CN104010208B - A kind of LCD TV with infrared positioning function and its infrared positioning method - Google Patents
A kind of LCD TV with infrared positioning function and its infrared positioning method Download PDFInfo
- Publication number
- CN104010208B CN104010208B CN201410164867.0A CN201410164867A CN104010208B CN 104010208 B CN104010208 B CN 104010208B CN 201410164867 A CN201410164867 A CN 201410164867A CN 104010208 B CN104010208 B CN 104010208B
- Authority
- CN
- China
- Prior art keywords
- infrared
- horizontal
- liquid crystal
- vertical
- crystal display
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Position Input By Displaying (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
本发明公开了一种具有红外定位功能的液晶电视及其红外定位方法,包括步骤:通过水平/垂直设置在液晶显示屏边缘上的各个红外感光元件分别对投影到液晶显示屏上的红外光源信号进行电流检测,并对该些红外感光元件检测到的电流进行一一对应的统计;比较水平/垂直方向上各个红外感光元件检测到的电流大小,并确定检测到电流最大的水平/垂直红外感光元件;计算检测到电流最大的水平/垂直红外感光元件到原点的距离,并生成相应的位置坐标;将该位置坐标反馈至液晶显示屏的处理器,由处理器通过光标的形式在液晶显示屏上显示出该红外光源的投影位置;使液晶电视具备了红外定位功能,增强了用户与电视之间互动娱乐的功能效果。
The invention discloses a liquid crystal television with an infrared positioning function and an infrared positioning method thereof, which comprises the steps of: through each infrared light-sensitive element arranged horizontally/vertically on the edge of the liquid crystal display screen, the infrared light source signal projected on the liquid crystal display screen Carry out current detection, and make one-to-one statistics on the current detected by these infrared photosensitive elements; compare the current detected by each infrared photosensitive element in the horizontal/vertical direction, and determine the horizontal/vertical infrared photosensitive element that detects the largest current Components; calculate the distance from the horizontal/vertical infrared photosensitive element that detects the largest current to the origin, and generate the corresponding position coordinates; feed back the position coordinates to the processor of the LCD screen, and the processor will display it on the LCD screen in the form of a cursor The projection position of the infrared light source is displayed on the screen; the LCD TV has an infrared positioning function, and the interactive entertainment function effect between the user and the TV is enhanced.
Description
技术领域technical field
本发明涉及液晶显示制造领域,尤其涉及的是一种具有红外定位功能的液晶电视及其红外定位方法。The invention relates to the field of liquid crystal display manufacturing, in particular to a liquid crystal television with an infrared positioning function and an infrared positioning method thereof.
背景技术Background technique
目前,市面上已经有很多离开液晶屏幕一定距离的定位技术,即用户在离液晶屏幕一定距离范围内对液晶屏幕上的内容进行隔空控制,类似于隔空切水果这样的游戏操作,但是这样的新技术产品不仅成本得不到控制,而且结构较为复杂,同时相应的效果也并不如人意。可以说在液晶屏幕传感这一领域来说,此项技术还是接近于刚起步开发的阶段,尚有待更进一步的开发空间。At present, there are many positioning technologies on the market that are a certain distance away from the LCD screen, that is, the user can control the content on the LCD screen within a certain distance from the LCD screen, which is similar to the game operation of cutting fruit in the air, but this Not only the cost of new technology products cannot be controlled, but also the structure is relatively complex, and the corresponding effect is not satisfactory. It can be said that in the field of liquid crystal screen sensing, this technology is still close to the initial development stage, and there is still room for further development.
因此,现有技术还有待于改进和发展。Therefore, the prior art still needs to be improved and developed.
发明内容Contents of the invention
鉴于上述现有技术的不足,本发明提供一种具有红外定位功能的液晶电视及其红外定位方法,旨在解决关于该技术的开发成本、结构复杂的问题。In view of the above-mentioned deficiencies in the prior art, the present invention provides a liquid crystal television with an infrared positioning function and an infrared positioning method thereof, aiming at solving the problems of development cost and complex structure of the technology.
所采用的技术方案如下:The adopted technical scheme is as follows:
一种用于液晶显示屏的红外定位方法,包括步骤:An infrared positioning method for a liquid crystal display, comprising the steps of:
通过水平/垂直设置在液晶显示屏边缘上的各个红外感光元件分别对投影到液晶显示屏上的红外光源信号进行电流检测,并对该些红外感光元件检测到的电流进行一一对应的统计;The infrared light source signals projected onto the liquid crystal display are detected by each infrared photosensitive element horizontally/vertically arranged on the edge of the liquid crystal display, and the currents detected by these infrared photosensitive elements are counted one by one;
比较水平/垂直方向上各个红外感光元件检测到的电流大小,并确定检测到电流最大的水平/垂直红外感光元件;Comparing the magnitude of the current detected by each infrared photosensitive element in the horizontal/vertical direction, and determining the horizontal/vertical infrared photosensitive element that detects the largest current;
计算检测到电流最大的水平/垂直红外感光元件到原点的距离,并生成相应的位置坐标;Calculate the distance from the horizontal/vertical infrared sensor that detects the largest current to the origin, and generate the corresponding position coordinates;
将该位置坐标反馈至液晶显示屏的处理器,由处理器通过光标的形式在液晶显示屏上显示出该红外光源的投影位置。The position coordinates are fed back to the processor of the liquid crystal display, and the processor displays the projected position of the infrared light source on the liquid crystal display in the form of a cursor.
所述的用于液晶显示屏的红外定位方法,其中,所述比较水平/垂直方向上各个红外感光元件检测到的电流大小,并确定检测到电流最大的水平/垂直红外感光元件的步骤具体为:In the infrared positioning method for a liquid crystal display, the step of comparing the magnitude of the current detected by each infrared photosensitive element in the horizontal/vertical direction, and determining the horizontal/vertical infrared photosensitive element that detects the largest current is specifically: :
将水平/垂直方向上各个红外感光元件检测到的电流经运放放大并转化成电压输出;The current detected by each infrared sensor in the horizontal/vertical direction is amplified by the operational amplifier and converted into a voltage output;
将电压输出的电压参数进行模数转换生成二进制数,并对转换后的二进制数进行暂存;Perform analog-to-digital conversion on the voltage parameters of the voltage output to generate binary numbers, and temporarily store the converted binary numbers;
将暂存的二进制数形成水平/垂直数组,并通过判断比较找出水平/垂直数组中的最大值,从而确定出检测到电流最大的水平/垂直红外感光元件。The temporarily stored binary numbers are formed into a horizontal/vertical array, and the maximum value in the horizontal/vertical array is found out through judgment and comparison, so as to determine the horizontal/vertical infrared photosensitive element that detects the largest current.
所述的用于液晶显示屏的红外定位方法,其中,所述计算检测到电流最大的水平/垂直红外感光元件到原点的距离,并生成相应的位置坐标的步骤具体为:In the infrared positioning method for liquid crystal display screens, the steps of calculating the distance from the horizontal/vertical infrared photosensitive element with the largest detected current to the origin, and generating corresponding position coordinates are specifically:
计算检测到电流最大的水平红外感光元件到原点的距离,以确定该红外光源在液晶显示屏上的X向坐标值,并表示为Xm;Calculate the distance from the horizontal infrared photosensitive element that detects the maximum current to the origin to determine the X-direction coordinate value of the infrared light source on the liquid crystal display screen, and express it as Xm;
计算检测到电流最大的垂直红外感光元件到原点的距离,以确定该红外光源在液晶显示屏上的Y向坐标值,并表示为Yn;Calculate the distance from the vertical infrared photosensitive element that detects the largest current to the origin to determine the Y-direction coordinate value of the infrared light source on the liquid crystal display screen, and express it as Yn;
将计算得出的Xm和Yn生成相应的位置坐标(Xm,Yn),Generate the corresponding position coordinates (Xm, Yn) from the calculated Xm and Yn,
其中,m表示水平方向上的第几个水平红外感光元件,n表示垂直方向上的第几个垂直红外感光元件。Wherein, m represents the number of horizontal infrared photosensitive elements in the horizontal direction, and n represents the number of vertical infrared photosensitive elements in the vertical direction.
所述的用于液晶显示屏的红外定位方法,其中,所述检测到电流最大的水平/垂直红外感光元件到原点的距离计算公式分别为:In the infrared positioning method for liquid crystal display screens, the formulas for calculating the distance from the horizontal/vertical infrared photosensitive element with the largest detected current to the origin are respectively:
Xm=D×m,Xm=D×m,
Yn=D×n,Yn=D×n,
其中,D表示相邻的水平/垂直红外感光元件之间的间隔距离。Wherein, D represents the separation distance between adjacent horizontal/vertical infrared photosensitive elements.
所述的用于液晶显示屏的红外定位方法,其中,当只有水平或垂直一个方向上的红外感光元件检测到红外光源的电流时,则判定该红外光源为无效的位置信号。In the infrared positioning method for liquid crystal display screens, when only the infrared photosensitive element in one horizontal or vertical direction detects the current of the infrared light source, it is determined that the infrared light source is an invalid position signal.
一种具有红外定位功能的液晶电视,包括:A liquid crystal television with an infrared positioning function, comprising:
红外检测模块,用于通过水平/垂直设置在液晶显示屏边缘上的各个红外感光元件分别对投影到液晶显示屏上的红外光源信号进行电流检测,并对该些红外感光元件检测到的电流进行一一对应的统计;The infrared detection module is used to detect the current of the infrared light source signal projected on the liquid crystal display through the infrared photosensitive elements arranged horizontally/vertically on the edge of the liquid crystal display, and to detect the current detected by these infrared photosensitive elements One-to-one statistics;
位置运算模块,用于比较水平/垂直方向上各个红外感光元件检测到的电流大小,并确定检测到电流最大的水平/垂直红外感光元件;还用于计算检测到电流最大的水平/垂直红外感光元件到原点的距离,并生成相应的位置坐标;The position calculation module is used to compare the current detected by each infrared photosensitive element in the horizontal/vertical direction, and determine the horizontal/vertical infrared photosensitive element with the largest detected current; it is also used to calculate the horizontal/vertical infrared photosensitive element with the largest detected current The distance from the component to the origin, and generate the corresponding position coordinates;
处理器,用于将位置运算模块生成的位置坐标反馈至液晶显示屏进行内部处理,并通过光标的形式在液晶显示屏上显示出该红外光源的投影位置。The processor is used to feed back the position coordinates generated by the position calculation module to the liquid crystal display for internal processing, and display the projected position of the infrared light source on the liquid crystal display in the form of a cursor.
所述的具有红外定位功能的液晶电视,其中,所述红外检测模块为一红外接收扫描传感器,所述红外接收扫描传感器包括:The LCD TV with infrared positioning function, wherein the infrared detection module is an infrared receiving and scanning sensor, and the infrared receiving and scanning sensor includes:
水平设置在液晶显示屏上侧边或下侧边的第一红外接收管,以及垂直设置在液晶显示屏左侧边或右侧边的第二红外接收管,所述红外感光元件间隔均匀的设置在所述第一红外接收管和第二红外接收管上。The first infrared receiving tube arranged horizontally on the upper or lower side of the liquid crystal display, and the second infrared receiving tube vertically arranged on the left or right side of the liquid crystal display, and the infrared photosensitive elements are evenly spaced on the first infrared receiving tube and the second infrared receiving tube.
所述的具有红外定位功能的液晶电视,其中,所述位置运算模块为一运算器,所述运算器内还包括检测到电流最大的水平/垂直红外感光元件到原点的距离计算公式:The LCD TV with infrared positioning function, wherein, the position calculation module is an arithmetic unit, and the arithmetic unit also includes a formula for calculating the distance from the horizontal/vertical infrared photosensitive element that detects the largest current to the origin:
Xm=D×m,Xm=D×m,
Yn=D×n,Yn=D×n,
其中,Xm表示检测到电流最大的水平红外感光元件到原点的距离,Yn表示检测到电流最大的垂直红外感光元件到原点的距离,m表示水平方向上的第几个水平红外感光元件,n表示垂直方向上的第几个垂直红外感光元件,D表示相邻的水平/垂直红外感光元件之间的间隔距离。Among them, Xm represents the distance from the horizontal infrared photosensitive element that detects the largest current to the origin, Yn represents the distance from the vertical infrared photosensitive element that detects the largest current to the origin, m represents the number of horizontal infrared photosensitive elements in the horizontal direction, and n represents The number of vertical infrared photosensitive elements in the vertical direction, D represents the distance between adjacent horizontal/vertical infrared photosensitive elements.
所述的具有红外定位功能的液晶电视,其中,所述处理器为一电视芯片。In the LCD TV with infrared positioning function, the processor is a TV chip.
所述的具有红外定位功能的液晶电视,其中,所述液晶显示屏的显示区设置有一红外滤光膜片,用于滤除可见光;The LCD TV with infrared positioning function, wherein, the display area of the LCD display is provided with an infrared filter diaphragm for filtering out visible light;
所述液晶显示屏边缘外侧设置有金属边框,用于防止红外光源位置溢出液晶显示屏外。A metal frame is arranged outside the edge of the liquid crystal display to prevent the position of the infrared light source from overflowing the liquid crystal display.
本发明的有益效果:Beneficial effects of the present invention:
与现有技术相比,本发明提供的一种具有红外定位功能的液晶电视及其红外定位方法,使液晶电视具备红外定位的功能,用户可通过能够发射红外光源的电视遥控器进行切水果、飞机类等需要方向定位的游戏,增强了用户与电视之间互动娱乐的功能效果。不仅如此,本发明所采用的技术原理简洁易实现,同时成本低。Compared with the prior art, the present invention provides an LCD TV with an infrared positioning function and its infrared positioning method, so that the LCD TV has the function of infrared positioning, and the user can cut fruit, Games that require direction positioning, such as airplanes, enhance the functional effect of interactive entertainment between the user and the TV. Not only that, the technical principle adopted by the present invention is simple and easy to realize, and at the same time, the cost is low.
附图说明Description of drawings
图1是本发明用于液晶显示屏的红外定位方法实施例一的实现流程图;Fig. 1 is the implementation flow chart of embodiment 1 of the infrared positioning method for liquid crystal display screen of the present invention;
图2是图1中S200的具体步骤流程图;Fig. 2 is a flow chart of specific steps of S200 in Fig. 1;
图3是图1中S300的具体步骤流程图;Fig. 3 is a flowchart of specific steps of S300 in Fig. 1;
图4是本发明用于液晶显示屏的红外定位方法实施例二的逻辑流程图;Fig. 4 is a logic flow chart of Embodiment 2 of the infrared positioning method for liquid crystal display screens of the present invention;
图5是本发明具有红外定位功能的液晶电视的模块框图;Fig. 5 is the modular block diagram of the LCD TV with infrared positioning function of the present invention;
图6是本发明具有红外定位功能的液晶电视中红外接收模块的结构示意图;Fig. 6 is the structural representation of the infrared receiving module in the LCD TV with infrared positioning function of the present invention;
图7是本发明具有红外定位功能的液晶电视中红外接收模块的原理示意图;Fig. 7 is a schematic diagram of the principle of an infrared receiving module in a liquid crystal television having an infrared positioning function according to the present invention;
图8是本发明具有红外定位功能的液晶电视的具体实施例的结构示意图;FIG. 8 is a schematic structural view of a specific embodiment of a liquid crystal television with an infrared positioning function according to the present invention;
图9是本发明具有红外定位功能的液晶电视中防止红外光源位置溢出电视屏幕的改进措施的结构示意图。Fig. 9 is a structural schematic diagram of an improvement measure for preventing the position of the infrared light source from overflowing the TV screen in the LCD TV with infrared positioning function of the present invention.
具体实施方式detailed description
本发明提供了一种用于液晶显示屏的红外定位方法及液晶电视,为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。The present invention provides an infrared positioning method for liquid crystal display screens and liquid crystal televisions. In order to make the purpose, technical solutions and advantages of the present invention clearer and clearer, the present invention will be further described in detail below with reference to the accompanying drawings and examples. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
实施例一:Embodiment one:
请参见图1,图1是本发明用于液晶显示屏的红外定位方法实施例一的实现流程图。Please refer to FIG. 1 . FIG. 1 is an implementation flow chart of Embodiment 1 of an infrared positioning method for a liquid crystal display according to the present invention.
如图1所示,所述用于液晶显示屏的红外定位方法,其包括步骤:As shown in Figure 1, the described infrared positioning method for liquid crystal display, it comprises steps:
步骤S100,通过水平/垂直设置在液晶显示屏边缘上的各个红外感光元件分别对投影到液晶显示屏上的红外光源信号进行电流检测,并对该些红外感光元件检测到的电流进行一一对应的统计。Step S100, through the infrared photosensitive elements arranged horizontally/vertically on the edge of the liquid crystal display screen, respectively detect the current of the infrared light source signal projected on the liquid crystal display screen, and make a one-to-one correspondence between the currents detected by these infrared photosensitive elements registration.
其中,水平方向上和垂直方向上所采集到的电流数据是各自独立的,而相应的在后续进行电流大小比较时,也是将水平方向上和垂直方向上完全分隔开的。Wherein, the current data collected in the horizontal direction and the vertical direction are independent of each other, and correspondingly, the horizontal direction and the vertical direction are also completely separated when the current magnitude is compared subsequently.
本实施例中,在步骤S100之前,还应当包括用户向液晶显示屏上的显示区发射红外光源的操作步骤,具体为:In this embodiment, before step S100, it should also include an operation step for the user to emit an infrared light source to the display area on the liquid crystal display, specifically:
用户可手持类似于普通电视遥控器一样结构的但能够发出特定的红外线光源的红外发射器,较好的是正对着液晶显示屏,并向液晶显示屏发出红外光源,该红外光源是用于在液晶显示屏上确定用户所指向的位置,即定位作用,以此来实现红外定位功能。The user can hold an infrared emitter similar in structure to an ordinary TV remote control but capable of emitting a specific infrared light source. The position pointed by the user is determined on the LCD screen, that is, the positioning function, so as to realize the infrared positioning function.
待步骤S100完成之后,进入步骤S200。After step S100 is completed, go to step S200.
步骤S200,比较水平/垂直方向上各个红外感光元件检测到的电流大小,并确定检测到电流最大的水平/垂直红外感光元件。Step S200 , comparing the magnitudes of currents detected by each infrared photosensitive element in the horizontal/vertical direction, and determining the horizontal/vertical infrared photosensitive element that detects the largest current.
结合图2所示,图2是图1中S200的具体步骤流程图,所述步骤S200具体包括:As shown in FIG. 2, FIG. 2 is a flow chart of the specific steps of S200 in FIG. 1, and the step S200 specifically includes:
步骤S210,将水平/垂直方向上各个红外感光元件检测到的电流经运放放大并转化成电压输出;Step S210, the current detected by each infrared photosensitive element in the horizontal/vertical direction is amplified by the operational amplifier and converted into a voltage output;
步骤S220,将电压输出的电压参数进行模数转换生成二进制数,并对转换后的二进制数进行暂存;Step S220, performing analog-to-digital conversion on the voltage parameter of the voltage output to generate a binary number, and temporarily storing the converted binary number;
步骤S230,将暂存的二进制数形成水平/垂直数组,并通过判断比较找出水平/垂直数组中的最大值,从而确定出检测到电流最大的水平/垂直红外感光元件。Step S230, form the temporarily stored binary numbers into a horizontal/vertical array, and find out the maximum value in the horizontal/vertical array through judgment and comparison, so as to determine the horizontal/vertical infrared photosensitive element that detects the largest current.
上述步骤S210、S220及S230是将步骤S100中水平/垂直方向上的各个感光元件采集到的电流值进行处理,从而判定出检测到电流最大的水平/垂直红外感光元件。而将测得的电流值通过一系列的数据转换形成数组,是为适应单片机的应用,方便单片机进行相关数据的处理(单片机识别语音为二进制数),通过单片机计算得出该检测到电流最大的水平/垂直红外感光元件。The above steps S210, S220 and S230 are to process the current values collected by each photosensitive element in the horizontal/vertical direction in step S100, so as to determine the horizontal/vertical infrared photosensitive element with the largest detected current. The measured current value is converted into an array through a series of data, in order to adapt to the application of the single-chip microcomputer, and facilitate the processing of relevant data by the single-chip microcomputer (the voice recognition of the single-chip microcomputer is a binary number), and the maximum current detected by the single-chip computer is calculated. Horizontal/vertical infrared sensor.
进一步地,进入步骤S300。Further, enter step S300.
步骤S300,计算检测到电流最大的水平/垂直红外感光元件到原点的距离,并生成相应的位置坐标。Step S300, calculating the distance from the horizontal/vertical infrared photosensitive element with the largest detected current to the origin, and generating corresponding position coordinates.
结合图3所示,图3是图1中S300的具体步骤流程图,所述步骤S300具体包括:As shown in FIG. 3 , FIG. 3 is a flowchart of specific steps of S300 in FIG. 1 , and the step S300 specifically includes:
步骤S310,计算检测到电流最大的水平红外感光元件到原点的距离,以确定该红外光源在液晶显示屏上的X向坐标值,并表示为Xm;Step S310, calculating the distance from the horizontal infrared photosensitive element that detects the largest current to the origin, so as to determine the X-direction coordinate value of the infrared light source on the liquid crystal display screen, and express it as Xm;
步骤S320,计算检测到电流最大的垂直红外感光元件到原点的距离,以确定该红外光源在液晶显示屏上的Y向坐标值,并表示为Yn;Step S320, calculating the distance from the vertical infrared photosensitive element with the largest detected current to the origin, so as to determine the Y-axis coordinate value of the infrared light source on the liquid crystal display screen, and express it as Yn;
步骤S330,将计算得出的Xm和Yn生成相应的位置坐标(Xm,Yn),Step S330, generating corresponding position coordinates (Xm, Yn) from the calculated Xm and Yn,
其中,m表示水平方向上的第几个水平红外感光元件,n表示垂直方向上的第几个垂直红外感光元件。Wherein, m represents the number of horizontal infrared photosensitive elements in the horizontal direction, and n represents the number of vertical infrared photosensitive elements in the vertical direction.
进一步地,所述步骤300中,检测到电流最大的水平/垂直红外感光元件到原点的距离计算公式分别为:Further, in the step 300, the formulas for calculating the distance from the horizontal/vertical infrared sensor with the largest current to the origin are respectively:
Xm=D×m,Xm=D×m,
Yn=D×n,Yn=D×n,
其中,D表示相邻的水平/垂直红外感光元件之间的间隔距离。Wherein, D represents the separation distance between adjacent horizontal/vertical infrared photosensitive elements.
以水平方向上确定红外光源X向坐标值为例,对本实施例的原理做进一步详述,具体如下:Taking the determination of the X-direction coordinate value of the infrared light source in the horizontal direction as an example, the principle of this embodiment is further described in detail as follows:
当有效的红外光源在屏幕前方时,水平方向上均匀排列的x1至xm红外感光元件(如红外二极管或三极管,本实施例优选为硅光敏二极管)分别接收到该红外光源的光,但是由于红外感光元件与红外光源的距离不同,从而使得x1至xm红外感光元件检测到的的电流强度均不同,离光源越近产生的电流越大,根据几何原理,点到线的最短距离,即该点垂直于该线时。When the effective infrared light source is in front of the screen, the infrared photosensitive elements (such as infrared diodes or triodes, preferably silicon photosensitive diodes in this embodiment) arranged uniformly in the horizontal direction receive the light of the infrared light source respectively, but due to the infrared The distance between the photosensitive element and the infrared light source is different, so that the current intensities detected by the infrared photosensitive elements from x1 to xm are all different. The closer to the light source, the greater the current. According to geometric principles, the shortest distance from a point to a line is the point when perpendicular to the line.
那么由此可以确定的是,当红外感光元件xm检测到的电流最大时,则该红外感光元件xm所处的位置即为该红外光源垂直于X轴的垂点,根据几何坐标系原理,该红外感光元件xm到原点的距离即为红外光源的X向坐标值Xm。因此,通过上述Xm=D×m计算公式即可得出红外光源的X向坐标值。Then it can be determined that when the current detected by the infrared photosensitive element xm is the largest, the position of the infrared photosensitive element xm is the vertical point of the infrared light source perpendicular to the X axis. According to the principle of the geometric coordinate system, the The distance from the infrared photosensitive element xm to the origin is the X-direction coordinate value Xm of the infrared light source. Therefore, the X-direction coordinate value of the infrared light source can be obtained through the above calculation formula of Xm=D×m.
红外光源的Y向坐标值Yn同理可以得出。The Y-coordinate value Yn of the infrared light source can be obtained in the same way.
待步骤S300中确定出红外光源的位置坐标后,进入步骤S400。After the position coordinates of the infrared light source are determined in step S300, go to step S400.
步骤S400,将该位置坐标反馈至液晶显示屏的处理器,由处理器通过光标的形式在液晶显示屏上显示出该红外光源的投影位置。In step S400, the position coordinates are fed back to the processor of the liquid crystal display, and the processor displays the projected position of the infrared light source on the liquid crystal display in the form of a cursor.
实施例二:Embodiment two:
请参见图4,图4是本发明用于液晶显示屏的红外定位方法实施例二的逻辑流程图,结合具体实施例对本发明作进一步地阐释:Please refer to Fig. 4, Fig. 4 is a logic flow chart of Embodiment 2 of the infrared positioning method for liquid crystal display screens of the present invention, and further explains the present invention in conjunction with specific embodiments:
如图4所示,该方法实施例包括:As shown in Figure 4, the method embodiment includes:
步骤a,电视打开并处在待接收位置信号状态,之后进入步骤b;In step a, the TV is turned on and in the state of waiting to receive a position signal, and then enters step b;
步骤b,电视前有红外光源,之后进入步骤c或者步骤f;Step b, there is an infrared light source in front of the TV, and then enter step c or step f;
步骤c,当红外光源在电视屏幕正前方,之后进入步骤d;Step c, when the infrared light source is directly in front of the TV screen, then enter step d;
步骤d,水平和垂直光感接收都给出距离坐标(Xm,Yn),之后进入步骤e;In step d, distance coordinates (Xm, Yn) are given for both horizontal and vertical photosensitive reception, and then enter step e;
步骤e,电视芯片接收位置信号并处理在屏幕上显示相应的动作,即完成;Step e, the TV chip receives the position signal and processes and displays the corresponding action on the screen, which is completed;
在步骤b中产生另一分支步骤f;Generate another branch step f in step b;
步骤f,当红外光源在电视屏幕侧边,之后进入步骤g;Step f, when the infrared light source is on the side of the TV screen, then enter step g;
步骤g,水平或垂直单边给出Xm或Yn,之后进入步骤h;Step g, provide Xm or Yn on one side horizontally or vertically, and then enter step h;
步骤h,无效的位置信号,再次返回步骤b。Step h, invalid position signal, return to step b again.
在步骤a电视打开并处在接收位置信号的状态下有步骤b电视前有红外光源,这时分成两种情况,情况一:步骤c当红外光源在电视屏幕的正前方时,这时步骤d水平和垂直传感器都发出位置坐标(Xm,Yn),续而步骤e电视芯片根据位置信号做出相应的显示;情况二:步骤f红外光源在屏幕侧边,步骤g水平或垂直单方面给出Xm或Yn 位置信号,电视芯片判断为步骤h无效的位置信息,重新判断。In step a, the TV is turned on and is in the state of receiving the position signal, and there is step b. There is an infrared light source in front of the TV. At this time, there are two situations. Situation 1: step c, when the infrared light source is directly in front of the TV screen, then step d Both the horizontal and vertical sensors send out the position coordinates (Xm, Yn), and continue to step e. The TV chip makes a corresponding display according to the position signal; case two: step f, the infrared light source is on the side of the screen, and step g is unilaterally given horizontally or vertically. Xm or Yn position signal, the TV chip determines that the position information is invalid in step h, and judges again.
也就是说,当只有水平或垂直一个方向上的红外感光元件检测到红外光源的电流强度时,则判定该红外光源为无效的位置信号。That is to say, when only the infrared photosensitive element in the horizontal or vertical direction detects the current intensity of the infrared light source, it is determined that the infrared light source is an invalid position signal.
基于上述的方法实施例,本发明还提供一种具有红外定位功能的液晶电视,Based on the above method embodiment, the present invention also provides a liquid crystal television with an infrared positioning function,
请参见图5,图5是本发明具有红外定位功能的液晶电视的模块框图。Please refer to FIG. 5 . FIG. 5 is a block diagram of a LCD TV with an infrared positioning function according to the present invention.
如图5所示,所述液晶电视,其包括:As shown in Figure 5, the LCD TV includes:
红外检测模块510,用于通过水平/垂直设置在液晶显示屏边缘上的各个红外感光元件分别对投影到液晶显示屏上的红外光源信号进行电流检测,并对该些红外感光元件检测到的电流进行一一对应的统计,具体如上述步骤S100所述。The infrared detection module 510 is used to respectively detect the current of the infrared light source signal projected on the liquid crystal display through each infrared photosensitive element arranged horizontally/vertically on the edge of the liquid crystal display, and to detect the current detected by these infrared photosensitive elements Perform one-to-one corresponding statistics, specifically as described in step S100 above.
结合图6所示,图6是本发明具有红外定位功能的液晶电视中红外接收模块的结构示意图,所述红外检测模块510为一红外接收扫描传感器,其包括:As shown in FIG. 6, FIG. 6 is a schematic structural diagram of an infrared receiving module in a liquid crystal television with an infrared positioning function according to the present invention. The infrared detection module 510 is an infrared receiving scanning sensor, which includes:
水平设置在液晶显示屏上侧边或下侧边的第一红外接收管511,以及垂直设置在液晶显示屏左侧边或右侧边的第二红外接收管512,所述红外感光元件(即水平红外感光元件600a和垂直红外感光元件600b)间隔均匀的设置在所述第一红外接收管511和第二红外接收管512上(而红外感光元件的具体数量由显示屏幕的尺寸决定)。The first infrared receiving tube 511 horizontally arranged on the upper or lower side of the liquid crystal display, and the second infrared receiving tube 512 vertically arranged on the left or right side of the liquid crystal display, the infrared photosensitive element (i.e. The horizontal infrared photosensitive elements 600a and the vertical infrared photosensitive elements 600b) are evenly spaced on the first infrared receiving tube 511 and the second infrared receiving tube 512 (the specific number of infrared photosensitive elements is determined by the size of the display screen).
结合图7所示,图7是本发明具有红外定位功能的液晶电视中红外接收模块的原理示意图,x1~xm表示水平方向上的水平红外感光元件,y1~yn表示垂直方向上的水平红外感光元件,(Xm,Yn)表示红外光源投影到屏幕上的位置坐标,D表示相邻的水平/垂直红外感光元件之间的间隔距离,L1~Lm表示红外光源到水平方向上各个水平红外感光元件的距离,L1~Ln表示红外光源到垂直方向上各个垂直红外感光元件的距离,各个红外感光元件到红外光源的距离不同,由此检测到的电流强度则不同。As shown in Figure 7, Figure 7 is a schematic diagram of the principle of the infrared receiving module of the LCD TV with infrared positioning function of the present invention, x1~xm represent the horizontal infrared photosensitive elements in the horizontal direction, and y1~yn represent the horizontal infrared photosensitive elements in the vertical direction Components, (Xm, Yn) represent the position coordinates of the infrared light source projected onto the screen, D represents the distance between adjacent horizontal/vertical infrared photosensitive elements, L1~Lm represent the infrared light source to each horizontal infrared photosensitive element in the horizontal direction L1~Ln represent the distance from the infrared light source to each vertical infrared photosensitive element in the vertical direction. The distance from each infrared photosensitive element to the infrared light source is different, and the detected current intensity is different.
位置运算模块520,用于用于比较水平/垂直方向上各个红外感光元件检测到的电流大小,并确定检测到电流最大的水平/垂直红外感光元件;还用于计算检测到电流最大的水平/垂直红外感光元件到原点的距离,并生成相应的位置坐标,具体如上述步骤S200和步骤S300所述。The position operation module 520 is used to compare the current magnitudes detected by each infrared photosensitive element in the horizontal/vertical direction, and determine the horizontal/vertical infrared photosensitive element that detects the largest current; it is also used to calculate the horizontal/vertical infrared photosensitive element that detects the largest current. The vertical distance from the infrared photosensitive element to the origin, and generate the corresponding position coordinates, as described in the above step S200 and step S300.
其中,所述位置运算模块520为一运算器(即单片机),该运算器内还包括检测到电流最大的水平/垂直红外感光元件到原点的距离计算公式:Wherein, the position calculation module 520 is an arithmetic unit (that is, a single-chip microcomputer), and the arithmetic unit also includes a formula for calculating the distance from the horizontal/vertical infrared sensor with the largest current detected to the origin:
Xm=D×m,Xm=D×m,
Yn=D×n,Yn=D×n,
其中,Xm表示检测到电流最大的水平红外感光元件到原点的距离,Yn表示检测到电流最大的垂直红外感光元件到原点的距离,m表示水平方向上的第几个水平红外感光元件,n表示垂直方向上的第几个垂直红外感光元件,D表示相邻的水平/垂直红外感光元件之间的间隔距离。Among them, Xm represents the distance from the horizontal infrared photosensitive element that detects the largest current to the origin, Yn represents the distance from the vertical infrared photosensitive element that detects the largest current to the origin, m represents the number of horizontal infrared photosensitive elements in the horizontal direction, and n represents The number of vertical infrared photosensitive elements in the vertical direction, D represents the distance between adjacent horizontal/vertical infrared photosensitive elements.
处理器530,用于将位置运算模块生成的位置坐标反馈至液晶显示屏进行内部处理,并通过光标的形式在液晶显示屏上显示出该红外光源的投影位置,具体如上述步骤400所述。The processor 530 is configured to feed back the position coordinates generated by the position calculation module to the liquid crystal display for internal processing, and display the projected position of the infrared light source on the liquid crystal display in the form of a cursor, specifically as described in step 400 above.
其中,所述处理器530为一电视芯片,相应的,运算器可集成在该电视芯片上。Wherein, the processor 530 is a TV chip, and correspondingly, the arithmetic unit can be integrated on the TV chip.
请参见图8,图8是本发明具有红外定位功能的液晶电视的具体实施例的结构示意图。Please refer to FIG. 8 . FIG. 8 is a schematic structural diagram of a specific embodiment of a liquid crystal television with an infrared positioning function according to the present invention.
如图8所示,该液晶电视包括电视主体700,以及设置在电视本体700侧边上的红外接收扫描传感器710,该红外接收扫描传感器710上设置有硅光敏二极管(包括水平硅光敏二极管711a和垂直硅光敏二极管711b),在电视本体700内部设置有运算器及处理器(图中未示出)。As shown in Figure 8, the LCD TV includes a TV main body 700, and an infrared receiving scanning sensor 710 arranged on the side of the TV main body 700. The infrared receiving scanning sensor 710 is provided with silicon photodiodes (including horizontal silicon photodiodes 711a and The vertical silicon photodiode 711b) is provided with an arithmetic unit and a processor (not shown in the figure) inside the TV body 700 .
通过红外感光元件确定红外光源的位置信号,并通过计算得出红外光源在电视屏幕投影的位置坐标,电视处理器通过光标的形式在屏幕上显示出该红外光源所作出的动作。The position signal of the infrared light source is determined by the infrared photosensitive element, and the projected position coordinates of the infrared light source on the TV screen are calculated, and the TV processor displays the action of the infrared light source on the screen in the form of a cursor.
本发明可以支持客户在电视上用遥控器玩切水果,飞机类等需要方向定位的游戏,大大增加了用户的互动体验。The present invention can support customers to use the remote controller to play games that require direction positioning such as cutting fruit and airplanes, which greatly increases the user's interactive experience.
如图9所示,图9是本发明具有红外定位功能的液晶电视中防止红外光源位置溢出电视屏幕的改进措施的结构示意图,当红外光源不在屏幕的正前方时,为了防止误判的情况出现,在电视的边缘外侧设置金属边框800,该金属边框800选择不透红外的金属材质,用于防止红外光源位置溢出液晶显示屏外。当红外光源处在屏幕外时,水平或垂直方向上的红外接收扫描传感器710只有一个方向由数值,另外一个没有接收到数值,这样电视芯片便可以判定为无效的位置信号。As shown in Figure 9, Figure 9 is a structural schematic diagram of the improvement measures for preventing the position of the infrared light source from overflowing the TV screen in the LCD TV with infrared positioning function of the present invention. When the infrared light source is not directly in front of the screen, in order to prevent misjudgment A metal frame 800 is set outside the edge of the TV, and the metal frame 800 is made of an infrared-impermeable metal material to prevent the position of the infrared light source from overflowing the liquid crystal display screen. When the infrared light source is outside the screen, the infrared receiving scanning sensor 710 in the horizontal or vertical direction only has a value in one direction, and the other does not receive a value, so the TV chip can determine it as an invalid position signal.
进一步地,在液晶显示屏的显示区设置有一红外滤光膜片900,用于滤除可见光,只允许红外光源约940nm的红外光通过。Furthermore, an infrared filter film 900 is arranged in the display area of the liquid crystal display screen to filter out visible light and only allow infrared light of about 940nm from the infrared light source to pass through.
本实施例中,红外感光元件优选为硅光敏二极管,其响应峰值约在80~100μm,对波长为940nm的红外光线最为敏感,所以红外发射光源也采用940nm的红外光源。In this embodiment, the infrared photosensitive element is preferably a silicon photosensitive diode, whose peak response is about 80-100 μm, and is most sensitive to infrared light with a wavelength of 940 nm, so the infrared emitting light source also uses a 940 nm infrared light source.
综上所述,本发明所提供的一种具有红外定位功能的液晶电视及其红外定位方法,使液晶电视具备红外定位的功能,用户可通过能够发射红外光源的电视遥控器进行切水果、飞机类等需要方向定位的游戏,增强了用户与电视之间互动娱乐的功能效果。不仅如此,本发明所采用的技术原理简洁易实现,同时成本低。To sum up, the LCD TV with infrared positioning function and its infrared positioning method provided by the present invention enable the LCD TV to have the function of infrared positioning. Games that require direction positioning, such as games, enhance the interactive entertainment function between the user and the TV. Not only that, the technical principle adopted by the present invention is simple and easy to realize, and at the same time, the cost is low.
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。It should be understood that the application of the present invention is not limited to the above examples, and those skilled in the art can make improvements or transformations according to the above descriptions, and all these improvements and transformations should belong to the protection scope of the appended claims of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410164867.0A CN104010208B (en) | 2014-04-23 | 2014-04-23 | A kind of LCD TV with infrared positioning function and its infrared positioning method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410164867.0A CN104010208B (en) | 2014-04-23 | 2014-04-23 | A kind of LCD TV with infrared positioning function and its infrared positioning method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104010208A CN104010208A (en) | 2014-08-27 |
CN104010208B true CN104010208B (en) | 2017-03-08 |
Family
ID=51370680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410164867.0A Active CN104010208B (en) | 2014-04-23 | 2014-04-23 | A kind of LCD TV with infrared positioning function and its infrared positioning method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104010208B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106712194A (en) * | 2017-01-18 | 2017-05-24 | 成都黑盒子电子技术有限公司 | Automatic charging control method of robot |
CN110109207A (en) * | 2019-05-20 | 2019-08-09 | 深圳市利丰达展贸科技有限公司 | A kind of photosensitive radar coating structure of polychrome and film plating process |
CN110517470B (en) * | 2019-07-12 | 2020-11-17 | 华为技术有限公司 | Remote control method, equipment and system |
CN113596535B (en) * | 2020-04-30 | 2022-10-18 | 华为技术有限公司 | Pointing remote control method and system |
CN112133078A (en) * | 2020-09-25 | 2020-12-25 | 成都吉锐时代触摸技术有限公司 | Remote control method of display equipment |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101847316A (en) * | 2010-05-27 | 2010-09-29 | 深圳市迈乐数码科技股份有限公司 | Infrared remote control system and remote control method for network television |
CN102122218A (en) * | 2010-01-11 | 2011-07-13 | 深圳市山鹰科技有限公司 | Optical path system for multi-touch point identification of infrared touch device |
CN103702151A (en) * | 2013-11-25 | 2014-04-02 | 何文林 | Man-computer interaction remote control device and method for intelligent television and touch control screen |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI351224B (en) * | 2006-12-28 | 2011-10-21 | Pixart Imaging Inc | Cursor controlling method and apparatus using the same |
-
2014
- 2014-04-23 CN CN201410164867.0A patent/CN104010208B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102122218A (en) * | 2010-01-11 | 2011-07-13 | 深圳市山鹰科技有限公司 | Optical path system for multi-touch point identification of infrared touch device |
CN101847316A (en) * | 2010-05-27 | 2010-09-29 | 深圳市迈乐数码科技股份有限公司 | Infrared remote control system and remote control method for network television |
CN103702151A (en) * | 2013-11-25 | 2014-04-02 | 何文林 | Man-computer interaction remote control device and method for intelligent television and touch control screen |
Also Published As
Publication number | Publication date |
---|---|
CN104010208A (en) | 2014-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104010208B (en) | A kind of LCD TV with infrared positioning function and its infrared positioning method | |
US20240137462A1 (en) | Display apparatus and control methods thereof | |
CN101375297B (en) | Interactive input system | |
CN110955367A (en) | Display device and control method thereof | |
US8786576B2 (en) | Three-dimensional space touch apparatus using multiple infrared cameras | |
US9886933B2 (en) | Brightness adjustment system and method, and mobile terminal | |
US20110069037A1 (en) | Optical touch system and method | |
WO2019024644A1 (en) | Proximity detection method and apparatus, storage medium, and electronic device | |
CN104104891A (en) | Projection device and projection automatic correction method thereof | |
US20180267671A1 (en) | Touch screen system and method for driving the same | |
KR102391752B1 (en) | Display control device, display control method and computer program | |
KR20190142193A (en) | Terminal apparatus, method of transmitting control command thereof | |
KR20090116544A (en) | Infrared camera space touch sensing device, method and screen device | |
US20160334937A1 (en) | Optical touch device and sensing method thereof | |
US11153477B2 (en) | Electronic apparatus and controlling method thereof | |
CN111049953B (en) | Control method and device of folding screen terminal and electronic equipment | |
CN106843598B (en) | System and method for realizing product display projection control and projection control device | |
US11047672B2 (en) | System for optically dimensioning | |
JP6075624B2 (en) | POSITION INFORMATION ACQUISITION DEVICE AND IMAGE DISPLAY SYSTEM | |
TWM399375U (en) | Display touch screen system | |
CN113311937B (en) | Eyeball tracking calibration method and related device | |
KR20100120902A (en) | Touch display system | |
TWI506535B (en) | Electronic device and content updating method | |
CN108363626A (en) | Sensor control method and device in intelligent terminal | |
CN201859424U (en) | Display touch system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |