CN104022199B - Epitaxial structure of light emitting diode - Google Patents
Epitaxial structure of light emitting diode Download PDFInfo
- Publication number
- CN104022199B CN104022199B CN201410235976.7A CN201410235976A CN104022199B CN 104022199 B CN104022199 B CN 104022199B CN 201410235976 A CN201410235976 A CN 201410235976A CN 104022199 B CN104022199 B CN 104022199B
- Authority
- CN
- China
- Prior art keywords
- layer
- gallium nitride
- gallium
- nitrogen
- nitride layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/813—Bodies having a plurality of light-emitting regions, e.g. multi-junction LEDs or light-emitting devices having photoluminescent regions within the bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0137—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
- H10H20/812—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
Landscapes
- Led Devices (AREA)
Abstract
本发明公开了一种发光二极管的外延结构,包括依次层叠的衬底层、第一n型氮化镓层、第一量子阱层、第一p型氮化镓层、隧穿结层、第二n型氮化镓层、第二量子阱层和第二p型氮化镓层;其中,隧穿结层包括依次层叠的p++氮化镓层、调制掺硅的铟镓氮层和n+氮化镓层;p++氮化镓层覆盖贴合于第一p型氮化镓层,n+氮化镓层层叠覆盖贴合于第二n型氮化镓层。该发光二极管的外延结构,与现有的LED芯片相比,增加了单个芯片晶粒的功率和电压,降低了衬底的使用成本,甚至简化了芯片制作工艺。在取代或优化目前的高压氮化物发光二极管上具有很大的优势。
The invention discloses an epitaxial structure of a light emitting diode, which comprises sequentially stacked substrate layers, a first n-type gallium nitride layer, a first quantum well layer, a first p-type gallium nitride layer, a tunnel junction layer, a second An n-type gallium nitride layer, a second quantum well layer, and a second p-type gallium nitride layer; wherein, the tunnel junction layer includes a sequentially stacked p++ gallium nitride layer, a modulated silicon-doped indium gallium nitride layer, and an n+ nitride layer The gallium layer: the p++ gallium nitride layer is covered and bonded to the first p-type gallium nitride layer, and the n+ gallium nitride layer is laminated and covered and bonded to the second n-type gallium nitride layer. Compared with the existing LED chip, the epitaxial structure of the light-emitting diode increases the power and voltage of a single chip grain, reduces the cost of using the substrate, and even simplifies the chip manufacturing process. It has great advantages in replacing or optimizing the current high-voltage nitride light-emitting diodes.
Description
技术领域technical field
本发明涉及半导体器件领域,特别涉及一种发光二极管的外延结构。The invention relates to the field of semiconductor devices, in particular to an epitaxial structure of a light emitting diode.
背景技术Background technique
随着LED照明技术的发展,高压发光二极管(LED)芯片已经成为市场上不可缺少的一部分。高压LED芯片通过把芯片的外延层分割成小的晶粒单元,并借助芯片工艺把它们串联起来制得,从而表现出高电压,小电流的特点。由于高压LED芯片的成本太高,许多灯具厂商优先选用把封装好的小功率氮化物发光二极管串联起来代替大功率的LED芯片,这大大的制约了高压发光二极管的应用。With the development of LED lighting technology, high-voltage light-emitting diode (LED) chips have become an indispensable part of the market. The high-voltage LED chip is made by dividing the epitaxial layer of the chip into small grain units, and connecting them in series by means of chip technology, thus showing the characteristics of high voltage and low current. Due to the high cost of high-voltage LED chips, many lighting manufacturers prefer to use packaged low-power nitride light-emitting diodes in series instead of high-power LED chips, which greatly restricts the application of high-voltage light-emitting diodes.
发明内容Contents of the invention
为了克服上述问题,本发明实施例提供了一种发光二极管的外延结构,可制备得到大功率、大电压的LED芯片。In order to overcome the above problems, an embodiment of the present invention provides an epitaxial structure of a light emitting diode, which can produce a high-power, high-voltage LED chip.
本发明提供了一种发光二极管的外延结构,所述发光二极管的外延结构包括依次层叠的衬底层、第一n型氮化镓层、第一量子阱层、第一p型氮化镓层、隧穿结层、第二n型氮化镓层、第二量子阱层和第二p型氮化镓层;其中,所述隧穿结层包括依次层叠的p++氮化镓层、调制掺硅的铟镓氮层和n+氮化镓层;所述p++氮化镓层覆盖贴合于所述第一p型氮化镓层,所述n+氮化镓层层叠覆盖贴合于所述第二n型氮化镓层,所述p++氮化镓层的掺杂浓度为1E20~1E21cm-3,所述n+氮化镓层的掺杂浓度为1E20~1E21cm-3。The present invention provides an epitaxial structure of a light emitting diode. The epitaxial structure of the light emitting diode comprises a sequentially stacked substrate layer, a first n-type gallium nitride layer, a first quantum well layer, a first p-type gallium nitride layer, A tunnel junction layer, a second n-type gallium nitride layer, a second quantum well layer, and a second p-type gallium nitride layer; wherein, the tunnel junction layer includes sequentially stacked p++ gallium nitride layers, modulation doped silicon The indium gallium nitride layer and the n+gallium nitride layer; the p++gallium nitride layer is covered and attached to the first p-type gallium nitride layer, and the n+gallium nitride layer is stacked and attached to the second In the n-type gallium nitride layer, the doping concentration of the p++ gallium nitride layer is 1E 20 to 1E 21 cm -3 , and the doping concentration of the n+ gallium nitride layer is 1E 20 to 1E 21 cm -3 .
其中,所述p++氮化镓层的厚度为5~50nm。Wherein, the p++gallium nitride layer has a thickness of 5-50 nm.
其中,所述n+氮化镓层的厚度为5~50nm。Wherein, the thickness of the n+ gallium nitride layer is 5-50 nm.
其中,所述调制掺硅的铟镓氮层的厚度为5~20nm,掺杂浓度为1E21~1E23cm-3。Wherein, the thickness of the modulated silicon-doped InGaN layer is 5-20 nm, and the doping concentration is 1E 21 -1E 23 cm -3 .
其中,所述调制掺硅的铟镓氮层的禁带宽度小于所述p++氮化镓层和所述n+氮化镓层的禁带宽度。Wherein, the band gap of the modulated silicon-doped InGaN layer is smaller than the band gap of the p++GaN layer and the n+GaN layer.
其中,所述调制掺硅的铟镓氮层的禁带宽度小于所述第一量子阱层的禁带宽度。Wherein, the forbidden band width of the modulated silicon-doped InGaN layer is smaller than the forbidden band width of the first quantum well layer.
相应的,本发明还提供了一种制备方法,用于制备上述发光二极管的外延结构,包括步骤如下:Correspondingly, the present invention also provides a preparation method for preparing the above-mentioned epitaxial structure of the light-emitting diode, comprising the following steps:
提供一衬底层;providing a base layer;
采用金属有机化合物气相沉积法,在所述衬底层上依次制备第一n型氮化镓层、第一量子阱层、第一p型氮化镓层;Prepare a first n-type gallium nitride layer, a first quantum well layer, and a first p-type gallium nitride layer sequentially on the substrate layer by using a metal organic compound vapor phase deposition method;
在所述第一p型氮化镓层表面依次层叠制备p++氮化镓层,调制掺硅的铟镓氮层和n+氮化镓层;stacking p++ gallium nitride layers sequentially on the surface of the first p-type gallium nitride layer, modulating silicon-doped indium gallium nitride layers and n+ gallium nitride layers;
在所述n+氮化镓层的表面依次层叠制备第二n型氮化镓层、第二量子阱层和第二p型氮化镓层。A second n-type gallium nitride layer, a second quantum well layer and a second p-type gallium nitride layer are sequentially stacked on the surface of the n+gallium nitride layer.
其中,所述p++氮化镓层采用金属有机化合物气相沉积制备;所述p++氮化镓层的生长条件参数为:镓源为三甲基镓,氮源为氨气,镁源为二茂基镁,载气为氢气和氮气,氢气和氮气气流量的比例>1:1,反应腔的压力为200~700torr,反应温度为800~1050℃,制备得到所述p++氮化镓层的厚度为5~50nm,掺杂浓度为1E20~1E21cm-3。Wherein, the p++gallium nitride layer is prepared by vapor deposition of metal organic compounds; the growth condition parameters of the p++gallium nitride layer are as follows: the gallium source is trimethylgallium, the nitrogen source is ammonia gas, and the magnesium source is dicenemagnesium , the carrier gas is hydrogen and nitrogen, the ratio of the flow rate of hydrogen to nitrogen is >1:1, the pressure of the reaction chamber is 200 to 700 torr, the reaction temperature is 800 to 1050 ° C, and the thickness of the prepared p++gallium nitride layer is 5 ~50nm, the doping concentration is 1E 20 ~1E 21 cm -3 .
其中,所述调制掺硅的铟镓氮层的生长方式是分步生长;包括以下步骤:Wherein, the growth method of the modulated silicon-doped indium gallium nitride layer is stepwise growth; including the following steps:
S31:通入硅烷和氨气在所述p++氮化镓层表面生成Si原子;S31: passing silane and ammonia gas to generate Si atoms on the surface of the p++gallium nitride layer;
S32:关闭硅烷,通入镓源和铟源;S32: turn off the silane, and turn on the gallium source and the indium source;
S31和S32步骤重复进行5~10次,制备得到所述调制掺硅的铟镓氮层;Steps S31 and S32 are repeated 5 to 10 times to prepare the modulated silicon-doped InGaN layer;
所述调制掺硅的铟镓氮层的生长条件参数为:反应腔压力为300torr,温度为800~950℃,镓源为三甲基镓,铟源为三甲基铟,氮源为氨气,载气为氢气,掺杂剂为硅烷,制备得到所述调制掺硅的铟镓氮层的厚度为5~20nm,掺杂浓度为1E21~1E23cm-3。The growth condition parameters of the modulated silicon-doped indium gallium nitride layer are as follows: the reaction chamber pressure is 300 torr, the temperature is 800-950°C, the gallium source is trimethylgallium, the indium source is trimethylindium, and the nitrogen source is ammonia gas , the carrier gas is hydrogen, the dopant is silane, and the prepared silicon-doped InGaN layer has a thickness of 5-20 nm and a doping concentration of 1E 21 -1E 23 cm -3 .
其中,所述n+氮化镓层的生长条件参数为:反应腔压力为500torr,温度900~1100℃,镓源为三甲基镓,氮源为氨气,载气为氢气,掺杂剂为硅烷,制备得到所述n+氮化镓层的厚度为5~50nm,掺杂浓度为1E20~1E21cm-3。Wherein, the growth condition parameters of the n+gallium nitride layer are: the reaction chamber pressure is 500 torr, the temperature is 900-1100°C, the gallium source is trimethylgallium, the nitrogen source is ammonia gas, the carrier gas is hydrogen gas, and the dopant is Silane, the thickness of the n+ gallium nitride layer is 5-50 nm, and the doping concentration is 1E 20 -1E 21 cm -3 .
在本发明提供的发光二极管的外延结构中,通过隧穿结把两个PN结串联起来,或者多个隧穿结串联多个PN结,制备得到大功率、大电压的LED芯片。与现有的LED芯片相比,增加了单个芯片晶粒的功率和电压,甚至采用单个芯片晶粒就可以达到高压性能要求。从而减少了串联的LED芯片晶粒的个数,降低了衬底的使用成本,甚至简化了芯片制作工艺。在取代或优化目前的高压氮化物发光二极管上具有很大的优势,也使高压氮化物发光二极管有更好的发展前景。In the epitaxial structure of the light-emitting diode provided by the present invention, two PN junctions are connected in series through a tunnel junction, or multiple tunnel junctions are connected in series to a plurality of PN junctions to prepare a high-power, high-voltage LED chip. Compared with the existing LED chips, the power and voltage of a single chip grain are increased, and even a single chip grain can meet the high-voltage performance requirements. Therefore, the number of LED chip grains connected in series is reduced, the use cost of the substrate is reduced, and the chip manufacturing process is even simplified. It has great advantages in replacing or optimizing the current high-voltage nitride light-emitting diodes, and also makes the high-voltage nitride light-emitting diodes have better development prospects.
附图说明Description of drawings
图1是本发明实施例提供的发光二极管的外延结构的层结构示意图;FIG. 1 is a schematic diagram of the layer structure of the epitaxial structure of the light emitting diode provided by the embodiment of the present invention;
图2是本发明实施例提供的两个隧穿结连接3个PN结的结构示意图;2 is a schematic structural diagram of two tunnel junctions connecting three PN junctions provided by an embodiment of the present invention;
图3是本发明实施例提供的发光二极管的外延结构的制备方法;Fig. 3 is a method for preparing an epitaxial structure of a light emitting diode provided by an embodiment of the present invention;
图4是无调制掺硅的铟镓氮层的能带示意图;Fig. 4 is a schematic diagram of the energy band of an indium gallium nitride layer doped with silicon without modulation;
图5是本发明实施例提供的有调制掺硅的铟镓氮层的能带示意图。FIG. 5 is a schematic diagram of energy bands of a modulated silicon-doped InGaN layer provided by an embodiment of the present invention.
具体实施方式detailed description
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。In order to make the object, technical solution and advantages of the present invention clearer, the implementation manner of the present invention will be further described in detail below in conjunction with the accompanying drawings.
参见图1,为本发明实施例提供了一种发光二极管的外延结构。发光二极管的外延结构采用金属有机化合物气相沉积制备。发光二极管的外延结构包括依次层叠的衬底层101、第一n型氮化镓层102、第一量子阱层103、第一p型氮化镓层104、隧穿结层、第二n型氮化镓层108、第二量子阱层109和第二p型氮化镓层110。Referring to FIG. 1 , an epitaxial structure of a light emitting diode is provided for an embodiment of the present invention. The epitaxial structure of light-emitting diodes is prepared by vapor deposition of metal-organic compounds. The epitaxial structure of the light-emitting diode includes a substrate layer 101, a first n-type gallium nitride layer 102, a first quantum well layer 103, a first p-type gallium nitride layer 104, a tunnel junction layer, a second n-type nitrogen GaN layer 108 , second quantum well layer 109 and second p-type GaN layer 110 .
在本实施方式中,隧穿结层为一个,用于连接其两侧的PN结层。参见图2,也可为两个隧穿结串联3个PN结的结构。在其他实施方式中,隧穿结可为n个,从而连接n+1个PN结。In this embodiment, there is one tunnel junction layer, which is used to connect the PN junction layers on both sides thereof. Referring to FIG. 2 , a structure in which two tunnel junctions are connected in series and three PN junctions can also be used. In other implementation manners, there may be n tunnel junctions, so as to connect n+1 PN junctions.
隧穿结层包括依次层叠的p++氮化镓层105、调制掺硅的铟镓氮层106和n+氮化镓层107。p++氮化镓层105覆盖贴合于第一p型氮化镓层104,n+氮化镓层107层叠覆盖贴合于第二n型氮化镓层108。其中,p++氮化镓层105是指相对重掺杂的氮化镓。调制掺硅的铟镓氮层106是指一种高掺杂的铟镓氮层。The tunnel junction layer includes a p++GaN layer 105 , a modulated silicon-doped InGaN layer 106 and an n+GaN layer 107 stacked in sequence. The p++GaN layer 105 covers and adheres to the first p-type GaN layer 104 , and the n+GaN layer 107 overlaps and adheres to the second n-type GaN layer 108 . Wherein, the p++GaN layer 105 refers to relatively heavily doped GaN. The modulated silicon-doped InGaN layer 106 refers to a highly doped InGaN layer.
p++氮化镓层105的厚度为5~50nm,掺杂浓度为1E20~1E21cm-3。The thickness of the p++gallium nitride layer 105 is 5-50 nm, and the doping concentration is 1E 20 -1E 21 cm −3 .
调制掺硅的铟镓氮层106的厚度为5~20nm,掺杂浓度为1E21~1E23cm-3。The thickness of the silicon-doped InGaN layer 106 is adjusted to be 5-20 nm, and the doping concentration is 1E 21 -1E 23 cm −3 .
调制掺硅的铟镓氮层106的禁带宽度小于p++氮化镓层105和n+氮化镓层107的禁带宽度。The forbidden band width of the modulated silicon-doped InGaN layer 106 is smaller than the forbidden band widths of the p++GaN layer 105 and the n+GaN layer 107 .
此外,调制掺硅的铟镓氮层106的禁带宽度小于第一量子阱层103的禁带宽度,以避免对光的再次吸收。In addition, the forbidden band width of the modulated silicon-doped InGaN layer 106 is smaller than the forbidden band width of the first quantum well layer 103 to avoid re-absorption of light.
n+氮化镓层107的厚度为5~50nm,掺杂浓度为1E20~1E21cm-3。The thickness of the n+ gallium nitride layer 107 is 5-50 nm, and the doping concentration is 1E 20 -1E 21 cm −3 .
参见图3,本发明实施例还提供了一种制备方法,用于制备上述发光二极管的外延结构,包括步骤如下:Referring to Fig. 3, the embodiment of the present invention also provides a preparation method for preparing the above-mentioned epitaxial structure of the light-emitting diode, including the following steps:
S1:提供一衬底层101,衬底层101的材质为蓝宝石。S1: Provide a substrate layer 101, the material of the substrate layer 101 is sapphire.
S2:采用金属有机化合物气相沉积法,在衬底层101上依次制备第一n型氮化镓层102、第一量子阱层103、第一p型氮化镓层104。S2: The first n-type gallium nitride layer 102, the first quantum well layer 103, and the first p-type gallium nitride layer 104 are sequentially prepared on the substrate layer 101 by metal-organic compound vapor deposition method.
S3:在第一p型氮化镓层104表面依次层叠制备p++氮化镓层105,调制掺硅的铟镓氮层106和n+氮化镓层107。S3: On the surface of the first p-type gallium nitride layer 104, a p++ gallium nitride layer 105 is sequentially stacked, and a silicon-doped indium gallium nitride layer 106 and an n+ gallium nitride layer 107 are modulated.
在S3步骤中,p++氮化镓层105采用金属有机化合物气相沉积(MOCVD)设备制得。镓源为三甲基镓(TMGa),氮源为氨气(NH3),镁源为二茂基镁(Cp2Mg),载气为H2和N2,H2和N2气流量的比例>1:1,反应腔的压力为200~700torr,反应温度为800~1050℃,其中,优选的反应温度为900~1100℃。p++氮化镓层105的厚度为5~50nm,掺杂浓度为1E20~1E21cm-3。In the step S3, the p++GaN layer 105 is fabricated by metal organic compound vapor deposition (MOCVD) equipment. The gallium source is trimethylgallium (TMGa), the nitrogen source is ammonia gas (NH 3 ), the magnesium source is dicyclocene magnesium (Cp 2 Mg), the carrier gas is H 2 and N 2 , and the gas flow of H 2 and N 2 is The ratio is >1:1, the pressure in the reaction chamber is 200-700 torr, and the reaction temperature is 800-1050°C, wherein the preferred reaction temperature is 900-1100°C. The p++gallium nitride layer 105 has a thickness of 5-50 nm, and a doping concentration of 1E 20 -1E 21 cm −3 .
调制掺硅的铟镓氮层106的厚度为5~20nm,掺杂浓度为1E21~1E23cm-3,调制Si的铟镓氮层的生长温度为800~950℃。The thickness of the modulated silicon-doped InGaN layer 106 is 5-20nm, the doping concentration is 1E 21 -1E 23 cm -3 , and the growth temperature of the modulated Si-doped InGaN layer is 800-950°C.
调制掺硅的铟镓氮层106的生长方式是分步生长。具体步骤包括:The growth method of the modulated silicon-doped InGaN layer 106 is stepwise growth. Specific steps include:
S31:通入硅烷和氨气在p++氮化镓层105表面生成Si原子;S31: injecting silane and ammonia gas to generate Si atoms on the surface of the p++gallium nitride layer 105;
S32:关闭硅烷,通入镓源和铟源;S32: turn off the silane, and turn on the gallium source and the indium source;
S31和S32步骤重复进行5~10次,制备得到调制掺硅的铟镓氮层106。Steps S31 and S32 are repeated 5 to 10 times to prepare a modulated silicon-doped InGaN layer 106 .
本实施方式中,其生长条件参数为:反应腔压力为300torr,温度为800℃,镓源为三甲基镓(TMGa),铟源为三甲基铟(TMIn),氮源为氨气NH3),载气为H2,掺杂剂为硅烷(SiH4)。In this embodiment, the growth condition parameters are as follows: the reaction chamber pressure is 300torr, the temperature is 800°C, the gallium source is trimethylgallium (TMGa), the indium source is trimethylindium (TMIn), and the nitrogen source is ammonia gas NH 3 ), the carrier gas is H 2 , and the dopant is silane (SiH 4 ).
具体的生长步骤为,S31步骤中,氨气的量不变,通入10s硅烷,在p++氮化镓层105表面生成Si原子。S32步骤中,通入30s三甲基铟和三甲基镓,两者气流量的比例>1:250,Si原子缓慢扩散至铟镓氮晶格中。重复S31和S32步骤5~10次,制备得到调制掺硅的铟镓氮层106。The specific growth steps are as follows: in step S31 , the amount of ammonia gas remains unchanged, and silane is introduced for 10 seconds to generate Si atoms on the surface of the p++gallium nitride layer 105 . In step S32, trimethylindium and trimethylgallium are fed for 30s, the gas flow ratio of the two is >1:250, and Si atoms are slowly diffused into the indium gallium nitrogen lattice. Steps S31 and S32 are repeated 5 to 10 times to prepare a modulated silicon-doped InGaN layer 106 .
n+氮化镓层107的制备方法为,反应腔压力为500torr,温度900~1100℃,镓源为三甲基镓(TMGa),氮源为氨气(NH3),载气为H2,掺杂剂为硅烷(SiH4)。n+氮化镓层107的厚度为5~50nm,掺杂浓度为1E20~1E21cm-3。The preparation method of the n+gallium nitride layer 107 is as follows: the reaction chamber pressure is 500torr, the temperature is 900-1100°C, the gallium source is trimethylgallium (TMGa), the nitrogen source is ammonia gas (NH 3 ), and the carrier gas is H 2 , The dopant is silane (SiH4). The thickness of the n+ gallium nitride layer 107 is 5-50 nm, and the doping concentration is 1E 20 -1E 21 cm −3 .
S4:在n+氮化镓层107的表面依次层叠制备第二n型氮化镓层108、第二量子阱层109和第二p型氮化镓层110。S4: The second n-type GaN layer 108 , the second quantum well layer 109 and the second p-type GaN layer 110 are sequentially stacked on the surface of the n+GaN layer 107 .
通过上述制备过程,制备得到一种发光二极管的外延结构。参见图4为热平衡状态下无调制掺硅的铟镓氮层的发光二极管的能带示意图。图5为热平衡下本发明实施例提供的,具有调制掺硅的铟镓氮层106的,发光二极管的外延结构的能带示意图。其中,Ef是费米能级,Ev是价带,Ec是导带。通过对比可以清晰地看到,在图5中,p++氮化镓层105和n+氮化镓层107所构成的PN结的耗尽层的宽度大大变窄,且p++氮化镓层105价带和n+氮化镓层107导带的距离也变小了,大大增加了电子隧穿的几率。这是因为调制掺硅的铟镓氮层106具有较高的掺杂浓度,它的费米能级进入到导带中,拉近了p++氮化镓层105价带和n+氮化镓层107导带的距离,同时很大程度上降低了耗尽层的宽度,使p++氮化镓层105价带电子穿过禁带能够进入到n+氮化镓层107导带,使电子隧穿,产生明显的隧道电流。Through the above preparation process, an epitaxial structure of a light emitting diode is prepared. Referring to FIG. 4 , it is a schematic diagram of the energy band of a light-emitting diode without modulation of a silicon-doped InGaN layer in a thermal equilibrium state. FIG. 5 is a schematic diagram of the energy bands of the epitaxial structure of the light emitting diode with the modulated silicon-doped InGaN layer 106 provided by the embodiment of the present invention under thermal balance. Among them, Ef is the Fermi level, Ev is the valence band, and Ec is the conduction band. It can be clearly seen by comparison that in FIG. 5, the width of the depletion layer of the PN junction formed by the p++gallium nitride layer 105 and the n+gallium nitride layer 107 is greatly narrowed, and the valence band of the p++gallium nitride layer 105 is The distance from the conduction band of the n+GaN layer 107 is also reduced, which greatly increases the probability of electron tunneling. This is because the modulated silicon-doped InGaN layer 106 has a higher doping concentration, and its Fermi level enters the conduction band, bringing the valence band of the p++GaN layer 105 closer to the n+GaN layer 107. The distance of the conduction band reduces the width of the depletion layer to a large extent at the same time, so that the valence band electrons of the p++ gallium nitride layer 105 can pass through the forbidden band and enter the conduction band of the n+ gallium nitride layer 107, so that the electrons tunnel and generate Significant tunneling current.
在本发明实施例提供的发光二极管的外延结构中,通过隧穿结把两个PN结串联或者多个隧穿结串联多个PN结,制备得到大功率、大电压的LED芯片。与现有的LED芯片相比,增加了单个芯片晶粒的功率和电压,甚至采用单个芯片晶粒就可以达到高压性能要求。从而减少了串联的LED芯片晶粒的个数,降低了衬底的使用成本,甚至简化了芯片制作工艺。在取代或优化目前的高压氮化物发光二极管上具有很大的优势,也使高压氮化物发光二极管有更好的发展前景。In the epitaxial structure of the light-emitting diode provided in the embodiment of the present invention, two PN junctions are connected in series or multiple tunnel junctions are connected in series through multiple PN junctions through the tunnel junction to prepare a high-power, high-voltage LED chip. Compared with the existing LED chips, the power and voltage of a single chip grain are increased, and even a single chip grain can meet the high-voltage performance requirements. Therefore, the number of LED chip grains connected in series is reduced, the use cost of the substrate is reduced, and the chip manufacturing process is even simplified. It has great advantages in replacing or optimizing the current high-voltage nitride light-emitting diodes, and also makes the high-voltage nitride light-emitting diodes have better development prospects.
以上仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection scope of the present invention Inside.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410235976.7A CN104022199B (en) | 2014-05-30 | 2014-05-30 | Epitaxial structure of light emitting diode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410235976.7A CN104022199B (en) | 2014-05-30 | 2014-05-30 | Epitaxial structure of light emitting diode |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104022199A CN104022199A (en) | 2014-09-03 |
CN104022199B true CN104022199B (en) | 2017-05-03 |
Family
ID=51438860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410235976.7A Active CN104022199B (en) | 2014-05-30 | 2014-05-30 | Epitaxial structure of light emitting diode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104022199B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103545405B (en) * | 2013-11-11 | 2016-03-30 | 天津三安光电有限公司 | Iii-nitride light emitting devices |
US10804429B2 (en) * | 2017-12-22 | 2020-10-13 | Lumileds Llc | III-nitride multi-wavelength LED for visible light communication |
CN109300853B (en) * | 2018-09-03 | 2022-03-15 | 淮安澳洋顺昌光电技术有限公司 | A novel light-emitting diode quantum well and its preparation method |
CN111341887B (en) * | 2020-03-02 | 2021-09-07 | 江西圆融光电科技有限公司 | A kind of GaN base layer and its preparation method and application |
CN114583026B (en) * | 2022-05-05 | 2022-11-29 | 徐州立羽高科技有限责任公司 | Semiconductor deep ultraviolet light source structure |
CN117253947A (en) * | 2023-11-20 | 2023-12-19 | 徐州立羽高科技有限责任公司 | Deep ultraviolet light-emitting epitaxial wafer and preparation method thereof |
CN117438516A (en) * | 2023-12-21 | 2024-01-23 | 江西兆驰半导体有限公司 | Vertical-structure high-voltage Micro LED chip and preparation method thereof |
CN119181751B (en) * | 2024-11-26 | 2025-04-18 | 西湖烟山科技(杭州)有限公司 | Display chip and manufacturing method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103268912A (en) * | 2013-04-23 | 2013-08-28 | 沈光地 | Multiple-active-area high-efficiency optoelectronic device |
CN103367574A (en) * | 2012-03-30 | 2013-10-23 | 华夏光股份有限公司 | Light emitting diode device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2699661B2 (en) * | 1991-01-08 | 1998-01-19 | 日本電気株式会社 | Semiconductor multilayer reflective film |
US7737451B2 (en) * | 2006-02-23 | 2010-06-15 | Cree, Inc. | High efficiency LED with tunnel junction layer |
-
2014
- 2014-05-30 CN CN201410235976.7A patent/CN104022199B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103367574A (en) * | 2012-03-30 | 2013-10-23 | 华夏光股份有限公司 | Light emitting diode device |
CN103268912A (en) * | 2013-04-23 | 2013-08-28 | 沈光地 | Multiple-active-area high-efficiency optoelectronic device |
Also Published As
Publication number | Publication date |
---|---|
CN104022199A (en) | 2014-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104022199B (en) | Epitaxial structure of light emitting diode | |
CN204885204U (en) | Light emitting device | |
JP3952210B2 (en) | Nitride-based semiconductor device and manufacturing method thereof | |
CN103545405B (en) | Iii-nitride light emitting devices | |
CN103887378B (en) | Method for epitaxial growth of ultraviolet LED with high luminous efficacy | |
CN106159048B (en) | Light emitting diode epitaxial wafer and growth method thereof | |
CN101981711B (en) | Nitride semiconductor light emitting element | |
CN114628555B (en) | Light-emitting diode epitaxial wafer and preparation method thereof | |
CN104157746A (en) | Novel quantum well barrier layer LED epitaxial growth method and epitaxial layer | |
CN107293624B (en) | A light-emitting diode epitaxial structure based on h-BN tunneling junction as hole injection layer | |
CN103824917B (en) | LED manufacturing method, LED and chip | |
CN109192825A (en) | A kind of LED epitaxial slice and its manufacturing method | |
CN103779465B (en) | LED multiple quantum well structure device and growing method | |
CN116314502A (en) | High-luminous-efficiency light-emitting diode epitaxial wafer, preparation method thereof and LED chip | |
CN107394018A (en) | A kind of LED epitaxial growth methods | |
CN107482095A (en) | A kind of LED epitaxial growth method | |
CN110911529B (en) | A kind of light emitting diode epitaxial structure growth method | |
CN108598222B (en) | Light emitting diode epitaxial wafer and growth method thereof | |
CN113161457B (en) | Ultraviolet light emitting diode epitaxial wafer and method of making the same | |
CN103746053B (en) | A kind of purple LED preparation method, purple LED and chip | |
CN110364595B (en) | Light-emitting diode epitaxial structure and preparation method thereof | |
CN109065682A (en) | A kind of LED epitaxial slice and its manufacturing method | |
CN105140360B (en) | A kind of iii-nitride light emitting devices and preparation method thereof | |
CN117558845A (en) | LED epitaxial structure and preparation method thereof | |
CN115084329B (en) | LED epitaxial wafer applied to Si substrate and growth method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 215600 Feng Feng Road, Zhangjiagang Economic Development Zone, Jiangsu, Suzhou Patentee after: BOE Huacan Optoelectronics (Suzhou) Co.,Ltd. Country or region after: China Address before: 215600 Feng Feng Road, Zhangjiagang Economic Development Zone, Jiangsu, Suzhou Patentee before: HC SEMITEK (SUZHOU) Co.,Ltd. Country or region before: China |