[go: up one dir, main page]

CN104008893A - Manufacturing method of lithium ion mixed type capacitor and lithium ion mixed type capacitor - Google Patents

Manufacturing method of lithium ion mixed type capacitor and lithium ion mixed type capacitor Download PDF

Info

Publication number
CN104008893A
CN104008893A CN201410146713.9A CN201410146713A CN104008893A CN 104008893 A CN104008893 A CN 104008893A CN 201410146713 A CN201410146713 A CN 201410146713A CN 104008893 A CN104008893 A CN 104008893A
Authority
CN
China
Prior art keywords
lithium
electrode
aluminum
plastic composite
composite film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410146713.9A
Other languages
Chinese (zh)
Other versions
CN104008893B (en
Inventor
孙现众
马衍伟
张熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electrical Engineering of CAS
Original Assignee
Institute of Electrical Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electrical Engineering of CAS filed Critical Institute of Electrical Engineering of CAS
Priority to CN201410146713.9A priority Critical patent/CN104008893B/en
Publication of CN104008893A publication Critical patent/CN104008893A/en
Application granted granted Critical
Publication of CN104008893B publication Critical patent/CN104008893B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

一种锂离子混合型电容器的制备方法,包括以下步骤:a)将电极极片和隔膜按照正极/隔膜/负极的顺序叠片或卷绕制成电芯;b)将电芯放入铝塑复合膜壳体中,将铝塑复合膜壳体的顶边和第一侧边热封口,电芯的正极和负极的极耳从顶边伸出铝塑复合膜壳体;c)金属锂电极放入铝塑复合膜壳体中,金属锂电极与电芯相邻放置并用隔膜隔开,金属锂电极的极耳从第二侧边伸出铝塑复合膜壳体;d)向铝塑复合膜壳体注入过量电解液,然后热封口铝塑复合膜壳体的第二侧边;e)以恒电流方式,以负极为工作电极,以金属锂电极为对电极,对负极进行预嵌锂;f)取出金属锂电极,倒出多余的电解液,真空热封口铝塑复合膜壳体的第二侧边,得到锂离子混合型电容器。

A method for preparing a lithium-ion hybrid capacitor, comprising the following steps: a) stacking or winding electrode sheets and separators in the order of positive electrode/diaphragm/negative electrode to form a battery core; b) putting the battery core into an aluminum plastic In the composite film case, the top side and the first side of the aluminum-plastic composite film case are heat-sealed, and the positive and negative electrodes of the battery protrude from the top side of the aluminum-plastic composite film case; c) metal lithium electrodes Put it into the aluminum-plastic composite film shell, the metal lithium electrode is placed adjacent to the battery cell and separated by a diaphragm, and the tab of the metal lithium electrode protrudes from the second side of the aluminum-plastic composite film shell; d) to the aluminum-plastic composite film Inject excess electrolyte into the membrane casing, and then heat seal the second side of the aluminum-plastic composite membrane casing; e) Pre-embed lithium on the negative electrode with the negative electrode as the working electrode and the metal lithium electrode as the counter electrode in a constant current mode; f) Take out the metal lithium electrode, pour out the excess electrolyte, and vacuum heat seal the second side of the aluminum-plastic composite film case to obtain a lithium-ion hybrid capacitor.

Description

锂离子混合型电容器的制备方法及其锂离子混合型电容器Preparation method of lithium-ion hybrid capacitor and lithium-ion hybrid capacitor

技术领域technical field

本发明涉及一种锂离子混合型电容器的制备方法,以及采用这种方法制备的锂离子混合型电容器。The invention relates to a preparation method of a lithium-ion hybrid capacitor and a lithium-ion hybrid capacitor prepared by the method.

背景技术Background technique

锂离子混合型电容器是一种介于锂离子电池和双电层超级电容器之间的新型电化学储能器件,它既有双电层超级电容器的高功率和长寿命的特点,同时能量密度又比双电层超级电容器有大幅提高。这种器件的结构特点是正极可以采用包含电池正极材料和电容材料,负极为预嵌锂的碳基电池材料,制备工艺的核心是负极的预嵌锂工艺。目前主要有以下几种预嵌锂工艺:(1)先用负极和金属锂片组装成电池,通过外部充放电的方式进行预嵌锂,然后把电池拆开、取出负极再与正极二次组装成锂离子混合电容,参见《Electrochimica Acta》2014年第125卷第22-28页。这种方法需要在惰性气氛中拆解和再组装电池,不便于大规模生产。(2)使负极与金属锂片在电解液中直接接触,在电位差的驱动下锂从金属锂片进入电解液然后嵌入到负极中,参见《Journal of Materials Chemistry A》2014年发表的题为:A Fast andEfficient Pre-doping Approach to High Energy Density Lithium-Ion Hybrid Capacitors的论文。这种方法也存在跟方法(1)同样的问题,就是需要预嵌锂之后再用叠片或卷绕的方式组装成电芯和器件。(3)在正极中预掺入富含锂的材料作为锂源,通过充电过程使这部分锂嵌入到负极中。中国专利申请200710098687.7《一种锂离子超级电容器负极的预嵌锂方法》公开了将3~50%的钴酸锂、镍钴锰酸锂、锰酸锂或Li2.6Co0.4N等在极片制备过程中掺入正极中作为锂源,《Advanced Energy Materials》2011年第1卷第1002-1006页也报道了采用Li2MoO3掺入正极作为锂源。这种方法存在的问题是在初次嵌锂后这部分掺入的锂源材料就不再具有电化学容量或者有限的容量,从而降低器件的能量密度。(4)以含有30~50%开孔率的贯穿孔的铝箔和含有30~50%开孔率的贯穿孔的铜箔分别作为正极和负极的集流体,制备电极片后叠片或卷绕成电芯,以金属锂电极为锂源作为第三电极通过电化学充放电向负极预嵌锂(参见中国专利申请201310374169.9)。而贯穿孔的铝箔和铜箔的制备需要采用化学腐蚀或机械加工的方法,会显著提高工艺成本。Lithium-ion hybrid capacitor is a new type of electrochemical energy storage device between lithium-ion batteries and electric double-layer supercapacitors. It not only has the characteristics of high power and long life of electric double-layer supercapacitors, but also has a Compared with the electric double layer supercapacitor, it has been greatly improved. The structural feature of this device is that the positive electrode can be made of carbon-based battery materials including battery positive electrode materials and capacitor materials, and the negative electrode is pre-intercalated lithium. The core of the preparation process is the pre-intercalation lithium process of the negative electrode. At present, there are mainly the following pre-intercalation lithium processes: (1) First assemble the battery with the negative electrode and metal lithium sheet, pre-intercalate lithium through external charging and discharging, then disassemble the battery, take out the negative electrode and reassemble it with the positive electrode Lithium-ion hybrid capacitors, see "Electrochimica Acta" 2014, Volume 125, pages 22-28. This method requires dismantling and reassembling the battery in an inert atmosphere, which is not convenient for mass production. (2) Make the negative electrode directly contact with the metal lithium sheet in the electrolyte, and under the drive of the potential difference, lithium enters the electrolyte from the metal lithium sheet and then embeds in the negative electrode. See "Journal of Materials Chemistry A" published in 2014 titled : A Fast and Efficient Pre-doping Approach to High Energy Density Lithium-Ion Hybrid Capacitors paper. This method also has the same problem as method (1), that is, it needs to pre-embed lithium and then assemble it into batteries and devices by lamination or winding. (3) Pre-doped lithium-rich materials in the positive electrode as a lithium source, and this part of lithium is intercalated into the negative electrode through the charging process. Chinese patent application 200710098687.7 "A Method for Pre-embedding Lithium in the Negative Electrode of Lithium Ion Supercapacitor" discloses that 3-50% of lithium cobalt oxide, nickel cobalt lithium manganese oxide, lithium manganate or Li 2.6 Co 0.4 N, etc. are prepared on the pole piece Incorporation into the positive electrode as a lithium source during the process, "Advanced Energy Materials" 2011, Volume 1, pages 1002-1006 also reported the use of Li 2 MoO 3 doped into the positive electrode as a lithium source. The problem with this method is that after the initial lithium intercalation, this part of the doped lithium source material no longer has electrochemical capacity or limited capacity, thereby reducing the energy density of the device. (4) Aluminum foil with through holes with 30-50% open porosity and copper foil with through-holes with 30-50% open porosity are used as current collectors for positive and negative electrodes respectively, and electrode sheets are prepared and stacked or wound Into a battery cell, the metal lithium electrode is used as the lithium source as the third electrode to pre-intercalate lithium to the negative electrode through electrochemical charge and discharge (see Chinese patent application 201310374169.9). However, the preparation of through-hole aluminum foil and copper foil requires chemical etching or mechanical processing, which will significantly increase the process cost.

发明内容Contents of the invention

本发明的目的是提供一种更为方便、工艺成本更低的锂离子混合型电容器的制备方法。The purpose of the present invention is to provide a more convenient and lower process cost lithium-ion hybrid capacitor preparation method.

为了解决上述技术问题,本发明采用以下技术方案:In order to solve the above technical problems, the present invention adopts the following technical solutions:

一种锂离子混合型电容器的制备方法,包括以下步骤:A preparation method for a lithium-ion hybrid capacitor, comprising the following steps:

a)将电极极片和隔膜按照正极极片/隔膜/负极极片的顺序叠片或者卷绕制成电芯;a) Laminate or wind the electrode sheets and separators in the order of positive electrode sheets/diaphragm/negative electrode sheets to make batteries;

b)将步骤a)制成的电芯放入铝塑复合膜壳体中,对铝塑复合膜壳体的顶边和第一侧边热封口,将电芯的正极和负极的极耳从铝塑复合膜壳体的顶边伸出;b) Put the battery cell made in step a) into the aluminum-plastic composite film casing, heat seal the top edge and the first side of the aluminum-plastic composite film casing, and remove the positive and negative tabs of the cell from the The top edge of the aluminum-plastic composite film shell protrudes;

c)将金属锂电极放入铝塑复合膜壳体中,金属锂电极与电芯相邻放置并用隔膜隔开;将金属锂电极的极耳从铝塑复合膜壳体第二侧边伸出;c) Put the metal lithium electrode into the aluminum-plastic composite film case, place the metal lithium electrode adjacent to the cell and separate it with a diaphragm; protrude the tab of the metal lithium electrode from the second side of the aluminum-plastic composite film case ;

d)向铝塑复合膜壳体注入过量电解液,然后将铝塑复合膜壳体的第二侧边热封口;d) Inject excess electrolyte into the aluminum-plastic composite film case, and then heat seal the second side of the aluminum-plastic composite film case;

e)以负极为工作电极,以金属锂电极为对电极,以恒电流放电的方式对负极以恒电流放电方式进行预嵌锂;e) Using the negative electrode as the working electrode and the metal lithium electrode as the counter electrode, the negative electrode is pre-intercalated with lithium by constant current discharge;

f)裁开铝塑复合膜壳体,取出金属锂电极;倒出多余的电解液,将铝塑复合膜壳体的第二侧边真空热封口,得到锂离子混合型电容器。f) Cut open the aluminum-plastic composite film case, take out the metal lithium electrode; pour out the excess electrolyte, and vacuum heat seal the second side of the aluminum-plastic composite film case to obtain a lithium-ion hybrid capacitor.

所述的正极包括正极活性材料和无贯穿孔的铝箔,正极活性材料涂布在铝箔上;所述的负极包括负极活性材料和无贯穿孔的铜箔,负极活性材料涂布在铜箔上。The positive electrode includes a positive electrode active material and aluminum foil without through holes, and the positive electrode active material is coated on the aluminum foil; the negative electrode includes a negative electrode active material and a copper foil without through holes, and the negative electrode active material is coated on the copper foil.

所述的正极活性材料由一种锂离子电池正极材料的和一种高比表面积的碳材料组成,按100质量份计算,所述的锂离子正极材料为0~90质量份,高比表面积碳材料为10~100质量份,所述的锂离子电池正极材料为镍钴锰酸锂或镍钴铝酸锂或磷酸铁锂或钴酸锂,所述的高比表面积碳材料为活性炭或活性的炭纤维或多孔导电炭黑或石墨烯;所述的负极活性材料为人造石墨或中间相碳微球或硬碳或软碳中的至少一种。对于正极而言,活性材料为活性炭时表现为双电层特性;随着正极活性材料中锂离子电池正极材料含量的增加电容所占的比例减小,而插嵌锂的电池容量所占的比例增加、甚至占主导地位,本发明把这类器件统称为锂离子混合型电容器。The positive electrode active material is composed of a lithium ion battery positive electrode material and a carbon material with a high specific surface area. Calculated by 100 parts by mass, the lithium ion positive electrode material is 0 to 90 parts by mass, and the carbon material with a high specific surface area is The material is 10 to 100 parts by mass, the positive electrode material of the lithium ion battery is lithium nickel cobalt manganese oxide or lithium nickel cobalt aluminum oxide or lithium iron phosphate or lithium cobalt oxide, and the high specific surface area carbon material is activated carbon or activated carbon fiber or porous conductive carbon black or graphene; the negative electrode active material is at least one of artificial graphite or mesocarbon microspheres or hard carbon or soft carbon. For the positive electrode, when the active material is activated carbon, it exhibits electric double layer characteristics; with the increase in the content of the positive electrode material in the positive electrode active material, the proportion of the capacity of the lithium-ion battery decreases, while the proportion of the battery capacity of the intercalated lithium increase, or even dominate, the present invention collectively refers to these devices as lithium-ion hybrid capacitors.

所述的预嵌锂的电流密度为5~50mA/g,所述的电流密度基于负极活性材料的质量。预嵌锂后负极的荷电状态为50~80%。本发明通过添加过量的电解液和小电流放电预嵌锂,从而在采用无贯穿孔的集流体的情况下,也可以达到使负极活性材料充分嵌锂的效果。所述的放电预嵌锂是指通过恒电流放电的方式使锂离子从金属锂电极进入电解液,然后扩散至负极并嵌入负极活性材料中,在电场的作用下锂离子在负极内扩散和重新分布。金属锂电极作为预嵌锂的锂源,同时又可以起到锂参比电极的作用。The current density of the pre-intercalated lithium is 5-50 mA/g, and the current density is based on the mass of the negative electrode active material. The state of charge of the negative electrode after pre-intercalation of lithium is 50-80%. The present invention pre-intercalates lithium by adding an excessive amount of electrolyte and discharging with a small current, so that the effect of fully intercalating lithium in the negative electrode active material can also be achieved in the case of using a current collector without through holes. The discharge pre-intercalation of lithium means that lithium ions enter the electrolyte from the metal lithium electrode by means of constant current discharge, and then diffuse to the negative electrode and embed in the negative electrode active material. distributed. The metal lithium electrode is used as a lithium source for pre-intercalated lithium, and at the same time it can also function as a lithium reference electrode.

本发明还提出了一种通过上述方法制备的锂离子混合型电容器,所述的锂离子混合型电容器的工作电压不高于4.0V,且正极的电位相对于锂参比电极不高于4.2V、负极的电位相对于锂参比电极不低于0.1V。因为正极活性材料含有高比表面积碳材料,电位相对于锂参比电极高于4.2V会引起电解液的分解和循环寿命的降低,而负极的电位相对于锂参比电极低于0.1V时,高功率嵌锂时会引起金属锂的析出和锂枝晶的生长,导致安全隐患。The present invention also proposes a lithium-ion hybrid capacitor prepared by the above method, the operating voltage of the lithium-ion hybrid capacitor is not higher than 4.0V, and the potential of the positive electrode is not higher than 4.2V relative to the lithium reference electrode , The potential of the negative electrode is not lower than 0.1V relative to the lithium reference electrode. Because the positive electrode active material contains carbon materials with high specific surface area, the potential higher than 4.2V relative to the lithium reference electrode will cause the decomposition of the electrolyte and the reduction of cycle life, and when the potential of the negative electrode is lower than 0.1V relative to the lithium reference electrode, High-power intercalation of lithium will cause the precipitation of metallic lithium and the growth of lithium dendrites, resulting in potential safety hazards.

附图说明Description of drawings

图1锂离子混合型电容器的结构示意图,图中:1电芯,11正极极耳,12负极极耳,2铝塑复合膜壳体,21第一侧边封口区,22顶边封口区,23第二侧边封口区,24真空封口区,3金属锂电极,31金属锂电极极耳;Fig. 1 Schematic diagram of the structure of a lithium-ion hybrid capacitor, in the figure: 1 cell, 11 positive tab, 12 negative tab, 2 aluminum-plastic composite film shell, 21 first side sealing area, 22 top side sealing area, 23 second side sealing area, 24 vacuum sealing area, 3 metal lithium electrode, 31 metal lithium electrode tab;

图2实施例1锂离子混合型电容器的最初4周的充放电曲线;The charge-discharge curve of the initial 4 weeks of Fig. 2 embodiment 1 lithium-ion hybrid capacitor;

图3实施例1和对比例的倍率曲线。Figure 3 is the rate curve of Example 1 and Comparative Example.

具体实施方式Detailed ways

正极和负极的制备方法是:将活性材料、粘结剂和导电剂按一定的比例均匀混合成浆料后,用涂布机涂覆到无贯穿孔的集流体上,干燥后经辊压、裁切得到电极的极片。The preparation method of the positive electrode and the negative electrode is: after the active material, the binder and the conductive agent are uniformly mixed into a slurry in a certain proportion, the coating machine is used to coat the current collector without through holes, and after drying, it is rolled, Cutting to obtain the pole piece of the electrode.

所述的粘结剂选择聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、羧甲基纤维素钠(CMC)、丁苯橡胶(SBR)和成都茵地乐产的LA系列水性粘结剂等。所述的导电剂选自导电炭黑、导电石墨或碳纳米管。正极的集流体为无贯穿孔的铝箔,负极的集流体为无贯穿孔的铜箔。正极活性材料由锂离子电池正极材料的一种和高比表面积的碳材料的一种组成,按100质量份计算,锂离子正极材料为0~90质量份,高比表面积碳材料为10~100质量份,锂离子电池正极材料为镍钴锰酸锂(LiNixCoyMnzO2)或镍钴铝酸锂(LiNixCoyAlzO2)或磷酸铁锂(LiFePO4)或钴酸锂(LiCoO2),高比表面积碳材料为活性炭或活性的炭纤维或多孔导电炭黑或石墨烯。负极活性材料为人造石墨或中间相碳微球或硬碳或软碳中的至少一种。The binders are polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), sodium carboxymethyl cellulose (CMC), styrene-butadiene rubber (SBR) and LA series water-based adhesive produced by Chengdu Yindile. binder, etc. The conductive agent is selected from conductive carbon black, conductive graphite or carbon nanotubes. The current collector of the positive electrode is aluminum foil without through holes, and the current collector of the negative electrode is copper foil without through holes. The positive electrode active material is composed of one kind of lithium ion battery positive electrode material and one kind of carbon material with high specific surface area. Calculated by 100 parts by mass, the lithium ion positive electrode material is 0-90 parts by mass, and the carbon material with high specific surface area is 10-100 parts by mass. parts by mass, the positive electrode material of lithium ion battery is lithium nickel cobalt manganese oxide (LiNi x Co y Mn z O 2 ) or lithium nickel cobalt aluminate (LiNi x Co y Al z O 2 ) or lithium iron phosphate (LiFePO 4 ) or cobalt Lithium oxide (LiCoO 2 ), the high specific surface area carbon material is activated carbon or activated carbon fiber or porous conductive carbon black or graphene. The negative electrode active material is at least one of artificial graphite or mesocarbon microspheres or hard carbon or soft carbon.

如图1所示,锂离子混合型电容器的制备方法如下:As shown in Figure 1, the preparation method of the lithium-ion hybrid capacitor is as follows:

1、按照正极/隔膜/负极的顺序将电极的极片和隔膜叠片或者卷绕制成电芯1,将电芯1放入铝塑复合膜壳体2中;1. According to the order of positive electrode/diaphragm/negative electrode, stack or wind the pole piece and diaphragm of the electrode to make a cell 1, and put the cell 1 into the aluminum-plastic composite film casing 2;

2、在铝塑复合膜壳体2的顶边封口区22和第一侧边封口区21在180℃下热封口,将正极极耳11和负极极耳12从顶边封口区22伸出铝塑复合膜壳体2;2. Heat seal the top side sealing area 22 and the first side sealing area 21 of the aluminum-plastic composite film case 2 at 180°C, and extend the positive electrode tab 11 and the negative electrode tab 12 from the top side sealing area 22 to the aluminum Plastic composite film shell 2;

3、在充满氩气的手套箱中或者干燥室中将金属锂电极3放入铝塑复合膜壳体2中,金属锂电极3与电芯1相邻放置并用隔膜隔开,将金属锂电极的极耳31从第二侧边封口区23伸出铝塑复合膜壳体2;3. Put the metal lithium electrode 3 into the aluminum-plastic composite film casing 2 in a glove box filled with argon or in a drying room. The metal lithium electrode 3 is placed adjacent to the battery cell 1 and separated by a diaphragm, and the metal lithium electrode The tab 31 protrudes from the aluminum-plastic composite film shell 2 from the second side sealing area 23;

4、往铝塑复合膜壳体2注入过量电解液,然后在铝塑复合膜壳体2的第二侧边封口区23热封口;4. Inject excess electrolyte into the aluminum-plastic composite film case 2, and then heat seal the second side sealing area 23 of the aluminum-plastic composite film case 2;

5、以负极为工作电极,以金属锂电极3为对电极,用武汉兰电公司CT2001A的电池测试仪以恒电流放电的方式对负极进行预嵌锂操作。预嵌锂的电流密度为5~50mA/g,所述的电流密度基于负极活性材料的质量,预嵌锂后负极的荷电状态为50~80%;5. With the negative electrode as the working electrode and the metal lithium electrode 3 as the counter electrode, the negative electrode is pre-intercalated with lithium in the way of constant current discharge with the CT2001A battery tester of Wuhan Landian Company. The current density of the pre-intercalated lithium is 5-50mA/g, the current density is based on the mass of the negative electrode active material, and the state of charge of the negative electrode after the pre-intercalated lithium is 50-80%;

6、最后,剪开铝塑复合膜壳体,取出金属锂电极3和极耳31,倒出多余的电解液,在铝塑复合膜壳体2的真空封口区24在真空条件下真空热封口,去掉多余的铝塑复合膜得到锂离子混合型电容器。6. Finally, cut open the aluminum-plastic composite film shell, take out the metal lithium electrode 3 and the tab 31, pour out the excess electrolyte, and vacuum heat seal the vacuum sealing area 24 of the aluminum-plastic composite film shell 2 under vacuum conditions , remove the excess aluminum-plastic composite film to obtain a lithium-ion hybrid capacitor.

采用本发明制备方法制得的锂离子混合型电容器的工作电压不高于4.0V,且正极的电位相对于锂参比电极不高于4.2V、负极的电位相对于锂参比电极不低于0.1V。The operating voltage of the lithium-ion hybrid capacitor prepared by the preparation method of the present invention is not higher than 4.0V, and the potential of the positive electrode is not higher than 4.2V relative to the lithium reference electrode, and the potential of the negative electrode is not lower than that of the lithium reference electrode. 0.1V.

实施例1Example 1

负极的活性材料为人造石墨CAG-3MT,粘结剂为羧甲基纤维素钠和丁苯橡胶,导电剂为导电炭黑Super C45,按人造石墨:导电炭黑:羧甲基纤维素钠:丁苯橡胶=90:5:2:3的质量比混合均匀制成浆料,涂布到无贯穿孔的12微米厚的铜箔上,干燥后经辊压、裁切得到负极的极片。极片涂布层单面的面密度为39.3g/m2The active material of the negative electrode is artificial graphite CAG-3MT, the binder is sodium carboxymethyl cellulose and styrene-butadiene rubber, and the conductive agent is conductive carbon black Super C45. According to artificial graphite: conductive carbon black: sodium carboxymethyl cellulose: The mass ratio of styrene-butadiene rubber = 90:5:2:3 is mixed evenly to make a slurry, which is coated on a 12-micron thick copper foil without through holes. After drying, it is rolled and cut to obtain the negative pole piece. The areal density of one side of the pole piece coating layer was 39.3 g/m 2 .

正极的活性材料为镍钴锰酸锂LiNi0.5Co0.2Mn0.3O2,高比表面积碳材料为活性炭YP50F,粘结剂为聚偏氟乙烯,导电剂为导电炭黑Super C45和导电石墨KS-6,按活性炭:镍钴锰酸锂:导电炭黑:导电石墨:聚偏氟乙烯=60:20:10:2:8的质量比混合均匀制成浆料,涂布到无贯穿孔的20微米厚的铝箔上,干燥后经辊压、裁切得到正极的极片。极片涂布层单面的面密度为33.1g/m2The active material of the positive electrode is lithium nickel cobalt manganese oxide LiNi 0.5 Co 0.2 Mn 0.3 O 2 , the high specific surface area carbon material is activated carbon YP50F, the binder is polyvinylidene fluoride, the conductive agent is conductive carbon black Super C45 and conductive graphite KS- 6. According to the mass ratio of activated carbon: nickel cobalt lithium manganese oxide: conductive carbon black: conductive graphite: polyvinylidene fluoride = 60: 20: 10: 2: 8, mix evenly to make a slurry, and coat it to 20 without through holes. On the micron-thick aluminum foil, after drying, it is rolled and cut to obtain the positive pole piece. The areal density of one side of the pole piece coating layer was 33.1 g/m 2 .

以上述的正极和负极的极片制备成电芯,将电芯放入铝塑复合膜壳体中,热封铝塑复合膜壳体的顶边和第一侧边。再在铝塑复合膜壳体中放入金属锂电极,金属锂电极与电芯之间有隔膜隔开,在手套箱中注入过量电解液,电解液为1mol/L的LiPF6电解液,溶剂为碳酸乙烯酯、碳酸二甲酯和碳酸二乙酯按质量比1:1:1的混合溶剂。然后热封铝塑复合膜壳体的第二侧边。预嵌锂的电流密度为5mA/g,所述的电流密度基于负极活性材料的质量。预嵌锂后负极的荷电状态为50%。最后,剪开铝塑复合膜壳体,取出金属锂电极,倒出多余的电解液,然后真空封口,得到锂离子混合型电容器。用武汉兰电公司CT2001A的电池测试仪以恒电流充放电的方式对锂离子混合型电容器进行测试,以下都采用相同的测试手段。本实施例的工作电压范围为2.5~4.0V。正极和负极的电位变化范围是以金属锂电极作为参比电极测得的,以下相同。The above-mentioned positive and negative pole pieces are used to prepare batteries, put the batteries into the aluminum-plastic composite film case, and heat seal the top side and the first side of the aluminum-plastic composite film case. Put the metal lithium electrode in the aluminum-plastic composite film shell, and there is a diaphragm between the metal lithium electrode and the battery cell, and inject an excessive amount of electrolyte in the glove box. The electrolyte is 1mol/L LiPF 6 electrolyte, solvent It is a mixed solvent of ethylene carbonate, dimethyl carbonate and diethyl carbonate in a mass ratio of 1:1:1. Then heat seal the second side of the aluminum-plastic composite film shell. The current density of the pre-intercalated lithium is 5 mA/g, and the current density is based on the mass of the negative electrode active material. The state of charge of the negative electrode after pre-intercalation of lithium is 50%. Finally, cut open the aluminum-plastic composite film shell, take out the metal lithium electrode, pour out the excess electrolyte, and then vacuum seal to obtain a lithium-ion hybrid capacitor. Use the CT2001A battery tester of Wuhan Landian Company to test the lithium-ion hybrid capacitor in the way of constant current charge and discharge. The same test methods are used below. The operating voltage range of this embodiment is 2.5-4.0V. The potential variation range of the positive electrode and the negative electrode is measured with the metal lithium electrode as the reference electrode, and the following are the same.

对比例:Comparative example:

采用与实施例1相同的正极和负极电极片制备电芯,然后将电芯放入铝塑复合膜壳体中,热封铝塑复合膜壳体的顶边和第一侧边,在手套箱中注入适量电解液,电解液为1mol/L的LiPF6电解液,溶剂为碳酸乙烯酯、碳酸二甲酯和碳酸二乙酯按质量比1:1:1的混合溶剂。之后,真空封口铝塑复合膜壳体的第二侧边,得到锂离子混合型电容器。对锂离子混合型电容器在2.5~4.0V电压范围内进行测试。The same positive and negative electrode sheets as in Example 1 were used to prepare the electric core, and then the electric core was put into the aluminum-plastic composite film case, and the top edge and the first side of the aluminum-plastic composite film case were heat-sealed, and placed in the glove box Inject an appropriate amount of electrolyte, the electrolyte is 1mol/L LiPF 6 electrolyte, and the solvent is a mixed solvent of ethylene carbonate, dimethyl carbonate and diethyl carbonate in a mass ratio of 1:1:1. Afterwards, the second side of the aluminum-plastic composite film case is vacuum-sealed to obtain a lithium-ion hybrid capacitor. The lithium ion hybrid capacitor is tested in the voltage range of 2.5 ~ 4.0V.

图2所示为实施例1锂离子混合型电容器的充放电曲线,其中曲线1为正极相对于锂参比电极的电位变化曲线,电位变化范围为2.89~4.19V,曲线2为锂离子混合型电容器的电压曲线,电压范围为2.5~4.0V。曲线3为负极相对于锂参比电极的电位变化曲线,电位变化范围为0.18~0.39V。Figure 2 shows the charging and discharging curves of the lithium-ion hybrid capacitor in Example 1, wherein curve 1 is the potential change curve of the positive electrode relative to the lithium reference electrode, and the potential change range is 2.89 to 4.19V, and curve 2 is the lithium-ion hybrid capacitor The voltage curve of the capacitor, the voltage range is 2.5 ~ 4.0V. Curve 3 is the potential change curve of the negative electrode relative to the lithium reference electrode, and the potential change range is 0.18-0.39V.

图3所示为实施例1和对比例的倍率性能曲线,横坐标为倍率(单位为C),纵坐标为基于正极活性材料质量的比容量(单位为mAh/g),曲线1为实施例1的倍率性能曲线,曲线2为对比例的倍率性能曲线。可以看到两者都有很好的倍率性能。但是经过预嵌锂工艺后,在25mA/g的电流密度下充放电,比容量由25.4mAh/g提高到34.8mAh/g,提高了37%。Figure 3 shows the rate performance curves of Example 1 and Comparative Example, the abscissa is the rate (in C), the ordinate is the specific capacity based on the mass of the positive active material (in mAh/g), and curve 1 is the embodiment 1 is the rate performance curve, and curve 2 is the rate performance curve of the comparative example. It can be seen that both have good rate performance. However, after the pre-intercalated lithium process, the specific capacity was increased from 25.4mAh/g to 34.8mAh/g when charged and discharged at a current density of 25mA/g, an increase of 37%.

实施例2~6Embodiment 2~6

实施例2~6的负极的活性材料为硬碳LN-0010,粘结剂为羧甲基纤维素钠和丁苯橡胶,导电剂为导电炭黑Super C45,按硬碳:导电炭黑:羧甲基纤维素钠:丁苯橡胶=90:5:2:3的质量比混合均匀制成浆料,涂布到无贯穿孔的12微米厚的铜箔上,干燥后经辊压、裁切得到负极的极片。极片涂布层单面的面密度为47.0g/m2The active material of the negative electrode of embodiment 2~6 is hard carbon LN-0010, and binding agent is sodium carboxymethyl cellulose and styrene-butadiene rubber, and conductive agent is conductive carbon black Super C45, press hard carbon: conductive carbon black: carboxyl Sodium methylcellulose: styrene-butadiene rubber = 90:5:2:3 mass ratio mixed evenly to make a slurry, coated on a 12 micron thick copper foil without through holes, rolled and cut after drying Obtain the pole piece of the negative electrode. The areal density of one side of the pole piece coating layer was 47.0 g/m 2 .

正极的活性材料为镍钴锰酸锂LiNi0.5Co0.2Mn0.3O2,高比表面积碳材料为活性炭YP50F,粘结剂为聚偏氟乙烯,导电剂为导电炭黑Super C45和导电石墨KS-6,按正极活性材料:导电炭黑:导电石墨:聚偏氟乙烯=80:10:2:8的质量比混合均匀制成浆料,涂布到无贯穿孔的20微米厚的铝箔上,干燥后经辊压、裁切得到正极的极片。正极活性材料的组分的质量比和涂层单面的面密度见表1。The active material of the positive electrode is lithium nickel cobalt manganese oxide LiNi 0.5 Co 0.2 Mn 0.3 O 2 , the high specific surface area carbon material is activated carbon YP50F, the binder is polyvinylidene fluoride, the conductive agent is conductive carbon black Super C45 and conductive graphite KS- 6. According to the mass ratio of positive electrode active material: conductive carbon black: conductive graphite: polyvinylidene fluoride = 80:10:2:8, mix evenly to make a slurry, and coat it on a 20-micron thick aluminum foil without through holes. After drying, it is rolled and cut to obtain the positive electrode sheet. The mass ratio of the components of the positive electrode active material and the areal density of one side of the coating are shown in Table 1.

以上述的正极和负极的极片制备电芯后,将电芯放入铝塑复合膜壳体中,热封铝塑复合膜壳体的顶边和第一侧边,并在铝塑复合膜壳体中放入金属锂电极,金属锂电极与电芯之间有隔膜隔开。在手套箱中注入过量电解液,电解液为1mol/L的LiPF6电解液,溶剂为碳酸乙烯酯、碳酸二甲酯和碳酸二乙酯按质量比1:1:1的混合溶剂。然后热封铝塑复合膜壳体的第二侧边。预嵌锂的电流密度为6mA/g,所述的电流密度是基于负极活性材料的质量。预嵌锂后负极的荷电状态为60%。取出金属锂电极、倒出多余的电解液后,真空封口,得到锂离子混合型电容器。锂离子混合型电容器在2.0~4.0V电压范围内进行充放电测试,基于正极活性材料的比容量和正极与负极相对于锂参比电极的电位见表1。After preparing the electric core with the above-mentioned positive and negative pole pieces, put the electric core into the aluminum-plastic composite film case, heat seal the top edge and the first side of the aluminum-plastic composite film case, and seal the aluminum-plastic composite film Metal lithium electrodes are placed in the shell, and there is a diaphragm between the metal lithium electrodes and the battery core. Inject excess electrolyte into the glove box, the electrolyte is 1mol/L LiPF 6 electrolyte, and the solvent is a mixed solvent of ethylene carbonate, dimethyl carbonate and diethyl carbonate at a mass ratio of 1:1:1. Then heat seal the second side of the aluminum-plastic composite film shell. The current density of the pre-intercalated lithium is 6 mA/g, and the current density is based on the mass of the negative electrode active material. The state of charge of the negative electrode after pre-intercalation of lithium is 60%. After taking out the metal lithium electrode, pouring out the excess electrolyte, and vacuum sealing, a lithium-ion hybrid capacitor is obtained. Lithium-ion hybrid capacitors were charged and discharged in the voltage range of 2.0-4.0V. Based on the specific capacity of the positive active material and the potential of the positive and negative electrodes relative to the lithium reference electrode, see Table 1.

表1Table 1

由表1可以看出,随着正极活性材料中镍钴锰酸锂的含量增加比容量显著增加,但是由于这组电容器的负极的容量是固定的,所以负极的电位下限显著降低,实施例4~6的电位区间降至0.1V以下,循环寿命显著降低。实施例2和实施例3充放电循环10000周容量保持率在90%以上,而实施例4~6充放电循环1000周容量已衰减超过50%。As can be seen from Table 1, the specific capacity increases significantly as the content of nickel-cobalt-lithium manganese oxide in the positive electrode active material increases, but since the capacity of the negative electrode of this group of capacitors is fixed, the lower limit of the potential of the negative electrode is significantly reduced. Example 4 The potential range of ~6 drops below 0.1V, and the cycle life is significantly reduced. The capacity retention rate of Examples 2 and 3 after 10,000 cycles of charging and discharging is above 90%, while the capacity of Examples 4 to 6 has decayed by more than 50% after 1,000 cycles of charging and discharging.

实施例7Example 7

本实施例的负极的活性材料由软碳和中间相炭微球按1:1质量比组成,粘结剂为羧甲基纤维素钠和丁苯橡胶,导电剂为导电炭黑Super P Li,按活性材料:羧甲基纤维素钠:丁苯橡胶:导电炭黑=90:5:2:3的质量比混合均匀制成浆料,涂布到无贯穿孔的12微米厚的铜箔上,干燥后经辊压、裁切得到负极的极片。极片涂布层单面的面密度为30.0g/m2The active material of the negative electrode of the present embodiment is made up of soft carbon and mesophase carbon microspheres in a mass ratio of 1:1, the binding agent is sodium carboxymethyl cellulose and styrene-butadiene rubber, and the conductive agent is conductive carbon black Super P Li, According to the mass ratio of active material: sodium carboxymethyl cellulose: styrene-butadiene rubber: conductive carbon black = 90:5:2:3, mix evenly to make a slurry, and coat it on a 12-micron thick copper foil without through holes , after drying, roll pressing and cutting to obtain the negative pole piece. The areal density of one side of the pole piece coating layer was 30.0 g/m 2 .

正极的活性材料由镍钴铝酸锂、活化后的炭纤维、多孔导电炭黑和少层的石墨烯按1:1:1:1的质量比组成,粘结剂为聚偏氟乙烯,按活性材料:聚偏氟乙烯=90:10的质量比混合均匀制成浆料,涂布到无贯穿孔的20微米厚的铝箔上,干燥后经辊压、裁切得到正极的极片。极片涂布层单面的面密度为25g/m2The active material of the positive electrode is composed of lithium nickel cobalt aluminate, activated carbon fiber, porous conductive carbon black and few-layer graphene in a mass ratio of 1:1:1:1, and the binder is polyvinylidene fluoride. Active material: polyvinylidene fluoride = 90:10 mass ratio mixed evenly to make a slurry, coated on a 20 micron thick aluminum foil without through holes, after drying, rolled and cut to obtain the positive pole piece. The areal density of one side of the pole piece coating layer was 25 g/m 2 .

以上述的正极和负极的极片制备电芯后,放入铝塑复合膜壳体中,热封铝塑复合膜壳体的顶边和第一侧边,并放入金属锂电极,金属锂电极与电芯之间有隔膜隔开。在手套箱中注入过量电解液,电解液为1mol/L的LiPF6电解液,溶剂为碳酸乙烯酯、碳酸二甲酯和碳酸二乙酯按质量比1:1:1的混合溶剂。然后热封铝塑复合膜壳体的第二侧边。预嵌锂的电流密度为50mA/g,所述的电流密度基于负极活性材料的质量。预嵌锂后负极的荷电状态为80%。剪开铝塑复合膜壳体、取出金属锂电极、倒出多余的电解液后,真空封口,得到锂离子混合型电容器。After the above-mentioned positive and negative pole pieces are used to prepare the electric core, put it into the aluminum-plastic composite film case, heat seal the top edge and the first side of the aluminum-plastic composite film case, and put in the metal lithium electrode, the metal lithium battery There is a diaphragm between the pole and the battery core. Inject excess electrolyte into the glove box, the electrolyte is 1mol/L LiPF 6 electrolyte, and the solvent is a mixed solvent of ethylene carbonate, dimethyl carbonate and diethyl carbonate at a mass ratio of 1:1:1. Then heat seal the second side of the aluminum-plastic composite film shell. The current density of the pre-intercalated lithium is 50 mA/g, and the current density is based on the mass of the negative electrode active material. The state of charge of the negative electrode after pre-intercalation of lithium is 80%. Cut open the aluminum-plastic composite film shell, take out the metal lithium electrode, pour out the excess electrolyte, and vacuum seal to obtain a lithium-ion hybrid capacitor.

实施例8Example 8

本实施例的负极的活性材料为硬碳LN-0010,粘结剂为羧甲基纤维素钠和丁苯橡胶,导电剂为导电炭黑Super P Li,按硬碳:羧甲基纤维素钠:丁苯橡胶:导电炭黑=90:5:2:3的质量比混合均匀制成浆料,涂布到无贯穿孔的12微米厚的铜箔上,干燥后经辊压、裁切得到负极的极片。The active material of the negative electrode of the present embodiment is hard carbon LN-0010, and binding agent is sodium carboxymethyl cellulose and styrene-butadiene rubber, and conductive agent is conductive carbon black Super P Li, press hard carbon: sodium carboxymethyl cellulose : Styrene-butadiene rubber: conductive carbon black = 90:5:2:3 mass ratio mixed evenly to make a slurry, coated on a 12-micron thick copper foil without through holes, dried, rolled and cut to obtain Negative pole piece.

正极的活性材料为钴酸锂,高比表面积碳材料为活性炭YP80F,粘结剂为聚偏氟乙烯,导电剂为导电炭黑Super P Li和导电石墨KS-15,按活性炭:钴酸锂:导电炭黑:导电石墨:聚偏氟乙烯=60:20:10:2:8的质量比混合均匀制成浆料,涂布到无贯穿孔的20微米厚的铝箔上,干燥后经辊压、裁切得到正极的极片。The active material of the positive electrode is lithium cobalt oxide, the high specific surface area carbon material is activated carbon YP80F, the binder is polyvinylidene fluoride, the conductive agent is conductive carbon black Super P Li and conductive graphite KS-15, according to activated carbon: lithium cobalt oxide: Conductive carbon black: conductive graphite: polyvinylidene fluoride = 60:20:10:2:8 mass ratio mixed evenly to make a slurry, coated on a 20 micron thick aluminum foil without through holes, and rolled after drying , cutting to obtain the positive pole piece.

以上述的正极和负极的极片制备成电芯,将电芯放入铝塑复合膜壳体中,热封铝塑复合膜壳体的顶边和第一侧边。再在铝塑复合膜壳体中放入金属锂电极,金属锂电极与电芯之间有隔膜隔开,在手套箱中注入过量电解液,电解液为1mol/L的LiPF6电解液,溶剂为碳酸乙烯酯、碳酸丙烯酯按质量比1:1的混合溶剂。然后热封铝塑复合膜壳体的第二侧边。预嵌锂的电流密度为10mA/g,所述的电流密度基于负极活性材料的质量。预嵌锂后负极的荷电状态为60%。剪开铝塑复合膜壳体、取出金属锂电极,倒出多余的电解液,然后真空封口,得到锂离子混合型电容器。The above-mentioned positive and negative pole pieces are used to prepare batteries, put the batteries into the aluminum-plastic composite film case, and heat seal the top side and the first side of the aluminum-plastic composite film case. Put the metal lithium electrode in the aluminum-plastic composite film shell, and there is a diaphragm between the metal lithium electrode and the battery cell, and inject an excessive amount of electrolyte in the glove box. The electrolyte is 1mol/L LiPF 6 electrolyte, solvent It is a mixed solvent of ethylene carbonate and propylene carbonate at a mass ratio of 1:1. Then heat seal the second side of the aluminum-plastic composite film shell. The current density of the pre-intercalated lithium is 10 mA/g, and the current density is based on the mass of the negative electrode active material. The state of charge of the negative electrode after pre-intercalation of lithium is 60%. Cut open the aluminum-plastic composite film shell, take out the metal lithium electrode, pour out the excess electrolyte, and then vacuum seal to obtain a lithium-ion hybrid capacitor.

实施例9Example 9

本实施例的负极的活性材料为硬碳LN-0001,粘结剂为羧甲基纤维素钠和丁苯橡胶,导电剂为导电炭黑Super P Li,按硬碳:羧甲基纤维素钠:丁苯橡胶:导电炭黑=90:5:2:3的质量比混合均匀制成浆料,涂布到无贯穿孔的12微米厚的铜箔上,干燥后经辊压、裁切得到负极的极片。The active material of the negative electrode of the present embodiment is hard carbon LN-0001, binding agent is sodium carboxymethyl cellulose and styrene-butadiene rubber, and conductive agent is conductive carbon black Super P Li, press hard carbon: sodium carboxymethyl cellulose : Styrene-butadiene rubber: conductive carbon black = 90:5:2:3 mass ratio mixed evenly to make a slurry, coated on a 12-micron thick copper foil without through holes, dried, rolled and cut to obtain Negative pole piece.

正极的活性材料为磷酸铁锂,高比表面积碳材料为活性炭YP80F,粘结剂为聚偏氟乙烯,导电剂为导电炭黑Super P Li和导电石墨KS-15,按活性炭:磷酸铁锂:导电炭黑:导电石墨:聚偏氟乙烯=60:20:10:2:8的质量比混合均匀制成浆料,涂布到无贯穿孔的20微米厚的铝箔上,干燥后经辊压、裁切得到正极的极片。The active material of the positive electrode is lithium iron phosphate, the high specific surface area carbon material is activated carbon YP80F, the binder is polyvinylidene fluoride, the conductive agent is conductive carbon black Super P Li and conductive graphite KS-15, according to activated carbon: lithium iron phosphate: Conductive carbon black: conductive graphite: polyvinylidene fluoride = 60: 20: 10: 2: 8 mass ratio mixed evenly to make a slurry, coated on a 20 micron thick aluminum foil without through holes, and rolled after drying , cutting to obtain the positive pole piece.

以上述的正极和负极的极片制备成电芯,将电芯放入铝塑复合膜壳体中,热封铝塑复合膜壳体的顶边和第一侧边。再在铝塑复合膜壳体中放入金属锂电极,金属锂电极与电芯之间有隔膜隔开,在手套箱中注入过量电解液,电解液为1mol/L的LiPF6电解液,溶剂为碳酸乙烯酯、碳酸二甲酯和碳酸二乙酯按质量比1:1:1的混合溶剂。然后热封铝塑复合膜壳体的第二侧边。预嵌锂的电流密度为10mA/g,所述的电流密度是基于负极活性材料的质量。预嵌锂后负极的荷电状态为60%。剪开铝塑复合膜壳体、取出金属锂电极,倒出多余的电解液,然后真空封口,得到锂离子混合型电容器。The above-mentioned positive and negative pole pieces are used to prepare batteries, put the batteries into the aluminum-plastic composite film case, and heat seal the top side and the first side of the aluminum-plastic composite film case. Put the metal lithium electrode in the aluminum-plastic composite film shell, and there is a diaphragm between the metal lithium electrode and the battery cell, and inject an excessive amount of electrolyte in the glove box. The electrolyte is 1mol/L LiPF 6 electrolyte, solvent It is a mixed solvent of ethylene carbonate, dimethyl carbonate and diethyl carbonate in a mass ratio of 1:1:1. Then heat seal the second side of the aluminum-plastic composite film shell. The current density of the pre-intercalated lithium is 10 mA/g, and the current density is based on the mass of the negative electrode active material. The state of charge of the negative electrode after pre-intercalation of lithium is 60%. Cut open the aluminum-plastic composite film shell, take out the metal lithium electrode, pour out the excess electrolyte, and then vacuum seal to obtain a lithium-ion hybrid capacitor.

Claims (4)

1. a preparation method for lithium ion hybrid capacitors, is characterized in that described preparation method comprises the following steps:
A) electrode plates and barrier film are made to battery core (1) according to the order lamination of anode pole piece/barrier film/cathode pole piece or coiling;
B) battery core (1) of step a) being made is put into aluminum-plastic composite membrane housing (2), by the top margin of aluminum-plastic composite membrane housing (2) and first side hot-seal, the positive pole ear of battery core (1) (11) and negative lug (12) are stretched out from the top margin of aluminum-plastic composite membrane housing (2);
C) metal lithium electrode (3) is put into aluminum-plastic composite membrane housing (2), metal lithium electrode (3) and battery core (1) placed adjacent also separate with barrier film; The lug of metal lithium electrode (1) is stretched out from the second side of aluminum-plastic composite membrane housing (2);
D) inject excessive electrolyte to aluminum-plastic composite membrane housing (2), then by the second side hot-seal of aluminum-plastic composite membrane housing (2);
E), taking negative pole as work electrode, taking metal lithium electrode as to electrode, carry out pre-embedding lithium with the mode anticathode of constant current discharge;
F) cut apart with a knife or scissors aluminum-plastic composite membrane housing (2), take out metal lithium electrode (3), pour out unnecessary electrolyte, by the second side Vacuum Heat sealing of aluminum-plastic composite membrane housing (2), obtain lithium ion hybrid capacitors;
Described positive pole comprises positive electrode active materials and the aluminium foil without through hole, and positive electrode active materials is coated on described aluminium foil; Described negative pole comprises negative active core-shell material and the Copper Foil without through hole, and negative active core-shell material is coated on described Copper Foil.
2. the preparation method of lithium ion hybrid capacitors according to claim 1, it is characterized in that described positive electrode active materials is made up of the material with carbon element of a kind of anode material for lithium-ion batteries and a kind of high-specific surface area, calculate by 100 mass parts, described lithium ion anode material is 0~90 mass parts, and high-specific surface area material with carbon element is 10~100 mass parts; Described anode material for lithium-ion batteries is nickle cobalt lithium manganate or nickel cobalt lithium aluminate or LiFePO4 or cobalt acid lithium, and described high-specific surface area material with carbon element is active carbon or active charcoal fiber or porous, electrically conductive carbon black or Graphene; Described negative active core-shell material is at least one in Delanium or carbonaceous mesophase spherules or hard carbon or soft carbon.
3. the preparation method of lithium ion hybrid capacitors according to claim 1, is characterized in that the current density of described pre-embedding lithium is 5~50mA/g, the quality of described current density based on negative active core-shell material; After pre-embedding lithium, the state-of-charge of negative pole is 50~80%.
4. the lithium ion hybrid capacitors making according to the preparation method described in claim 1 or 2 or 3, it is characterized in that the operating voltage of described lithium ion hybrid capacitors is not higher than 4.0V, and anodal current potential is not not less than 0.1V higher than the current potential of 4.2V, negative pole with respect to lithium reference electrode with respect to lithium reference electrode.
CN201410146713.9A 2014-04-11 2014-04-11 Preparation method of lithium-ion hybrid capacitor and lithium-ion hybrid capacitor Active CN104008893B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410146713.9A CN104008893B (en) 2014-04-11 2014-04-11 Preparation method of lithium-ion hybrid capacitor and lithium-ion hybrid capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410146713.9A CN104008893B (en) 2014-04-11 2014-04-11 Preparation method of lithium-ion hybrid capacitor and lithium-ion hybrid capacitor

Publications (2)

Publication Number Publication Date
CN104008893A true CN104008893A (en) 2014-08-27
CN104008893B CN104008893B (en) 2016-10-19

Family

ID=51369513

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410146713.9A Active CN104008893B (en) 2014-04-11 2014-04-11 Preparation method of lithium-ion hybrid capacitor and lithium-ion hybrid capacitor

Country Status (1)

Country Link
CN (1) CN104008893B (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105097293A (en) * 2015-08-24 2015-11-25 中国科学院电工研究所 Lithium pre-embedding method of negative electrode of lithium ion capacitor
CN105161309A (en) * 2015-09-16 2015-12-16 中国科学院电工研究所 Lithium ion hybrid capacitor
CN105244184A (en) * 2015-09-24 2016-01-13 宁波南车新能源科技有限公司 Preparation method for hybrid capacitor battery
CN105336504A (en) * 2015-09-24 2016-02-17 宁波南车新能源科技有限公司 Hybrid capacitor battery
CN105489395A (en) * 2016-01-25 2016-04-13 谢镕安 Production method of lithium ion super capacitor, and lithium ion super capacitor
CN105702957A (en) * 2014-11-27 2016-06-22 中国科学院大连化学物理研究所 Method for changing potential of carbon-based material electrode
CN106328926A (en) * 2016-10-18 2017-01-11 湖南锂顺能源科技有限公司 High-security long-life ternary material battery
CN106450436A (en) * 2016-10-18 2017-02-22 湖南锂顺能源科技有限公司 Low-temperature high-energy-density lithium iron phosphate battery
US20170256782A1 (en) * 2016-03-01 2017-09-07 Maxwell Technologies, Inc. Pre-doped anodes and methods and apparatuses for making same
CN107768743A (en) * 2016-08-18 2018-03-06 中信国安盟固利动力科技有限公司 A kind of lithium ion battery mends lithium method
CN109564824A (en) * 2016-07-25 2019-04-02 布鲁技术公司 Manufacture includes the method for the cylindrical hybrid super capacitor of ionic alkali metal
CN109786841A (en) * 2018-12-13 2019-05-21 中国科学院电工研究所 A kind of preparation method of lithium ion electrochemical energy storage device
CN110391093A (en) * 2018-04-17 2019-10-29 福建新峰二维材料科技有限公司 A kind of potassium base battery supercapacitor mixing arrangement and preparation method thereof
CN111916842A (en) * 2020-06-30 2020-11-10 珠海冠宇电池股份有限公司 Three-lug laminated composite battery
CN112034020A (en) * 2020-08-19 2020-12-04 国联汽车动力电池研究院有限责任公司 A kind of method and device for measuring the amount of pre-inserted lithium in negative electrode of lithium ion battery
CN112103554A (en) * 2020-08-06 2020-12-18 双登集团股份有限公司 Three-electrode repairable lithium ion battery
CN113078367A (en) * 2021-03-29 2021-07-06 中南大学 Manufacturing method of high-energy-density flexible package lithium ion battery
CN113640362A (en) * 2021-07-15 2021-11-12 清华大学 Reference electrode implantation method and three-electrode battery
CN113764753A (en) * 2021-11-10 2021-12-07 浙江浙能技术研究院有限公司 Negative electrode lithium supplementing method and manufacturing method of lithium ion energy storage device
CN114156094A (en) * 2021-11-09 2022-03-08 同济大学 Lithium ion capacitor cathode formation process
CN114824594A (en) * 2022-05-31 2022-07-29 合肥国轩高科动力能源有限公司 Composite aluminum-plastic film and pre-lithiation method
DE102018120481B4 (en) 2017-08-24 2024-06-27 GM Global Technology Operations LLC Battery and supercapacitor system of a vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299698A (en) * 2006-05-02 2007-11-15 Fdk Corp Method for manufacturing lithium ion storage element
CN103021671A (en) * 2012-11-28 2013-04-03 惠州亿纬锂能股份有限公司 Capacitor of lithium ion battery
CN103050295A (en) * 2012-12-20 2013-04-17 上海奥威科技开发有限公司 Lithium ion capacitor
US20130163147A1 (en) * 2010-09-16 2013-06-27 Shin-Kobe Electric Machinery Co. Ltd Method of Manufacturing Electrode Group Unit for Lithium Ion Capacitor and Lithium Ion Capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299698A (en) * 2006-05-02 2007-11-15 Fdk Corp Method for manufacturing lithium ion storage element
US20130163147A1 (en) * 2010-09-16 2013-06-27 Shin-Kobe Electric Machinery Co. Ltd Method of Manufacturing Electrode Group Unit for Lithium Ion Capacitor and Lithium Ion Capacitor
CN103021671A (en) * 2012-11-28 2013-04-03 惠州亿纬锂能股份有限公司 Capacitor of lithium ion battery
CN103050295A (en) * 2012-12-20 2013-04-17 上海奥威科技开发有限公司 Lithium ion capacitor

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105702957A (en) * 2014-11-27 2016-06-22 中国科学院大连化学物理研究所 Method for changing potential of carbon-based material electrode
CN105097293A (en) * 2015-08-24 2015-11-25 中国科学院电工研究所 Lithium pre-embedding method of negative electrode of lithium ion capacitor
CN105161309A (en) * 2015-09-16 2015-12-16 中国科学院电工研究所 Lithium ion hybrid capacitor
CN105161309B (en) * 2015-09-16 2017-11-14 中国科学院电工研究所 Lithium ion hybrid capacitors
CN105336504B (en) * 2015-09-24 2017-05-10 宁波中车新能源科技有限公司 Hybrid capacitor battery
CN105244184A (en) * 2015-09-24 2016-01-13 宁波南车新能源科技有限公司 Preparation method for hybrid capacitor battery
CN105336504A (en) * 2015-09-24 2016-02-17 宁波南车新能源科技有限公司 Hybrid capacitor battery
CN105489395A (en) * 2016-01-25 2016-04-13 谢镕安 Production method of lithium ion super capacitor, and lithium ion super capacitor
US20170256782A1 (en) * 2016-03-01 2017-09-07 Maxwell Technologies, Inc. Pre-doped anodes and methods and apparatuses for making same
CN109074962A (en) * 2016-03-01 2018-12-21 麦斯韦尔技术股份有限公司 Pre-doping anode and method and apparatus for manufacturing it
WO2017151495A1 (en) * 2016-03-01 2017-09-08 Maxwell Technologies, Inc. Pre-doped anodes and methods and apparatuses for making same
CN109564824A (en) * 2016-07-25 2019-04-02 布鲁技术公司 Manufacture includes the method for the cylindrical hybrid super capacitor of ionic alkali metal
CN107768743A (en) * 2016-08-18 2018-03-06 中信国安盟固利动力科技有限公司 A kind of lithium ion battery mends lithium method
CN106450436A (en) * 2016-10-18 2017-02-22 湖南锂顺能源科技有限公司 Low-temperature high-energy-density lithium iron phosphate battery
CN106328926A (en) * 2016-10-18 2017-01-11 湖南锂顺能源科技有限公司 High-security long-life ternary material battery
CN106450436B (en) * 2016-10-18 2019-11-15 湖南锂顺能源科技有限公司 A kind of low form high-energy density ferric phosphate lithium cell
CN106328926B (en) * 2016-10-18 2020-03-27 湖南锂顺能源科技有限公司 High-safety long-life ternary material battery
DE102018120481B4 (en) 2017-08-24 2024-06-27 GM Global Technology Operations LLC Battery and supercapacitor system of a vehicle
CN110391093A (en) * 2018-04-17 2019-10-29 福建新峰二维材料科技有限公司 A kind of potassium base battery supercapacitor mixing arrangement and preparation method thereof
CN109786841A (en) * 2018-12-13 2019-05-21 中国科学院电工研究所 A kind of preparation method of lithium ion electrochemical energy storage device
CN109786841B (en) * 2018-12-13 2020-12-15 中国科学院电工研究所 A kind of preparation method of lithium ion electrochemical energy storage device
CN111916842A (en) * 2020-06-30 2020-11-10 珠海冠宇电池股份有限公司 Three-lug laminated composite battery
CN112103554A (en) * 2020-08-06 2020-12-18 双登集团股份有限公司 Three-electrode repairable lithium ion battery
CN112034020A (en) * 2020-08-19 2020-12-04 国联汽车动力电池研究院有限责任公司 A kind of method and device for measuring the amount of pre-inserted lithium in negative electrode of lithium ion battery
CN113078367A (en) * 2021-03-29 2021-07-06 中南大学 Manufacturing method of high-energy-density flexible package lithium ion battery
CN113078367B (en) * 2021-03-29 2023-10-20 中南大学 Manufacturing method of high-energy-density flexible package lithium ion battery
CN113640362A (en) * 2021-07-15 2021-11-12 清华大学 Reference electrode implantation method and three-electrode battery
CN113640362B (en) * 2021-07-15 2022-05-06 清华大学 Reference electrode implantation method and three-electrode battery
CN114156094A (en) * 2021-11-09 2022-03-08 同济大学 Lithium ion capacitor cathode formation process
CN113764753A (en) * 2021-11-10 2021-12-07 浙江浙能技术研究院有限公司 Negative electrode lithium supplementing method and manufacturing method of lithium ion energy storage device
CN114824594A (en) * 2022-05-31 2022-07-29 合肥国轩高科动力能源有限公司 Composite aluminum-plastic film and pre-lithiation method

Also Published As

Publication number Publication date
CN104008893B (en) 2016-10-19

Similar Documents

Publication Publication Date Title
CN104008893B (en) Preparation method of lithium-ion hybrid capacitor and lithium-ion hybrid capacitor
KR101583120B1 (en) Process for production of battery electrode
RU2631239C2 (en) Method of producing a layer of active material of positive electrode for lithium-ion battery and layer of active material of positive electrode for lithium-ion accumulator
CN103904291B (en) Aquo-lithium ion battery electrode and preparation method thereof, aquo-lithium ion battery
WO2011103705A1 (en) Manufacturing method for long-lived negative electrode and capacitor battery adopting the same
CN105161309B (en) Lithium ion hybrid capacitors
JP5365107B2 (en) Method for producing electrode for electrochemical device
JP2013149403A (en) Lithium ion secondary battery negative electrode, lithium ion secondary battery electrode using the same, and manufacturing method thereof
CN111799470B (en) Positive pole piece and sodium ion battery
JP2011003795A (en) Electrode collector and method of manufacturing the same, electrode, and storage element
WO2018059180A1 (en) High-power, high-energy chemical power supply and preparation method therefor
WO2022120826A1 (en) Electrochemical device and electronic apparatus
CN107248451A (en) A kind of lithium-ion capacitor of high-energy-density
CN109786841B (en) A kind of preparation method of lithium ion electrochemical energy storage device
CN115472777A (en) Negative pole piece, secondary battery and electric equipment
CN105761944B (en) A kind of hybrid super capacitor anode composite piece and preparation method thereof, hybrid super capacitor
CN115036444A (en) A kind of pre-lithiated, pre-sodiumized composite negative electrode material and its preparation method and application
CN108878770A (en) Battery cell and secondary battery comprising same
CN111710900A (en) Graphene-based lithium iron phosphate anode-silica composite cathode low-temperature high-magnification high-energy-density lithium ion battery
CN114743803B (en) High-voltage hybrid lithium ion supercapacitor and preparation method thereof
CN108428563B (en) A lithium ion battery capacitor
CN110600285A (en) Lithium separation-free pre-lithium intercalation method for cathode of lithium ion electrochemical energy storage device
WO2025061200A1 (en) Negative electrode sheet, lithium-ion battery and electric device
WO2025020845A1 (en) Secondary battery and electronic apparatus
CN109817467B (en) Composite cathode material and preparation method thereof, and chemical power supply and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant