CN104018028B - A kind of high alumina height silicon cast titanium alloy - Google Patents
A kind of high alumina height silicon cast titanium alloy Download PDFInfo
- Publication number
- CN104018028B CN104018028B CN201410283593.7A CN201410283593A CN104018028B CN 104018028 B CN104018028 B CN 104018028B CN 201410283593 A CN201410283593 A CN 201410283593A CN 104018028 B CN104018028 B CN 104018028B
- Authority
- CN
- China
- Prior art keywords
- alloy
- titanium alloy
- titanium
- temperature
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910001069 Ti alloy Inorganic materials 0.000 title claims abstract description 28
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 19
- 239000010703 silicon Substances 0.000 title claims abstract description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims abstract 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims description 8
- 239000010936 titanium Substances 0.000 claims abstract description 34
- 229910052796 boron Inorganic materials 0.000 claims abstract description 7
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 229910052684 Cerium Inorganic materials 0.000 claims description 4
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 4
- 229910052772 Samarium Inorganic materials 0.000 claims description 4
- 238000005275 alloying Methods 0.000 claims description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims description 4
- 229910052727 yttrium Inorganic materials 0.000 claims description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 3
- 239000000155 melt Substances 0.000 claims description 2
- 239000013078 crystal Substances 0.000 claims 2
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 claims 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 claims 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims 1
- 229910045601 alloy Inorganic materials 0.000 abstract description 81
- 239000000956 alloy Substances 0.000 abstract description 81
- 239000000203 mixture Substances 0.000 abstract description 18
- 229910052782 aluminium Inorganic materials 0.000 abstract description 14
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 14
- 229910052758 niobium Inorganic materials 0.000 abstract description 14
- 229910052715 tantalum Inorganic materials 0.000 abstract description 12
- 229910052719 titanium Inorganic materials 0.000 abstract description 11
- 229910052720 vanadium Inorganic materials 0.000 abstract description 10
- 229910052726 zirconium Inorganic materials 0.000 abstract description 9
- 230000003647 oxidation Effects 0.000 abstract description 8
- 238000007254 oxidation reaction Methods 0.000 abstract description 8
- 238000005260 corrosion Methods 0.000 abstract description 5
- 230000007797 corrosion Effects 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 3
- 238000009826 distribution Methods 0.000 abstract description 2
- 239000002131 composite material Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- UGACIEPFGXRWCH-UHFFFAOYSA-N [Si].[Ti] Chemical compound [Si].[Ti] UGACIEPFGXRWCH-UHFFFAOYSA-N 0.000 description 11
- 229910000676 Si alloy Inorganic materials 0.000 description 10
- 229910004339 Ti-Si Inorganic materials 0.000 description 9
- 229910010978 Ti—Si Inorganic materials 0.000 description 9
- 229910052761 rare earth metal Inorganic materials 0.000 description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 8
- 229910002796 Si–Al Inorganic materials 0.000 description 7
- 238000005728 strengthening Methods 0.000 description 7
- 238000005266 casting Methods 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 229910000765 intermetallic Inorganic materials 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 230000002787 reinforcement Effects 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000005496 eutectics Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 150000002910 rare earth metals Chemical class 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 210000001787 dendrite Anatomy 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- -1 aluminum-titanium-silicon Chemical compound 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229910018580 Al—Zr Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 229910021330 Ti3Al Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910001093 Zr alloy Inorganic materials 0.000 description 1
- 229910000905 alloy phase Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 239000006023 eutectic alloy Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
一种高铝高硅铸造钛合金,更具体地是涉及一种含有Ti、Al、Si、B、Mo、Nb、V、Ta和Zr的高温高强度铸造钛合金。本发明合金中各元素的质量百分配比为:Al 7.2-9.5%,Si 0.8-1.8%,Zr 0.5-3.5%,V 0.5-3%,Mo 0.1-4.5%,Nb 0.1-4.5%,Ta 0.1-3.5%,余者为Ti、附带元素和不可避免的杂质。为了进一步提高合金的焊接性能,本发明合金成分调整只含有Ti、Al、Si、Mo、Nb、V和Zr。对于工作温度要求极为苛刻的零部件,本发明材料还可调整为含有Ti、Al、Si、Mo、Nb、V和Ta。可广泛应用于汽车、舰船、航空航天和能源等领域中要求热强性、抗氧化、耐磨损和耐腐蚀的零部件。
A high-alumina and high-silicon cast titanium alloy, more specifically relates to a high-temperature, high-strength cast titanium alloy containing Ti, Al, Si, B, Mo, Nb, V, Ta and Zr. The mass percentage distribution ratio of each element in the alloy of the present invention is: Al 7.2-9.5%, Si 0.8-1.8%, Zr 0.5-3.5%, V 0.5-3%, Mo 0.1-4.5%, Nb 0.1-4.5%, Ta 0.1-3.5%, the rest is Ti, incidental elements and unavoidable impurities. In order to further improve the weldability of the alloy, the alloy composition of the present invention is adjusted to only contain Ti, Al, Si, Mo, Nb, V and Zr. For parts with extremely strict working temperature requirements, the material of the present invention can also be adjusted to contain Ti, Al, Si, Mo, Nb, V and Ta. It can be widely used in parts requiring thermal strength, oxidation resistance, wear resistance and corrosion resistance in the fields of automobiles, ships, aerospace and energy.
Description
技术领域technical field
本发明涉及一种含有高铝高硅铸造钛合金,更具体地是涉及一种含有Ti、Al、Si、B、Mo、Nb、V、Ta、Zr和稀土元素的高温高强度铸造钛合金。The invention relates to a cast titanium alloy containing high aluminum and high silicon, more particularly to a high-temperature, high-strength cast titanium alloy containing Ti, Al, Si, B, Mo, Nb, V, Ta, Zr and rare earth elements.
背景技术Background technique
钛合金已经在航空航天、舰船、汽车、化工、医疗器械和体育用品等领域获得广泛应用。就钛合金的使用温度而言,目前的钛合金最高工作温度已经由最初的350℃提高至650℃。美、英、俄等国家研制出了工作温度在550℃至600℃的Ti-1100,IMI834,BT36等合金,Ti-1100的名义成分是Ti-6Al-2.75Sn-4Zr-0.45Mo-0.5Si,是在Ti-6Al-2Sn-4Zr-2Mo的基础上添加少量Si而研制出来的。俄罗斯研制的BT36合金名义成分为Ti-6.2Al-2Sn-3.6Zr-0.7Mo-5.0W-0.15Si-0.1Y。IMI834是英国IMI公司于1984年研制成功的一种高温钛合金,其名义成分是Ti-5.8Al-4Sn-3.5Zr-0.7Nb-0.5Mo-0.35Si-0.06C,该合金是一种中强(σb:1050MPa)的近α型高温钛合金,具有优异的蠕变、疲劳和拉伸强度等性能的最佳匹配,可在600℃高温条件下使用,是目前欧美国家使用温度最高的钛合金。Titanium alloys have been widely used in the fields of aerospace, ships, automobiles, chemicals, medical equipment and sporting goods. As far as the service temperature of titanium alloy is concerned, the maximum working temperature of the current titanium alloy has been increased from the initial 350°C to 650°C. The United States, Britain, Russia and other countries have developed Ti-1100, IMI834, BT36 and other alloys with working temperatures ranging from 550°C to 600°C. The nominal composition of Ti-1100 is Ti-6Al-2.75Sn-4Zr-0.45Mo-0.5Si , is developed on the basis of Ti-6Al-2Sn-4Zr-2Mo by adding a small amount of Si. The nominal composition of the BT36 alloy developed in Russia is Ti-6.2Al-2Sn-3.6Zr-0.7Mo-5.0W-0.15Si-0.1Y. IMI834 is a high-temperature titanium alloy successfully developed by the British IMI company in 1984. Its nominal composition is Ti-5.8Al-4Sn-3.5Zr-0.7Nb-0.5Mo-0.35Si-0.06C. The alloy is a medium-strength (σb: 1050MPa) near α-type high-temperature titanium alloy, which has the best matching of excellent creep, fatigue and tensile strength properties, and can be used under high temperature conditions of 600 ° C. It is currently the highest temperature titanium alloy in Europe and the United States. .
中国研制出了600℃使用的Ti600和Ti60合金,Ti60合金名义成分(重量百分比)为Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.85Nd-0.34Si,Ti600合金名义成分(重量百分比)为Ti-5.8Al-4.0Sn-4.0Zr-0.7Nb-1.5Ta-0.4Si-0.06C。也研制了在650℃工作的Ti65合金,其名义成分为Ti-6Al-4Sn-0.5Mo-0.4Nb-2.5Ta-0.4Si-0.06C。为了进一步提高使用温度,国外发展了Ti-Si-Al-Zr合金(如Ti-4Si-(3-5)Al-5Zr),这一合金系的工作温度有望提高到700-800℃。但由于硅化物的形成,该合金的塑性非常低,对应力集中非常敏感,断裂韧性低,无法满足高温结构件的高疲劳性能要求。China has developed Ti600 and Ti60 alloys used at 600°C. The nominal composition (weight percent) of Ti60 alloy is Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.85Nd-0.34Si, and the nominal composition (weight percent) of Ti600 alloy is It is Ti-5.8Al-4.0Sn-4.0Zr-0.7Nb-1.5Ta-0.4Si-0.06C. A Ti65 alloy working at 650°C has also been developed with a nominal composition of Ti-6Al-4Sn-0.5Mo-0.4Nb-2.5Ta-0.4Si-0.06C. In order to further increase the operating temperature, Ti-Si-Al-Zr alloys (such as Ti-4Si-(3-5)Al-5Zr) have been developed abroad, and the operating temperature of this alloy system is expected to increase to 700-800°C. However, due to the formation of silicides, the alloy has very low plasticity, is very sensitive to stress concentration, and has low fracture toughness, which cannot meet the high fatigue performance requirements of high-temperature structural parts.
公开号为CN1121359,公开日为1996年4月24日,名称为“钛基复合材料”的专利文献,公开了一种具有共晶形成钛合金增强相的钛基复合材料,该复合材料含有硅、铝、锆、锰、铬、钼、碳、铁、硼、钴、镍、锗和铜中的至少一种元素。The publication number is CN1121359, the publication date is April 24, 1996, and the patent document named "titanium-based composite material" discloses a titanium-based composite material with a eutectic titanium alloy reinforcement phase, which contains silicon , aluminum, zirconium, manganese, chromium, molybdenum, carbon, iron, boron, cobalt, nickel, germanium and copper at least one element.
公开号为CN200910114058,公开日为2009年5月13日,名称为“原位自生稀土氧化物增强钛硅合金复合材料”的专利文献,公开了一种原位自生稀土氧化物增强钛硅合金复合材料,其原料组分按重量百分比为:Ti74.40-88.32%、Si0.614-5.406%、SiO22.213-5.532%、La6.821-17.054%;或Ti74.40-88.32%、Si0.696-5.406%、SiO22.143-5.357%、Nd6.859-17.147%;或Ti79.05-90.24%、Si0.602-5.461%、SiO22.395-5.987%、Y4.725-11.812%。该复合材料弹性模量和抗压强度分别为5230-9280MPa和102-467MPa。The publication number is CN200910114058, and the publication date is May 13, 2009. The patent document titled "In-situ Rare Earth Oxide Reinforced Titanium-Silicon Alloy Composite Material" discloses an in-situ self-generated rare earth oxide-reinforced titanium-silicon alloy composite material. Material, its raw material components are by weight percentage: Ti74.40-88.32%, Si0.614-5.406%, SiO 2 2.213-5.532%, La6.821-17.054%; or Ti74.40-88.32%, Si0.696 -5.406%, SiO 2 2.143-5.357%, Nd6.859-17.147%; or Ti79.05-90.24%, Si0.602-5.461%, SiO 2 2.395-5.987%, Y4.725-11.812%. The elastic modulus and compressive strength of the composite material are 5230-9280MPa and 102-467MPa respectively.
公开号为CN101497952A,公开日为2009年8月5日,名称为“一种高强度耐高温氧化的钛硅合金”称,该合金其原料组分及含量按重量百分比为:Ti78.87-88.3%,Si7.33-8.2%,Al和/或Nb2.8-12.3%,其抗压强度可达1498-1828MPa,在800-1000℃高温下合金的氧化增重少,合金表面形成的氧化膜致密可对合金起到很好的保护作用,并且该合金的加工性能良好,不含稀贵金属,制造成本低。The publication number is CN101497952A, the publication date is August 5, 2009, and the name is "a high-strength high-temperature oxidation-resistant titanium-silicon alloy". The raw material composition and content of the alloy are as follows: Ti78.87-88.3 %, Si7.33-8.2%, Al and/or Nb2.8-12.3%, its compressive strength can reach 1498-1828MPa, and the oxidation weight gain of the alloy is less at a high temperature of 800-1000°C, and the oxide film formed on the surface of the alloy The denseness can protect the alloy very well, and the alloy has good processing performance, does not contain rare and precious metals, and has low manufacturing cost.
公开号为CN102321833A,公开日为2012年1月18日,名称为“一种铝钛硅合金靶材及其制备方法”的专利文献称,所提供的铝钛硅合金靶材由(质量百分比)铝5-90%,钛5-90%,硅1-30%的原料制成,该铝钛硅合金靶材采用热压烧结方法制成。制的铝钛硅合金靶材成分均匀,相对密度高,生产成本低。The publication number is CN102321833A, and the publication date is January 18, 2012. The patent document titled "A Al-Ti-Si Alloy Target and Its Preparation Method" states that the provided Al-Ti-Si alloy target consists of (mass percentage) It is made of 5-90% aluminum, 5-90% titanium, and 1-30% silicon. The aluminum-titanium-silicon alloy target is made by hot pressing and sintering. The aluminum-titanium-silicon alloy target has uniform composition, high relative density and low production cost.
公开号为CN201210203747,公开日为2012年12月3日,名称为“一种钛硅合金靶材的制造方法”的专利文献,公开了一种钛硅合金靶材的制造方法,该方法以硅粉、钛粉为原料,按一定的比例机械混合,装入石墨模具中,通过真空感应热压烧结,制出不同成分和不同尺寸规格的钛硅合金靶材。采用上述方法制备的钛硅合金靶材具有晶粒细小,成分均匀,无偏析,成本低,高密实度,适合规模化生产等特点。The publication number is CN201210203747, and the publication date is December 3, 2012. The patent document named "a method for manufacturing a titanium-silicon alloy target" discloses a method for manufacturing a titanium-silicon alloy target. Titanium powder and titanium powder are used as raw materials, mechanically mixed according to a certain ratio, loaded into graphite molds, and sintered by vacuum induction hot pressing to produce titanium-silicon alloy targets with different compositions and sizes. The titanium-silicon alloy target prepared by the above method has the characteristics of fine grain, uniform composition, no segregation, low cost, high density and suitable for large-scale production.
公开号为CN103710572A,公开日为2013年11月11日,名称为“一种铸造Ti-Si-Al基高温高强度合金”的专利文献,公开了一种含有金属间化合物增强相的高温高强度铸造Ti-Si-Al合金,,合金含有(重量百分比)Si4.5-8.5%,Al2.5-9.5%,Mo、Nb、Ta、V和Zr元素中至少选一种元素,含量为0.1-2.5%,Ti余量。按照本发明设计的Ti-Si-Al合金的室温和500℃时的拉伸强度分别大于超过800MPa和550MPa。The publication number is CN103710572A, and the publication date is November 11, 2013. The patent document titled "a cast Ti-Si-Al-based high-temperature high-strength alloy" discloses a high-temperature high-strength alloy containing an intermetallic compound reinforcement phase. Cast Ti-Si-Al alloy, the alloy contains (weight percent) Si4.5-8.5%, Al2.5-9.5%, at least one element selected from Mo, Nb, Ta, V and Zr elements, the content is 0.1- 2.5%, Ti balance. The tensile strength of the Ti-Si-Al alloy designed according to the invention is greater than 800MPa and 550MPa at room temperature and 500°C respectively.
公开号为CN103556000A,公开日为2014年2月5日,名称为“含稀土和金属间化合物增强相的Ti-Si-Al基合金”,公开了本一种含有稀土和金属间化合物增强相的Ti-Si-Al基合金,通过添加适量的稀土元素RE(RE=Y、La、Ce、Sm、Gd、Dy、Ho、Er),使Ti-Si-Al合金获得拉伸强度超过900MPa以上的高强度和满足500℃以上使用环境。The publication number is CN103556000A, the publication date is February 5, 2014, and the name is "Ti-Si-Al-based alloy containing rare earth and intermetallic compound reinforcement phase", which discloses this kind of alloy containing rare earth and intermetallic compound reinforcement phase. Ti-Si-Al-based alloy, by adding an appropriate amount of rare earth elements RE (RE = Y, La, Ce, Sm, Gd, Dy, Ho, Er), the Ti-Si-Al alloy can obtain a tensile strength exceeding 900MPa High strength and meet the use environment above 500 ℃.
公开号为CN103555999A,公开日为2014年2月5日,名称为“一种高强度铸造Ti-Si-Al-B-Zr基合金”,公开了一种含有金属间化合物增强相的铸造Ti-Si-Al-B-Zr合金,该合金成分(重量百分比)为:Si3.5-7.2%,Al3-8.5%,B0.01-1.5%,Zr0.01-3%,Ti余量。The publication number is CN103555999A, the publication date is February 5, 2014, and the name is "a high-strength cast Ti-Si-Al-B-Zr-based alloy", which discloses a cast Ti-Si-Al-B-Zr-based alloy containing an intermetallic compound reinforcement phase. Si-Al-B-Zr alloy, the alloy composition (weight percentage) is: Si3.5-7.2%, Al3-8.5%, B0.01-1.5%, Zr0.01-3%, Ti balance.
发明内容Contents of the invention
本发明专利的目的是提供一种在500℃以上具有高强度、耐磨和抗氧化的铸造Ti-Si共晶复合材料。该合金作为一种新型轻质铸造合金,可广泛应用于汽车、舰船、航空航天和能源等领域中要求热强性、抗氧化、耐磨损和耐腐蚀的零部件。The purpose of the patent of the present invention is to provide a cast Ti-Si eutectic composite material with high strength, wear resistance and oxidation resistance above 500°C. As a new type of lightweight casting alloy, the alloy can be widely used in parts requiring thermal strength, oxidation resistance, wear resistance and corrosion resistance in the fields of automobiles, ships, aerospace and energy.
根据上述目的,本发明涉及一种含有高铝高硅的塑性钛合金,通过添加Al、Si、B、Mo、Nb、V、Ta和Zr使合金获得良好的高温强化、高温抗氧化和高温耐磨作用。本发明合金中各元素的质量百分配比为:Al7.2-9.5%,Si0.8-1.8%,Zr0.5-3.5%,V0.5-3%,Mo0.1-4.5%,Nb0.1-4.5%,Ta0.1-3.5%,余者为Ti、附带元素和不可避免的杂质。为了进一步提高合金的焊接性能,本发明的合金成分调整只含有Ti、Al、Si、Mo、Nb、V和Zr。对于工作温度要求极为苛刻的零部件,本发明的复合材料还可进一步调整为含有Ti、Al、Si、Mo、Nb、V和Ta。According to the above purpose, the present invention relates to a plastic titanium alloy containing high aluminum and high silicon. By adding Al, Si, B, Mo, Nb, V, Ta and Zr, the alloy can obtain good high temperature strengthening, high temperature oxidation resistance and high temperature resistance. Grinding effect. The mass percentage distribution ratio of each element in the alloy of the present invention is: Al7.2-9.5%, Si0.8-1.8%, Zr0.5-3.5%, V0.5-3%, Mo0.1-4.5%, Nb0. 1-4.5%, Ta0.1-3.5%, and the rest are Ti, incidental elements and unavoidable impurities. In order to further improve the weldability of the alloy, the alloy composition of the present invention is adjusted to only contain Ti, Al, Si, Mo, Nb, V and Zr. For parts with extremely strict working temperature requirements, the composite material of the present invention can be further adjusted to contain Ti, Al, Si, Mo, Nb, V and Ta.
上述各化学元素的成分设计原理如下:The composition design principles of the above chemical elements are as follows:
为了平衡高温合金的热强性、疲劳性能、塑性和热稳定性,传统Ti合金中Al含量一般控制在6%以下,另外加入4%左右的Sn和4%左右的Zr,起到补充强化作用,将合金的Al当量控制在8.5—9%的水平。在本发明中,合金的强化方法采用在α相基体析出Ti3Al相,而不是传统的固溶强化方法,为此将合金中Al的含量提高到7.2—9.5%。为了合理控制合金的铸造流动性能和焊接性能,优选合金中Al的含量为7.5-8.5%。In order to balance the thermal strength, fatigue performance, plasticity and thermal stability of superalloys, the content of Al in traditional Ti alloys is generally controlled below 6%, and about 4% of Sn and about 4% of Zr are added to supplement the strengthening effect. , the Al equivalent of the alloy is controlled at the level of 8.5-9%. In the present invention, the strengthening method of the alloy adopts the precipitation of Ti3Al phase in the α-phase matrix instead of the traditional solid solution strengthening method, so the content of Al in the alloy is increased to 7.2-9.5%. In order to reasonably control the casting flowability and welding performance of the alloy, the content of Al in the alloy is preferably 7.5-8.5%.
Si是高温钛合金中一个非常重要的元素,通常高温Ti合金中都含有0.1-0.5%Si。在本发明中,加入Si的主要目的是通过共晶反应形成钛硅陶瓷相,以进一步增强钛合金高温强度,提高高温耐磨性。因此本发明复合材料中Si的含量选择在0.8-1.8%。为了合理控制合金的铸造流动性能和焊接性能,优选合金中Si的含量为1.05-1.6%。Si is a very important element in high-temperature titanium alloys, and usually high-temperature Ti alloys contain 0.1-0.5% Si. In the present invention, the main purpose of adding Si is to form a titanium-silicon ceramic phase through eutectic reaction, so as to further enhance the high-temperature strength of the titanium alloy and improve the high-temperature wear resistance. Therefore, the content of Si in the composite material of the present invention is selected to be 0.8-1.8%. In order to reasonably control the casting flowability and welding performance of the alloy, the content of Si in the alloy is preferably 1.05-1.6%.
微量添加B可以大大改善Ti-Si合金的压缩强度和塑性。研究发现,在Ti-Si共晶合金中,当加入0.21at%B时,合金的压缩强度和塑性比Ti-Si二元共晶提高26%和480%。B还能显著影响亚共晶Ti-5wt%Si合金冷却过程中初生枝晶的生长,从而改变微观组织中的枝晶形貌。因此本发明另一的目的是通过添加适量的B元素,细化α-Ti枝晶、Ti5Si3或者Ti3Si金属间化合物,获得优异的综合力学性能,优选合金中B的添加量为:0.01-0.25%。The compressive strength and plasticity of Ti-Si alloy can be greatly improved by adding a small amount of B. The study found that in the Ti-Si eutectic alloy, when 0.21at% B was added, the compressive strength and plasticity of the alloy increased by 26% and 480% compared with the Ti-Si binary eutectic. B can also significantly affect the growth of primary dendrites during cooling of the hypoeutectic Ti-5wt%Si alloy, thereby changing the dendrite morphology in the microstructure. Therefore, another object of the present invention is to refine α-Ti dendrites, Ti 5 Si 3 or Ti 3 Si intermetallic compounds by adding an appropriate amount of B element to obtain excellent comprehensive mechanical properties. The preferred amount of B added in the alloy is : 0.01-0.25%.
V是最重要的合金化元素之一,这种合金元素既可以固溶的形式存在,也可促进新的合金相的形成,V是β相稳定元素。因此加入V的目的是适当获取一定量的β相,从而调控合金基体中α与β两相的平衡,根据具体使用要求通过添加不同V元素,实现复合材料的强度与塑性的良好匹配,同时也有利于提高合金的高温蠕变和持久性能。本发明中优选V的含量为0.5-2.5%,以此调控合金基体的α与β两相平衡。V is one of the most important alloying elements. This alloying element can exist in the form of solid solution and can also promote the formation of new alloy phases. V is a β-phase stable element. Therefore, the purpose of adding V is to properly obtain a certain amount of β phase, so as to regulate the balance of α and β phases in the alloy matrix. According to specific application requirements, by adding different V elements, a good match between the strength and plasticity of the composite material can be achieved. It is beneficial to improve the high temperature creep and durability performance of the alloy. In the present invention, the preferred content of V is 0.5-2.5%, so as to control the two-phase balance of α and β of the alloy matrix.
本发明加入Mo、Nb、Ta的目的是为了提高合金的高温强度,研究表明,Mo、Nb、Ta是合金高温强化最有效的元素,在Ti60和Ti65中分别通过添加Nb和Ta来获得的,这三种元素是与β-Ti晶格相同的元素,能与β-Ti无限互溶,而在α-Ti中具有有限溶解度。由于Mo、Nb、Ta与β-Ti晶格相同,所以这些元素能以置换方式大量溶入β-Ti中,产生较小的晶格畸变,因此,这些合金元素在产生强化作用的同时,还可保持较高的塑性。这些元素还有一个重要特点,它们与Ti发生不共析或包析反应而生成脆性相,所以合金的组织稳定性好,有利于提高复合材料的抗蠕变性能和持久性能,这对合金在高温下使用时至关重要的。为了控制合金化含量对实际浇注产生的偏析与成本控制,优选Mo0.1%-2.5%,Nb0.1%-3.5%,Ta0.1%-1.5%。The purpose of adding Mo, Nb and Ta in the present invention is to improve the high-temperature strength of the alloy. Studies have shown that Mo, Nb and Ta are the most effective elements for high-temperature strengthening of the alloy, and they are obtained by adding Nb and Ta to Ti60 and Ti65 respectively. These three elements are the same elements as the β-Ti lattice, can be infinitely miscible with β-Ti, and have limited solubility in α-Ti. Since Mo, Nb, Ta and β-Ti have the same lattice, these elements can be dissolved into β-Ti in a large amount by substitution, resulting in small lattice distortion. Therefore, these alloy elements can not only produce strengthening effect, but also High plasticity can be maintained. These elements also have an important feature, they have non-eutectoid or inclusion reaction with Ti to form brittle phases, so the structure stability of the alloy is good, which is conducive to improving the creep resistance and durability of the composite material, which is beneficial to the alloy in Critical when used at high temperatures. In order to control the segregation of the alloying content on the actual pouring and cost control, Mo0.1%-2.5%, Nb0.1%-3.5%, and Ta0.1%-1.5% are preferred.
Zr与α-Ti具有相同晶格类型,与α-Ti无限互溶,所以Zr元素能以置换方式大量溶入α-Ti中,产生晶格畸变,Zr是对转变影响不明显的元素,这种元素在提高α-Ti强度的同时,也提高合金的热强性,它们在不大幅度降低塑性的前提下,还有利于压力加工和焊接。本发明中Zr的优选含量在1.0-2.5%。Zr and α-Ti have the same lattice type, and are infinitely miscible with α-Ti, so Zr elements can be dissolved into α-Ti in a large amount by substitution, resulting in lattice distortion. Elements that are not affected by the transformation are not obvious. This element improves the strength of α-Ti and also improves the thermal strength of the alloy. They are also beneficial to pressure processing and welding without greatly reducing the plasticity. The preferred content of Zr in the present invention is 1.0-2.5%.
在Ti-Si-Al基础上,添加稀土元素(RE=Y,La,Ce,Sm,Gd),综合提高合金的力学性能。之所以选择添加这两类元素,是因为稀土元素(RE=Y,La,Ce,Sm,Gd)具有原子半径大和活性高的特点,研究表明,稀土元素可以进入Ti-Si合金中Ti5Si3相,形成Ti5(Si,RE)3,从而大幅度提高合金强度。研究还发现,在Ti基合金中加入少量稀土后,可以明显细化晶粒,改善材料的机械性能、加工性能、焊接性能和耐腐蚀性能。On the basis of Ti-Si-Al, rare earth elements (RE=Y, La, Ce, Sm, Gd) are added to comprehensively improve the mechanical properties of the alloy. The reason for choosing to add these two types of elements is that rare earth elements (RE=Y, La, Ce, Sm, Gd) have the characteristics of large atomic radius and high activity. Studies have shown that rare earth elements can enter Ti-Si alloys Ti 5 Si 3 phases, forming Ti 5 (Si,RE) 3 , thus greatly improving the strength of the alloy. The study also found that adding a small amount of rare earth to the Ti-based alloy can significantly refine the grains and improve the mechanical properties, processing properties, welding properties and corrosion resistance of the material.
综上所述,本发明成分设计原理是通过添加高含量的Al和Si,形成Ti3Al相和钛硅化合物相,来提高合金的高温强度和耐磨性,添加B来细化钛硅化合物和先析出α-Ti基体。通过添加V、Zr实现固溶强化,通过添加Mo、Nb、Ta,使合金具有良好的高温抗氧化性和高温稳定性。In summary, the composition design principle of the present invention is to form Ti 3 Al phase and titanium silicon compound phase by adding high content of Al and Si to improve the high temperature strength and wear resistance of the alloy, and add B to refine the titanium silicon compound phase And the α-Ti matrix is precipitated first. Solid solution strengthening is achieved by adding V and Zr, and the alloy has good high temperature oxidation resistance and high temperature stability by adding Mo, Nb and Ta.
本发明所述钛合金具有以下优点:The titanium alloy of the present invention has the following advantages:
(1)在室温下具有优异的强韧性。(1) It has excellent strength and toughness at room temperature.
(2)由于合金中形成了Ti3Al相和钛硅化合物相,合金具有优异的耐磨性。(2) Due to the formation of Ti 3 Al phase and titanium silicon compound phase in the alloy, the alloy has excellent wear resistance.
(3)合金含有7%以上的铝,所以合金具有良好的耐蚀性和抗氧化性。(3) The alloy contains more than 7% aluminum, so the alloy has good corrosion resistance and oxidation resistance.
(4)在500℃以上具有优异的力学性能和耐磨性,适合高温构件的制造,可满足航空航天、汽车和舰船等领域要求高温、耐磨、耐腐蚀的零部件。(4) It has excellent mechanical properties and wear resistance above 500°C, suitable for the manufacture of high-temperature components, and can meet the requirements of high-temperature, wear-resistant and corrosion-resistant parts in the fields of aerospace, automobiles and ships.
(5)本发明所述钛合金加工过程简单,不需要特殊工艺和设备,使用传统制备设备和工艺便可进行生产。(5) The titanium alloy of the present invention has a simple processing process, does not require special techniques and equipment, and can be produced using traditional preparation equipment and techniques.
说明书附图:Attached to the manual:
附图1实施例2合金的室温拉伸性能。The room temperature tensile properties of accompanying drawing 1 embodiment 2 alloy.
附图2实施例2合金在500℃下的拉伸性能。Figure 2 shows the tensile properties of the alloy in Example 2 at 500°C.
附图3实施例3合金在500℃下的拉伸性能。Figure 3 shows the tensile properties of the alloy in Example 3 at 500°C.
附图4实施例4合金的室温拉伸性能。Figure 4 shows the room temperature tensile properties of the alloy of Example 4.
附图5实施例5合金的室温拉伸性能。Figure 5 shows the room temperature tensile properties of the alloy of Example 5.
具体实施方式detailed description
实施例1-9Examples 1-9
铸造方法1:制备母合金所采用的金属原料均为纯度大于99.9%的纯金属单质元素,根据合金的化学组成配料,合金的熔炼设备采用高真空电弧熔炼炉,抽真空高于5×10-3Pa,在氩气保护气氛下进行电弧熔炼,待母合金熔化后,将熔体从坩埚中吸铸到水冷铜模内,形成具有直径10mm的棒材。Casting method 1: The metal raw materials used to prepare the master alloy are all pure metal elemental elements with a purity greater than 99.9%, and the ingredients are formulated according to the chemical composition of the alloy. The alloy melting equipment adopts a high vacuum arc melting furnace, and the vacuum is higher than 5×10 - 3 Pa, arc melting is carried out under an argon protective atmosphere, and after the master alloy is melted, the melt is suction-cast from the crucible into a water-cooled copper mold to form a rod with a diameter of 10mm.
铸造方法2:制备母合金所采用的金属原料均为纯度大于99.9%的纯金属单质元素,根据合金的化学组成配料,在悬浮熔炼炉中熔炼,坩埚为水冷铜坩埚,熔炼真空度为0.01-1Pa,悬浮炉的频率为8000Hz,熔炼电流为100-500A,电压为100-380V。带合金熔化后,浇入直径为45mm,长为300mm的铜制模具中。Casting method 2: The metal raw materials used in the preparation of the master alloy are all pure metal elemental elements with a purity greater than 99.9%. The ingredients are formulated according to the chemical composition of the alloy and melted in a suspension melting furnace. The crucible is a water-cooled copper crucible and the melting vacuum is 0.01- 1Pa, the frequency of the suspension furnace is 8000Hz, the melting current is 100-500A, and the voltage is 100-380V. After the strip alloy is melted, it is poured into a copper mold with a diameter of 45 mm and a length of 300 mm.
铸造方法3,按重量百分比进行配制经均匀混合后压制成电极,然后在真空自耗电极电弧炉中进行真空熔炼,此时熔炼真空度0.01-1Pa,弧电压32-36V,弧电流5000-8000A,然后在真空自耗电极凝壳炉真空度0.1-1Pa,弧电压30-40V,弧电流20000-50000A下进行Ti-Si合金复合材料浇铸。Casting method 3, prepared according to weight percentage, mixed uniformly and pressed into electrodes, and then vacuum smelted in a vacuum consumable electrode electric arc furnace. At this time, the smelting vacuum degree is 0.01-1Pa, the arc voltage is 32-36V, and the arc current is 5000- 8000A, and then the Ti-Si alloy composite material is cast in a vacuum consumable electrode shell solidification furnace with a vacuum degree of 0.1-1Pa, an arc voltage of 30-40V, and an arc current of 20000-50000A.
表1实施例1-9合金的化学成分表(重量百分比)The chemical composition table (weight percent) of table 1 embodiment 1-9 alloy
发明人对实施例1-9中Ti合金在室温下和500-600℃使用温度下分别进行了力学性能实验,实验结果如表2:The inventors conducted mechanical property experiments on the Ti alloys in Examples 1-9 at room temperature and at a service temperature of 500-600°C, and the experimental results are shown in Table 2:
表2Ti-Si合金复合材料在室温、500℃和600℃下的拉伸性能Table 2 Tensile properties of Ti-Si alloy composites at room temperature, 500°C and 600°C
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410283593.7A CN104018028B (en) | 2014-06-23 | 2014-06-23 | A kind of high alumina height silicon cast titanium alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410283593.7A CN104018028B (en) | 2014-06-23 | 2014-06-23 | A kind of high alumina height silicon cast titanium alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104018028A CN104018028A (en) | 2014-09-03 |
CN104018028B true CN104018028B (en) | 2016-06-29 |
Family
ID=51435019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410283593.7A Expired - Fee Related CN104018028B (en) | 2014-06-23 | 2014-06-23 | A kind of high alumina height silicon cast titanium alloy |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104018028B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104451254B (en) * | 2014-10-23 | 2017-02-22 | 北京科技大学 | Cast Ti-Si eutectic alloy containing intermetallic compound reinforcement phase |
CN104561657B (en) * | 2014-12-26 | 2017-01-18 | 上海腾辉有色铸造有限公司 | Titanium-aluminium alloy material and preparation technology thereof |
CN104878246A (en) * | 2015-06-02 | 2015-09-02 | 张亚南 | Alloy material for dental restoration and application of alloy material |
CN105668886B (en) * | 2016-04-16 | 2018-04-06 | 黄其江 | Lightweight Miniature seawater desalination device |
CN105925842B (en) * | 2016-05-31 | 2018-02-16 | 沈阳中核舰航特材科技有限公司 | A kind of manufacture method of high-quality titanium alloy |
CN106498230A (en) * | 2016-10-25 | 2017-03-15 | 林海英 | A kind of titanium alloy and preparation method thereof |
CN106566949A (en) * | 2016-11-08 | 2017-04-19 | 中航装甲科技有限公司 | Preparation method and mixing device of graphene/titanium alloy composite armor material |
CN107130160B (en) * | 2017-05-24 | 2018-09-14 | 哈尔滨工业大学 | A kind of Ti-V-Al bases lightweight memorial alloy and preparation method thereof |
CN109022910A (en) * | 2018-08-29 | 2018-12-18 | 江苏沃钛有色金属有限公司 | A kind of corrosion resistant titanium alloy tube and preparation method thereof |
CN110484774B (en) * | 2019-09-24 | 2020-12-01 | 西北有色金属研究院 | A kind of titanium alloy resistant to 650 ℃ high temperature |
CN114654128B (en) * | 2022-03-21 | 2022-10-28 | 哈尔滨焊接研究院有限公司 | TC4 titanium alloy metal powder core flux-cored welding strip and preparation method thereof |
CN115652138A (en) * | 2022-10-27 | 2023-01-31 | 陕西天成航空材料有限公司 | Preparation method of ultrafine-grained titanium alloy bar for aircraft engine rotor |
CN115927912B (en) * | 2023-01-09 | 2024-03-15 | 广西农业职业技术大学 | Heat-resistant titanium alloy and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1902331A (en) * | 2003-07-03 | 2007-01-24 | 德国泰坦有限公司 | Beta-titanium alloy, method for producing a hot-rolled product based on said alloy and the uses thereof |
CN101104898A (en) * | 2007-06-19 | 2008-01-16 | 中国科学院金属研究所 | A high-temperature titanium alloy with high thermal strength and high thermal stability |
CN101328551A (en) * | 2007-06-19 | 2008-12-24 | 中国科学院金属研究所 | A titanium alloy material that does not rub against sparks |
-
2014
- 2014-06-23 CN CN201410283593.7A patent/CN104018028B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1902331A (en) * | 2003-07-03 | 2007-01-24 | 德国泰坦有限公司 | Beta-titanium alloy, method for producing a hot-rolled product based on said alloy and the uses thereof |
CN101104898A (en) * | 2007-06-19 | 2008-01-16 | 中国科学院金属研究所 | A high-temperature titanium alloy with high thermal strength and high thermal stability |
CN101328551A (en) * | 2007-06-19 | 2008-12-24 | 中国科学院金属研究所 | A titanium alloy material that does not rub against sparks |
Also Published As
Publication number | Publication date |
---|---|
CN104018028A (en) | 2014-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104018028B (en) | A kind of high alumina height silicon cast titanium alloy | |
CN109182854B (en) | A kind of 1GPa high-strength aluminum-based light medium-entropy alloy and preparation method thereof | |
CN102181809B (en) | Large-size metallic glass composite material with tensile ductility and preparation method thereof | |
Jiang et al. | Effects of tungsten on microstructure and mechanical properties of CrFeNiV0. 5W x and CrFeNi2V0. 5W x high-entropy alloys | |
CN103122431B (en) | Preparation method for magnesium-lithium alloy with enhanced long-period structure phase | |
CN104674103A (en) | CrFeCoNiNbx high-entropy alloy and preparation method thereof | |
CN105463222A (en) | Preparing method for in-situ synthesis TiC-Ti5Si3 particle reinforcement Ti-based composite material | |
CN108559875B (en) | High-strength heat-resistant aluminum alloy material for engine piston and preparation method thereof | |
CN103074536A (en) | Carbon-silicon-tungsten-yttrium lamellar structure high-niobium titanium-aluminum alloy and preparation method thereof | |
CN102925822A (en) | Metallic glass composite material with high oxygen content and preparation method thereof | |
CN106086713A (en) | High entropy amorphous composite material and preparation method thereof | |
CN105154736A (en) | Heat-resisting cast magnesium alloy and preparation method thereof | |
CN107653397B (en) | A β-γ High Nb-TiAl Alloy with Excellent High-temperature Deformability | |
WO2015079558A1 (en) | Niobium silicide-based composite material, and high-temperature part and high-temperature heat engine each manufactured using same | |
CN115386768B (en) | 600 ℃/1 GPa-grade high-temperature ultrahigh-strength titanium alloy and preparation method thereof | |
CN113584368B (en) | Low-density dual-phase silicide enhanced refractory high-entropy alloy and preparation method thereof | |
CN108588590A (en) | A kind of in-situ authigenic is at TiB2Whisker reinforcement TiAl based composites and preparation method thereof | |
CN117127059A (en) | Casting high-temperature titanium alloy for 600 ℃ and preparation method thereof | |
CN102560212B (en) | High plasticity superhigh temperature niobium-based directionally solidified alloy and preparation method thereof | |
CN119980000A (en) | A cast lightweight high-strength high-temperature high-entropy alloy and preparation method thereof | |
Yi et al. | High temperature oxidation behavior of directionally solidified NiAl–31Cr–2.9 Mo–0.1 Hf–0.05 Ho eutectic alloy | |
CN105039783A (en) | Ti2AlC Particle Refined γ-TiAl Intermetallic Compound Material and Its Preparation Method | |
CN104451254B (en) | Cast Ti-Si eutectic alloy containing intermetallic compound reinforcement phase | |
CN102002649B (en) | High-toughness magnesium based block body metal glass composite material and preparation method thereof | |
CN105369064A (en) | Method for preparing B and Y contained fine grain TiAl alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160629 |