[go: up one dir, main page]

CN104009093A - 一种高k介电层水性氧化铟薄膜晶体管的制备方法 - Google Patents

一种高k介电层水性氧化铟薄膜晶体管的制备方法 Download PDF

Info

Publication number
CN104009093A
CN104009093A CN201410264881.8A CN201410264881A CN104009093A CN 104009093 A CN104009093 A CN 104009093A CN 201410264881 A CN201410264881 A CN 201410264881A CN 104009093 A CN104009093 A CN 104009093A
Authority
CN
China
Prior art keywords
thin film
sample
preparation
spin
film transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410264881.8A
Other languages
English (en)
Other versions
CN104009093B (zh
Inventor
单福凯
刘奥
刘国侠
孟优
谭惠月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN201410264881.8A priority Critical patent/CN104009093B/zh
Publication of CN104009093A publication Critical patent/CN104009093A/zh
Application granted granted Critical
Publication of CN104009093B publication Critical patent/CN104009093B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D99/00Subject matter not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02301Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment in-situ cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02348Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to UV light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • H01L21/02661In-situ cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/18, H10D48/04 and H10D48/07, with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/477Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/68Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
    • H10D64/691Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator comprising metallic compounds, e.g. metal oxides or metal silicates 

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明属于半导体薄膜晶体管制备技术领域,涉及一种高k介电层水性氧化铟薄膜晶体管的制备方法,先将乙酰丙酮锆溶于二甲基甲酰胺中,同时加入与乙酰丙酮锆等摩尔量的乙醇胺作为稳定剂形成前驱体溶液;再在清洗后的低阻硅衬底上旋涂前驱体溶液得到样品,将样品放到高压汞灯下进行紫外光照处理得到光退火后的样品;然后将光退火后的样品进行退火得到薄膜样品;然后在得到的薄膜样品表面旋涂In2O3水性溶液得到In2O3沟道层;最后在In2O3沟道层上面制备源、漏电极,即得到薄膜晶体管;其总体实施方案成本低,工艺简单,原理可靠,产品性能好,制备环境友好,应用前景广阔,为大面积制备高性能的薄膜晶体管提供可行性方案。

Description

一种高k介电层水性氧化铟薄膜晶体管的制备方法
技术领域:
本发明属于半导体薄膜晶体管制备技术领域,涉及一种高k介电层水性氧化铟薄膜晶体管的制备方法,特别是一种以水性氧化铟(In2O3)为沟道层和以超薄氧化锆(ZrOx,1<x<2)为高k介电层的薄膜晶体管的制备方法。
背景技术:
近年来,薄膜晶体管(Thin Film Transistor,TFT)在有源矩阵驱动液晶显示器件(Active Matrix Liquid Crystal Display,AMLCD)中发挥了重要作用。从低温非晶硅TFT到高温多晶硅TFT,技术越来越成熟,应用对象也从只能驱动LCD(Liquid CrystalDisplay)发展到既可以驱动LCD又可以驱动OLED(Organic LightEmitting Display)、甚至电子纸。随着半导体工艺水平不断提高,像素尺寸不断减小,显示屏的分辨率也越来越高,TFT作为驱动像素的开关应用于液晶显示器(TFT-LCD)等显示器件中,其中栅介电材料禁带宽度的大小决定漏电流的大小,而它的相对介电常数则决定器件亚阈值摆幅的大小(即能耗大小)。随着大规模集成电路的发展,作为硅基集成电路核心器件的金属氧化物半导体晶体管的特征尺寸一直不断减小,其减小规律遵循摩尔定律。目前的光刻尺寸已达到28nm,CMOS栅极等效氧化物厚度降到1nm以下,栅氧化层的厚度接近原子间距(IEEE Electron Device Lett.2004,25(6):408-410),随着等效氧化物厚度的减小而引起隧道效应,研究表明二氧化硅(SiO2)厚度由3.5nm减至1.5nm时栅极漏电流由10-12A/cm2增大到10A/cm2(IEEE Electron Device Lett.1997,18(5):209-211)。较大的漏电流会引起高功耗及相应的散热问题,这对于器件集成度、可靠性和寿命都造成不利的影响,因此急需研发出新的高介电材料取代传统SiO2。目前,在MOS集成电路工艺中广泛采用高介电常数(高k)栅介电来增大电容密度和减少栅极漏电流,高k材料因其大的介电常数,在与SiO2具有相同等效栅氧化层厚度(EOT)的情况下,其实际厚度比SiO2大的多,从而解决了SiO2因接近物理厚度极限而产生的量子遂穿效应。
目前成为研究热点的新型高k介电材料包括ATO(AdvancedMaterial,24,2945,2012)、Al2O3(Nature,489,128,2012),ZrO2(Advanced Material,23,971,2011)、WO3(Applied Physics Letters,102,052905,2013)和Ta2O5(Applied Physics Letters,101,261112,2012)等。TFT器件是薄膜型结构,其栅介电层的介电常数、致密性和厚度对晶体管的性能影响很大,在众多SiO2栅介电替代品中,氧化锆(ZrOx)用作高k介电材料具有很好的可靠性,它具有较大的介电常数(20-30),较宽的带隙(5.8eV)(Advanced Material,23,971,2011),对电子和空穴有着比较合适的通道势垒高度(大于1eV),与Si表面有很好的晶格匹配,可与传统的CMOS工艺相兼容。因此,ZrOx被期望能够替代传统栅介电材料,成为新一代TFT高k栅介电材料的有力候选者。而且,考虑到将来微电子器件发展的新方向—打印电子器件,利用溶胶-凝胶技术制备薄膜将是一个很好的选择,溶胶-凝胶技术在超细粉末、薄膜涂层、纤维等材料的制备工艺中受到广泛应用,它具有其独特的优点:其反应中各组分的混合在分子间进行,因而产物的粒径小、均匀性高;反应过程易于控制,可得到一些用其他方法难以得到的产物,另外反应在低温下进行,避免了高温杂相的出现,使得产物的纯度高。因此采用溶胶-凝胶技术制备ZrOx高k介电薄膜,提出一种采用紫外光分解和低温(300℃)热分解相结合的办法分解ZrOx薄膜中的有机成分,其中紫外光分解的原理是:利用紫外线的UVC(200-275nm)和UVD波段(100-200nm)和空气中的氧气反应产生活性氧,具有强氧化性的活性氧能够在室温下和薄膜中C、N元素反应生成Cox、NOx气体从而脱离薄膜;同时,紫外光分解方法可以改善薄膜样品表面态(Applied Physics Letters,102,192101,2013),使得样品表面更加致密、平滑,栅介电层表面较小的粗糙度有利于载流子在表面的迁移,提高TFT器件的载流子迁移率和开关响应速度。此外,后续采用低温热分解处理ZrOx薄膜可以有效避免半导体沟道层低温退火(<300℃)过程中带来的层间互溶现象;在沟道层的制备过程中,采用蒸馏水替代传统的有机溶液(乙二醇甲醚等)作为溶剂,形成新型的水性溶液,水性溶液相比于常规有机溶液具有无毒、环保、廉价等优点;此外由于水性溶液中溶质阳离子与水分子间为静电结合,相比于有机溶液中共价键结合方式具有更弱的结合能,因此采用水性溶液方法旋涂的薄膜具有更低的分解温度,利用水性溶液技术制备可靠性高、重复性好、低温分解的半导体薄膜正成为工业界和科研界正在深入研究的技术领域。
目前,采用非晶氧化物铟锌氧(IZO)、铟镓锌氧(IGZO)、氧化铟(In2O3)材料作为薄膜晶体管沟道层的制备和应用技术已有公开文献,日、韩等国做了大量研究。In2O3凭借其高迁移率(>100cm2/V·s)、高透过率(可见光>80%)成为半导体沟道层材料的有力候选者(IEEEElectron Device Lett.31,567,2010)。我们通过相关专利、文献的查阅,利用水性溶液方法制备TFT沟道层鲜有报道,基于超薄ZrOx高k介电层的水性In2O3TFT更是无人涉足。考虑到未来“柔性显示器件”对薄膜制备工艺过程中低温的要求,我们保证TFT制备过程中温度低于300℃。上述工艺制备的In2O3/ZrOx结构的TFT器件不仅具有较高的载流子迁移率,而且具有高透明度的特点(在可见光波段透过率大于80%),其TFT作为AMLCD的像素开关,将大大提高有源矩阵的开口率,提高亮度,同时降低功耗;另外其全溶液制备工艺不依赖昂贵的真空镀膜设备,使得制作成本进一步降低,这些优点使其在未来的透明电子显示器件领域有很广阔的潜在市场。
发明内容:
本发明的目的在于克服现有技术存在的缺点,寻求设计和提供一种以超薄氧化锆(ZrOx)为高k介电层和以水性氧化铟(In2O3)为沟道层的高性能薄膜晶体管的制备方法,先选用低阻硅作为基底和栅电极,采用溶胶-凝胶技术、光退火和低温热退火相结合的方式制备超薄ZrOx(<10nm)栅介电层;再采用水性溶液方法低温制备高透过率、高迁移率的In2O3半导体沟道层,从而制备成高性能的薄膜晶体管,其电学性能完全满足显示器对薄膜晶体管(TFT)的要求。
为了实现上述目的,本发明具体包括以下工艺步骤:
(1)、前驱体溶液的制备:将乙酰丙酮锆Zr(C5H7O2)4溶于二甲基甲酰胺中,同时加入与乙酰丙酮锆等摩尔量的乙醇胺作为稳定剂,锆的摩尔含量[Zr4+]为0.01-0.9;乙醇胺与二甲基甲酰胺的体积比为1:1-10;在20-100℃下磁力搅拌1-24小时形成澄清透明的前驱体溶液,其中氧化锆前驱体溶液浓度为0.01-0.5M;
(2)、薄膜样品的制备:采用等离子体清洗方法清洗低阻硅衬底表面,在清洗后的低阻硅衬底上采用常规的溶胶-凝胶技术旋涂步骤(1)配制的前驱体溶液得到样品,旋涂结束后,将样品放到高压汞灯下进行紫外光照处理得到光退火后的样品,使样品实现光解和固化的目的;再将光退火后的样品进行300℃低温退火1-3小时,避免半导体沟道层低温退火过程带来的层间互溶现象,得到薄膜样品;
(3)、In2O3沟道层的制备:将硝酸铟In(NO3)3溶于蒸馏水中,在室温下搅拌1-24小时形成澄清透明的浓度为0.1-0.3mol/L的In2O3水性溶液;然后在步骤(2)得到的薄膜样品表面利用溶胶-凝胶技术采用市售的匀胶机旋涂In2O3水性溶液,先在400-600转/分下匀胶4-8秒,再在2000-4000转/分下匀胶15-30秒,旋涂次数为1-3次,每次旋涂厚度5-10nm;将旋涂后的薄膜样品放到120-150℃烤焦台进行固化处理后放入马弗炉中进行200-300℃低温退火处理1-3小时,制得In2O3厚度为5-30nm的In2O3薄膜,即制备得到In2O3沟道层;
(4)、源、漏电极的制备:利用常规的真空热蒸发法利用不锈钢掩膜版在In2O3沟道层上面制备源、漏电极,即得到基于超薄ZrOx高k介电层的水性In2O3薄膜晶体管。
本发明的步骤(2)中涉及的等离子体清洗法采用氧气或氩气作为清洗气体,其功率为20-60Watt,清洗时间为20-200s,工作气体的通入量为20-50 SCCM;在制备薄膜样品时用匀胶机旋涂,先在400-600转/分下匀胶4-8秒,再在3000-6000转/分下匀胶15-25秒;旋涂次数为1-5次,每次旋涂的薄膜厚度为4-8nm;高压汞灯的功率为1-2KW,紫外光的主波长为365nm,光照时间为20-40分钟,高压汞灯光源距离样品表面5-100cm。
本发明步骤(4)制备的薄膜晶体管的电极沟道长宽比为1:4-20,热蒸发电流为30-50A;制得的源、漏电极为金属Al或Au电极,电极厚度为50-200nm。
本发明与现有技术相比,有以下优点:一是薄膜晶体管中的半导体沟道层及高k介电层均利用化学溶液方法制备完成,化学溶液系统十分廉价,其制备过程不需要高真空环境,在空气中即可进行,降低成本;反应在低温下即可进行,降低成本的同时避免高温杂相的出现;二是采用等离子体清洗衬底表面,增加旋涂时前驱体溶液同衬底的附着力,使得旋涂后的薄膜样品表面更加均一和平整;三是采用紫外光光退火和低温热退火相结合的方式得到致密、新型的新型栅介电材料ZrOx,避免传统溶胶-凝胶成膜工艺对于高温(>500℃)的需求,使得制备的ZrOx介电层可以制备在塑料衬底上,为柔性、透明显示器件的应用奠定重要基础;四是制得的ZrOx高k栅介电层的物理厚度仅为10nm,同时具有的低漏电流很好地满足微电子集成化对于器件尺寸的需求;ZrOx薄膜本身具有的高透过率(可见光波段接近90%),符合透明电子器件对材料自身的要求;制得的ZrOx薄膜为非晶态,可实现大面积工业制备;五是薄膜晶体管中半导体沟道层利用水性溶液方法制备。利用蒸馏水作为溶剂相比传统有机溶剂具有无毒、绿色环保等优点;同时,水性溶液对环境湿度要求不高,因此进一步降低制备成本;最后,由于蒸馏水不具有腐蚀性,当滴到ZrOx栅介电层上时,不会侵蚀ZrOx表面,因此利于形成更加清晰的界面,这对于TFT器件表现高性能电学性能至关重要;六是利用水性溶液制备In2O3半导体薄膜本身具有的高透过率(可见光波段大于80%),符合透明电子器件的要求;同时其低温(<300℃)制备条件与平板显示技术要求的低温制造技术相兼容;其总体实施方案成本低,工艺简单,原理可靠,产品性能好,制备环境友好,应用前景广阔,为大面积制备高性能的薄膜晶体管提供可行性方案。
附图说明:
图1为本发明制备的基于ZrOx高k介电层的水性In2O3薄膜晶体管的结构原理示意图。
图2为本发明制备的薄膜晶体管在不同In2O3退火温度时的输出特性曲线图,其中栅极偏压VGS=1.5V,曲线a的In2O3退火温度为200℃;曲线b的In2O3退火温度为230℃;曲线c的In2O3退火温度为In2O3-250℃;曲线d的In2O3退火温度为In2O3-270℃。
图3为本发明制备的薄膜晶体管在不同In2O3退火温度时的转移特性曲线图,其中源漏电压VDS=1.0V,曲线a的In2O3退火温度为200℃;曲线b的In2O3退火温度为230℃;曲线c的In2O3退火温度为In2O3-250℃;曲线d的In2O3退火温度为In2O3-270℃。
具体实施方式:
下面通过具体实施例并结合附图进一步说明本发明。
实施例:
本实施例中的乙酰丙酮锆和硝酸铟粉末、二甲基甲酰胺、乙醇胺有机溶剂均购于阿拉丁公司,纯度大于98%;其底栅结构以超薄氧化锆(ZrOx)为高k介电层和以水性氧化铟(In2O3)薄膜为沟道层的薄膜晶体管的制备过程为:
(1)先采用溶胶-凝胶技术制备超薄ZrOx高k介电薄膜:
步骤1:选用商业购买的单面抛光低阻硅作为衬底(ρ<0.0015Ω·cm)和栅电极,低阻硅衬底依次用氢氟酸、丙酮、酒精超声波清洗衬底各10分钟,用去离子水反复冲洗后,高纯氮气吹干;
步骤2:将二甲基甲酰胺与乙醇胺按照摩尔比2:1配置混合溶液,将乙酰丙酮锆按照0.1M溶于该混合溶液中,称量混合溶液10mL,称取乙酰丙酮锆为0.48g,混合后在磁力搅拌的作用下水浴70℃搅拌3小时形成澄清、透明的前驱体液体;
步骤3:将洁净的低阻硅衬底放入等离子体清洗腔内,待腔室抽取至0.5Pa后通入高纯(99.99%)氧气,控制其功率为30Watt,清洗时间为120s,工作时氧气的通入量为30SCCM;
步骤4:制备ZrOx样品:将步骤2中配制的前驱体溶液旋涂在清洗过的低阻硅衬底上,旋涂次数为1~5次,旋涂前驱体溶液时匀胶机的参数设置为:先在500转/分匀胶5秒,然后在5000转/分匀胶25秒;旋涂结束后,将样品放到高压汞灯下进行紫外光固化处理,高压汞灯功率为1KW,主波长为UVC和UVD,紫外曝光时间为30分钟,汞灯光源距离样品表面10cm,将固化处理后的ZrOx样品放入马弗炉中低温退火处理,退火温度为300℃,退火时间1小时,得到ZrOx样品;
(2)利用In2O3水性溶液旋涂制备In2O3沟道层:
步骤1:将硝酸铟粉末溶于蒸馏水中,铟离子浓度为0.1M;在该实验中,称量蒸馏水10mL,称取硝酸铟为0.3g,混合后在磁力搅拌的作用下室温搅拌12小时形成澄清透明的In2O3水性溶液;
步骤2:制备In2O3沟道层:将步骤1中配制的In2O3水性溶液旋涂在处理过的ZrOx样品上,旋涂时匀胶机的参数设置为:先在500转/分匀胶5秒,然后在3000转/分匀胶25秒,旋涂结束后,将样品放入马弗炉中低温退火处理,退火温度为分别为200、230、250、270℃,退火时间1小时;
(3)采用真空热蒸发法制备源、漏金属电极:
通过热蒸发的方式,在In2O3沟道层上用宽长比为1000/100μm的不锈钢掩膜版制备100nm厚的金属Al作为源、漏电极,热蒸发电流为40A,制备得到Al/In2O3/ZrOx/Si结构的薄膜晶体管;
(4)对制成的Al/In2O3/ZrOx/Si结构(图1)的薄膜晶体管进行测试;在不同In2O3退火温度条件下的薄膜晶体管输出特性曲线利用Keithley 2634B半导体源表测试得到(图2);制备的薄膜晶体管对应的转移特性曲线(图3)同样利用Keithley 2634B半导体源表测试得到,其中以200、230、250、270℃退火处理的In2O3为沟道层TFT的转移特性曲线分别对应图3中a、b、c、d。

Claims (3)

1.一种高k介电层水性氧化铟薄膜晶体管的制备方法,其特征在于具体包括以下工艺步骤:
(1)、前驱体溶液的制备:将乙酰丙酮锆Zr(C5H7O2)4溶于二甲基甲酰胺中,同时加入与乙酰丙酮锆等摩尔量的乙醇胺作为稳定剂,在20-100℃下磁力搅拌1-24小时形成澄清透明的前驱体溶液,其中氧化锆前驱体溶液浓度为0.01-0.5M,锆Zr4+的摩尔含量为0.01-0.9;乙醇胺与二甲基甲酰胺的体积比为1:1-10;
(2)、薄膜样品的制备:采用等离子体清洗方法清洗低阻硅衬底表面,在清洗后的低阻硅衬底上采用常规的溶胶-凝胶技术旋涂步骤(1)配制的前驱体溶液得到样品,旋涂结束后,将样品放到高压汞灯下进行紫外光照处理得到光退火后的样品,实现样品的光解和固化;再将光退火后的样品进行300℃低温退火1-3小时,避免半导体沟道层低温退火过程带来的层间互溶现象,得到薄膜样品;
(3)、In2O3沟道层的制备:将硝酸铟In(NO3)3溶于蒸馏水中,在室温下搅拌1-24小时形成澄清透明的浓度为0.1-0.3mol/L的In2O3水性溶液;然后在步骤(2)得到的薄膜样品表面利用溶胶-凝胶技术采用市售的匀胶机旋涂In2O3水性溶液,先在400-600转/分下匀胶4-8秒,再在2000-4000转/分下匀胶15-30秒,旋涂次数为1-3次,每次旋涂厚度5-10nm;将旋涂后的薄膜样品放到120-150℃烤焦台进行固化处理后放入马弗炉中进行200-300℃低温退火处理1-3小时,制得In2O3厚度为5-30nm的In2O3薄膜,即制备得到In2O3沟道层;
(4)、源、漏电极的制备:利用常规的真空热蒸发法利用不锈钢掩膜版在In2O3沟道层上面制备源、漏电极,即得到基于超薄ZrOx高k介电层的水性In2O3薄膜晶体管。
2.根据权利要求1所述的高k介电层水性氧化铟薄膜晶体管的制备方法,其特征在于步骤(2)中涉及的等离子体清洗法采用氧气或氩气作为清洗气体,其功率为20-60Watt,清洗时间为20-200s,工作气体的通入量为20-50SCCM;在制备薄膜样品时用匀胶机旋涂,先在400-600转/分下匀胶4-8秒,再在3000-6000转/分下匀胶15-25秒;旋涂次数为1-5次,每次旋涂的薄膜厚度为4-8nm;高压汞灯的功率为1-2KW,紫外光的主波长为365nm,光照时间为20-40分钟,高压汞灯光源距离样品表面5-100cm。
3.根据权利要求1所述的高k介电层水性氧化铟薄膜晶体管的制备方法,其特征在于步骤(4)制备的薄膜晶体管的电极沟道长宽比为1:4-20,热蒸发电流为30-50A;制得的源、漏电极为金属Al或Au电极,电极厚度为50-200nm。
CN201410264881.8A 2014-06-13 2014-06-13 一种高k介电层水性氧化铟薄膜晶体管的制备方法 Expired - Fee Related CN104009093B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410264881.8A CN104009093B (zh) 2014-06-13 2014-06-13 一种高k介电层水性氧化铟薄膜晶体管的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410264881.8A CN104009093B (zh) 2014-06-13 2014-06-13 一种高k介电层水性氧化铟薄膜晶体管的制备方法

Publications (2)

Publication Number Publication Date
CN104009093A true CN104009093A (zh) 2014-08-27
CN104009093B CN104009093B (zh) 2016-08-31

Family

ID=51369675

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410264881.8A Expired - Fee Related CN104009093B (zh) 2014-06-13 2014-06-13 一种高k介电层水性氧化铟薄膜晶体管的制备方法

Country Status (1)

Country Link
CN (1) CN104009093B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201112A (zh) * 2014-09-28 2014-12-10 青岛大学 一种基于水溶液薄膜晶体管的制备方法
CN104485283A (zh) * 2014-09-10 2015-04-01 友达光电股份有限公司 薄膜晶体管的制造方法及制造薄膜晶体管的设备
CN104934327A (zh) * 2015-05-20 2015-09-23 青岛大学 一种基于氧化钪高k介电层薄膜晶体管的制备方法
CN104945962A (zh) * 2015-05-13 2015-09-30 上海交通大学 金属氧化物保护膜及其制备方法
CN105428247A (zh) * 2016-01-18 2016-03-23 青岛大学 一种基于水性超薄ZrO2高k介电层的薄膜晶体管制备方法
CN105489770A (zh) * 2016-01-08 2016-04-13 武汉大学 一种氧化铟电子传输层平面钙钛矿光伏电池及其制备方法
CN105489486A (zh) * 2016-01-18 2016-04-13 青岛大学 一种基于超薄氧化镁高k介电层薄膜晶体管的制备方法
CN105552130A (zh) * 2016-01-18 2016-05-04 青岛大学 一种基于超薄氧化锂高k介电层薄膜晶体管的制备方法
CN106431397A (zh) * 2016-09-14 2017-02-22 齐鲁工业大学 一种高介电氧化锆薄膜的低温溶液制备方法
CN106783564A (zh) * 2016-09-14 2017-05-31 齐鲁工业大学 一种氧化铟透明半导体薄膜的低温溶液制备方法
CN108232013A (zh) * 2017-11-29 2018-06-29 华南师范大学 制备氧化锆薄膜和柔性晶体管的方法
CN108493098A (zh) * 2018-04-17 2018-09-04 南京邮电大学 基于低温溶液法p型金属碘化物薄膜晶体管的制备方法
CN110517958A (zh) * 2019-08-09 2019-11-29 中山大学 一种氧化物薄膜晶体管的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050051770A1 (en) * 2003-09-04 2005-03-10 Hitachi, Ltd. Electrode substrate, thin film transistor, display device and their production
CN101290883A (zh) * 2008-05-29 2008-10-22 南京大学 一种制备超薄HfO2或ZrO2栅介质薄膜的软化学法
JP2009267192A (ja) * 2008-04-28 2009-11-12 Mitsubishi Electric Corp 半導体装置の製造方法および半導体製造装置
EP2339638A1 (en) * 2009-12-24 2011-06-29 Samsung Electronics Co., Ltd. Transistor
CN103779427A (zh) * 2014-02-26 2014-05-07 华南理工大学 一种氧化物薄膜晶体管及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050051770A1 (en) * 2003-09-04 2005-03-10 Hitachi, Ltd. Electrode substrate, thin film transistor, display device and their production
JP2009267192A (ja) * 2008-04-28 2009-11-12 Mitsubishi Electric Corp 半導体装置の製造方法および半導体製造装置
CN101290883A (zh) * 2008-05-29 2008-10-22 南京大学 一种制备超薄HfO2或ZrO2栅介质薄膜的软化学法
EP2339638A1 (en) * 2009-12-24 2011-06-29 Samsung Electronics Co., Ltd. Transistor
CN103779427A (zh) * 2014-02-26 2014-05-07 华南理工大学 一种氧化物薄膜晶体管及其制备方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104485283B (zh) * 2014-09-10 2017-08-15 友达光电股份有限公司 薄膜晶体管的制造方法及制造薄膜晶体管的设备
CN104485283A (zh) * 2014-09-10 2015-04-01 友达光电股份有限公司 薄膜晶体管的制造方法及制造薄膜晶体管的设备
CN104201112A (zh) * 2014-09-28 2014-12-10 青岛大学 一种基于水溶液薄膜晶体管的制备方法
CN104945962A (zh) * 2015-05-13 2015-09-30 上海交通大学 金属氧化物保护膜及其制备方法
CN104934327A (zh) * 2015-05-20 2015-09-23 青岛大学 一种基于氧化钪高k介电层薄膜晶体管的制备方法
CN105489770A (zh) * 2016-01-08 2016-04-13 武汉大学 一种氧化铟电子传输层平面钙钛矿光伏电池及其制备方法
CN105552130B (zh) * 2016-01-18 2018-08-10 青岛大学 一种基于超薄氧化锂高k介电层薄膜晶体管的制备方法
CN105552130A (zh) * 2016-01-18 2016-05-04 青岛大学 一种基于超薄氧化锂高k介电层薄膜晶体管的制备方法
CN105489486A (zh) * 2016-01-18 2016-04-13 青岛大学 一种基于超薄氧化镁高k介电层薄膜晶体管的制备方法
CN105428247A (zh) * 2016-01-18 2016-03-23 青岛大学 一种基于水性超薄ZrO2高k介电层的薄膜晶体管制备方法
CN105428247B (zh) * 2016-01-18 2018-08-10 青岛大学 一种基于水性超薄ZrO2高k介电层的薄膜晶体管制备方法
CN106431397A (zh) * 2016-09-14 2017-02-22 齐鲁工业大学 一种高介电氧化锆薄膜的低温溶液制备方法
CN106783564A (zh) * 2016-09-14 2017-05-31 齐鲁工业大学 一种氧化铟透明半导体薄膜的低温溶液制备方法
CN108232013A (zh) * 2017-11-29 2018-06-29 华南师范大学 制备氧化锆薄膜和柔性晶体管的方法
CN108232013B (zh) * 2017-11-29 2019-12-03 华南师范大学 制备氧化锆薄膜和柔性晶体管的方法
CN108493098A (zh) * 2018-04-17 2018-09-04 南京邮电大学 基于低温溶液法p型金属碘化物薄膜晶体管的制备方法
CN110517958A (zh) * 2019-08-09 2019-11-29 中山大学 一种氧化物薄膜晶体管的制备方法

Also Published As

Publication number Publication date
CN104009093B (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
CN104009093B (zh) 一种高k介电层水性氧化铟薄膜晶体管的制备方法
Rim et al. Low-temperature metal-oxide thin-film transistors formed by directly photopatternable and combustible solution synthesis
Kwon et al. Improvement in negative bias stress stability of solution-processed amorphous In–Ga–Zn–O thin-film transistors using hydrogen peroxide
Rim et al. Direct light pattern integration of low-temperature solution-processed all-oxide flexible electronics
Xu et al. Aqueous solution-deposited gallium oxide dielectric for low-temperature, low-operating-voltage indium oxide thin-film transistors: a facile route to green oxide electronics
CN105489486B (zh) 一种基于超薄氧化镁高k介电层薄膜晶体管的制备方法
CN104201112A (zh) 一种基于水溶液薄膜晶体管的制备方法
CN105428247B (zh) 一种基于水性超薄ZrO2高k介电层的薄膜晶体管制备方法
Jeong et al. Photo-patternable ZnO thin films based on cross-linked zinc acrylate for organic/inorganic hybrid complementary inverters
CN104934330A (zh) 一种薄膜晶体管及其制备方法、阵列基板和显示面板
Jiang et al. High carrier mobility low-voltage ZnO thin film transistors fabricated at a low temperature via solution processing
Lee et al. Enhancement of the electrical performance and bias stability of RF-sputtered indium tin zinc oxide thin-film transistors with vertical stoichiometric oxygen control
Park et al. Significant performance improvement of solution-processed metal oxide transistors by ligand dissociation through coupled temperature–time treatment of aqueous precursors
CN103928350B (zh) 一种双沟道层薄膜晶体管的制备方法
CN107946176B (zh) Ga2O3薄膜晶体管的制备方法
CN103117226A (zh) 一种合金氧化物薄膜晶体管的制备方法
CN104022159B (zh) 用作薄膜晶体管沟道层的非晶氧化物薄膜及其制备方法
CN108417495A (zh) 一种金属氧化物钝化的薄膜晶体管的制备
Guo et al. Low voltage organic/inorganic hybrid complementary inverter with low temperature all solution processed semiconductor and dielectric layers
CN104934327A (zh) 一种基于氧化钪高k介电层薄膜晶体管的制备方法
CN106952828A (zh) 一种p型金属氧化物薄膜晶体管的制备方法
CN105679680A (zh) 一种高k氧化镱介电薄膜的制备方法及其在薄膜晶体管中的应用
WO2017143626A1 (zh) 氧化物薄膜的制备方法及其薄膜晶体管
CN103177969A (zh) 一种金属氧化物薄膜晶体管的制备方法
CN107799415B (zh) 一种化学溶液法制备硼掺杂氧化物介电薄膜的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160831

Termination date: 20210613