次估计值;Step A), obtaining the initial estimated value of the rotor position;
步骤B),判断d轴正方向,得到d轴正方向判断后的补偿值;Step B), judging the positive direction of the d-axis, and obtaining the compensation value after judging the positive direction of the d-axis;
步骤C),将转子位置初次估计值加上d轴正方向判断后的补偿值,得到最终初始位置估计值。In step C), the initial estimated value of the rotor position is added to the compensation value after judging the positive direction of the d-axis to obtain the final estimated value of the initial position.
作为本发明一种表贴式永磁同步电机初始位置检测方法进一步的优化方案,获取转子位置初次估计值的步骤如下:As a further optimization scheme of the initial position detection method of a surface-mounted permanent magnet synchronous motor in the present invention, the steps for obtaining the initial estimated value of the rotor position are as follows:
步骤A.1),将估计转子同步旋转坐标系的q轴电流给定为0,d轴电流给定为一个脉振高频正弦信号Imh sin(ωht),其中,Imh为在d轴注入高频电流的幅值,ωh为在d轴注入高频电流的角频率,t表示当前时刻;Step A.1), the q-axis current of the estimated rotor synchronous rotation coordinate system is given as 0, and the d-axis current is given as a pulse vibration high-frequency sinusoidal signal I mh sin(ω h t), where I mh is at The amplitude of the high-frequency current injected on the d-axis, ω h is the angular frequency of the high-frequency current injected on the d-axis, and t represents the current moment;
步骤A.2),采用比例谐振控制器对估计的d轴电流和q轴电流进行控制,使其与给定一致;Step A.2), using a proportional resonant controller to control the estimated d-axis current and q-axis current to make them consistent with the given;
步骤A.3),对比例谐振控制器输出的电压和进行Park逆变换,得到两相静止α-β坐标系下的电压uα和uβ,再采用空间矢量脉宽调制策略得到三相逆变器的六路开关信号,驱动表贴式永磁同步电机;Step A.3), comparing the output voltage of the proportional resonant controller and Perform Park inverse transformation to obtain the voltages u α and u β in the two-phase static α-β coordinate system, and then use the space vector pulse width modulation strategy to obtain the six-way switching signals of the three-phase inverter to drive the surface-mounted permanent magnet synchronous motor ;
步骤A.4),检测电机三相绕组A/B/C中的任意两相电流,先进行Clarke变换得到两相静止α-β坐标系下的电流iα和iβ,再经过Park变换得到估计转子同步旋转坐标系下的d轴电流和q轴电流将其反馈给比例谐振控制器;Step A.4), detect any two-phase current in the three-phase winding A/B/C of the motor, first perform Clarke transformation to obtain the current i α and i β in the two-phase static α-β coordinate system, and then obtain Estimating the d-axis current in the rotor synchronously rotating coordinate system and q-axis current Feed it back to the proportional resonant controller;
步骤A.5),将估计转子同步旋转坐标系的q轴电压响应经过带通滤波器选出频率为ωh的交流分量,即为q轴电压响应的一次谐波分量再与余弦信号cos(ωht)相乘进行调制,得到直流分量和频率为2ωh的交流分量,最后经过低通滤波器滤除交流分量,提取直流分量,得到估计位置偏差信号fc(Δθ);Step A.5), will estimate the q-axis voltage response of the rotor synchronously rotating coordinate system The AC component with a frequency of ω h is selected through a band-pass filter, which is the first harmonic component of the q-axis voltage response Then multiplied with the cosine signal cos(ω h t) for modulation to obtain a DC component and an AC component with a frequency of 2ω h . Finally, the AC component is filtered out by a low-pass filter, and the DC component is extracted to obtain an estimated position deviation signal f c ( Δθ);
步骤A.6),构建位置偏差闭环,将估计位置偏差信号fc(Δθ)作为比例谐振控制器的输入,估计转子角速度为比例谐振控制器的输出,对估计转子角速度积分得到估计的转子位置;Step A.6), build a position deviation closed loop, use the estimated position deviation signal f c (Δθ) as the input of the proportional resonance controller, and estimate the rotor angular velocity is the output of the proportional resonant controller, for the estimated rotor angular velocity Integrate to get the estimated rotor position;
步骤A.7),重复步骤1.1)至步骤1.6),直到估计的转子位置收敛为一恒定值,即为转子初始位置的初次估计值。Step A.7), repeat steps 1.1) to 1.6), until the estimated rotor position converges to a constant value, which is the initial estimated value of the initial rotor position.
作为本发明一种表贴式永磁同步电机初始位置检测方法进一步的优化方案,所述判断d轴正方向并得到d轴正方向判断后的补偿值的详细步骤如下:As a further optimization scheme of the initial position detection method of a surface-mounted permanent magnet synchronous motor of the present invention, the detailed steps of judging the positive direction of the d-axis and obtaining the compensation value after the judgment of the positive direction of the d-axis are as follows:
步骤B.1),将一个注入信号周期(0,2π)均匀分割成四个区间:I:(0,π/2),II:(π/2,π),III:(π,3π/2)和IV:(3π/2,2π);Step B.1), divide an injected signal cycle (0,2π) into four intervals evenly: I: (0,π/2), II: (π/2,π), III: (π,3π/ 2) and IV: (3π/2,2π);
步骤B.2),在区间I和III内对d轴高频电压响应进行积分,记为其中,ωh为在d轴注入高频电流的角频率,t表示当前时刻;Step B.2), the d-axis high-frequency voltage response in intervals I and III Integrate, denoted as Among them, ω h is the angular frequency of high-frequency current injection on the d-axis, and t represents the current moment;
步骤B.3),根据kI,III的符号判断d轴正方向,若kI,III小于0,则d轴正方向与磁极的N 极同向,d轴正方向判断后的补偿值为0;若kI,III大于0,则d轴正方向与磁极的N极反向,d轴正方向判断后的补偿值为π。Step B.3), judge the positive direction of the d-axis according to the sign of k I, III , if k I, III is less than 0, then the positive direction of the d-axis is in the same direction as the N pole of the magnetic pole, and the compensation value after judging the positive direction of the d-axis is 0; if k I, III is greater than 0, the positive direction of the d-axis is opposite to the N pole of the magnetic pole, and the compensation value after the positive direction of the d-axis is judged is π.
作为本发明一种表贴式永磁同步电机初始位置检测方法进一步的优化方案,所述判断d轴正方向并得到d轴正方向判断后的补偿值的步骤还可以是:As a further optimization scheme of the initial position detection method of a surface-mounted permanent magnet synchronous motor of the present invention, the step of judging the positive direction of the d-axis and obtaining the compensation value after judging the positive direction of the d-axis can also be:
步骤B.a),将一个注入信号周期(0,2π)均匀分割成四个区间:I:(0,π/2),II:(π/2,π),III:(π,3π/2)和IV:(3π/2,2π);Step B.a), divide an injection signal period (0,2π) into four intervals evenly: I: (0,π/2), II: (π/2,π), III: (π,3π/2) and IV: (3π/2,2π);
步骤B.b),在区间II和IV内对d轴高频电压响应进行积分,记为其中,ωh为在d轴注入高频电流的角频率,t表示当前时刻;Step Bb), integrate the d-axis high-frequency voltage response in intervals II and IV, denoted as Among them, ω h is the angular frequency of high-frequency current injection on the d-axis, and t represents the current moment;
步骤B.c),根据kII,IV的符号判断d轴正方向,若kII,IV大于0,则d轴正方向与磁极的N极同向,d轴正方向判断后的补偿值为0;若kII,IV小于0,则d轴正方向与磁极的N极反向,d轴正方向判断后的补偿值为π。Step Bc), judge the positive direction of the d-axis according to the sign of k II, IV , if k II, IV is greater than 0, then the positive direction of the d-axis is in the same direction as the N pole of the magnetic pole, and the compensation value after the positive direction of the d-axis is judged is 0; If k II, IV is less than 0, the positive direction of the d-axis is opposite to the N pole of the magnetic pole, and the compensation value after judging the positive direction of the d-axis is π.
本发明在采用脉振高频电流注入法实现初次初始位置估计的基础上,将一个注入信号周期均匀分割成四个区间,在区间I和III内对d轴高频电压响应进行积分,或者在区间II和IV内对d轴高频电压响应进行积分,根据这个积分值的符号判断d轴正方向,该方法无需额外注入正负脉冲信号判断d轴正方向,全过程只需注入一次信号,缩短了估计时间,使初始位置检测过程得到明显简化。In the present invention, on the basis of using the pulse vibration high-frequency current injection method to realize the initial initial position estimation, an injection signal cycle is evenly divided into four intervals, and the d-axis high-frequency voltage response is integrated in intervals I and III, or in Integrate the d-axis high-frequency voltage response in intervals II and IV, and judge the positive direction of the d-axis according to the sign of the integral value. This method does not need to inject additional positive and negative pulse signals to judge the positive direction of the d-axis. The whole process only needs to inject a signal once. The reduced estimation time significantly simplifies the initial position detection process.
本发明采用以上技术方案与现有技术相比,具有以下技术效果:Compared with the prior art, the present invention adopts the above technical scheme and has the following technical effects:
(1)本发明在判断d轴正方向过程中,注入的电流始终为正弦高频信号,无需注入正负脉冲,简化了估计过程;(1) In the process of judging the positive direction of the d-axis, the injected current is always a sinusoidal high-frequency signal, and there is no need to inject positive and negative pulses, which simplifies the estimation process;
(2)将一个注入信号周期均匀分割成四个区间,在区间I和III内对d轴高频电压响应进行积分,或者在区间II和IV内对d轴高频电压响应进行积分,根据这个积分值的符号判断d轴正方向,该过程在一个注入电流信号的周期内即可完成,缩短了估计时间;(2) Divide an injection signal cycle evenly into four intervals, integrate the d-axis high-frequency voltage response in intervals I and III, or integrate the d-axis high-frequency voltage response in intervals II and IV, according to this The sign of the integral value judges the positive direction of the d-axis, and the process can be completed within one cycle of the injected current signal, shortening the estimation time;
(3)避免了正负脉冲注入过程中可能导致的小惯量电机抖动问题,可用在电机转动惯量小、对初始位置估计过程中转子位置抖动有严格要求的场合。(3) It avoids the small inertia motor vibration problem that may be caused during the positive and negative pulse injection process, and can be used in occasions where the motor inertia is small and the rotor position vibration in the initial position estimation process has strict requirements.
附图说明Description of drawings
图1为表贴式永磁同步电机转子初始位置估计过程的原理框图;Figure 1 is a schematic block diagram of the initial position estimation process of the surface-mounted permanent magnet synchronous motor rotor;
图2为两相静止坐标系、实际两相同步旋转坐标系与估计两相同步旋转坐标系的相对关系示意图;Fig. 2 is a schematic diagram of the relative relationship between the two-phase stationary coordinate system, the actual two-phase synchronous rotating coordinate system and the estimated two-phase synchronous rotating coordinate system;
图3为初次初始位置估计的信号提取与调制过程的原理框图;Fig. 3 is the functional block diagram of the signal extraction and modulation process of initial initial position estimation;
图4为d轴正方向判断的信号提取与调制过程的原理框图;Fig. 4 is the functional block diagram of the signal extraction and modulation process of d-axis positive direction judgment;
图5(a)对应实际转子位置为1rad时,转子初始位置估计过程的仿真波形;Figure 5(a) corresponds to the simulation waveform of the initial rotor position estimation process when the actual rotor position is 1 rad;
图5(b)对应实际转子位置为1rad时,d轴正方向判断信息kI,III的波形;Figure 5(b) corresponds to the waveforms of the judgment information k I, III in the positive direction of the d-axis when the actual rotor position is 1rad;
图5(c)对应实际转子位置为1rad时,d轴正方向判断信息kII,IV的波形;Figure 5(c) corresponds to the waveforms of the judgment information k II and IV in the positive direction of the d-axis when the actual rotor position is 1rad;
图5(d)对应实际转子位置为4rad时,转子初始位置估计过程的仿真波形;Figure 5(d) corresponds to the simulation waveform of the initial rotor position estimation process when the actual rotor position is 4rad;
图5(e)对应实际转子位置为4rad时,d轴正方向判断信息kI,III的波形;Figure 5(e) corresponds to the waveforms of the judgment information k I, III in the positive direction of the d-axis when the actual rotor position is 4rad;
图5(f)对应实际转子位置为4rad时,d轴正方向判断信息kII,IV的波形。Figure 5(f) corresponds to the waveforms of the judgment information k II, IV in the positive direction of the d-axis when the actual rotor position is 4rad.
具体实施方式detailed description
下面结合附图对本发明的技术方案做进一步的详细说明:Below in conjunction with accompanying drawing, technical scheme of the present invention is described in further detail:
如图1所示,本发明提供一种表贴式永磁同步电机初始位置检测方法,具体包括以下步骤:As shown in Figure 1, the present invention provides a method for detecting the initial position of a surface-mounted permanent magnet synchronous motor, which specifically includes the following steps:
步骤1),建立坐标系关系图,如图2所示,d-q为实际同步旋转坐标系,为估计转子同步旋转坐标系,α-β为实际两相静止坐标系,并且定义估计位置误差其中,θ为实际转子初始位置,为最终初始位置估计值,的初始值为0;Step 1), establish the coordinate system relationship diagram, as shown in Figure 2, dq is the actual synchronous rotating coordinate system, In order to estimate the rotor synchronous rotating coordinate system, α-β is the actual two-phase stationary coordinate system, and define the estimated position error Among them, θ is the actual rotor initial position, is the final initial position estimate, The initial value of is 0;
步骤2),如图3所示,将估计转子同步旋转坐标系的q轴电流给定为0,d轴电流给定为一个脉振高频正弦信号Imhsin(ωht),其中,Imh为在d轴注入高频电流的幅值,ωh为在d轴注入高频电流的角频率,t表示当前时刻;Step 2), as shown in Figure 3, the q-axis current of the estimated rotor synchronous rotation coordinate system is given as 0, and the d-axis current is given as a pulse vibration high-frequency sinusoidal signal I mh sin(ω h t), where, I mh is the amplitude of the high-frequency current injected on the d-axis, ω h is the angular frequency of the high-frequency current injected on the d-axis, and t represents the current moment;
步骤3),采用比例谐振控制器(PR)对估计的d轴电流和q轴电流进行控制,使其与给定一致;Step 3), using a proportional resonant controller (PR) to control the estimated d-axis current and q-axis current to make them consistent with the given;
步骤4),对PR调节器输出的电压和进行Park逆变换,得到两相静止α-β坐标系下的电压uα和uβ,再采用空间矢量脉宽调制策略得到三相逆变器的六路开关信号,驱动表贴式永磁同步电机SPMSM;Step 4), the output voltage of the PR regulator and Perform Park inverse transformation to obtain the voltages u α and u β in the two-phase static α-β coordinate system, and then use the space vector pulse width modulation strategy to obtain the six-way switching signals of the three-phase inverter to drive the surface-mounted permanent magnet synchronous motor SPMSM;
步骤5),检测电机三相绕组A/B/C中的任意两相电流,先进行Clarke变换得到两相静止α-β坐标系下的电流iα和iβ,再经过Park变换得到估计转子同步旋转坐标系下的d轴电流和q轴电流将其反馈给PR调节器;Step 5), detect any two-phase current in the three-phase winding A/B/C of the motor, first perform Clarke transformation to obtain the currents i α and i β in the two-phase static α-β coordinate system, and then obtain the estimated rotor through Park transformation d-axis current in synchronous rotating coordinate system and q-axis current Feed it back to the PR regulator;
步骤6),将估计转子同步旋转坐标系的q轴电压响应经过带通滤波器选出频率为ωh的交流分量即为q轴电压响应的一次谐波分量再与余弦信号cos(ωht)相乘进行调制,得到直流分量和频率为2ωh的交流分量,最后经过低通滤波器滤除交流分量,提取直流分量,得到估计位置偏差信号fc(Δθ);Step 6), the q-axis voltage response of the rotor synchronously rotating coordinate system will be estimated The AC component with the frequency ω h selected by the band-pass filter is the first harmonic component of the q-axis voltage response Then multiplied with the cosine signal cos(ω h t) for modulation to obtain a DC component and an AC component with a frequency of 2ω h . Finally, the AC component is filtered out by a low-pass filter, and the DC component is extracted to obtain an estimated position deviation signal f c ( Δθ);
步骤7),构建位置偏差闭环,将估计位置偏差信号fc(Δθ)作为PI调节器的输入,估计转子角速度为PI调节器的输出,对估计转子角速度积分得到估计的转子位置,重复步骤2-7,直到估计的转子位置收敛为一恒定值,即为转子初始位置的初次估计值 Step 7), build a position deviation closed loop, use the estimated position deviation signal f c (Δθ) as the input of the PI regulator, and estimate the rotor angular velocity is the output of the PI regulator, the estimated rotor angular velocity Integrate to obtain the estimated rotor position, repeat steps 2-7 until the estimated rotor position converges to a constant value, which is the initial estimated value of the initial rotor position
步骤8),将一个注入信号周期(0,2π)均匀分割成四个区间,分别为:I:(0,π/2),II:(π/2,π),III:(π,3π/2)和IV:(3π/2,2π)。如图4(a)所示,在区间I和III内对d轴高频电压响应进行积分,记为根据kI,III的符号判断d轴正方向,若kI,III小于0,则d轴正方向与磁极的N极同向,d轴正方向判断后的补偿值为0,即若kI,III大于0,则d轴正方向与磁极的N极反向,d轴正方向判断后的补偿值为π,即或者,如图4(b)所示,在区间II和IV内对d轴高频电压响应进行积分,记为根据kII,IV的符号判断d轴正方向,若kII,IV大于0,则d轴正方向与磁极的N极同向,d轴正方向判断后的补偿值为0,即若kII,IV小于0,则d轴正方向与磁极的N极反向,d轴正方向判断后的补偿值为π,即 Step 8), divide an injection signal cycle (0,2π) into four intervals evenly, namely: I: (0,π/2), II: (π/2,π), III: (π,3π /2) and IV: (3π/2,2π). As shown in Figure 4(a), the d-axis high-frequency voltage response in intervals I and III Integrate, denoted as The positive direction of the d-axis is judged according to the sign of k I, III . If k I, III is less than 0, the positive direction of the d-axis is in the same direction as the N pole of the magnetic pole, and the compensation value after the judgment of the positive direction of the d-axis is 0, that is If k I, III is greater than 0, the positive direction of the d-axis is opposite to the N pole of the magnetic pole, and the compensation value after the positive direction of the d-axis is judged is π, that is Alternatively, as shown in Fig. 4(b), the d-axis high-frequency voltage response is integrated over intervals II and IV, denoted as Judging the positive direction of the d-axis according to the sign of k II, IV , if k II, IV is greater than 0, the positive direction of the d-axis is in the same direction as the N pole of the magnetic pole, and the compensation value after judging the positive direction of the d-axis is 0, that is If k II, IV is less than 0, the positive direction of the d-axis is opposite to the N pole of the magnetic pole, and the compensation value after the positive direction of the d-axis is judged is π, that is
对判断d轴正方向的理论分析如下:The theoretical analysis of judging the positive direction of the d-axis is as follows:
电机在静止时,反电势和交叉耦合项均为0,其d轴电压方程可表示为式中,Rs为定子电阻,Ld(id)表示d轴电感与实际的d轴电流id有关,Ld(id>0)表示id>0时对应的d轴电感,Ld(id<0)表示id<0时对应的d轴电感。实际上当id>0时由于d轴磁场产生饱和,d轴电感减小;当id<0时由于d轴磁场退饱和,d轴电感增大,设id=0时d轴电感为Ld0,从而可以得到Ld(id>0)<Ld0<Ld(id<0)。When the motor is at rest, the back EMF and cross-coupling items are both 0, and its d-axis voltage equation can be expressed as In the formula, R s is the stator resistance, L d (i d ) means that the d-axis inductance is related to the actual d-axis current id, L d (i d > 0) means the corresponding d -axis inductance when i d > 0, L d (id <0) represents the corresponding d-axis inductance when i d < 0. In fact, when i d >0, the d-axis inductance decreases due to the saturation of the d-axis magnetic field; when i d <0, the d-axis inductance increases due to the desaturation of the d-axis magnetic field, and when i d =0, the d-axis inductance is L d0 , so that L d (i d >0)<L d0 <L d (i d <0) can be obtained.
初次初始位置估计结束后,转子位置估计误差Δθ为0或π,估计d轴电流在PR调节器的作用下与给定一致,即估计d轴的电压方程可表示为进一步计算得到
当转子位置估计误差Δθ为0时,估计的d轴方向与实际的d轴方向一致,估计d轴电流也与实际d轴电流一致。在区间I:ωht∈(0,π/2)内,满足cos(ωht)>0。因此,ωhLd(id>0)Imhcos(ωht)<ωhLd0Imhcos(ωht)。在区间III:ωht∈(π,3π/2)内,满足Ld(id<0)>Ld0,cos(ωht)<0。因此,ωhLd(id<0)Imhcos(ωht)<ωhLd0Imhcos(ωht)。从而得到:When the rotor position estimation error Δθ is 0, the estimated d-axis direction is consistent with the actual d-axis direction, and the estimated d-axis current is also consistent with the actual d-axis current. In the interval I: ω h t ∈ (0, π/2), satisfy cos(ω h t )>0. Therefore, ω h L d (i d >0)I mh cos(ω h t)<ω h L d0 I mh cos(ω h t). In interval III: ω h t ∈ (π,3π/2), satisfy L d (i d <0)>L d0 , cos(ω h t)<0. Therefore, ω h L d (i d <0)I mh cos(ω h t)<ω h L d0 I mh cos(ω h t). and thus get:
进一步计算得到
相反的,当转子位置估计误差Δθ为π时,估计的d轴方向与实际的d轴方向相反,估计d轴电流也与实际d轴电流符号相反。在区间I:ωht∈(0,π/2)内,满足Ld(id<0)>Ld0,cos(ωht)>0。因此,ωhLd(id<0)Imhcos(ωht)>ωhLd0Imhcos(ωht)。在区间III:ωht∈(π,3π/2)内,满足Ld(id>0)<Ld0,cos(ωht)<0。因此,ωhLd(id>0)Imhcos(ωht)>ωhLd0Imhcos(ωht)。从而得到:Conversely, when the rotor position estimation error Δθ is π, the estimated d-axis direction is opposite to the actual d-axis direction, and the estimated d-axis current is also opposite in sign to the actual d-axis current. In the interval I: ω h t ∈ (0, π/2), satisfy L d (i d <0)>L d0 , cos(ω h t)>0. Therefore, ω h L d (i d <0)I mh cos(ω h t)>ω h L d0 I mh cos(ω h t). In interval III: ω h t ∈ (π,3π/2), satisfy L d (i d >0)<L d0 , cos(ω h t)<0. Therefore, ω h L d (i d >0)I mh cos(ω h t)>ω h L d0 I mh cos(ω h t). and thus get:
进一步计算得到
由此可见估计d轴的电压响应在区间I:ωht∈(0,π/2)和III:ωht∈(π,3π/2)上的积分值kI.III的符号可用来判断d轴正方向,若kI.III小于0,则d轴正方向与磁极的N极同向;若kI.III大于0,则d轴正方向与磁极的N极反向。It can be seen that the estimated d-axis voltage response The sign of the integral value k I.III on the interval I:ω h t∈(0,π/2) and III:ω h t∈(π,3π/2) can be used to judge the positive direction of the d-axis, if k I If .III is less than 0, the positive direction of the d-axis is in the same direction as the N pole of the magnetic pole; if k I.III is greater than 0, the positive direction of the d-axis is opposite to the N pole of the magnetic pole.
同理可知,估计d轴的电压响应在区间II:ωht∈(π/2,π)和IV:ωht∈(3π/2,2π)上的积分值的符号也可用来判断d轴正方向,若kII.IV大于0,则d轴正方向与磁极的N极同向;若kII.IV小于0,则d轴正方向与磁极的N极反向。In the same way, it can be seen that the estimated voltage response of the d-axis Integral Values on Intervals II:ω h t∈(π/2,π) and IV:ω h t∈(3π/2,2π) The sign of can also be used to judge the positive direction of the d-axis. If k II.IV is greater than 0, the positive direction of the d-axis is in the same direction as the N pole of the magnetic pole; if k II.IV is less than 0, the positive direction of the d-axis is in the same direction as the N pole of the magnetic pole. reverse.
如图5(a)、图5(b)和图5(c)所示,对应实际转子初始位置为1rad,d轴正方向判断信息kI,III小于0,kII,IV大于0,均表示d轴正方向与磁极N极同向,无需对初次估计位置进行角度 补偿,θc=0;如图5(d)、图5(e)和图5(f)所示,对应实际转子初始位置为4rad,d轴正方向判断信息kI,III大于0,kII,IV小于0,均表示d轴正方向与磁极N极反向,需对初次估计位置补偿π弧度,θc=π,最终初始位置估计值为 As shown in Fig. 5(a), Fig. 5(b) and Fig. 5(c), the corresponding actual rotor initial position is 1rad, and the positive direction judgment information of d-axis k I, III is less than 0, k II, IV is greater than 0, all Indicates that the positive direction of the d-axis is in the same direction as the N pole of the magnetic pole, and there is no need to estimate the position for the first time Perform angle compensation, θ c = 0; as shown in Figure 5(d), Figure 5(e) and Figure 5(f), the corresponding actual rotor initial position is 4rad, and the judgment information k I, III in the positive direction of the d-axis is greater than 0 , k II, IV less than 0, both indicate that the positive direction of the d-axis is opposite to the magnetic pole N, and the initial estimated position is required Compensate for π radians, θ c = π, and the final initial position estimate is
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410249596.9A CN104022711B (en) | 2014-06-06 | 2014-06-06 | A kind of surface-mount type permagnetic synchronous motor initial position detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410249596.9A CN104022711B (en) | 2014-06-06 | 2014-06-06 | A kind of surface-mount type permagnetic synchronous motor initial position detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104022711A CN104022711A (en) | 2014-09-03 |
CN104022711B true CN104022711B (en) | 2016-08-17 |
Family
ID=51439321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410249596.9A Expired - Fee Related CN104022711B (en) | 2014-06-06 | 2014-06-06 | A kind of surface-mount type permagnetic synchronous motor initial position detection method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104022711B (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104660140A (en) * | 2015-01-16 | 2015-05-27 | 南京航空航天大学 | Permanent magnet synchronous motor initial position detection method based on high-frequency current signal injection |
CN104967388B (en) * | 2015-06-29 | 2017-12-22 | 南京航空航天大学 | A kind of permagnetic synchronous motor low-speed region rotor position estimate method |
JP6241460B2 (en) * | 2015-08-25 | 2017-12-06 | 株式会社デンソー | Electric motor control device |
CN107979318A (en) * | 2016-10-21 | 2018-05-01 | 南京理工大学 | A kind of d axis positive direction determination methods of permanent magnet synchronous motor |
CN106643819B (en) * | 2016-11-09 | 2021-08-24 | 广东盈科电子有限公司 | Direct current push rod motor positioning method |
WO2018100626A1 (en) * | 2016-11-29 | 2018-06-07 | 株式会社日立製作所 | System for controlling permanent magnet synchronous motor, and method for controlling permanent magnet synchronous motor |
CN106655942B (en) * | 2017-03-01 | 2019-08-02 | 合肥工业大学 | Permanent magnet synchronous motor method for controlling position-less sensor |
CN106655952B (en) * | 2017-03-08 | 2018-12-18 | 北京工业大学 | A kind of current envelops collimation method detecting permanent-magnetic synchronous motor rotor initial position |
US10992245B2 (en) | 2017-03-22 | 2021-04-27 | Steering Solutions Ip Holding Corporation | Position estimation of permanent magnet synchronous machines through vibration induced saliency |
CN107834929A (en) * | 2017-11-24 | 2018-03-23 | 上海电机学院 | A kind of low-speed region rotor position estimate method based on pulsating high frequency electrocardiography |
CN107947668A (en) * | 2017-12-25 | 2018-04-20 | 雷勃电气(常州)有限公司 | A kind of method for being used to detect state before motor operation |
FR3084222B1 (en) * | 2018-07-20 | 2020-06-26 | Renault S.A.S | METHOD FOR DETERMINING THE POSITION AND SPEED OF THE ROTOR OF A SYNCHRONOUS ELECTRIC MACHINE WITH A ROTOR REEL. |
CN109067283A (en) * | 2018-07-27 | 2018-12-21 | 江苏大学 | A kind of permanent-magnetic synchronous motor rotor initial position identification system and method |
CN111146995B (en) * | 2018-11-02 | 2021-07-30 | 中车株洲电力机车研究所有限公司 | Control method and system for position-sensorless AC motor |
CN110460283B (en) * | 2019-08-14 | 2021-07-23 | 苏州汇川技术有限公司 | Motor magnetic pole position identification method, system, equipment and storage medium |
CN110995104B (en) * | 2019-12-04 | 2021-07-23 | 东南大学 | A method for identifying the initial position of a permanent magnet synchronous motor rotor |
CN112713837B (en) * | 2020-12-21 | 2022-07-12 | 福州大学 | Method for estimating initial position of rotor of three-time air gap magnetic field high-content five-phase permanent magnet motor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101247104A (en) * | 2008-03-27 | 2008-08-20 | 无锡市飞象电子有限公司 | Conjecture method of stator magnetic linkage oriented AC motor rotation velocity and rotor position |
CN103986395A (en) * | 2014-05-07 | 2014-08-13 | 南京航空航天大学 | A method for detecting the initial position of the rotor of a surface-mounted permanent magnet synchronous motor |
CN103986394A (en) * | 2014-05-07 | 2014-08-13 | 南京航空航天大学 | A method for detecting the initial position of the surface-mounted permanent magnet synchronous motor rotor |
-
2014
- 2014-06-06 CN CN201410249596.9A patent/CN104022711B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101247104A (en) * | 2008-03-27 | 2008-08-20 | 无锡市飞象电子有限公司 | Conjecture method of stator magnetic linkage oriented AC motor rotation velocity and rotor position |
CN103986395A (en) * | 2014-05-07 | 2014-08-13 | 南京航空航天大学 | A method for detecting the initial position of the rotor of a surface-mounted permanent magnet synchronous motor |
CN103986394A (en) * | 2014-05-07 | 2014-08-13 | 南京航空航天大学 | A method for detecting the initial position of the surface-mounted permanent magnet synchronous motor rotor |
Non-Patent Citations (1)
Title |
---|
基于脉振高频电流注入SPMSM低速无位置传感器控制;刘颖等;《电工技术学报》;20120731;第27卷(第7期);第27卷第7期,第139页至第145页 * |
Also Published As
Publication number | Publication date |
---|---|
CN104022711A (en) | 2014-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104022711B (en) | A kind of surface-mount type permagnetic synchronous motor initial position detection method | |
CN103986395B (en) | A method for detecting the initial position of the rotor of a surface-mounted permanent magnet synchronous motor | |
CN105450127B (en) | Permanent magnet synchronous motor rotor position detection method based on high frequency electrocardiography | |
CN103560736B (en) | A kind of static off-line parameter identification method of permagnetic synchronous motor | |
CN104660140A (en) | Permanent magnet synchronous motor initial position detection method based on high-frequency current signal injection | |
CN106788071B (en) | A method of improving permanent-magnet synchronous motor rotor position estimated accuracy | |
US9825564B2 (en) | Circuits and methods of determining position and velocity of a rotor | |
CN104022710A (en) | Method of detecting initial position of surface-mounted permanent magnet synchronous motor rotor | |
CN108111065A (en) | A kind of six phase permanent-magnet synchronous motor sensorless control system and method based on pulsating high frequency signal injection | |
CN103986394A (en) | A method for detecting the initial position of the surface-mounted permanent magnet synchronous motor rotor | |
Zhao et al. | A high frequency injection technique with modified current reconstruction for low-speed sensorless control of IPMSMs with a single DC-link current sensor | |
CN103326658B (en) | A kind of internal permanent magnet synchronous motor method for controlling position-less sensor | |
CN109802618B (en) | Identification method of rotor initial position of permanent magnet synchronous motor based on filterless | |
CN104967388B (en) | A kind of permagnetic synchronous motor low-speed region rotor position estimate method | |
CN103986393B (en) | Method for detecting initial position of rotor of permanent magnet synchronous motor | |
CN101630938A (en) | Method for identifying initial position of rotor of permanent magnet synchronous motor of non-position sensor | |
Wu et al. | A fast estimation of initial rotor position for low-speed free-running IPMSM | |
CN104518714A (en) | Resolver calibration for permanent magnet synchronous motor | |
CN108900131A (en) | Durface mounted permanent magnet synchronous motor low speed vector control without position sensor System and method for | |
CN102843091A (en) | Judgment method for initial position of permanent magnet synchronous motor rotor | |
WO2009103662A1 (en) | Sensorless control of salient-pole machines | |
CN106059435B (en) | A method of improving permanent-magnet synchronous motor rotor position estimated accuracy | |
CN102427322A (en) | Method for detecting initial position of rotor of gearless tractor for elevator | |
CN108847800A (en) | Durface mounted permanent magnet synchronous motor resistance-inductance parameter offline identification method | |
Wu et al. | Design of position estimation strategy of sensorless interior PMSM at standstill using minimum voltage vector injection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160817 |