CN104022043A - Groove type power MOSFET with split gates and manufacturing method - Google Patents
Groove type power MOSFET with split gates and manufacturing method Download PDFInfo
- Publication number
- CN104022043A CN104022043A CN201410267324.1A CN201410267324A CN104022043A CN 104022043 A CN104022043 A CN 104022043A CN 201410267324 A CN201410267324 A CN 201410267324A CN 104022043 A CN104022043 A CN 104022043A
- Authority
- CN
- China
- Prior art keywords
- layer
- groove
- hole
- epitaxial loayer
- insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title 1
- 239000002184 metal Substances 0.000 claims abstract description 82
- 229910052751 metal Inorganic materials 0.000 claims abstract description 82
- 238000000034 method Methods 0.000 claims abstract description 75
- 238000002360 preparation method Methods 0.000 claims abstract description 6
- 239000004020 conductor Substances 0.000 claims description 148
- 238000005530 etching Methods 0.000 claims description 73
- 238000002161 passivation Methods 0.000 claims description 68
- 239000000758 substrate Substances 0.000 claims description 31
- 229920002120 photoresistant polymer Polymers 0.000 claims description 25
- 238000011049 filling Methods 0.000 claims description 22
- 238000000151 deposition Methods 0.000 claims description 21
- 238000001312 dry etching Methods 0.000 claims description 12
- 238000009413 insulation Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- 230000008021 deposition Effects 0.000 claims description 5
- 230000001360 synchronised effect Effects 0.000 claims description 4
- 230000004888 barrier function Effects 0.000 claims 24
- 230000015572 biosynthetic process Effects 0.000 claims 6
- 239000000956 alloy Substances 0.000 claims 4
- 229910045601 alloy Inorganic materials 0.000 claims 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 3
- 239000004065 semiconductor Substances 0.000 abstract description 3
- 229910052710 silicon Inorganic materials 0.000 abstract description 3
- 239000010703 silicon Substances 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 468
- 238000002955 isolation Methods 0.000 description 20
- 239000012212 insulator Substances 0.000 description 18
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 13
- 229920005591 polysilicon Polymers 0.000 description 13
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 230000015556 catabolic process Effects 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 239000002019 doping agent Substances 0.000 description 9
- 230000000149 penetrating effect Effects 0.000 description 8
- 238000002513 implantation Methods 0.000 description 7
- 238000005468 ion implantation Methods 0.000 description 7
- 239000007769 metal material Substances 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000005669 field effect Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000007943 implant Substances 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 238000001039 wet etching Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910017855 NH 4 F Inorganic materials 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000005380 borophosphosilicate glass Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/025—Manufacture or treatment of FETs having insulated gates [IGFET] of vertical IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/63—Vertical IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/111—Field plates
- H10D64/117—Recessed field plates, e.g. trench field plates or buried field plates
Landscapes
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
本发明涉及一种电源管理的半导体器件,更确切的说,本发明旨在提供一种在沟槽结构的功率MOSFET管中引入分裂栅和提供相应的制备方法。将有源沟槽或端接沟槽内下部的屏蔽栅电性导出连接到硅片上表面之上的源极金属层,使得屏蔽栅与源极等势,而有源沟槽或端接沟槽内上部的控制栅则与屏蔽栅绝缘。
The present invention relates to a semiconductor device for power management, more precisely, the present invention aims to provide a method for introducing a split gate into a power MOSFET with a trench structure and a corresponding preparation method. The shielding gate in the lower part of the active trench or the termination trench is electrically connected to the source metal layer on the upper surface of the silicon wafer, so that the shield gate and the source are in the same potential, while the active trench or the termination trench The upper control grid in the groove is insulated from the shielding grid.
Description
技术领域technical field
本发明涉及一种电源管理的半导体器件,更确切的说,本发明旨在提供一种在沟槽结构的功率MOSFET管中引入分裂栅和提供相应的制备方法。The present invention relates to a semiconductor device for power management, more precisely, the present invention aims to provide a method for introducing a split gate into a power MOSFET with a trench structure and a corresponding preparation method.
背景技术Background technique
对于通常用在电力电子系统和电源管理中的半导体器件而言,功率金属氧化物半导体场效应晶体管MOSFET(Metal-Oxide-Semiconductor-Field-Effect-Transistor),或绝缘栅场效应晶体管,被广泛引入。For semiconductor devices commonly used in power electronic systems and power management, the power Metal-Oxide-Semiconductor-Field-Effect-Transistor MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor), or Insulated Gate Field-Effect Transistor, is widely introduced .
沟槽型功率MOSFET它是继MOSFET之后新发展起来的高效、功率开关器件,它采用沟槽型栅极结构场效应管,它不仅继承了MOS场效应管输入阻抗高(≥108Ω)、驱动电流小(0.1μA左右)的优点,还具有耐压高、工作电流大、输出功率高、跨导线性好、开关速度快等优良特性。正是由于它将电子管与功率晶体管的优点集于一身,因此在开关电源、逆变器、电压放大器、功率放大器等电路中获得广泛应用。因此,高击穿电压、大电流、低导通电阻是功率MOSFET的最为关键的指标。但是对功率MOSFET来说,几乎不可以同时获得高击穿电压和低导通电阻,从而达到在大电流工作时较小的功耗的目的,需要在击穿电压和导通电阻两个指标上互相妥协。Trench power MOSFET is a new high-efficiency and power switching device developed after MOSFET. It adopts trench gate structure field effect transistor, which not only inherits the high input impedance of MOS field effect transistor (≥10 8 Ω), It has the advantages of small driving current (about 0.1μA), and also has excellent characteristics such as high withstand voltage, large operating current, high output power, good transconductance, and fast switching speed. It is precisely because it combines the advantages of electron tubes and power transistors that it is widely used in switching power supplies, inverters, voltage amplifiers, power amplifiers and other circuits. Therefore, high breakdown voltage, high current, and low on-resistance are the most critical indicators of power MOSFETs. However, for power MOSFETs, it is almost impossible to obtain high breakdown voltage and low on-resistance at the same time, so as to achieve the purpose of lower power consumption when working with high current. It is necessary to improve the breakdown voltage and on-resistance Compromise with each other.
为了尽可能优化器件结构达到较高的击穿电压和低导通电阻的目的,沟槽型双层栅功率场效应管(Split Gate MOSFET)应运而生。其主要是通过在沟槽下部集成一个与源极短接的屏蔽栅的场板效应来提高击穿电压。因此,在相同击穿电压的要求下,可以通过增大硅外延层的掺杂浓度来降低功率MOSFET的导通电阻,从而降低大电流工作时的功耗。但这层屏蔽栅结构极大地增加了工艺实现的难度,增加了器件的加工成本。In order to optimize the device structure as much as possible to achieve higher breakdown voltage and low on-resistance, trench type double-layer gate power field effect transistor (Split Gate MOSFET) came into being. It mainly improves the breakdown voltage by integrating the field plate effect of a shielding gate short-circuited with the source in the lower part of the trench. Therefore, under the same breakdown voltage requirement, the on-resistance of the power MOSFET can be reduced by increasing the doping concentration of the silicon epitaxial layer, thereby reducing the power consumption during high-current operation. However, this layer of shielded gate structure greatly increases the difficulty of process implementation and increases the processing cost of the device.
本发明旨在尽量减少光罩层次,并简化加工工艺,实现沟槽型双层栅结构功率MOSFET器件,既降低了加工难度,从而降低了加工成本,而且能够实现高击穿电压、低导通电阻并提高了成品率。最终增强了器件的市场竞争力。The present invention aims to reduce the photomask level as much as possible, simplify the processing technology, and realize the power MOSFET device of the trench type double-layer gate structure, which not only reduces the processing difficulty, thereby reducing the processing cost, but also can realize high breakdown voltage and low conduction resistance and increased yield. Finally, the market competitiveness of the device is enhanced.
现有的沟槽型双层栅功率MOSFET为了实现屏蔽栅与源极短接的目的,要么将屏蔽栅直接接到沟槽顶部,要么通过在屏蔽栅上开深孔来实现。前一种方案需要增加光罩层次,并且需要非常昂贵的工艺来实现,如增加屏蔽栅光罩和另一层光罩加厚的双层栅之间的氧化层后来增大双层栅之间的击穿电压,并降低双层栅之间的寄生电容。而且这种方案需要采用如高浓度等离子体增强化学汽相淀积(High Density Plasma Chemical VaporDeposition)以及化学机械研磨(CMP-Chemical Mechanical Polish)等非常昂贵的工艺,从而加大了器件加工难度,降低了工艺控制精度,不利于实现高良率。后一种方案也需要在将屏蔽栅与源极短接的地方挖出深孔,通过化学气相沉积金属来实现。这样一方面需要在屏蔽栅后增加一层光罩以保留需要在与源极短接的屏蔽栅上方的厚氧化层,同样需要采用HDP和CMP等昂贵工艺。而且在屏蔽栅上开深孔需要昂贵的化学气相沉积方法实现金属化,增加了工艺难度并增大了器件可靠性风险。In order to realize the short-circuit between the shielded gate and the source in the existing trench type double-layer gate power MOSFET, either the shielded gate is directly connected to the top of the trench, or a deep hole is opened on the shielded gate. The former solution needs to increase the level of the mask, and requires a very expensive process to realize, such as adding the oxide layer between the shielded grid mask and the thickened double-layer gate of another layer of mask, and then increasing the gap between the double-layer gates. breakdown voltage and reduce the parasitic capacitance between the double-layer gates. Moreover, this solution requires the use of very expensive processes such as high density plasma chemical vapor deposition (High Density Plasma Chemical Vapor Deposition) and chemical mechanical polishing (CMP-Chemical Mechanical Polish), which increases the difficulty of device processing and reduces The accuracy of process control is impaired, which is not conducive to achieving high yield. The latter option also requires deep holes to be dug where the shield gate is shorted to the source, achieved by chemical vapor deposition of metal. In this way, on the one hand, it is necessary to add a layer of photomask behind the shielding gate to retain the thick oxide layer above the shielding gate shorted to the source, and it also requires expensive processes such as HDP and CMP. Moreover, opening deep holes on the shield gate requires an expensive chemical vapor deposition method to realize metallization, which increases the difficulty of the process and increases the risk of device reliability.
本方案通过改变工艺顺序,另辟蹊径,既减少了光罩层次,也不需要昂贵的工艺,实现了沟槽型双层栅结构功率MOSFET。In this solution, by changing the process sequence and finding another way, it not only reduces the number of photomask layers, but also does not require expensive processes, and realizes a trench-type double-layer gate structure power MOSFET.
发明内容Contents of the invention
在一个实施例中,一种带有分裂栅的沟槽式功率器件的制备方法,包括以下步骤:步骤A、在底部衬底之上的一个外延层的顶部刻蚀出一个环形端接沟槽和多个有源沟槽,其中,端接沟槽也可以不是环形而只是与有源沟槽并排设置,仅仅当于衬底之上加设场板时需要设定端接沟槽为环形;步骤B、生成一个第一绝缘层,覆盖于端接沟槽和有源沟槽各自的侧壁及底部,同时覆盖于外延层的顶面上;步骤C、在端接沟槽、有源沟槽各自下部填充导电材料,作为屏蔽栅;步骤D、刻蚀移除端接沟槽、有源沟槽各自上部侧壁处和外延层顶面之上的第一绝缘层,并在各屏蔽栅上方制备一个隔离层;步骤E、生成第二绝缘层,覆盖在端接沟槽和有源沟槽各自上部裸露的侧壁上,同时覆盖于外延层的顶面上;步骤F、在端接沟槽、有源沟槽各自上部填充导电材料,作为控制栅步骤G、在端接沟槽内刻蚀控制栅和隔离层,定义一个或多个暴露出屏蔽栅的通孔;步骤H、形成一个融合了外延层顶面之上的第二绝缘层的顶部介质层,覆盖于外延层顶面和各控制栅之上,同步形成一个侧部介质层附着在通孔的侧壁;步骤I、填充导电材料至通孔内;步骤J、形成一个绝缘钝化层覆盖于顶部介质层和通孔之上;步骤K、刻蚀绝缘钝化层至少形成其中的第一套接触孔,随后填充金属栓塞至第一套接触孔内并在在顶部介质层上沉积一个顶部金属层,设置第一套接触孔内的金属栓塞电性连接通孔内的导电材料和顶部金属层。In one embodiment, a method for fabricating a trench power device with a split gate includes the following steps: step A, etching a ring-shaped termination trench on top of an epitaxial layer on a bottom substrate and a plurality of active trenches, wherein the termination trenches may not be ring-shaped but only arranged side by side with the active trenches, and the termination trenches need to be set to be ring-shaped only when a field plate is added on the substrate; Step B, generating a first insulating layer, covering the respective sidewalls and bottoms of the termination trench and the active trench, and simultaneously covering the top surface of the epitaxial layer; Step C, covering the termination trench, the active trench The lower parts of the grooves are filled with conductive materials as shielding grids; step D, etching removes the first insulating layer at the sidewalls of the upper parts of the termination grooves, the active trenches and the top surface of the epitaxial layer, and forms the shielding grids on each of the shielding grids Prepare an isolation layer above; step E, generate a second insulating layer, covering the upper exposed sidewalls of the termination trench and the active trench, and simultaneously covering the top surface of the epitaxial layer; step F, in the termination The upper part of the trench and the active trench is filled with a conductive material as a control gate. Step G, etching the control gate and the isolation layer in the termination trench, defining one or more via holes that expose the shielding gate; step H, forming A top dielectric layer fused with the second insulating layer on the top surface of the epitaxial layer, covering the top surface of the epitaxial layer and each control gate, synchronously forming a side dielectric layer attached to the sidewall of the through hole; step 1, Filling conductive material into the through hole; step J, forming an insulating passivation layer covering the top dielectric layer and the through hole; step K, etching the insulating passivation layer to form at least the first set of contact holes therein, and then filling the metal The plug is plugged into the first set of contact holes and a top metal layer is deposited on the top dielectric layer, and the metal plug in the first set of contact holes is set to electrically connect the conductive material in the through hole with the top metal layer.
上述方法,在步骤C中,包括以下步骤:第一次沉积导电材料,覆盖在外延层顶面之上的第一绝缘层的上方,并填充于端接沟槽和有源沟槽内;回刻导电材料,保留端接沟槽、有源沟槽各自下部的导电材料,作为屏蔽栅。The above method, in step C, includes the following steps: depositing a conductive material for the first time, covering the top of the first insulating layer on the top surface of the epitaxial layer, and filling in the termination trench and the active trench; Conductive material is engraved, and the conductive material at the lower part of the termination groove and the active groove is reserved as a shielding grid.
上述方法,在步骤D中,包括以下步骤:沉积绝缘物,覆盖于外延层顶面之上的第一绝缘层的上方,并填充于端接沟槽和有源沟槽内各自的上部;回刻移除绝缘物,和回刻移除覆盖于端接沟槽、有源沟槽各自上部侧壁处和外延层顶面之上的第一绝缘层,保留每个屏蔽栅上方的一个籍由绝缘物回刻而留下的隔离层。The above method, in step D, includes the following steps: depositing an insulator, covering the first insulating layer on the top surface of the epitaxial layer, and filling the respective upper parts of the termination trench and the active trench; returning Etching to remove the insulator, and etching back to remove the first insulating layer covering the termination trenches, the upper sidewalls of the active trenches, and the top surface of the epitaxial layer, leaving a via above each shield gate The isolation layer left by the insulator etched back.
上述方法,在步骤F中,包括以下步骤:第二次沉积导电材料,覆盖在外延层顶面之上的第二绝缘层的上方,并填充于端接沟槽和有源沟槽的上部;回刻导电材料,保留端接沟槽、有源沟槽各自上部的导电材料,作为控制栅。The above method, in step F, includes the following steps: depositing a conductive material for the second time, covering the upper part of the second insulating layer on the top surface of the epitaxial layer, and filling the upper part of the termination trench and the active trench; The conductive material is etched back, and the conductive material on the top of the termination trench and the active trench is reserved as a control gate.
上述方法,在步骤G中,包括以下步骤:于外延层顶面之上的第二绝缘层上方和各控制栅的顶部之上形成一光刻胶层;籍由光刻胶层中用于暴露出端接沟槽内部分控制栅区域的开口,向下刻蚀端接沟槽内的控制栅和隔离层,形成一个或多个暴露出屏蔽栅的通孔。The above method, in step G, includes the following steps: forming a photoresist layer on the top of the second insulating layer on the top surface of the epitaxial layer and on the tops of each control gate; The opening of the part of the control gate region in the termination trench is exposed, and the control gate and the isolation layer in the termination trench are etched downward to form one or more through holes exposing the shielding gate.
上述方法,在步骤H中,包括以下步骤:在外延层顶面之上的第二绝缘层上方制备与第二绝缘层相同材质的绝缘介质层,这一部分绝缘介质层和外延层顶面之上的原始第二绝缘层融合形成一个顶部介质层中,该顶部介质层覆盖于外延层顶面和各控制栅之上;同步形成的另一部分绝缘介质层还附着在通孔裸露的侧壁上以形成侧部介质层。The above method, in step H, includes the following steps: preparing an insulating dielectric layer of the same material as the second insulating layer above the second insulating layer on the top surface of the epitaxial layer, this part of the insulating dielectric layer and the top surface of the epitaxial layer The original second insulating layer is fused to form a top dielectric layer, which covers the top surface of the epitaxial layer and the control gates; another part of the insulating dielectric layer formed simultaneously is also attached to the exposed sidewall of the via hole to A side dielectric layer is formed.
上述方法,在步骤H之后,包括以下步骤:直接利用顶部介质层作为刻蚀掩膜,干法刻蚀移除掉在生成顶部介质层和侧部介质层的步骤中而同步覆盖于通孔下方的屏蔽栅的裸露区域处的绝缘介质层。The above method, after step H, includes the following steps: directly using the top dielectric layer as an etching mask, and dry etching to remove the synchronous covering under the via hole in the step of generating the top dielectric layer and the side dielectric layer The insulating dielectric layer at the exposed area of the shielding grid.
上述方法,在步骤I中,包括以下步骤:第三次沉积导电材料,覆盖在外延层顶面之上的顶部介质层的上方并填充于通孔内;回刻导电材料,保留通孔内的导电材料。The above method, in step I, includes the following steps: depositing a conductive material for the third time, covering the top dielectric layer on the top surface of the epitaxial layer and filling it in the through hole; etching back the conductive material, retaining the conductive material in the through hole conductive material.
上述方法,在步骤F、G、H、I中任意一个步骤之后,但在步骤J之前,还包括以下步骤:至少在端接沟槽内侧的外延层的顶部植入掺杂物形成一本体层,围绕在各有源沟槽上部的周围;以及在本体层的顶部植入掺杂物形成外延层顶面附近的一源极层。The above method, after any one of steps F, G, H, and I, but before step J, further includes the following steps: implanting dopants at least on top of the epitaxial layer inside the termination trench to form a bulk layer , surrounding the upper portion of each active trench; and implanting dopants on top of the body layer to form a source layer near the top surface of the epitaxial layer.
上述方法,在步骤K刻蚀绝缘钝化层时,还包括向下依次刻蚀绝缘钝化层、顶部介质层、源极层和本体层,形成延伸至本体层内并位于相邻有源沟槽之间或位于有源沟槽与端接沟槽之间的第二套接触孔;以及随后亦在第二套接触孔内填充金属栓塞,所形成的顶部金属层与第二套接触孔内的金属栓塞形成电性接触。The above method, when etching the insulating passivation layer in step K, further includes sequentially etching the insulating passivation layer, the top dielectric layer, the source layer and the body layer downwards to form an active trench that extends into the body layer and is located in the adjacent active trench. The second set of contact holes between the trenches or between the active trenches and the termination trenches; and then also filling the second set of contact holes with metal plugs, the formed top metal layer The metal plugs form electrical contacts.
上述方法,在步骤K刻蚀绝缘钝化的步骤中,形成向下贯穿绝缘钝化层并对准所述通孔内导电材料的第一套接触孔,从而第一套接触孔内填充的金属栓塞电性连接通孔内的导电材料。In the above method, in the step K of etching the insulating passivation, a first set of contact holes penetrating the insulating passivation layer and aligned with the conductive material in the through hole is formed, so that the metal filled in the first set of contact holes The plug is electrically connected to the conductive material in the through hole.
上述方法,在步骤I中,包括以下步骤:在回刻第三次沉积的导电材料时,还保留交叠在端接沟槽之上的一部分导电材料作为一场板,其中,形成该场板的这部分导电材料在水平方向端接沟槽外侧扩展延伸,直至延伸到外延层周边边缘附近。The above-mentioned method, in step I, includes the following steps: when etching back the conductive material deposited for the third time, still retain a part of the conductive material overlapping the termination trench as a field plate, wherein the field plate is formed This part of the conductive material extends outside the horizontal direction termination trench until it extends near the peripheral edge of the epitaxial layer.
上述方法,在步骤K刻蚀绝缘钝化的步骤中,形成向下贯穿绝缘钝化层并对准该场板的第一套接触孔,从而第一套接触孔内填充的金属栓塞经由场板而电性连接到场板下方通孔内的导电材料。In the above method, in the step K of etching the insulating passivation, a first set of contact holes penetrating the insulating passivation layer and aligned with the field plate are formed, so that the metal plugs filled in the first set of contact holes pass through the field plate And electrically connected to the conductive material in the via hole below the field plate.
在一个可选实施例的器件结构中,一种带有分裂栅的沟槽式功率器件,包括:一个底部衬底和位于底部衬底之上的一外延层;形成在外延层中的一个例如环形的端接沟槽和多个有源沟槽,其中,端接沟槽也可以不是环形的而只是与有源沟槽并排设置,仅仅当于衬底之上加设场板时需要设定端接沟槽为环形;分别填充在有源沟槽、端接沟槽各自下部的屏蔽栅和填充在它们各自上部的控制栅,每个屏蔽栅和其上方的一个控制栅之间设有一个隔离层绝缘;至少形成在端接沟槽内侧的外延层顶部的并围绕在各有源沟槽上部周围的一个本体层,以及形成在本体层顶部的一源极层;向下依次贯穿端接沟槽内控制栅、隔离层的一个或多个侧壁上附着有侧部介质层的通孔,及填充于通孔内的导电材料;位于外延层顶面之上并将各控制栅予以覆盖的一个顶部介质层和位于顶部介质层之上的一个绝缘钝化层;向下依次贯穿绝缘钝化层、顶部介质层和源极层而延伸至本体层内并位于相邻有源沟槽之间或位于有源沟槽与端接沟槽之间的第二套接触孔,和向下贯穿绝缘钝化层并对准所述通孔内导电材料的第一套接触孔;填充于第一套、第二套接触孔内的金属栓塞和设置于绝缘钝化层之上的顶部金属层;彼此间互连的屏蔽栅籍此由通孔内的导电材料和第一套接触孔内的金属栓塞之导电路径而电性连接于所述顶部金属层。In a device structure of an alternative embodiment, a trench power device with a split gate includes: a base substrate and an epitaxial layer located on the base substrate; an epitaxial layer formed in the epitaxial layer such as Ring-shaped termination grooves and multiple active grooves, wherein the termination grooves may not be ring-shaped but only arranged side by side with the active grooves, and only need to be set when field plates are added on the substrate The termination trench is ring-shaped; the shielding grids filled in the lower parts of the active trenches and the termination trenches and the control grids filled in their respective upper parts respectively, and a Isolation layer insulation; at least one body layer formed on the top of the epitaxial layer inside the termination trench and surrounding the upper portion of each active trench, and a source layer formed on the top of the body layer; penetrating the termination in turn The control gate in the trench, one or more sidewalls of the isolation layer are attached with a side dielectric layer through hole, and the conductive material filled in the through hole; it is located on the top surface of the epitaxial layer and covers each control gate a top dielectric layer and an insulating passivation layer located on the top dielectric layer; extending downward through the insulating passivation layer, the top dielectric layer and the source layer and extending into the body layer and located between adjacent active trenches A second set of contact holes occasionally located between the active trench and the termination trench, and a first set of contact holes penetrating down through the insulating passivation layer and aligned with the conductive material in the through hole; filling in the first set , the metal plugs in the second set of contact holes and the top metal layer disposed on the insulating passivation layer; the interconnected shielding grids are thus composed of the conductive material in the through holes and the metal plugs in the first set of contact holes The conductive path is electrically connected to the top metal layer.
在另一个可选实施例中,一种带有分裂栅的沟槽式功率器件包括:一个底部衬底和位于底部衬底之上的一个外延层;形成在外延层中的一个例如环形的端接沟槽和多个有源沟槽,其中,端接沟槽也可以不是环形而只是与有源沟槽并排设置,仅仅当于衬底之上加设场板时需要设定端接沟槽为环形;分别填充在有源沟槽、端接沟槽各自下部的屏蔽栅和填充在它们各自上部的控制栅,每个屏蔽栅和其上方的一个控制栅籍之间设有一个隔离层;至少形成在端接沟槽内侧的外延层顶部的并围绕在各有源沟槽上部周围的一本体层,以及形成在本体层顶部的一源极层;向下依次贯穿端接沟槽内控制栅、隔离层的一个或多个侧壁上附着有侧部介质层的通孔,及填充于通孔内的导电材料;位于外延层顶面之上并将各控制栅予以覆盖的一个顶部介质层;位于顶部介质层之上的并交叠在端接沟槽之上的一场板,场板在水平方向上向外扩展延伸到端接沟槽的外侧;设置在顶部介质层之上的同时还包覆住所述场板的绝缘钝化层;向下依次贯穿绝缘钝化层、顶部介质层和源极层而延伸至本体层内并位于相邻有源沟槽之间或位于有源沟槽与端接沟槽之间的第二套接触孔,和向下贯穿绝缘钝化层并对准该场板的第一套接触孔;填充于第一套、第二套接触孔内的金属栓塞和设置于绝缘钝化层之上的顶部金属层;彼此间互连的屏蔽栅籍此由通孔内的导电材料和第一套接触孔内的金属栓塞之导电路径而电性连接于所述顶部金属层。In another alternative embodiment, a trench power device with a split gate includes: a base substrate and an epitaxial layer overlying the base substrate; The connection groove and multiple active grooves, wherein the termination groove may not be ring-shaped but only arranged side by side with the active groove, and the termination groove needs to be set only when a field plate is added on the substrate It is ring-shaped; the shielding grids filled in the lower parts of the active trenches and the termination trenches and the control grids filled in their respective upper parts are respectively filled, and an isolation layer is provided between each shielding grid and a control grid above it; At least a body layer formed on the top of the epitaxial layer inside the termination trench and surrounding the upper part of each active trench, and a source layer formed on the top of the body layer; penetrating downwards in turn through the control in the termination trench One or more sidewalls of the gate, isolation layer, a via hole with a side dielectric layer attached, and a conductive material filled in the via hole; a top dielectric located on the top surface of the epitaxial layer and covering the control gates layer; the field plate located on the top dielectric layer and overlapped on the termination trench, and the field plate extends outward in the horizontal direction to the outside of the termination trench; the field plate disposed on the top dielectric layer At the same time, it also covers the insulating passivation layer of the field plate; it extends downward through the insulating passivation layer, the top dielectric layer and the source layer in sequence, and extends into the body layer and is located between adjacent active trenches or in the active trenches The second set of contact holes between the groove and the termination trench, and the first set of contact holes penetrating down through the insulating passivation layer and aligned with the field plate; the metal filling the first set and the second set of contact holes The plug and the top metal layer disposed on the insulating passivation layer; the interconnected shield grids are thereby electrically connected to the conductive path of the conductive material in the through hole and the metal plug in the first set of contact holes. the top metal layer.
在其他带有分裂栅的沟槽式功率器件的制备方法,取消了端接沟槽,包括以下步骤:步骤A、在底部衬底之上的一个外延层的顶部刻蚀出多个平行排列的沟槽;步骤B、生成一个第一绝缘层,覆盖于各沟槽侧壁及底部,和覆盖于外延层的顶面上;步骤C、在沟槽下部填充导电材料,作为屏蔽栅;步骤D、刻蚀移除沟槽上部侧壁处和外延层顶面之上的第一绝缘层,并在各屏蔽栅上方制备一个隔离层;步骤E、生成第二绝缘层,覆盖沟槽上部裸露的侧壁上,同时覆盖于外延层的顶面上;步骤F、在沟槽上部填充导电材料,作为控制栅;步骤G、在部分沟槽内刻蚀控制栅和隔离层,定义一个或多个暴露出屏蔽栅的通孔;步骤H、形成一个融合了外延层顶面之上的第二绝缘层的顶部介质层,覆盖于外延层顶面和各控制栅之上,同步形成一个侧部介质层附着在通孔的侧壁;步骤I、填充导电材料至通孔内;步骤J、形成一个绝缘钝化层覆盖于顶部介质层和通孔之上;步骤K、刻蚀绝缘钝化层至少形成其中的第一套接触孔,随后填充金属栓塞至第一套接触孔内并在在顶部介质层上沉积一个顶部金属层,设置第一套接触孔内的金属栓塞电性连接通孔内的导电材料和顶部金属层。这里所言的沟槽可以是有源沟槽。In other preparation methods of trench power devices with split gates, the termination trenches are canceled, including the following steps: Step A, etching a plurality of parallel-arranged epitaxial layers on the top of the bottom substrate Trench; step B, generating a first insulating layer, covering the side walls and bottom of each trench, and covering the top surface of the epitaxial layer; step C, filling the lower part of the trench with conductive material as a shielding gate; step D 1. Etching and removing the first insulating layer on the upper sidewall of the trench and the top surface of the epitaxial layer, and preparing an isolation layer above each shielding gate; step E, generating a second insulating layer to cover the exposed upper part of the trench On the sidewall, covering the top surface of the epitaxial layer at the same time; step F, filling the conductive material on the upper part of the trench as a control gate; step G, etching the control gate and isolation layer in part of the trench, defining one or more Exposing the through hole of the shielding gate; step H, forming a top dielectric layer fused with the second insulating layer on the top surface of the epitaxial layer, covering the top surface of the epitaxial layer and each control gate, synchronously forming a side dielectric layer The layer is attached to the sidewall of the through hole; step I, filling the conductive material into the through hole; step J, forming an insulating passivation layer to cover the top dielectric layer and the through hole; step K, etching the insulating passivation layer at least Forming the first set of contact holes therein, then filling the first set of contact holes with metal plugs and depositing a top metal layer on the top dielectric layer, setting the metal plugs in the first set of contact holes to electrically connect the through holes Conductive material and top metal layer. The trenches mentioned here may be active trenches.
上述方法,在步骤C中,包括以下步骤:第一次沉积导电材料,覆盖在外延层顶面之上的第一绝缘层的上方,并填充于沟槽内;回刻导电材料,保留沟槽下部的导电材料,作为屏蔽栅。The above method, in step C, includes the following steps: depositing a conductive material for the first time, covering the top of the first insulating layer on the top surface of the epitaxial layer, and filling it in the trench; etching back the conductive material, retaining the trench The lower conductive material acts as a shielding grid.
上述方法,在步骤D中,包括以下步骤:沉积绝缘物,覆盖于外延层顶面之上的第一绝缘层的上方,并填充于沟槽内的上部;回刻移除绝缘物,和回刻移除覆盖于沟槽上部侧壁处和外延层顶面之上的第一绝缘层,保留每个屏蔽栅上方的一个籍由绝缘物回刻而留下的隔离层。The above method, in step D, includes the following steps: depositing an insulator to cover the first insulating layer on the top surface of the epitaxial layer, and filling the upper part of the trench; etching back to remove the insulator, and returning The first insulating layer covering the upper sidewall of the trench and the top surface of the epitaxial layer is removed by etching, and an isolation layer above each shielding gate is left by etching back the insulating material.
上述方法,在步骤F中,包括以下步骤:第二次沉积导电材料,覆盖在外延层顶面之上的第二绝缘层的上方,并填充于沟槽的上部;回刻导电材料,保留沟槽上部的导电材料,作为控制栅。The above method, in step F, includes the following steps: depositing a conductive material for the second time, covering the top of the second insulating layer on the top surface of the epitaxial layer, and filling the upper part of the trench; etching back the conductive material, retaining the trench The conductive material on the top of the slot acts as a control grid.
上述方法,在步骤G中,包括步骤:于外延层顶面之上的第二绝缘层上方和各控制栅的顶部之上形成一光刻胶层;籍由光刻胶层中用于暴露出预设沟槽内部分控制栅区域的开口,向下刻蚀该预设沟槽内的控制栅和隔离层,形成一个或多个暴露出屏蔽栅的通孔。The above method, in step G, includes the steps of: forming a photoresist layer over the second insulating layer on the top surface of the epitaxial layer and on the tops of each control gate; Part of the opening of the control gate region in the preset trench is etched downward to form one or more through holes exposing the shielding gate.
上述方法,在步骤H中,包括以下步骤:在外延层顶面之上的第二绝缘层上方制备与第二绝缘层相同材质的绝缘介质层,这一部分绝缘介质层和外延层顶面之上的原始第二绝缘层融合形成一个顶部介质层中,该顶部介质层覆盖于外延层顶面和各控制栅之上;同步形成的另一部分绝缘介质层还附着在通孔裸露的侧壁上以形成侧部介质层。The above method, in step H, includes the following steps: preparing an insulating dielectric layer of the same material as the second insulating layer above the second insulating layer on the top surface of the epitaxial layer, this part of the insulating dielectric layer and the top surface of the epitaxial layer The original second insulating layer is fused to form a top dielectric layer, which covers the top surface of the epitaxial layer and the control gates; another part of the insulating dielectric layer formed simultaneously is also attached to the exposed sidewall of the via hole to A side dielectric layer is formed.
上述方法,在步骤H之后,包括以下步骤:直接利用顶部介质层作为刻蚀掩膜,干法刻蚀移除掉在生成顶部介质层和侧部介质层的步骤中而同步覆盖于通孔下方的屏蔽栅的裸露区域处的绝缘介质层。The above method, after step H, includes the following steps: directly using the top dielectric layer as an etching mask, and dry etching to remove the synchronous covering under the via hole in the step of generating the top dielectric layer and the side dielectric layer The insulating dielectric layer at the exposed area of the shielding grid.
上述方法,在步骤I中,包括以下步骤:第三次沉积导电材料,覆盖在外延层顶面之上的顶部介质层的上方并填充于通孔内;回刻导电材料,保留通孔内的导电材料。The above method, in step I, includes the following steps: depositing a conductive material for the third time, covering the top dielectric layer on the top surface of the epitaxial layer and filling it in the through hole; etching back the conductive material, retaining the conductive material in the through hole conductive material.
上述方法,在步骤F、G、H、I任意一个步骤之后,但在步骤J之前,包括以下步骤:在所有的多个沟槽中,以最外侧的两个沟槽为界,限定它们内侧的外延层的顶部需植入掺杂物,即至少在最外侧的沟槽内侧的外延层的顶部植入掺杂物形成一本体层,围绕在各沟槽上部的周围;以及在本体层的顶部植入掺杂物形成外延层顶面附近的一源极层。The above-mentioned method, after any one of steps F, G, H, and I, but before step J, includes the following steps: among all the plurality of grooves, the outermost two grooves are used as boundaries to limit their inner sides The top of the epitaxial layer needs to be implanted with dopants, that is, at least the top of the epitaxial layer inside the outermost trench is implanted with dopant to form a body layer, which surrounds the upper part of each trench; and in the body layer The top implantation of dopants forms a source layer near the top surface of the epitaxial layer.
上述方法,在步骤K刻蚀绝缘钝化层时,还包括向下依次刻蚀绝缘钝化层、顶部介质层、源极层和本体层,形成延伸至本体层内并位于相邻沟槽之间的第二套接触孔;以及随后亦在第二套接触孔内填充金属栓塞,所形成的顶部金属层与第二套接触孔内的金属栓塞形成电性接触。In the above method, when etching the insulating passivation layer in step K, it also includes sequentially etching the insulating passivation layer, the top dielectric layer, the source layer and the body layer downwards to form a layer extending into the body layer and located between adjacent trenches. and subsequently filling the second set of contact holes with metal plugs, the formed top metal layer forms electrical contact with the metal plugs in the second set of contact holes.
上述方法,在步骤K刻蚀绝缘钝化的步骤中,形成向下贯穿绝缘钝化层并对准所述通孔内导电材料的第一套接触孔,从而第一套接触孔内填充的金属栓塞电性连接通孔内的导电材料。In the above method, in the step K of etching the insulating passivation, a first set of contact holes penetrating the insulating passivation layer and aligned with the conductive material in the through hole is formed, so that the metal filled in the first set of contact holes The plug is electrically connected to the conductive material in the through hole.
在其他可选实施例中,一种带有分裂栅的沟槽式功率器件,取消了端接沟槽,包括:一个底部衬底和位于底部衬底之上的一个外延层;形成在外延层中的多个沟槽;填充在沟槽下部的屏蔽栅和填充在沟槽上部的控制栅,每个屏蔽栅和其上方的一个控制栅之间设有一个隔离层绝缘;在多个并排的沟槽之中,最外侧的两个沟槽(为界)的内侧的外延层顶部形成有一个本体层,本体层围绕在各沟槽上部周围的,以及形成在本体层顶部的一个源极层,当然也可以在最外侧的两个沟槽(为界)的外侧的外延层顶部形成本体层,外侧的这部分本体层的顶部也可以掺杂形成源极层;向下依次贯穿一部分预设沟槽内控制栅、隔离层的一个或多个侧壁上附着有侧部介质层的通孔,及填充于通孔内的导电材料;位于外延层顶面之上并将各控制栅予以覆盖的一个顶部介质层和位于顶部介质层之上的一个绝缘钝化层;向下依次贯穿绝缘钝化层、顶部介质层和源极层而延伸至本体层内并位于相邻沟槽之间的第二套接触孔,和向下贯穿绝缘钝化层并对准通孔内导电材料的第一套接触孔;填充于第一套、第二套接触孔内的金属栓塞和设置于绝缘钝化层之上的顶部金属层;彼此间互连的屏蔽栅籍此由通孔内的导电材料和第一套接触孔内的金属栓塞之导电路径而电性连接于所述顶部金属层。这里所言的沟槽可以是有源沟槽。In other alternative embodiments, a trench power device with a split gate, eliminating the termination trench, includes: a base substrate and an epitaxial layer over the base substrate; formed on the epitaxial layer A plurality of trenches in the trench; the shielding gate filled in the lower part of the trench and the control gate filled in the upper part of the trench, and an isolation layer is provided between each shielding gate and a control gate above it; in multiple side-by-side Among the trenches, a body layer is formed on the top of the inner epitaxial layer of the two outermost trenches (boundary), the body layer surrounds the upper part of each trench, and a source layer is formed on the top of the body layer Of course, the body layer can also be formed on the top of the outer epitaxial layer of the two outermost trenches (boundary), and the top of the outer body layer can also be doped to form a source layer; The control gate in the trench, one or more sidewalls of the isolation layer are attached with a side dielectric layer through hole, and the conductive material filled in the through hole; it is located on the top surface of the epitaxial layer and covers each control gate A top dielectric layer and an insulating passivation layer located on the top dielectric layer; down through the insulating passivation layer, the top dielectric layer and the source layer and extending into the body layer and located between adjacent trenches The second set of contact holes, and the first set of contact holes that penetrate the insulating passivation layer and align with the conductive material in the through hole; the metal plugs filled in the first set and the second set of contact holes and arranged in the insulating passivation layer The top metal layer above the top metal layer; the interconnected shield grids are thereby electrically connected to the top metal layer by the conductive path of the conductive material in the via hole and the metal plug in the first set of contact holes. The trenches mentioned here may be active trenches.
附图说明Description of drawings
参考所附附图,以更加充分的描述本发明的实施例。然而,所附附图仅用于说明和阐述,并不构成对本发明范围的限制。Embodiments of the present invention are more fully described with reference to the accompanying drawings. However, the accompanying drawings are for illustration and illustration only, and do not limit the scope of the present invention.
图1A~1Q是本发明的方法流程示意图。1A-1Q are schematic flow charts of the method of the present invention.
图2是在有源沟槽和端接沟槽上部填充第二次沉积的多晶硅其后再制备本体层和源极层的方法示意图。FIG. 2 is a schematic diagram of a method for filling the upper part of the active trench and the termination trench with polysilicon deposited for the second time and then preparing the body layer and the source layer.
图3是在有源沟槽和端接沟槽上部填充的多晶硅中刻蚀出通孔后再制备本体层和源极层的方法示意图。FIG. 3 is a schematic diagram of a method for preparing a body layer and a source layer after etching through holes in the polysilicon filled above the active trench and the termination trench.
图4是在外延层顶面之上形成顶部介质层和在通孔侧壁附着侧部介质层之后再制备本体层和源极层的方法示意图。FIG. 4 is a schematic diagram of a method for forming a top dielectric layer on the top surface of the epitaxial layer and attaching a side dielectric layer to the side wall of the through hole before preparing a body layer and a source layer.
图5A~5C是基于图1A~1Q的流程但额外的该场板被应用在器件中。FIGS. 5A-5C are based on the flow of FIGS. 1A-1Q but additionally the field plate is applied in the device.
图6是芯片的局部俯视示意图。FIG. 6 is a schematic partial top view of the chip.
图7是芯片制备该场板后大体的局部俯视示意图。FIG. 7 is a schematic partial top view of the chip after the field plate is fabricated.
具体实施方式Detailed ways
在图1A中,一个衬底包括一个重掺杂N+型的底部衬底101a,以及还包括位于底部衬底101a上方的一个较之底部衬底而掺杂浓度较低的轻掺杂N-型外延层101b,可设定底部衬底101a、外延层101b为第一导电类型。在外延层101b的顶面上沉积形成一个图示的硬质掩膜层200,例如二氧化硅层,利用已知的光刻技术将预设的沟槽图案转移到一个未在图中示出的光刻胶层中,光刻胶层覆盖在硬质掩膜层200上,然后以光刻胶层作为刻蚀掩膜,并利用等离子刻蚀或湿法腐蚀在硬质掩膜层200中开设开口图形,然后以带有开口图形的硬质掩膜层200作为刻蚀掩膜,从而进一步在外延层101b的顶部以等离子体的干法方式,刻蚀出多个有源沟槽102a和一个环形端接沟槽102b。并排设置的多个有源沟槽102a设置于该衬底位于端接沟槽102b内侧的有源区。在另一个备选的制备沟槽的实施例中,还可以直接旋涂光刻胶在外延层101b顶面上,来取代硬质掩膜层200,然后以带有沟槽图案的光刻胶层直接作为刻蚀掩膜,而以等离子体的干法刻蚀暴露于光刻胶层中开口图形处的外延层101b区域,来制备有源沟槽102a和端接沟槽102b,最后光刻胶层和硬质掩膜层200一样需要被剥离掉。In FIG. 1A, a substrate includes a heavily doped N+-type bottom substrate 101a, and also includes a lightly doped N-type bottom substrate with a lower doping concentration than the bottom substrate 101a above the bottom substrate 101a. For the epitaxial layer 101b, the base substrate 101a and the epitaxial layer 101b can be set to be of the first conductivity type. An illustrated hard mask layer 200, such as a silicon dioxide layer, is deposited and formed on the top surface of the epitaxial layer 101b, and a predetermined groove pattern is transferred to a not shown in the figure using known photolithography techniques. In the photoresist layer, the photoresist layer is covered on the hard mask layer 200, and then the photoresist layer is used as an etching mask, and the hard mask layer 200 is etched by plasma etching or wet etching. opening pattern, and then use the hard mask layer 200 with the opening pattern as an etching mask, so as to further etch a plurality of active trenches 102a and a plurality of active trenches 102a and An annular termination groove 102b. A plurality of active trenches 102a arranged side by side are disposed on the active region of the substrate inside the termination trench 102b. In another alternative embodiment of preparing grooves, the photoresist can also be directly spin-coated on the top surface of the epitaxial layer 101b to replace the hard mask layer 200, and then the photoresist with the groove pattern The layer is directly used as an etching mask, and the epitaxial layer 101b region exposed to the opening pattern in the photoresist layer is etched by plasma dry etching to prepare the active trench 102a and the termination trench 102b, and finally photolithography The adhesive layer needs to be stripped off as well as the hard mask layer 200 .
在图1B中,在有源沟槽102a和端接沟槽102b各自的侧壁及底部通过热氧化法生长图中未示意出的牺牲氧化层,然后再以湿法腐蚀的方式剥离掉牺牲氧化层,牺牲氧化层只是过渡产物,用于修复沟槽内壁的损伤和形成平滑面的内壁,并圆角化沟槽的底部拐角。然后再通过热氧化生长一层较薄的例如是热氧化硅层,作为一部分厚度的第一绝缘层103,后再通过低压化学气相淀积(LPCVD)方法生长一层较厚的例如氧化层,作为另一部分厚度的第一绝缘层103,LPCVD用来进一步增加第一绝缘层103的厚度,第一绝缘层103可以被理解为是一个复合层,包含薄的氧化硅层和厚的CVD氧化层。其后再通过一个高温退火以提高氧化层致密性,从而最终使第一绝缘层103的总厚度达到设计厚度值。除此之外,在一些其他可替代的实施例中,第一绝缘层103的制备实现方法有单纯通过热氧化步骤,或者单纯通过LPCVD方法生长,以达到所需的一定厚度的致密的例如氧化层作为第一绝缘层103。第一绝缘层103覆盖于有源沟槽102a和端接沟槽102b各自的整个侧壁及底部,同时还覆盖于外延层101b的顶面上。In FIG. 1B, a sacrificial oxide layer not shown in the figure is grown by thermal oxidation on the respective sidewalls and bottoms of the active trench 102a and the termination trench 102b, and then the sacrificial oxide layer is stripped off by wet etching. layer, the sacrificial oxide layer is only a transition product, used to repair the damage of the inner wall of the trench and form a smooth inner wall, and fillet the bottom corner of the trench. Then grow a thinner layer such as a thermal silicon oxide layer by thermal oxidation, as the first insulating layer 103 with a partial thickness, and then grow a thicker layer such as an oxide layer by a low-pressure chemical vapor deposition (LPCVD) method, As another partial thickness of the first insulating layer 103, LPCVD is used to further increase the thickness of the first insulating layer 103. The first insulating layer 103 can be understood as a composite layer comprising a thin silicon oxide layer and a thick CVD oxide layer. . Thereafter, a high-temperature annealing is performed to improve the density of the oxide layer, so that the total thickness of the first insulating layer 103 finally reaches the designed thickness value. In addition, in some other alternative embodiments, the preparation method of the first insulating layer 103 is simply through the thermal oxidation step, or simply through the LPCVD method, so as to achieve a certain thickness of the required dense, such as oxidation. layer as the first insulating layer 103. The first insulating layer 103 covers the entire sidewalls and bottoms of the active trench 102a and the termination trench 102b, and also covers the top surface of the epitaxial layer 101b.
在图1C中,譬如通过LPCVD沉积的方法,形成图示的导电材料104,生长出具有一定预期厚度值的例如原位掺杂的多晶硅,依本发明精神,这是第一次沉积导电材料104。如图所示,导电材料104覆盖在外延层101b顶面之上的第一绝缘层103的上方,导电材料104同时还填充于有源沟槽102a和端接沟槽102b的内部空间内。In FIG. 1C, for example, by LPCVD deposition method, the conductive material 104 shown in the figure is formed, and polysilicon, such as in-situ doping, is grown with a certain expected thickness value. According to the spirit of the present invention, this is the first time that the conductive material 104 is deposited. . As shown in the figure, the conductive material 104 covers the first insulating layer 103 on the top surface of the epitaxial layer 101b, and the conductive material 104 also fills the inner space of the active trench 102a and the termination trench 102b.
在图1D中,采用等离子体干法刻蚀的方法,回刻导电材料104,这里没有采用任何额外的掩膜,而直接将导电材料104刻蚀到所需的深度,尽量使得导电材料104的刻蚀形成的表面较为光滑。从而利用回刻,移除掉位于外延层101b顶面之上的第一绝缘层103上方的那一部分导电材料104,同时有源沟槽102a和端接沟槽102b各自上部的那一部分导电材料104也被移除掉,如此一来,便在有源沟槽102a和端接沟槽102b各自的上部便留下间隙空间。如图1D所示,仅仅保留有源沟槽102a和端接沟槽102b各自下部的导电材料104,作为屏蔽栅(Shield gate)104a。In FIG. 1D, the conductive material 104 is etched back by plasma dry etching. Here, no additional mask is used, and the conductive material 104 is directly etched to the required depth, so that the conductive material 104 is as deep as possible. The surface formed by etching is relatively smooth. Therefore, by etching back, the part of the conductive material 104 above the first insulating layer 103 on the top surface of the epitaxial layer 101b is removed, and at the same time, the part of the conductive material 104 on the upper part of the active trench 102a and the termination trench 102b is removed. are also removed, thus leaving interstitial spaces above the respective upper portions of the active trench 102a and the termination trench 102b. As shown in FIG. 1D , only the conductive material 104 at the bottom of the active trench 102 a and the termination trench 102 b is reserved as a shield gate (Shield gate) 104 a.
在图1E中,通过LPCVD的方法生长和沉积绝缘物105,例如制备氧化硅层,并通过较高温的退火工序,来实现致密化LPCVD绝缘物105,绝缘物105填充满有源沟槽102a和端接沟槽102b各自的上部,前述在沟槽上部形成的间隙空间完全被绝缘物105填充满,而且绝缘物105往往还覆盖于外延层101b顶面之上的第一绝缘层103的上方。实质上,绝缘物105是第一绝缘层103的同材质的类似物,当生成绝缘物105时,它与第一绝缘层103之间相互交界的界面在高温处理阶段几乎会彼此融合在一起,而使得两者接触界面不再那么十分明显。在图1F对绝缘物105实施回刻腐蚀的步骤中,通过湿法如利用HF或者BOE(表征HF和NH4F溶液的混合液),以时间控制刻蚀程度的方式,剥离掉外延层101b表面和各沟槽上部侧壁上的所有氧化层,但是保留多晶硅屏蔽栅104a上表面的氧化层,以提高屏蔽栅104a与后续控制栅107a之间的击穿电压。具体而言,需要预定刻蚀移除掉绝缘物105不需要的部分:如外延层101b顶面之上的第一绝缘层103上方的一部分绝缘物105、绝缘物105填充在有源沟槽102a和端接沟槽102b各自上部的绝大部分。该回刻步骤中,还需要同步腐蚀移除掉覆盖于有源沟槽102a和端接沟槽102b各自上部侧壁处的第一绝缘层103,和刻蚀移除掉外延层101b顶面之上的第一绝缘层103。值得强调的是,虽然各沟槽内的绝缘物105的大部分都被刻蚀掉了,但是仍然需要保留每个屏蔽栅104a顶面上方的一个籍由绝缘物105回刻而留下的隔离层105a。注意在此阶段,有源沟槽102a和端接沟槽102b各自下部填充有屏蔽栅104a,沟槽下部的侧壁及底部仍然附着有第一绝缘层103,与此同时,有源沟槽102a和端接沟槽102b各自的上部又形成了中空的间隙空间,而外延层101b的顶面也裸露出来。In FIG. 1E, an insulator 105 is grown and deposited by LPCVD, for example, a silicon oxide layer is prepared, and a densified LPCVD insulator 105 is realized through a relatively high temperature annealing process. The insulator 105 fills the active trenches 102a and The respective upper parts of the trenches 102b are terminated, and the gap space formed above the trenches is completely filled with the insulator 105, and the insulator 105 often covers the top of the first insulating layer 103 on the top surface of the epitaxial layer 101b. In essence, the insulator 105 is an analogue of the same material as the first insulating layer 103. When the insulator 105 is formed, the interface between it and the first insulating layer 103 will almost fuse together during the high-temperature treatment stage. This makes the contact interface between the two less obvious. In the step of performing etch-back etching on the insulator 105 in FIG. 1F , the epitaxial layer 101b is peeled off by a wet method such as using HF or BOE (representing a mixture of HF and NH 4 F solution) in a time-controlled manner. All the oxide layer on the surface and the upper sidewall of each trench, but the oxide layer on the upper surface of the polysilicon shielding gate 104a is retained to increase the breakdown voltage between the shielding gate 104a and the subsequent control gate 107a. Specifically, predetermined etching is required to remove unnecessary parts of the insulator 105: for example, a part of the insulator 105 above the first insulating layer 103 on the top surface of the epitaxial layer 101b, and the insulator 105 is filled in the active trench 102a and a substantial portion of the upper portion of each of the termination grooves 102b. In this etch-back step, simultaneous etching is required to remove the first insulating layer 103 covering the respective upper sidewalls of the active trench 102a and the termination trench 102b, and etch to remove the top surface of the epitaxial layer 101b. The first insulating layer 103 on it. It is worth emphasizing that although most of the insulator 105 in each trench has been etched away, it is still necessary to retain a spacer above the top surface of each shield gate 104a left by the insulator 105 etch back. Layer 105a. Note that at this stage, the lower parts of the active trenches 102a and the termination trenches 102b are filled with shielding gates 104a, and the sidewalls and bottoms of the lower parts of the trenches are still attached with the first insulating layer 103. At the same time, the active trenches 102a A hollow interstitial space is formed at the upper part of the termination trench 102b, and the top surface of the epitaxial layer 101b is also exposed.
在图1G中,生成一个第二绝缘层106,典型的例如通过热氧化法而再生长的一个二氧化硅层,此时第二绝缘层106覆盖在有源沟槽102a和端接沟槽102b各自上部裸露的侧壁上,第二绝缘层106同时还覆盖于外延层101b整个裸露的顶面或上表面上,实质上,有源沟槽102a和端接沟槽102b各自上部的侧壁上附着的第二绝缘层106将是垂直沟槽MOSFET器件的晶胞单元真正的栅极氧化层,这在后文中将继续介绍。In FIG. 1G, a second insulating layer 106 is formed, typically a silicon dioxide layer regrown by thermal oxidation, and the second insulating layer 106 covers the active trench 102a and the termination trench 102b. On the exposed side walls of the upper parts, the second insulating layer 106 also covers the entire exposed top surface or upper surface of the epitaxial layer 101b, in fact, on the side walls of the upper parts of the active trench 102a and the termination trench 102b The attached second insulating layer 106 will be the actual gate oxide layer of the unit cell of the vertical trench MOSFET device, which will be introduced further in the following.
在图1H中,依本发明精神,第二次沉积导电材料107,例如通过LPCVD方法,生长多晶硅层,该多晶硅实质可以是原位掺杂,或者先行生长未实施掺杂的多晶硅后,再通过离子注入或者热扩散方法实现多晶硅掺杂。导电材料107覆盖在外延层101b顶面之上的第二绝缘层106的上方,导电材料107同时还填充于有源沟槽102a和端接沟槽102b各自的上部之中,图1F中有源沟槽102a和端接沟槽102b各自的上部原本形成的间隙空间再次被多晶硅的导电材料107填满。随后如图1I所示,后通过等离子体干法刻蚀法,刻蚀导电材料107,将导电材料107回刻到一定的程度,使沟槽内保留的导电材料107的顶面处于与第二绝缘层106的上表面大致齐平的位置处,也即回刻到与外延层101b的顶表面相接近的位置,如图1I所示。回刻导电材料107后,最终保留有源沟槽102a和端接沟槽102b各自上部的导电材料107,作为控制栅(Control gate)107a。In FIG. 1H , according to the spirit of the present invention, the conductive material 107 is deposited for the second time, such as by LPCVD method, to grow a polysilicon layer. Ion implantation or thermal diffusion methods achieve polysilicon doping. The conductive material 107 is covered on the top of the second insulating layer 106 on the top surface of the epitaxial layer 101b, and the conductive material 107 is also filled in the respective upper parts of the active trench 102a and the termination trench 102b. In FIG. The interstitial spaces originally formed in the respective upper portions of the trenches 102 a and the termination trenches 102 b are filled again with the conductive material 107 of polysilicon. Subsequently, as shown in FIG. 1I, the conductive material 107 is etched by the plasma dry etching method, and the conductive material 107 is etched back to a certain extent, so that the top surface of the conductive material 107 retained in the trench is in the same position as the second The position where the upper surface of the insulating layer 106 is substantially flush, that is, the position is etched back to the position close to the top surface of the epitaxial layer 101b, as shown in FIG. 1I . After the conductive material 107 is etched back, the conductive material 107 on the respective upper parts of the active trench 102a and the termination trench 102b is finally reserved as a control gate (Control gate) 107a.
在图1J中,需要利用一个光刻胶层208作为刻蚀掩膜,旋涂的光刻胶层208覆盖于外延层101b顶面之上的整个该第二绝缘层106的上方,光刻胶层208同时也覆盖在各个控制栅107a的顶部上方。然后利用常规的光刻技术,经曝光显影后形成光刻胶208中的若干个开口208a,开口208a交叠在端接沟槽102b内的控制栅107a之上,依本发明精神,较佳的,开口208a在端接沟槽102b宽度方向上的宽度值不超过端接沟槽102b自身的宽度值(也可以说在该方向上不超过控制栅107a的宽度值)。现以带有开口208a的光刻胶层208作为刻蚀屏蔽层来定义出通孔107b,为了便于观察和理解,可结合出图1K-1至图1K-3的步骤,其中图1K-1中没有显示出光刻胶208,另外,图1K-2至图1K-3则是沿着图1K-1中虚线AA的竖直剖面图。In FIG. 1J, a photoresist layer 208 needs to be used as an etching mask, and the spin-coated photoresist layer 208 covers the entire second insulating layer 106 above the top surface of the epitaxial layer 101b. The photoresist Layer 208 also overlies the top of each control gate 107a. Then, using conventional photolithography technology, several openings 208a in the photoresist 208 are formed after exposure and development, and the openings 208a are overlapped on the control grid 107a in the termination trench 102b. The width of the opening 208a in the width direction of the termination trench 102b does not exceed the width of the termination trench 102b itself (it can also be said that it does not exceed the width of the control gate 107a in this direction). Now use the photoresist layer 208 with the opening 208a as an etching shielding layer to define the through hole 107b. For the convenience of observation and understanding, the steps of FIG. 1K-1 to FIG. 1K-3 can be combined, wherein FIG. 1K-1 The photoresist 208 is not shown in FIG. 1K-2 . In addition, FIG. 1K-2 to FIG. 1K-3 are vertical cross-sectional views along the dotted line AA in FIG. 1K-1 .
刻蚀定义出通孔107b的具体步骤为:通过等离子体的干法刻蚀,刻蚀掉开口208a下方暴露出来的控制栅107a区域,例如在图1K-1和图1K-2中,在端接沟槽102b的控制栅107a中刻蚀形成了通孔107b。然后不要剥离掉光刻胶层208,仍然以其作为刻蚀掩膜,继续向下刻蚀(这里干法或者湿法刻蚀皆可),直至通孔107b底部裸露出的隔离层105a区域也被刻蚀掉,如图1K-3所示,但是刻蚀终止于屏蔽栅104a裸露出的顶面。因此,在端接沟槽102b上部填充的控制栅107a内形成的通孔107b向下依次贯穿控制栅107a和隔离层105a,从通孔107b中暴露位于通孔下方的局部屏蔽栅104a区域。在该刻蚀步骤中,尽量选择多晶硅与氧化层选择比高的干法刻蚀工艺,既实现能够刻蚀出通孔107b而又可以不要损伤通孔107b侧壁的氧化层如第二绝缘层106。在较佳的实施例中,通孔107b在端接沟槽102b宽度方向上的宽度值大约等于或略小于控制栅107a的宽度值,即将端接沟槽102b的原始宽度WT减去两倍的第二绝缘层106的厚度值TO,约等于WT-2TO,需考虑端接沟槽102b上部相对的两个侧壁上附着的绝缘层106厚度。如此一来,便实现了籍由光刻胶层208中用于露出端接沟槽102b内一部分控制栅107a区域的图案化开口208a,向下刻蚀端接沟槽102b内的控制栅107a和隔离层105a,形成一个或多个暴露出屏蔽栅104a局部区域的通孔107b。另外察看图1K-1,沿着端接沟槽102b的长度方向,可以设置多个间隔开的通孔107b。如图1K-3,完成通孔107b的刻蚀和清除通孔107b底部的隔离层105a之后,再刻蚀移除掉光刻胶层208。The specific step of etching to define the through hole 107b is: to etch the exposed control gate 107a area under the opening 208a by dry plasma etching, for example, in FIG. 1K-1 and FIG. 1K-2, at the end A via hole 107b is formed by etching in the control gate 107a connected to the trench 102b. Then do not peel off the photoresist layer 208, still use it as an etching mask, and continue to etch downward (here, dry or wet etching can be used), until the exposed isolation layer 105a region at the bottom of the via hole 107b is also is etched away, as shown in FIG. 1K-3 , but the etching stops at the exposed top surface of the shield gate 104a. Therefore, the via hole 107b formed in the filled control gate 107a above the termination trench 102b penetrates down through the control gate 107a and the isolation layer 105a sequentially, exposing the region of the partial shielding gate 104a below the via hole from the via hole 107b. In this etching step, a dry etching process with a high selectivity ratio between polysilicon and oxide layer should be selected as far as possible, so as to realize the etching of the through hole 107b without damaging the oxide layer such as the second insulating layer on the side wall of the through hole 107b. 106. In a preferred embodiment, the width of the through hole 107b in the width direction of the termination trench 102b is approximately equal to or slightly smaller than the width of the control gate 107a, that is, the original width W T of the termination trench 102b is subtracted twice The thickness T O of the second insulating layer 106 is approximately equal to W T −2T O , and the thickness of the insulating layer 106 attached to the two opposite sidewalls on the upper part of the termination trench 102b needs to be considered. In this way, through the patterned opening 208a in the photoresist layer 208 for exposing a part of the control gate 107a area in the termination trench 102b, the control gate 107a and the control gate 107a in the termination trench 102b are etched downward. The isolation layer 105a forms one or more through holes 107b exposing a partial area of the shielding grid 104a. Referring additionally to FIG. 1K-1 , along the length of the termination trench 102b, a plurality of spaced through holes 107b may be provided. As shown in FIG. 1K-3 , after the etching of the through hole 107b and the removal of the isolation layer 105a at the bottom of the through hole 107b are completed, the photoresist layer 208 is removed by etching.
在图1L-1中,需要在外延层101b顶面之上制备一个顶部介质层108。例如直接通过低压化学气相淀积(LPCVD)方法生长一层较厚的氧化层,作为绝缘介质层(未单独标示),其具有覆盖在外延层101b顶面之上的原第二绝缘层106上方的部分,这部分绝缘介质层还同时将各个控制栅107a裸露的顶面予以覆盖,可认为顶部介质层108其实是一个总复合层,它融合包含了外延层101b顶面之上的原始第二绝缘层106,和融合了外延层101b顶面之上的原始第二绝缘层106上方所制备出来的一部分绝缘介质层。最终,获得的顶部介质层108覆盖于外延层101b顶面之上,同时还覆盖于各个控制栅107a顶面之上。值得强调的是,这里的第二绝缘层106和所制备的绝缘介质层实质上可以选择是相同的二氧化硅材质,并且它们还可以选择采用高温退火来提高整个氧化层的致密性。此外,必须阐明的是,前述LPCVD沉积生成厚氧化层的步骤中,获得的绝缘介质层(氧化物)并非是选择性沉积或生长的,实际情况是所生成的绝缘介质层不仅仅只是覆盖于外延层101b顶面之上的原始第二绝缘层106的上方,同样,所制备的绝缘介质层也还具有附着在通孔107b的侧壁上的部分,这部分绝缘介质层定义为侧部介质层108a,如图1L-1和图1L-2所示。换言之,制备了一个与第二绝缘层106相同材质的绝缘介质层,其至少具有覆盖于外延层101b顶面之上的第二绝缘层106上方的部分,这一部分绝缘介质层连同外延层101b顶面之上的原始第二绝缘层106一起融合成顶部介质层108;与此同时,同步生成的另一部分绝缘介质层还附着在通孔107b裸露的侧壁上,以形成侧部介质层108a,图1L-2展示了这个步骤的结果。In FIG. 1L-1, a top dielectric layer 108 needs to be prepared on the top surface of the epitaxial layer 101b. For example, a thicker oxide layer is grown directly by low-pressure chemical vapor deposition (LPCVD) method, as an insulating dielectric layer (not separately marked), which has the upper part of the original second insulating layer 106 covering the top surface of the epitaxial layer 101b. This part of the insulating dielectric layer also covers the exposed top surface of each control gate 107a. It can be considered that the top dielectric layer 108 is actually a total composite layer, which contains the original second layer on the top surface of the epitaxial layer 101b. The insulating layer 106, and a part of the insulating dielectric layer prepared above the original second insulating layer 106 on the top surface of the epitaxial layer 101b is fused. Finally, the obtained top dielectric layer 108 covers the top surface of the epitaxial layer 101b and also covers the top surfaces of each control gate 107a. It is worth emphasizing that the second insulating layer 106 and the prepared insulating dielectric layer can be substantially made of the same silicon dioxide material, and they can also be selected to use high-temperature annealing to improve the compactness of the entire oxide layer. In addition, it must be clarified that in the step of generating a thick oxide layer by LPCVD deposition, the obtained insulating dielectric layer (oxide) is not selectively deposited or grown. The actual situation is that the generated insulating dielectric layer not only covers the Above the original second insulating layer 106 on the top surface of the epitaxial layer 101b, similarly, the prepared insulating dielectric layer also has a part attached to the sidewall of the through hole 107b, and this part of the insulating dielectric layer is defined as a side dielectric Layer 108a, as shown in Figure 1L-1 and Figure 1L-2. In other words, an insulating dielectric layer of the same material as the second insulating layer 106 is prepared, which has at least a part above the second insulating layer 106 covering the top surface of the epitaxial layer 101b, and this part of the insulating dielectric layer together with the top surface of the epitaxial layer 101b The original second insulating layer 106 above the surface is fused together to form the top dielectric layer 108; at the same time, another part of the insulating dielectric layer generated synchronously is also attached to the exposed sidewall of the via hole 107b to form the side dielectric layer 108a, Figure 1L-2 shows the results of this step.
需要考虑的另一个方面在于,鉴于获得的绝缘介质层(氧化物)并非是选择性沉积或生长的,在同步制备顶部介质层108、侧部介质层108a的同时,那么还有一部分绝缘介质层自然会沉积在通孔107b的底部,位于屏蔽栅104a从通孔107b中裸露出来的区域处,其实就是覆盖在通孔107b正下方的屏蔽栅104a顶面的裸露区域处。依本发明精神,需要直接利用顶部介质层108作为刻蚀掩膜,而不利用额外的掩膜,采用各向异性的干法刻蚀步骤之后,屏蔽栅104a的顶面位于通孔107b正下方的区域处所覆盖的这部分绝缘介质层将被刻蚀移除掉,该区域就是从通孔107b中裸露出来的区域。Another aspect that needs to be considered is that, in view of the fact that the obtained insulating dielectric layer (oxide) is not selectively deposited or grown, while simultaneously preparing the top dielectric layer 108 and the side dielectric layer 108a, there is still a part of the insulating dielectric layer Naturally, it will be deposited on the bottom of the through hole 107b, at the area where the shielding grid 104a is exposed from the through hole 107b, actually covering the exposed area on the top surface of the shielding grid 104a directly below the through hole 107b. According to the spirit of the present invention, it is necessary to directly use the top dielectric layer 108 as an etching mask without using an additional mask. After anisotropic dry etching step, the top surface of the shielding grid 104a is located directly under the through hole 107b The part of the insulating dielectric layer covered by the region will be removed by etching, and this region is the region exposed from the through hole 107b.
在图1M中,执行沉积导电材料109的步骤,导电材料109例如是通过LPCVD方法生长原位掺杂多晶硅制备的,或者是先不去掺杂沉积多晶硅,然后再通过离子注入或者扩散方法制备掺杂的多晶硅。沉积导电材料109是第三次沉积多晶硅的步骤,最终,导电材料109覆盖在外延层101b顶面之上的顶部介质层108的上方,并且导电材料109还填充于各个通孔107b内。然后如图1N-1所示,执行回刻导电材料109的步骤。例如通过等离子体的干法刻蚀法,回刻蚀导电材料109,以便将通孔107b内的导电材料109回刻到与顶部介质层108的顶表面大致齐平的位置,但是外延层101b顶面之上的顶部介质层108上方的导电材料109将被清除掉。如图1N-2所示,从而仅仅保留通孔107b内的那部分导电材料109a。In FIG. 1M, the step of depositing a conductive material 109 is performed. The conductive material 109 is prepared by, for example, growing in-situ doped polysilicon by LPCVD method, or depositing polysilicon without dedoping first, and then preparing doped polysilicon by ion implantation or diffusion method. Miscellaneous polysilicon. Depositing the conductive material 109 is the third polysilicon deposition step. Finally, the conductive material 109 covers the top dielectric layer 108 on the top surface of the epitaxial layer 101b, and the conductive material 109 is also filled in each through hole 107b. Then, as shown in FIG. 1N-1 , a step of etching back the conductive material 109 is performed. Etch back the conductive material 109, such as by plasma dry etching, so that the conductive material 109 in the via hole 107b is etched back to a position substantially flush with the top surface of the top dielectric layer 108, but the top surface of the epitaxial layer 101b The conductive material 109 above the top dielectric layer 108 above the surface will be removed. As shown in FIG. 1N-2 , only the portion of the conductive material 109a inside the through hole 107b remains.
为了更详尽的了解通孔107b与它附近其他各个组件的相对位置关系,图1N-3特意截取了图1N-2中沿着虚线BB的竖直截面的剖面图。图1N-3是端接沟槽102b的一个片段,展示了大约端接沟槽102b宽度的二分之一,其中在端接沟槽102b下部的侧壁和底部上附着有第一绝缘层103,并且在端接沟槽102b下部填充有屏蔽栅104a,隔离层105a设置在屏蔽栅104a的顶面之上,而在端接沟槽102b上部的侧壁上则覆盖有第二绝缘层106,第一绝缘层103一般比第二绝缘层106要厚得多。此外,在端接沟槽102b上部还填充有控制栅107a,而且每个屏蔽栅104a和它正上方的一个控制栅107a依赖它们两者之间的隔离层105a而彼此绝缘隔离。顶部介质层108覆盖在控制栅107a的顶端面之上。依图示的结构,通孔107b向下依次贯穿控制栅107a、隔离层105a,而且通孔107b的侧壁上覆盖有侧部介质层108a,所以通孔107b内填充的导电材料109a依靠侧部介质层108a与控制栅107a包围在通孔107b周围的区域绝缘隔离,但是通孔107b内填充的导电材料109a却与屏蔽栅104a相互连接并且具有电性接触的关系,另外,通孔107b内填充的导电材料109a也从顶部介质层108中裸露出来。In order to understand the relative positional relationship between the through hole 107b and other nearby components in more detail, FIG. 1N-3 deliberately intercepts the cross-sectional view of the vertical section along the dotted line BB in FIG. 1N-2. FIG. 1N-3 is a fragment of the termination trench 102b, showing approximately one-half of the width of the termination trench 102b, wherein the first insulating layer 103 is attached on the sidewall and bottom of the lower portion of the termination trench 102b. , and the lower part of the termination trench 102b is filled with a shielding grid 104a, the isolation layer 105a is disposed on the top surface of the shielding grid 104a, and the upper sidewall of the termination trench 102b is covered with a second insulating layer 106, The first insulating layer 103 is generally much thicker than the second insulating layer 106 . In addition, the upper part of the termination trench 102b is filled with a control gate 107a, and each shielding gate 104a and a control gate 107a directly above it are isolated from each other by an isolation layer 105a between them. The top dielectric layer 108 covers the top surface of the control gate 107a. According to the structure shown in the figure, the through hole 107b passes through the control gate 107a and the isolation layer 105a downwards in sequence, and the side wall of the through hole 107b is covered with the side dielectric layer 108a, so the conductive material 109a filled in the through hole 107b depends on the side The dielectric layer 108a is insulated from the area surrounded by the control grid 107a around the through hole 107b, but the conductive material 109a filled in the through hole 107b is connected to the shield grid 104a and has an electrical contact relationship. In addition, the through hole 107b is filled with The conductive material 109a is also exposed from the top dielectric layer 108 .
在图1O中,可以利用一个注入掩膜,作为离子注入的屏蔽层,从而在端接沟槽102b内侧的外延层101b的顶部植入掺杂物,形成一个本体层110,这里所注入的掺杂物或离子为P型,是与前述第一导电类型相反的第二导电类型,所形成的本体层110围绕在各有源沟槽102a上部的周围,注意本体层110与它下方外延层101b间的界面设定在控制栅107a的底面上方,以便在本体层110中能沿着有源沟槽102a或端接沟槽102b的侧壁形成垂直的反型层来建立MOSFET单元的沟道。以及随后继续在本体层110的顶部植入N+型的掺杂物,形成外延层101b顶面附近的一个源极层111,源极层111也围绕在各有源沟槽102a上部的周围,但其深度比本体层110要浅得多。完成本体层110、源极层111的植入之后便可剥离掉图中未示意出的注入掩膜。在图1O的实施例中,所植入本体层110、源极层111位于端接沟槽102b内侧的有源区中,在端接沟槽102b外侧的终端区中并未形成任何本体层110、源极层111。但在另一些图中未表示出来的实施例中,可以节省一个注入掩膜,不采用任何离子注入掩膜,而直接以整体式覆盖注入(blanketimplant)的方式,不仅在端接沟槽102b内侧的外延层101b的顶部形成了本体层110和在该位置处的本体层110的顶部形成了源极层111,还在端接沟槽102b外侧的外延层101b的顶部形成了本体层110,和在端接沟槽102b外侧位置处的本体层110的顶部形成了源极层111,换言之,有源区和终端区皆整体性的注入了本体层和源极层。In FIG. 1O, an implantation mask can be used as a shielding layer for ion implantation, so that dopants are implanted on the top of the epitaxial layer 101b inside the termination trench 102b to form a bulk layer 110, where the implanted dopants Impurities or ions are of P type, which is the second conductivity type opposite to the aforementioned first conductivity type. The formed body layer 110 surrounds the upper part of each active trench 102a. Note that the body layer 110 and the epitaxial layer 101b below it The interface between them is set above the bottom surface of the control gate 107a so that a vertical inversion layer can be formed in the body layer 110 along the sidewalls of the active trench 102a or the termination trench 102b to establish the channel of the MOSFET cell. And then continue to implant N+ type dopants on the top of the body layer 110 to form a source layer 111 near the top surface of the epitaxial layer 101b, the source layer 111 also surrounds the upper part of each active trench 102a, but Its depth is much shallower than that of the bulk layer 110 . After the implantation of the body layer 110 and the source layer 111 is completed, the implantation mask not shown in the figure can be stripped off. In the embodiment of FIG. 1O, the implanted body layer 110 and the source layer 111 are located in the active region inside the termination trench 102b, and no body layer 110 is formed in the termination region outside the termination trench 102b. , the source layer 111 . However, in some other embodiments not shown in the figures, an implantation mask can be saved, and no ion implantation mask is used, and an integral blanket implant is directly used, not only in the inner side of the termination trench 102b A body layer 110 is formed on top of the epitaxial layer 101b and a source layer 111 is formed on top of the body layer 110 at the location, a body layer 110 is also formed on top of the epitaxial layer 101b outside the termination trench 102b, and The source layer 111 is formed on top of the body layer 110 outside the termination trench 102b, in other words, both the active region and the termination region are integrally implanted into the body layer and the source layer.
在图1P中,先沉积一个绝缘钝化层112覆盖在顶部介质层108的顶表面之上,例如采用低温氧化物LTO和/或含有硼酸的硅玻璃BPSG。绝缘钝化层112还覆盖在各个通孔107b内填充的导电材料109a的上方。制备绝缘钝化层112之后,在绝缘钝化层190上方再额外旋涂一个光刻胶层,并光刻显影形成其中的一些开口图案,利用这个光刻胶层作为接触孔刻蚀掩膜,经过适当的各向异性干法刻蚀之后,同步形成若干贯穿绝缘钝化层112的第一套接触孔112b、第二套接触孔112a。在图1P中刻蚀绝缘钝化层112来制备第二套接触孔112a时,主要是制备向下延伸到有源区的台面结构之中的接触孔,包括向下依次刻蚀绝缘钝化层112、顶部介质层108、有源区的源极层111、有源区的本体层110,形成向下延伸至本体层110内的第二套接触孔112a,第二套接触孔112a中的每一个接触孔要么设置在相邻两个有源沟槽102a之间,或者设置在最外侧的有源沟槽102a与它附近的端接沟槽102b之间(最外侧的有源沟槽102a是全部有源沟槽102a中最靠近端接沟槽102b的有源沟槽)。在图1P中刻蚀绝缘钝化层112来制备第一套接触孔112b时,主要是在一个通孔107b之上相应制备一个接触孔,第一套接触孔112中每个接触孔都交叠在一个通孔107b及其内部的导电材料上方。如此一来,在第一套接触孔102b中,对于所形成的向下贯穿绝缘钝化层112的每个接触孔而言,其均相应对准和接触一个位于它正下方的通孔107b内填充的导电材料109a。In FIG. 1P , an insulating passivation layer 112 is firstly deposited to cover the top surface of the top dielectric layer 108 , such as using low temperature oxide LTO and/or silicon glass BPSG containing boric acid. The insulating passivation layer 112 also covers the conductive material 109a filled in each through hole 107b. After preparing the insulating passivation layer 112, an additional photoresist layer is spin-coated on the insulating passivation layer 190, and photolithographically developed to form some opening patterns therein, using this photoresist layer as a contact hole etching mask, After proper anisotropic dry etching, several first set of contact holes 112b and second set of contact holes 112a penetrating through the insulating passivation layer 112 are formed simultaneously. When etching the insulating passivation layer 112 in FIG. 1P to prepare the second set of contact holes 112a, it is mainly to prepare the contact holes extending down to the mesa structure of the active region, including sequentially etching the insulating passivation layer downwards. 112. The top dielectric layer 108, the source layer 111 in the active region, and the body layer 110 in the active region form a second set of contact holes 112a extending downward into the body layer 110, and each of the second set of contact holes 112a A contact hole is either disposed between two adjacent active trenches 102a, or disposed between the outermost active trench 102a and its adjacent termination trench 102b (the outermost active trench 102a is The active trench closest to the termination trench 102b among all the active trenches 102a). When etching the insulating passivation layer 112 in FIG. 1P to prepare the first set of contact holes 112b, a corresponding contact hole is mainly prepared on a through hole 107b, and each contact hole in the first set of contact holes 112 overlaps. over a via 107b and the conductive material inside it. In this way, in the first set of contact holes 102b, for each contact hole formed through the insulating passivation layer 112 downwards, it is correspondingly aligned and contacts a through hole 107b directly below it. Filled with conductive material 109a.
在一些图中未示意出的实施例中,利用带有第二套接触孔112a的绝缘钝化层112为自对准注入掩膜,还可以向第二套接触孔112a的每个接触孔的底部注入P+型的重掺杂离子,来形成设于本体层110内的、并位于第二套接触孔112a中每个接触孔底部附近的本体接触区,其掺杂浓度比本体层110的掺杂浓度要大。In some embodiments not shown in the figures, the insulating passivation layer 112 with the second set of contact holes 112a is used as a self-aligned implant mask, and each contact hole of the second set of contact holes 112a can also be injected The bottom is implanted with P+ type heavily doped ions to form a body contact region located in the body layer 110 and located near the bottom of each contact hole in the second set of contact holes 112a, the doping concentration of which is higher than that of the body layer 110. impurity concentration is higher.
在一些实施例中,先填充金属材料(如钨)在第一套接触孔112b、第二套接触孔112a中的各个接触孔内,接触孔内的金属材料形成金属栓塞或金属接头,此时,这个金属栓塞是采用一个单独的沉积工序然后再回刻蚀的工艺,刻蚀移除绝缘钝化层112上方多余的不需要的金属材料,而仅仅保留各个接触孔内的金属材料。另外,此实施例中还需要再单独沉积一个顶部金属层113覆盖在整个绝缘钝化层112的上方,顶部金属层113与第一套接触孔112b、第二套接触孔112a中各个接触孔内的金属栓塞构成电性连接/接触。由于第一套接触孔102b中的每个接触孔均相应对准它下方的一个通孔107b内填充的导电材料109a,所以每个特定通孔107b内填充的导电材料109a自然与该通孔107b正上方的一个接触孔(属第一套接触孔)内的金属栓塞构成电性接触。In some embodiments, the first set of contact holes 112b and the second set of contact holes 112a are first filled with a metal material (such as tungsten), and the metal material in the contact holes forms a metal plug or a metal joint. , this metal plug adopts a separate deposition process followed by an etching process to remove unnecessary unnecessary metal material above the insulating passivation layer 112 and only retain the metal material in each contact hole. In addition, in this embodiment, a top metal layer 113 needs to be separately deposited to cover the entire insulating passivation layer 112, and the top metal layer 113 is connected to each contact hole in the first set of contact holes 112b and the second set of contact holes 112a. The metal plugs form electrical connections/contacts. Since each contact hole in the first set of contact holes 102b is correspondingly aligned with the conductive material 109a filled in a through hole 107b below it, the conductive material 109a filled in each specific through hole 107b is naturally aligned with the through hole 107b. A metal plug in a contact hole directly above (belonging to the first set of contact holes) forms an electrical contact.
在一些其他可选的实施例中,第一套接触孔112b、第二套接触孔112a中的各个接触孔内填充的金属材料(金属栓塞)与绝缘钝化层112上方的金属材料(顶部金属层113)是同步沉积生成的,也就是说,各个接触孔内的金属栓塞与顶部金属层113其实是一体成型的,此时它们的材质完全相同,顶部金属层113与第一套接触孔112b、第二套接触孔112a中各个接触孔内的金属栓塞自然构成电性连接/接触。In some other optional embodiments, the metal material (metal plug) filled in each contact hole in the first set of contact holes 112b and the second set of contact holes 112a is the same as the metal material (top metal plug) above the insulating passivation layer 112. Layer 113) is generated by simultaneous deposition, that is to say, the metal plugs in each contact hole and the top metal layer 113 are actually integrally formed. At this time, their materials are completely the same, and the top metal layer 113 and the first set of contact holes 112b 1. The metal plugs in each contact hole in the second set of contact holes 112a naturally form an electrical connection/contact.
对沟槽式的功率MOSFET器件而言,顶部金属层113体现为源极电极,而底部衬底101a底面上设置的一个未示意出的底部金属层则体现为漏极电极,每个有源沟槽102a内的控制栅107a都连通到一个未绘制出来的栅极拾取沟槽中的导电材料,而图中未示意出的另一个贯穿绝缘钝化层112、顶部介质层108的接触孔被设置对准和接触栅极拾取沟槽内的导电材料,这个接触孔内的金属栓塞将栅极拾取沟槽内的导电材料电性连接到位于绝缘钝化层112上方的另一个作为栅极电极的栅极金属层上。For a trench-type power MOSFET device, the top metal layer 113 is embodied as a source electrode, and an unillustrated bottom metal layer disposed on the bottom surface of the bottom substrate 101a is embodied as a drain electrode, and each active trench The control gates 107a in the trenches 102a are all connected to an undrawn gate to pick up the conductive material in the trenches, and another contact hole not shown in the figure that penetrates the insulating passivation layer 112 and the top dielectric layer 108 is provided. Aligning and contacting the conductive material in the gate pick-up trench, the metal plug in the contact hole electrically connects the conductive material in the gate pick-up trench to another gate electrode located above the insulating passivation layer 112 on the gate metal layer.
在图2~4的实施例中,是基于图1A~1Q的步骤,仅有的改动是将本体层110或源极层111的植入形成时机做了一些调整,其他的步骤则与图1A~1Q完全一致而没有任何区别。例如在图1A~1Q的步骤中,本体层110或源极层111是在图1O形成好通孔107b内的导电材料109a之后才注入的。但在图2的实施例中,是在图1I中制备好有源沟槽102a和端接沟槽102b各自上部的控制栅107a之后,而马上先后注入P型和N型的掺杂物,形成P型本体层110或N型源极层111,这取代了原本图1O步骤的离子注入步骤。在图3的实施例中,是在图1K-3剥离掉光刻胶层208的步骤之后,马上分步先后注入P型和N型的掺杂物,形成P型本体层110或N型源极层111,这取代了原本图1O步骤的离子注入步骤。在图4的实施例中,是在完成制备图1L-1的顶部介质层108和侧部介质层108a步骤后,先后分步注入P型和N型的掺杂物,形成P型本体层110或N型源极层111,这取代了原本图1O步骤的离子注入步骤,在图4的实施例中,前文已经阐明,屏蔽栅104a的顶面位于通孔107b正下方的那一部分局部区域之上会额外覆盖一部分绝缘介质层,那么图4中形成本体层110或源极层111的掺杂物的注入时机,既可以在清理掉屏蔽栅104a的顶面位于通孔107b正下方的区域之上所覆盖的一部分绝缘介质层之前,也可以是在清理掉该一部分绝缘介质层之后,同样,这里指代的一部分绝缘介质层是与顶部介质层108和侧部介质层108a同时形成的,只不过这部分绝缘介质层是沉积在通孔107b的底部。In the embodiments shown in FIGS. 2 to 4, the steps are based on the steps in FIGS. 1A to 1Q. The only modification is to adjust the timing of the implantation of the body layer 110 or the source layer 111. Other steps are the same as those shown in FIG. 1A. ~1Q is exactly the same without any difference. For example, in the steps of FIGS. 1A˜1Q , the body layer 110 or the source layer 111 is implanted after the conductive material 109 a in the through hole 107 b is formed in FIG. 10 . However, in the embodiment of FIG. 2, after the control gate 107a on the upper part of the active trench 102a and the termination trench 102b are prepared in FIG. P-type body layer 110 or N-type source layer 111, which replaces the original ion implantation step in FIG. 1O. In the embodiment of FIG. 3, immediately after the step of peeling off the photoresist layer 208 in FIG. Pole layer 111, which replaces the ion implantation step in the original step of FIG. 1O. In the embodiment of FIG. 4, after the steps of preparing the top dielectric layer 108 and the side dielectric layer 108a of FIG. or N-type source layer 111, which replaces the ion implantation step in the original step of FIG. 1O. In the embodiment of FIG. The upper part of the insulating dielectric layer will be additionally covered, so the implantation timing of the dopant forming the body layer 110 or the source layer 111 in FIG. Before a part of the insulating dielectric layer covered on the top, it may also be after cleaning the part of the insulating dielectric layer. Similarly, a part of the insulating dielectric layer referred to here is formed simultaneously with the top dielectric layer 108 and the side dielectric layer 108a, only However, this part of the insulating dielectric layer is deposited on the bottom of the via hole 107b.
在图5A~5C的实施例中,是基于图1A~1Q的步骤,仅有的改动是在刻蚀第三次沉积的导电材料109的步骤中(即图1M至图1N-1),不仅仅是在通孔107b内留下了预期的导电材料109a,同步还留下了一个由一部分残留的导电材料109b构成的该场板,其他的步骤则与图1A~1Q完全一致而没有任何区别。如图5A~5B所示,利用一个额外的光刻胶层(未示意出)作为刻蚀掩膜,覆盖住导电材料109,然后刻蚀顶部介质层108之上的导电材料109,导电材料109交叠在端接沟槽109a内侧的外延层101a之上的部分被完全刻蚀清除掉,但是导电材料109交叠在端接沟槽109a外侧的外延层101a之上的局部导电材料109b被保留下来,相当于外延层101a周边边缘附近处的导电材料109被保留下来,而该被保留下来的导电材料109b同时还具有交叠在端接沟槽102b之上的部分。由于导电材料109b的屏蔽作用,通孔107b内填充导电材料109a位于导电材料109b正下方,被导电材料109b阻挡住,不会被刻蚀掉,所以被保留下来。如此一来,通孔107b内填充导电材料109a与导电材料109b实质上便是互为电性连接的,它们结构上也是一体成型的。而作为该场板的这一部分导电材料109b则在水平方向上自端接沟槽102a的正上方向端接沟槽102a的外侧扩展延伸,直至延伸到外延层101b周边边缘附近。较之图1P~1Q的步骤,由于顶部介质层108和端接沟槽102b之上还有一部分额外多出的导电材料109b,所以后续制备的绝缘钝化层112还会将该导电材料109b予以覆盖,那么在图5C制备第一套接触孔112b之时,刻蚀绝缘钝化112的步骤中,形成向下贯穿绝缘钝化层112的第一套接触孔112b,第一套接触孔112b中的每一个接触孔都对准和接触该场板,从而后续在第一套接触孔112b内填充的金属栓塞,皆可以经由该场板而电性连接到场板下方通孔107b内的导电材料109a。In the embodiment of FIGS. 5A-5C, it is based on the steps of FIGS. 1A-1Q, and the only modification is in the step of etching the conductive material 109 deposited for the third time (ie, FIG. 1M to FIG. 1N-1), not only Only the expected conductive material 109a is left in the through hole 107b, and a field plate composed of a part of the remaining conductive material 109b is also left at the same time, and the other steps are completely consistent with those in FIGS. 1A-1Q without any difference. . As shown in FIGS. 5A-5B , an additional photoresist layer (not shown) is used as an etching mask to cover the conductive material 109, and then the conductive material 109 on the top dielectric layer 108 is etched, and the conductive material 109 The portion overlapping the epitaxial layer 101a inside the termination trench 109a is completely removed by etching, but the portion of the conductive material 109 overlapping the epitaxial layer 101a outside the termination trench 109a is retained. Next, the conductive material 109 corresponding to the vicinity of the peripheral edge of the epitaxial layer 101a remains, and the retained conductive material 109b also has a portion overlapping the termination trench 102b. Due to the shielding effect of the conductive material 109b, the conductive material 109a filled in the through hole 107b is located directly below the conductive material 109b, blocked by the conductive material 109b, and will not be etched away, so it remains. In this way, the conductive material 109a filled in the through hole 107b and the conductive material 109b are substantially electrically connected to each other, and they are also integrally formed structurally. The portion of the conductive material 109b serving as the field plate extends from directly above the termination trench 102a to the outside of the termination trench 102a in the horizontal direction until it reaches near the peripheral edge of the epitaxial layer 101b. Compared with the steps in Figs. 1P-1Q, since there is a part of additional conductive material 109b on the top dielectric layer 108 and the termination trench 102b, the insulating passivation layer 112 prepared later will also cover the conductive material 109b. cover, then when preparing the first set of contact holes 112b in FIG. Each of the contact holes is aligned and in contact with the field plate, so that the subsequent metal plugs filled in the first set of contact holes 112b can be electrically connected to the conductive material 109a in the through hole 107b below the field plate through the field plate .
图6~7展示了衬底或芯片的局部示意图,衬底具有端接沟槽102b内侧的有源区170,和端接沟槽102b外侧的终端区160,后者围绕着前者,在端接沟槽102b内侧设置若干长条状的有源沟槽102a,端接沟槽102b除了具有与有源沟槽102a相平行的部分外,端接沟槽102b垂直于有源沟槽102a的部分还与有源沟槽102a的端部相连通,在端接沟槽102b上部的控制栅107a之中刻蚀制备出了间隔开的多个通孔107b,而端接沟槽102b、有源沟槽102a各自下部的屏蔽栅104a彼此之间是互连的,籍此由通孔107b内的导电材料109a和第一套接触孔112b内的金属栓塞这个导电路径,可实现屏蔽栅104a电性连接于顶部金属层113上,使它们等势。在图7中,导电材料109b(即该场板)位于顶部介质层108之上,并具有交叠在端接沟槽102b之上的部分,该场板也是环形状,自端接沟槽102b之上沿着水平方向而向外扩展延伸,向外延伸到端接沟槽102b的外侧,例如可以延伸到端接沟槽102b外侧的终端区,此外还可以配置该场板109b自身的外侧边缘接近芯片或衬底或外延层101b的周边边缘150,而该场板109b相对的内侧边缘则位于端接沟槽102b的靠近有源区(或朝向芯片中心)的内侧壁的正上方附近,该场板可用于缓解终端区的电场拥挤度。6 to 7 show a partial schematic diagram of a substrate or chip. The substrate has an active region 170 inside the termination trench 102b, and a termination region 160 outside the termination trench 102b. Several elongated active trenches 102a are arranged inside the trench 102b. In addition to the part parallel to the active trench 102a, the termination trench 102b has a part perpendicular to the active trench 102a. Connected with the end of the active trench 102a, a plurality of spaced through holes 107b are prepared by etching in the control gate 107a on the upper part of the termination trench 102b, and the termination trench 102b, the active trench The shielding grids 104a at the respective lower parts of 102a are interconnected, whereby the conductive path is plugged by the conductive material 109a in the through hole 107b and the metal plug in the first set of contact holes 112b, so that the electrical connection of the shielding grid 104a to the on the top metal layer 113, making them equipotential. In FIG. 7, the conductive material 109b (i.e., the field plate) is located on the top dielectric layer 108 and has a portion that overlaps the termination trench 102b. The field plate is also ring-shaped from the termination trench 102b. It expands outward along the horizontal direction, and extends outward to the outside of the termination groove 102b, for example, it may extend to the terminal area outside the termination groove 102b. In addition, the outer edge of the field plate 109b itself may also be configured. close to the peripheral edge 150 of the chip or substrate or epitaxial layer 101b, and the opposite inner edge of the field plate 109b is located near the inner sidewall of the termination trench 102b near the active region (or toward the center of the chip), the Field plates can be used to alleviate electric field crowding in the termination region.
在一些可选但非必须的实施例中,端接沟槽102b也可以不是闭合的环形,而是与有源沟槽102a并排设置,位于有源沟槽102a的两侧。在一些可选实施例中,仅仅当于衬底之上额外加设场板109b时,才需要额外设定闭合环形的端接沟槽102b,譬如当外延层之上的该场板109b不复存在的话,定义端接沟槽102b为环形就不是必要条件,只要在端接沟槽102b或者有源沟槽102a中开设通孔107b即可。如果试图取消端接沟槽102b仅仅保留有源沟槽102a,只需在有源沟槽102a上部的控制栅107a中开设通孔即可,依本发明前文揭示的内容,很容易理解,当期望在有源沟槽102a上部的控制栅107a中开设通孔,其工艺步骤与在端接沟槽102b上部的控制栅107a中开设通孔的步骤完全一样,所以不予赘述,当在有源沟槽102a中开设通孔107b时,仅仅需要将有源沟槽102a下部的屏蔽栅104a导出至与作为源极电极的顶部金属层113短接。当然,在另一些实施例,如果需要该场板109b的话,可以制备有源沟槽102a外围的端接沟槽102b。In some optional but non-essential embodiments, the termination groove 102b may not be a closed ring shape, but is arranged side by side with the active groove 102a and located on both sides of the active groove 102a. In some optional embodiments, only when an additional field plate 109b is added on the substrate, it is necessary to additionally set the closed annular termination trench 102b, for example, when the field plate 109b on the epitaxial layer is no longer If it exists, it is not a necessary condition to define the termination trench 102b as a ring shape, as long as the through hole 107b is opened in the termination trench 102b or the active trench 102a. If it is attempted to cancel the termination trench 102b and only retain the active trench 102a, it is only necessary to open a via hole in the control gate 107a on the top of the active trench 102a. According to the content disclosed above in the present invention, it is easy to understand that when desired Opening a through hole in the control gate 107a on the top of the active trench 102a, the process steps are exactly the same as the steps of opening a through hole in the control gate 107a on the top of the termination trench 102b, so it will not be described in detail. When the through hole 107b is opened in the trench 102a, it is only necessary to lead out the shield gate 104a at the lower part of the active trench 102a to be short-circuited with the top metal layer 113 serving as the source electrode. Of course, in other embodiments, if the field plate 109b is required, the termination trench 102b around the active trench 102a can be prepared.
依本发明精神,可实现减少光罩层次,和简化加工工艺,既降低了加工难度和降低了加工成本,而且能够实现高击穿电压、低导通电阻并提高了成品率,器件可具有较强的市场竞争力。本发明还摒弃了传统采用HDP和CMP等昂贵工艺的方式,在屏蔽栅上开设的孔不需要昂贵的化学气相沉积方法实现金属化,有效减小了工艺难度并同时极大的增强了器件长期的可靠性。According to the spirit of the present invention, it is possible to reduce the level of photomasks and simplify the processing technology, which not only reduces the processing difficulty and processing cost, but also realizes high breakdown voltage, low conduction resistance and improved yield, and the device can have a relatively high Strong market competitiveness. The invention also abandons the traditional way of using expensive processes such as HDP and CMP, and the holes opened on the shielding grid do not need expensive chemical vapor deposition methods to realize metallization, which effectively reduces the difficulty of the process and greatly enhances the long-term durability of the device. reliability.
以上,通过说明和附图,给出了具体实施方式的特定结构的典型实施例,上述发明提出了现有的较佳实施例,但这些内容并不作为局限。对于本领域的技术人员而言,阅读上述说明后,各种变化和修正无疑将显而易见。因此,所附的权利要求书应看作是涵盖本发明的真实意图和范围的全部变化和修正。在权利要求书范围内任何和所有等价的范围与内容,都应认为仍属本发明的意图和范围内。Above, through description and accompanying drawings, typical embodiments of specific structures of specific embodiments are given, and the above inventions propose existing preferred embodiments, but these contents are not intended to be limiting. Various changes and modifications will no doubt become apparent to those skilled in the art upon reading the foregoing description. Therefore, the appended claims should be considered to cover all changes and modifications within the true intent and scope of the invention. Any and all equivalent scope and content within the scope of the claims should still be deemed to be within the intent and scope of the present invention.
Claims (27)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410267324.1A CN104022043B (en) | 2014-06-16 | 2014-06-16 | Groove-type power MOSFET and preparation method with splitting bar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410267324.1A CN104022043B (en) | 2014-06-16 | 2014-06-16 | Groove-type power MOSFET and preparation method with splitting bar |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104022043A true CN104022043A (en) | 2014-09-03 |
CN104022043B CN104022043B (en) | 2017-06-16 |
Family
ID=51438739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410267324.1A Active CN104022043B (en) | 2014-06-16 | 2014-06-16 | Groove-type power MOSFET and preparation method with splitting bar |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104022043B (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107564962A (en) * | 2016-06-30 | 2018-01-09 | 万国半导体股份有限公司 | A kind of grooved MOSFET and preparation method thereof |
CN107658342A (en) * | 2017-10-24 | 2018-02-02 | 贵州芯长征科技有限公司 | Asymmetrical shield grid MOSFET structure and preparation method thereof |
CN107731900A (en) * | 2017-10-24 | 2018-02-23 | 贵州芯长征科技有限公司 | Reduce MOSFET structure of conduction voltage drop and preparation method thereof |
CN108122746A (en) * | 2016-11-29 | 2018-06-05 | 英飞凌科技奥地利有限公司 | The method being used for producing the semiconductor devices with power semiconductor |
CN105702722B (en) * | 2014-11-25 | 2018-10-02 | 大中积体电路股份有限公司 | low on-resistance power semiconductor component |
WO2020198910A1 (en) * | 2019-03-29 | 2020-10-08 | Texas Instruments Incorporated | Trench shield isolation layer |
CN111785619A (en) * | 2020-06-30 | 2020-10-16 | 上海华虹宏力半导体制造有限公司 | Process method for shielding trench of gate trench type MOSFET |
CN112908872A (en) * | 2019-12-04 | 2021-06-04 | 意法半导体(图尔)公司 | Method for producing an electronic chip |
CN113192825A (en) * | 2021-04-26 | 2021-07-30 | 广州粤芯半导体技术有限公司 | Manufacturing method of split-gate trench power device |
CN113241374A (en) * | 2021-05-19 | 2021-08-10 | 深圳真茂佳半导体有限公司 | Power transistor structure and manufacturing method thereof |
CN113284944A (en) * | 2021-05-15 | 2021-08-20 | 深圳真茂佳半导体有限公司 | Embedded gate top surface contact field effect transistor structure and manufacturing method thereof |
CN114171453A (en) * | 2020-09-10 | 2022-03-11 | 新唐科技股份有限公司 | Semiconductor structure and forming method thereof |
WO2022083076A1 (en) * | 2020-10-22 | 2022-04-28 | 无锡华润上华科技有限公司 | Manufacturing method for split-gate trench mosfet |
CN114864488A (en) * | 2022-03-30 | 2022-08-05 | 上海芯导电子科技股份有限公司 | SGT preparation method with low on-resistance, semiconductor device and equipment |
US12230602B2 (en) | 2019-12-04 | 2025-02-18 | Stmicroelectronics (Tours) Sas | Method for manufacturing electronic chips |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102130000B (en) * | 2010-01-20 | 2012-12-12 | 上海华虹Nec电子有限公司 | Method for preparing channel-type double-gate MOS device |
US8697520B2 (en) * | 2012-03-02 | 2014-04-15 | Alpha & Omega Semiconductor Incorporationed | Method of forming an asymmetric poly gate for optimum termination design in trench power MOSFETS |
TWI529900B (en) * | 2012-08-26 | 2016-04-11 | 萬國半導體股份有限公司 | Flexible crss adjustment in a sgt mosfet to smooth waveforms and to avoid emi in dc-dc application |
-
2014
- 2014-06-16 CN CN201410267324.1A patent/CN104022043B/en active Active
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105702722B (en) * | 2014-11-25 | 2018-10-02 | 大中积体电路股份有限公司 | low on-resistance power semiconductor component |
CN107564962B (en) * | 2016-06-30 | 2021-04-30 | 万国半导体国际有限合伙公司 | Groove type MOSFET and preparation method thereof |
CN107564962A (en) * | 2016-06-30 | 2018-01-09 | 万国半导体股份有限公司 | A kind of grooved MOSFET and preparation method thereof |
CN108122746A (en) * | 2016-11-29 | 2018-06-05 | 英飞凌科技奥地利有限公司 | The method being used for producing the semiconductor devices with power semiconductor |
CN107658342A (en) * | 2017-10-24 | 2018-02-02 | 贵州芯长征科技有限公司 | Asymmetrical shield grid MOSFET structure and preparation method thereof |
CN107731900A (en) * | 2017-10-24 | 2018-02-23 | 贵州芯长征科技有限公司 | Reduce MOSFET structure of conduction voltage drop and preparation method thereof |
CN107658342B (en) * | 2017-10-24 | 2020-06-30 | 贵州芯长征科技有限公司 | Asymmetric shielding grid MOSFET structure and preparation method thereof |
US11302568B2 (en) | 2019-03-29 | 2022-04-12 | Texas Instruments Incorporated | Trench shield isolation layer |
WO2020198910A1 (en) * | 2019-03-29 | 2020-10-08 | Texas Instruments Incorporated | Trench shield isolation layer |
US11791198B2 (en) | 2019-03-29 | 2023-10-17 | Texas Instruments Incorporated | Trench shield isolation layer |
CN112908872A (en) * | 2019-12-04 | 2021-06-04 | 意法半导体(图尔)公司 | Method for producing an electronic chip |
US12230602B2 (en) | 2019-12-04 | 2025-02-18 | Stmicroelectronics (Tours) Sas | Method for manufacturing electronic chips |
CN111785619A (en) * | 2020-06-30 | 2020-10-16 | 上海华虹宏力半导体制造有限公司 | Process method for shielding trench of gate trench type MOSFET |
CN114171453A (en) * | 2020-09-10 | 2022-03-11 | 新唐科技股份有限公司 | Semiconductor structure and forming method thereof |
WO2022083076A1 (en) * | 2020-10-22 | 2022-04-28 | 无锡华润上华科技有限公司 | Manufacturing method for split-gate trench mosfet |
CN113192825A (en) * | 2021-04-26 | 2021-07-30 | 广州粤芯半导体技术有限公司 | Manufacturing method of split-gate trench power device |
CN113284944A (en) * | 2021-05-15 | 2021-08-20 | 深圳真茂佳半导体有限公司 | Embedded gate top surface contact field effect transistor structure and manufacturing method thereof |
CN113284944B (en) * | 2021-05-15 | 2022-03-18 | 深圳真茂佳半导体有限公司 | Embedded grid top surface contact field effect transistor structure and manufacturing method thereof |
CN113241374A (en) * | 2021-05-19 | 2021-08-10 | 深圳真茂佳半导体有限公司 | Power transistor structure and manufacturing method thereof |
CN114864488A (en) * | 2022-03-30 | 2022-08-05 | 上海芯导电子科技股份有限公司 | SGT preparation method with low on-resistance, semiconductor device and equipment |
Also Published As
Publication number | Publication date |
---|---|
CN104022043B (en) | 2017-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104022043B (en) | Groove-type power MOSFET and preparation method with splitting bar | |
TWI489559B (en) | Oxide termination trenches prepared with three or four masks | |
CN101542738B (en) | Power metal oxide semiconductor field effect transistor component structure capable of being applied to high frequency | |
TWI443824B (en) | Structure and method for forming shielded gate trench field effect transistor with shield electrode and gate electrode connected to each other | |
JP4005019B2 (en) | Power semiconductor devices | |
US7186618B2 (en) | Power transistor arrangement and method for fabricating it | |
CN105304692B (en) | Method for fabricating asymmetric polysilicon gates for optimized termination design in trench power MOSFETs | |
JP2000252468A (en) | MOS gate device having buried gate and method of manufacturing the same | |
CN102034712A (en) | Direct contact in trench with three mask shielded gate process | |
CN107527944A (en) | Groove power MOSFET and its manufacture method | |
CN105244374A (en) | Manufacturing method of groove gate MOSFET possessing shielding gate | |
TWI528423B (en) | Methods for fabricating semiconductor device and semiconductor device | |
CN105448732B (en) | Improve groove power semiconductor device of UIS performances and preparation method thereof | |
CN111415867A (en) | A semiconductor power device structure and its manufacturing method | |
US20080042194A1 (en) | Trench mosfet with terraced gate and manufacturing method thereof | |
JP3965027B2 (en) | Method for manufacturing trench gate type MIS device having thick polysilicon insulating layer at bottom of trench | |
CN113224133A (en) | Field effect transistor structure with multiple gate electrodes, manufacturing method thereof and chip device | |
US20230100307A1 (en) | Method for manufacturing trench-gate mosfet | |
US7494876B1 (en) | Trench-gated MIS device having thick polysilicon insulation layer at trench bottom and method of fabricating the same | |
CN101997033B (en) | Shielded gate trench mosfet device | |
TWI571959B (en) | Power trench mosfet with mproved uis performance and preparation method thereof | |
CN111180510B (en) | Semiconductor power device structure and manufacturing method thereof | |
CN102956481B (en) | Method for manufacturing trench power semiconductor element with source trench | |
CN113284944A (en) | Embedded gate top surface contact field effect transistor structure and manufacturing method thereof | |
KR100710776B1 (en) | Insulated gate type semiconductor device and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder | ||
CP01 | Change in the name or title of a patent holder |
Address after: 401331 4th Floor, 367 Xiyong Road, Xiyong Town, Shapingba District, Chongqing Patentee after: Huarun Microelectronics (Chongqing) Co., Ltd. Address before: 401331 4th Floor, 367 Xiyong Road, Xiyong Town, Shapingba District, Chongqing Patentee before: China Aviation (Chongqing) Microelectronics Co., Ltd. |
|
CP02 | Change in the address of a patent holder | ||
CP02 | Change in the address of a patent holder |
Address after: 401331 No. 25 Xiyong Avenue, Shapingba District, Chongqing Patentee after: Huarun Microelectronics (Chongqing) Co., Ltd. Address before: 401331 4th Floor, 367 Xiyong Road, Xiyong Town, Shapingba District, Chongqing Patentee before: Huarun Microelectronics (Chongqing) Co., Ltd. |