CN104007453A - Frequency domain and space domain joint anti-interference method aided by probability search - Google Patents
Frequency domain and space domain joint anti-interference method aided by probability search Download PDFInfo
- Publication number
- CN104007453A CN104007453A CN201410190833.9A CN201410190833A CN104007453A CN 104007453 A CN104007453 A CN 104007453A CN 201410190833 A CN201410190833 A CN 201410190833A CN 104007453 A CN104007453 A CN 104007453A
- Authority
- CN
- China
- Prior art keywords
- signal
- processing
- interference
- domain
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000012545 processing Methods 0.000 claims abstract description 52
- 238000001914 filtration Methods 0.000 claims abstract description 35
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 25
- 230000003044 adaptive effect Effects 0.000 claims abstract description 9
- 238000007781 pre-processing Methods 0.000 claims abstract description 7
- 230000003111 delayed effect Effects 0.000 claims abstract description 3
- 230000003595 spectral effect Effects 0.000 claims description 14
- 230000009466 transformation Effects 0.000 claims description 14
- 238000001228 spectrum Methods 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 2
- 238000009499 grossing Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000001629 suppression Effects 0.000 description 3
- 241000712899 Lymphocytic choriomeningitis mammarenavirus Species 0.000 description 1
- 238000012896 Statistical algorithm Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/21—Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Noise Elimination (AREA)
Abstract
本发明公开了一种概率搜索辅助的频域空域联合抗干扰方法,按照以下步骤实施:步骤1、信号预处理,最后各自分为I路及Q路信号进行输出;步骤2、频域处理,对步骤1最后输出的I路及Q路信号分为两个支路分别进行处理,然后将延迟后的信号与得到的信号通过加法器进行合成;步骤3、空域处理,对步骤2最后合成的输出信号进行空域功率倒置自适应滤波,对信号中的宽带干扰进行抑制,得到最终的输出信号。本发明方法解决了频域空域联合抗干扰时,窄带干扰淹没在宽带干扰而使抗干扰算法降低性能或者失灵的问题,扩大了频域空域联合抗干扰算法的适用范围。
The invention discloses a probability search assisted joint anti-jamming method in the frequency domain and air domain, which is implemented according to the following steps: step 1, signal preprocessing, and finally divide them into I-channel and Q-channel signals for output; step 2, frequency domain processing, The I-channel and Q-channel signals finally output in step 1 are divided into two branches for processing respectively, and then the delayed signal and the obtained signal are synthesized by an adder; step 3, spatial processing, and the final synthesized signal in step 2 The output signal is subjected to spatial power inversion adaptive filtering, and the broadband interference in the signal is suppressed to obtain the final output signal. The method of the invention solves the problem that the performance of the anti-jamming algorithm is reduced or fails when the narrowband interference is submerged in the wide-band interference when the frequency-domain and air-space joint anti-jamming algorithm is used, and the applicable range of the frequency-domain and air-space joint anti-jamming algorithm is expanded.
Description
技术领域technical field
本发明属于全球导航卫星系统抗干扰技术领域,涉及一种概率搜索辅助的频域空域联合抗干扰方法。The invention belongs to the technical field of anti-jamming of global navigation satellite systems, and relates to a joint anti-jamming method of frequency domain and air domain aided by probability search.
背景技术Background technique
随着全球导航卫星系统(Global Navigation Satellite System,简称GNSS)技术的日渐成熟,不管在军事领域还是民用领域GNSS均表现出其无可比拟的重要性,GNSS技术的研究发展与应用受到越来越多人的关注。但是导航卫星的信号功率低,很容易受到各种有意无意的干扰影响,特别是在战时会受到强干扰压制,而不能正常工作。With the maturity of the Global Navigation Satellite System (GNSS) technology, GNSS has shown its incomparable importance in both the military and civilian fields, and the research, development and application of GNSS technology are increasingly Many people's attention. However, the signal power of navigation satellites is low, and they are easily affected by various intentional or unintentional interferences. Especially in wartime, they will be suppressed by strong interference and cannot work normally.
现有技术中,在复杂电磁环境时,窄带干扰与宽带干扰并存的情况下,通常采用空域滤波、空时联合(STAP)、频域级联空域等算法进行抗干扰处理。单纯的空域滤波算法虽然能够同时滤除窄带干扰和宽带干扰,但窄带干扰将降低阵列天线自由度,减小抗干扰数目。空时联合的算法复杂,计算量过大,对硬件要求高。频域级联空域先用频域滤波技术滤除窄带干扰,再经过空域滤波滤除更多的干扰,但当窄带与宽带干扰共存,且窄带干扰功率低于宽带干扰时,进行频域滤波检测不出窄带干扰位置,会导致普通频域级联空域抗干扰算法失效。因此,现有的技术各有优缺点,还需要研制新的导航卫星抗干扰方法。In the prior art, in a complex electromagnetic environment where narrowband interference and broadband interference coexist, algorithms such as spatial filtering, space-time joint (STAP), and frequency-domain concatenated airspace are usually used for anti-interference processing. Although the pure spatial filtering algorithm can filter out narrowband interference and broadband interference at the same time, narrowband interference will reduce the degree of freedom of the array antenna and reduce the number of anti-interference. The algorithm of space-time combination is complicated, the calculation amount is too large, and the hardware requirement is high. Frequency domain cascaded air domain first uses frequency domain filtering technology to filter out narrowband interference, and then filters out more interference through air domain filtering, but when narrowband and broadband interference coexist, and the narrowband interference power is lower than broadband interference, frequency domain filtering detection is performed If the location of the narrowband interference is not found, the common frequency domain cascaded air domain anti-jamming algorithm will fail. Therefore, the existing technologies have their own advantages and disadvantages, and it is necessary to develop new anti-jamming methods for navigation satellites.
发明内容Contents of the invention
本发明的目的是提供一种概率搜索辅助的频域空域联合抗干扰方法,解决了现有技术在干扰信号情况中,窄带干扰和宽带干扰并存,尤其是窄带干扰的中心频率落在宽带干扰带宽中,并功率低于宽带干扰,导致系统性能明显下降或不能正常工作的问题。The purpose of the present invention is to provide a probability search assisted joint anti-jamming method in the frequency domain and space domain, which solves the problem of coexistence of narrowband interference and broadband interference in the case of interference signals in the prior art, especially that the center frequency of narrowband interference falls within the bandwidth of broadband interference Medium, and the power is lower than the broadband interference, resulting in obvious system performance degradation or malfunction.
本发明所采用的技术方案是,一种概率搜索辅助的频域空域联合抗干扰方法,按照以下步骤实施:The technical solution adopted in the present invention is a frequency-domain-space-domain joint anti-jamming method assisted by probability search, which is implemented according to the following steps:
步骤1、信号预处理;Step 1, signal preprocessing;
步骤2、频域处理;Step 2, frequency domain processing;
步骤3、空域处理。Step 3, airspace processing.
本发明的有益效果是:对被干扰的GNSS信号经过射频前端处理得到的中频信号进行A/D采集、数字下变频、滤波、插值,然后采用重叠加窗FFT的频域滤波抑制窄带干扰,最后将信号再通过空域自适应滤波模块进行宽带干扰滤除,完成滤除干扰信号的目的。上述的进行重叠加窗FFT的频域压制技术抑制窄带干扰时,由于窄带干扰可能在一段时间中淹没在宽带干扰中,在FFT变换后找不到窄带干扰峰值,应用概率统计算法,窄带干扰很容易被检测出来进行有效滤除,还可根据要求采用实时性较好的统计算法。对于空域滤波模块采用快速自适应滤波算法进行功率倒置滤波,大大提高系统的动态性能。该算法提高了频域空域联合抗干扰算法的稳定性、实时性,扩大了频域空域联合抗干扰算法的适用范围提高了系统的抗干扰能力。The beneficial effects of the present invention are: A/D acquisition, digital down-conversion, filtering, and interpolation are performed on the intermediate frequency signal obtained by the RF front-end processing of the interfered GNSS signal, and then the frequency domain filtering of overlapping and windowed FFT is used to suppress narrow-band interference, and finally The signal is then passed through the airspace adaptive filtering module for broadband interference filtering to complete the purpose of filtering out interference signals. When the above-mentioned frequency-domain suppression technology of overlapping and windowing FFT suppresses narrow-band interference, since the narrow-band interference may be submerged in the broadband interference for a period of time, the peak value of the narrow-band interference cannot be found after the FFT transform. It is easy to be detected and effectively filtered out, and a statistical algorithm with good real-time performance can also be used according to requirements. For the spatial filtering module, a fast adaptive filtering algorithm is used for power inversion filtering, which greatly improves the dynamic performance of the system. This algorithm improves the stability and real-time performance of the frequency-domain-space-domain joint anti-jamming algorithm, expands the applicable range of the frequency-space-space joint anti-jamming algorithm, and improves the system's anti-jamming ability.
附图说明Description of drawings
图1是本发明方法所依赖的系统框图;Fig. 1 is the system block diagram that the inventive method depends on;
图2是本发明方法中的信号预处理部分的原理框图;Fig. 2 is the functional block diagram of the signal preprocessing part in the inventive method;
图3是本发明方法中的频域滤波部分的原理框图;Fig. 3 is the functional block diagram of the frequency domain filtering part in the method of the present invention;
图4是本发明方法中的空域滤波部分的原理框图。Fig. 4 is a functional block diagram of the spatial filtering part in the method of the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明进行详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
参照图1,是本发明概率搜索辅助的频域空域联合抗干扰方法,所依赖的系统的三部分,即信号预处理部分、频域滤波部分和空域滤波部分,其中,Referring to Fig. 1, it is the frequency-domain-space-domain joint anti-jamming method assisted by the probability search of the present invention, which relies on three parts of the system, namely the signal preprocessing part, the frequency domain filtering part and the spatial domain filtering part, wherein,
信号预处理部分的结构是,包括多路射频前端、A/D数据采集器,每一路A/D数据采集器与数字下变频器、低通滤波器及抽取器依次连接;The structure of the signal preprocessing part is, including multi-channel RF front-end, A/D data collector, each A/D data collector is connected with digital down-converter, low-pass filter and decimator in sequence;
频域滤波部分的结构是,包括两条支路,其中一条支路是,包括加窗器、FFT处理模块、阈值生成及谱线处理模块、IFFT处理模块、50%延迟处理模块依次连接而成;另一条支路是,包括50%延迟处理模块、加窗器、FFT处理模块、阈值生成及谱线处理模块、IFFT处理模块依次连接而成,两条支路的I、Q两路最后同时与加法器连接,对应相加后的输出信号用于下一步的空域滤波。The structure of the frequency domain filtering part is that it includes two branches, one of which is composed of a window adder, an FFT processing module, a threshold generation and spectral line processing module, an IFFT processing module, and a 50% delay processing module connected in sequence ; The other branch is composed of 50% delay processing module, window adder, FFT processing module, threshold generation and spectral line processing module, and IFFT processing module connected in sequence, and the I and Q two paths of the two branches are finally simultaneously It is connected with the adder, and the output signal corresponding to the addition is used for the next step of spatial filtering.
加窗器(Blackman窗)采用了旁瓣抑制效果较好的Blackman窗函数实施,显著减小信号频谱的泄露;概率统计则根据每帧中最大值出现位置的统计值与设定门限进行比较,大于门限则为单频干扰,进行处理;The windowing device (Blackman window) adopts the Blackman window function with better sidelobe suppression effect to significantly reduce the leakage of the signal spectrum; the probability statistics are compared with the set threshold according to the statistical value of the position of the maximum value in each frame, If it is greater than the threshold, it is single-frequency interference, and it will be processed;
空域滤波部分的结构是,由滤波器结构和自适应滤波算法两部分组成,自适应滤波算法即为本发明创新的梯度变步长最小均方算法(简称GVSS-NLMS)。The structure of the spatial filtering part is composed of a filter structure and an adaptive filtering algorithm. The adaptive filtering algorithm is the innovative gradient variable step size least mean square algorithm (GVSS-NLMS for short) of the present invention.
本发明概率搜索辅助的频域空域联合抗干扰方法,依赖于上述的结构及原理,按照以下步骤实施:The joint anti-jamming method in the frequency domain and air domain assisted by the probability search of the present invention relies on the above-mentioned structure and principle, and is implemented according to the following steps:
步骤1、信号预处理Step 1. Signal preprocessing
参照图2,对射频前端处理后得到的中频信号进行A/D数据采集,将采集到的数据信号进行数字下变频的处理;再将数字下变频处理后得到的I路及Q路信号同时进行低通滤波,然后同时进行抽取处理,最后各自分为I路及Q路信号进行输出,用于后续处理;Referring to Figure 2, A/D data acquisition is performed on the intermediate frequency signal obtained after the RF front-end processing, and digital down-conversion processing is performed on the collected data signal; Low-pass filtering, and then extraction processing at the same time, and finally divided into I-channel and Q-channel signals for output for subsequent processing;
步骤2、频域处理Step 2, frequency domain processing
参照图3,频域滤波处理的具体步骤是:对步骤1最后输出的I路及Q路信号分为两个支路分别进行处理,With reference to Fig. 3, the specific steps of frequency domain filter processing are: divide the I road and Q road signal of step 1 last output into two branches and process respectively,
一个支路是:2.11)I路及Q路信号进行加窗处理,窗函数的引入使得后续的快速傅里叶变换(FFT变换)得到的截断序列边界变得平滑,因此能够减轻后续FFT的能量泄露;One branch is: 2.11) The I-channel and Q-channel signals are windowed. The introduction of the window function makes the boundary of the truncated sequence obtained by the subsequent fast Fourier transform (FFT transform) smooth, so it can reduce the energy of the subsequent FFT Give way;
2.12)对步骤1输出的信号进行FFT变换,输出信号频谱;2.12) Carry out FFT transformation to the signal output in step 1, output signal spectrum;
2.13)对信号频谱数据进行概率统计处理,检测出频谱中的窄带干扰,比较窄带干扰与宽带干扰最大值的比值,根据最大值出现的位置是否相同,相同则统计次数n加1,不同则统计次数n减1;2.13) Probabilistic statistical processing is performed on the signal spectrum data to detect the narrowband interference in the spectrum, compare the ratio of the maximum value of the narrowband interference to the wideband interference, and according to whether the position of the maximum value is the same, if the same, add 1 to the number of statistics n, and if it is different, count Number of times n minus 1;
设定一个上限Nmax和一个下限Nmin,如果统计次数超出上限或低于下限则n保持不变;设定2个门限α和β,n大于α(β<α<Nmax)说明有一个单频干扰,进行置零处理;如果n小于β(β>Nmin)则认为没有单频干扰,需要多次试验得到生成合适的阈值;Set an upper limit N max and a lower limit N min , if the number of statistics exceeds the upper limit or is lower than the lower limit, n remains unchanged; set two thresholds α and β, n is greater than α (β<α<N max ) indicating that there is a For single-frequency interference, perform zero-setting processing; if n is less than β (β>N min ), it is considered that there is no single-frequency interference, and multiple trials are required to obtain a suitable threshold;
2.14)根据生成的阈值,对频谱数据进行谱线处理;2.14) Perform spectral line processing on the spectral data according to the generated threshold;
2.15)对谱线处理后的数据信号进行IFFT变换(逆FFT变换),将频域处理后的信号进行IFFT变换为时域信号;2.15) performing IFFT transformation (inverse FFT transformation) on the data signal after spectral line processing, and performing IFFT transformation on the signal after frequency domain processing into a time domain signal;
2.16)再对时域信号进行50%延迟处理;2.16) Perform 50% delay processing on the time domain signal;
另一个支路是:Another branch is:
2.21)对步骤1输出的信号进行50%延迟;2.21) Delay the signal output by step 1 by 50%;
2.22)对I路及Q路信号进行加窗处理,该窗函数的引入使得快速傅里叶变换(FFT变换)得到的截断序列边界变得平滑,因此能够减轻后续FFT的能量泄露,2.22) Windowing is performed on the I-channel and Q-channel signals. The introduction of the window function makes the boundary of the truncated sequence obtained by the fast Fourier transform (FFT transform) smooth, so the energy leakage of the subsequent FFT can be reduced.
2.23)进行FFT变换,输出加窗后信号频谱;2.23) Carry out FFT transformation, and output the signal spectrum after windowing;
2.24)对信号频谱数据进行概率统计处理,检测出频谱中的窄带干扰,比较窄带干扰与宽带干扰最大值的比值,根据最大值出现的位置是否相同,相同则统计次数n加1,不同则统计次数n减1;2.24) Probabilistic statistical processing is performed on the signal spectrum data to detect the narrowband interference in the spectrum, compare the ratio of the maximum value of the narrowband interference to the wideband interference, and according to whether the position of the maximum value is the same, if the same, add 1 to the number of statistics n, and if it is different, count Number of times n minus 1;
设定一个上限Nmax和一个下限Nmin,如果统计次数超出上限或低于下限则n保持不变;设定2个门限α和β,n大于α(β<α<Nmax)说明有一个单频干扰,进行置零处理;如果n小于β(β>Nmin)则认为没有单频干扰,需要多次试验得到生成合适的阈值;Set an upper limit N max and a lower limit N min , if the number of statistics exceeds the upper limit or is lower than the lower limit, n remains unchanged; set two thresholds α and β, n is greater than α (β<α<N max ) indicating that there is a For single-frequency interference, perform zero-setting processing; if n is less than β (β>N min ), it is considered that there is no single-frequency interference, and multiple trials are required to obtain a suitable threshold;
2.25)根据生成的阈值,对频谱数据进行谱线处理;2.25) Perform spectral line processing on the spectral data according to the generated threshold;
2.26)对谱线处理后的数据进行IFFT变换(逆FFT变换),将频域处理后的信号进行IFFT变换为时域信号;2.26) Perform IFFT transformation (inverse FFT transformation) on the data after spectral line processing, and perform IFFT transformation on the signal after frequency domain processing into time domain signal;
2.27)将步骤2.16)延迟后的信号与步骤2.26)得到的信号通过加法器进行合成;2.27) Synthesizing the delayed signal in step 2.16) with the signal obtained in step 2.26) through an adder;
步骤3、空域滤波处理Step 3. Spatial filtering processing
参照图4,对步骤2最后合成的输出信号进行空域功率倒置自适应滤波,对信号中的宽带干扰进行抑制,得到最终的输出信号,Referring to Figure 4, the spatial power inversion adaptive filtering is performed on the output signal synthesized at the end of step 2, and the broadband interference in the signal is suppressed to obtain the final output signal,
基于GVSS-LMS算法的功率倒置自适应滤波算法权值的更新公式是:The update formula of the weight of the power inversion adaptive filtering algorithm based on the GVSS-LMS algorithm is:
其中X(n)为输入信号矢量,XT(n)为输入信号矢量的转置,W(n)为权矢量,μ(n)为可变步长,s0为约束矢量,W(0)s0=1为保证空域滤波第一路输出不为零,β是平滑参数常量(趋近于1),γ为大于零的常数,g(n)为平滑梯度向量,I为单位矩阵。Where X(n) is the input signal vector, X T (n) is the transpose of the input signal vector, W(n) is the weight vector, μ(n) is the variable step size, s 0 is the constraint vector, W(0 )s 0 =1 is to ensure that the first output of spatial filtering is not zero, β is a smooth parameter constant (close to 1), γ is a constant greater than zero, g(n) is a smooth gradient vector, and I is an identity matrix.
本发明概率搜索辅助的频域空域联合抗干扰方法,其工作原理是:The joint anti-jamming method in frequency domain and air domain assisted by probability search of the present invention, its working principle is:
将时域信号映射到频域去进行干扰抑制的处理方法,会使信号的频率特性能够表现得更加突出,从而获得更好的处理效果。由于窄带干扰和宽带干扰并存且窄带干扰功率低于宽带干扰时,频域滤波FFT后检测不到或者检测不准确窄带干扰的频点。使用概率统计辅助的方法对窄带干扰进行检测将能量均值与窄带干扰的最大值进行比较,能够有效检测出窄带干扰位置并将其滤除,最后再经过IFFT将处理后的信号变换到时域进行空域滤波。空域滤波用基于线性约束的最小均方(LCMV)的功率倒置算法进行算法迭代,以功率最小输出为目的。功率倒置所用的GVSS-NLMS算法利用一个一阶滤波器对梯度向量进行平滑以减小噪声影响,采用与平滑后的梯度向量来更新步长,能够实时有效的估计出系数误差的均方范数最小化的最优步长,提高收敛速度,实现了在不降低稳态误差的前提下的快速收敛,相比现有的变步长LMS算法具有更快的收敛速度,大大增强了实时性。The processing method of mapping the time-domain signal to the frequency domain for interference suppression will make the frequency characteristics of the signal more prominent, thereby obtaining better processing effects. Since narrowband interference and broadband interference coexist and the power of narrowband interference is lower than that of broadband interference, the frequency point of narrowband interference cannot be detected or detected inaccurately after frequency domain filtering FFT. Use the method assisted by probability and statistics to detect narrowband interference. Comparing the energy mean value with the maximum value of narrowband interference can effectively detect the location of narrowband interference and filter it out. Finally, the processed signal is transformed into the time domain by IFFT for further analysis. Spatial filtering. Spatial filtering uses a power inversion algorithm based on linearly constrained least mean square (LCMV) for algorithm iteration, aiming at the minimum power output. The GVSS-NLMS algorithm used in power inversion uses a first-order filter to smooth the gradient vector to reduce the impact of noise, and uses the smoothed gradient vector to update the step size, which can effectively estimate the mean square norm of the coefficient error in real time The minimized optimal step size improves the convergence speed and achieves rapid convergence without reducing the steady-state error. Compared with the existing variable step size LMS algorithm, it has a faster convergence speed and greatly enhances real-time performance.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410190833.9A CN104007453B (en) | 2014-05-07 | 2014-05-07 | The frequency domain spatial domain associating anti-interference method of probabilistic search auxiliary |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410190833.9A CN104007453B (en) | 2014-05-07 | 2014-05-07 | The frequency domain spatial domain associating anti-interference method of probabilistic search auxiliary |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104007453A true CN104007453A (en) | 2014-08-27 |
CN104007453B CN104007453B (en) | 2016-12-07 |
Family
ID=51368197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410190833.9A Expired - Fee Related CN104007453B (en) | 2014-05-07 | 2014-05-07 | The frequency domain spatial domain associating anti-interference method of probabilistic search auxiliary |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104007453B (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104360354A (en) * | 2014-12-05 | 2015-02-18 | 北京北斗星通导航技术股份有限公司 | Space-frequency anti-interference processing method and space-frequency anti-interference processing device |
CN104393883A (en) * | 2014-11-01 | 2015-03-04 | 中国民航大学 | ADS-B (Automatic Dependent Surveillance-Broadcast) blanket jamming suppression method based on improved power inversion method |
CN105375938A (en) * | 2014-10-16 | 2016-03-02 | 航天恒星科技有限公司 | Signal processing method based on inertial navigation auxiliary space frequency, apparatus and receiver |
CN105572695A (en) * | 2014-11-07 | 2016-05-11 | 航天恒星科技有限公司 | Anti-interference method and system |
CN107121685A (en) * | 2017-06-08 | 2017-09-01 | 南京理工大学 | A kind of miniature spaceborne high-dynamic GNSS receiver and its air navigation aid |
CN107589430A (en) * | 2017-09-07 | 2018-01-16 | 中国民航大学 | ADS B pressing type disturbance restraining methods based on minimum dispersion method |
CN107689814A (en) * | 2016-08-03 | 2018-02-13 | 北京遥感设备研究所 | A kind of MSK band spread receivers narrow-band interference rejection method |
CN109541646A (en) * | 2018-12-27 | 2019-03-29 | 中国电子科技集团公司第二十研究所 | A kind of large gain satellite navigation aerial anti-interference processing method |
CN110504988A (en) * | 2019-04-22 | 2019-11-26 | 长沙翼盾电子科技有限公司 | A kind of anti-narrowband interference method that time-frequency domain combines |
CN111812682A (en) * | 2020-07-24 | 2020-10-23 | 华力智芯(成都)集成电路有限公司 | Narrow-band interference resistant circuit |
CN113721273A (en) * | 2021-07-27 | 2021-11-30 | 四创电子股份有限公司 | Double-antenna Beidou portable monitoring terminal device |
CN115656940A (en) * | 2022-11-23 | 2023-01-31 | 中国人民解放军空军预警学院 | Space-frequency domain narrow-band composite interference resisting method and system |
CN117560259A (en) * | 2023-11-14 | 2024-02-13 | 成都玖锦科技有限公司 | MSK and 2FSK signal identification method and system based on bandwidth estimation |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101561490A (en) * | 2009-06-01 | 2009-10-21 | 中国民航大学 | Blind self-adaptive GPS interference suppression method based on codeword structure |
CN101718873A (en) * | 2009-11-13 | 2010-06-02 | 西安电子科技大学 | Homing signal space-time anti-interference digital signal processor |
CN101799551A (en) * | 2010-02-08 | 2010-08-11 | 中国民航大学 | Inhibition method of space-time blind self-adaptive GPS (Global Positioning System) interference based on despreading and respreading technology |
CN101986634A (en) * | 2010-09-26 | 2011-03-16 | 北京大学 | Time-frequency expanding anti-jamming method, equipment and system based on lapped transformation algorithm |
CN102207549A (en) * | 2010-05-05 | 2011-10-05 | 北京泰豪联星技术有限公司 | Integrated anti-interference satellite navigation receiving system and anti-interference processing method thereof |
CN102645659A (en) * | 2012-04-18 | 2012-08-22 | 西安理工大学 | A Frequency Domain Filtering Algorithm Based on Frequency Statistics |
-
2014
- 2014-05-07 CN CN201410190833.9A patent/CN104007453B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101561490A (en) * | 2009-06-01 | 2009-10-21 | 中国民航大学 | Blind self-adaptive GPS interference suppression method based on codeword structure |
CN101718873A (en) * | 2009-11-13 | 2010-06-02 | 西安电子科技大学 | Homing signal space-time anti-interference digital signal processor |
CN101799551A (en) * | 2010-02-08 | 2010-08-11 | 中国民航大学 | Inhibition method of space-time blind self-adaptive GPS (Global Positioning System) interference based on despreading and respreading technology |
CN102207549A (en) * | 2010-05-05 | 2011-10-05 | 北京泰豪联星技术有限公司 | Integrated anti-interference satellite navigation receiving system and anti-interference processing method thereof |
CN101986634A (en) * | 2010-09-26 | 2011-03-16 | 北京大学 | Time-frequency expanding anti-jamming method, equipment and system based on lapped transformation algorithm |
CN102645659A (en) * | 2012-04-18 | 2012-08-22 | 西安理工大学 | A Frequency Domain Filtering Algorithm Based on Frequency Statistics |
Non-Patent Citations (2)
Title |
---|
张彪: "自适应阵列在直扩接收机中的抗干扰研究", 《中国优秀硕士学位论文全文数据库》, 15 April 2013 (2013-04-15), pages 15 - 17 * |
张晓明: "GNSS抗干扰阵列天线的设计与实现", 《中国优秀硕士学位论文全文数据库》, 15 January 2012 (2012-01-15) * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105375938A (en) * | 2014-10-16 | 2016-03-02 | 航天恒星科技有限公司 | Signal processing method based on inertial navigation auxiliary space frequency, apparatus and receiver |
CN104393883A (en) * | 2014-11-01 | 2015-03-04 | 中国民航大学 | ADS-B (Automatic Dependent Surveillance-Broadcast) blanket jamming suppression method based on improved power inversion method |
CN104393883B (en) * | 2014-11-01 | 2017-03-15 | 中国民航大学 | ADS B pressing type disturbance restraining methods based on improved power inversion method |
CN105572695A (en) * | 2014-11-07 | 2016-05-11 | 航天恒星科技有限公司 | Anti-interference method and system |
CN104360354A (en) * | 2014-12-05 | 2015-02-18 | 北京北斗星通导航技术股份有限公司 | Space-frequency anti-interference processing method and space-frequency anti-interference processing device |
CN107689814A (en) * | 2016-08-03 | 2018-02-13 | 北京遥感设备研究所 | A kind of MSK band spread receivers narrow-band interference rejection method |
CN107121685A (en) * | 2017-06-08 | 2017-09-01 | 南京理工大学 | A kind of miniature spaceborne high-dynamic GNSS receiver and its air navigation aid |
CN107589430A (en) * | 2017-09-07 | 2018-01-16 | 中国民航大学 | ADS B pressing type disturbance restraining methods based on minimum dispersion method |
CN109541646A (en) * | 2018-12-27 | 2019-03-29 | 中国电子科技集团公司第二十研究所 | A kind of large gain satellite navigation aerial anti-interference processing method |
CN110504988A (en) * | 2019-04-22 | 2019-11-26 | 长沙翼盾电子科技有限公司 | A kind of anti-narrowband interference method that time-frequency domain combines |
CN111812682A (en) * | 2020-07-24 | 2020-10-23 | 华力智芯(成都)集成电路有限公司 | Narrow-band interference resistant circuit |
CN113721273A (en) * | 2021-07-27 | 2021-11-30 | 四创电子股份有限公司 | Double-antenna Beidou portable monitoring terminal device |
CN115656940A (en) * | 2022-11-23 | 2023-01-31 | 中国人民解放军空军预警学院 | Space-frequency domain narrow-band composite interference resisting method and system |
CN117560259A (en) * | 2023-11-14 | 2024-02-13 | 成都玖锦科技有限公司 | MSK and 2FSK signal identification method and system based on bandwidth estimation |
Also Published As
Publication number | Publication date |
---|---|
CN104007453B (en) | 2016-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104007453B (en) | The frequency domain spatial domain associating anti-interference method of probabilistic search auxiliary | |
CN102664657B (en) | Method for self-adaption mid-value threshold frequency domain anti-jamming | |
CN101527698B (en) | Non-stationary interference suppression method based on Hilbert-Huang transformation and adaptive notch | |
CN107153178B (en) | Target detection method for external radiation source radar reference signal with multipath interference | |
CN102645659B (en) | A Frequency Domain Filtering Algorithm Based on Frequency Statistics | |
CN103064090A (en) | Anti-interference method | |
CN104360355B (en) | Anti-interference method and device | |
CN110320535A (en) | A kind of more disturbance restraining methods of satellite navigation receiver based on wavelet package transforms and spatial processing | |
CN103728594A (en) | External radiation source radar sea clutter interference suppression method based on multi-channel NLMS | |
CN104076369B (en) | Solution in frequency domain method and device based on adaptive threshold judgement | |
CN105572473B (en) | High-resolution linear Time-Frequency Analysis Method | |
CN102736069A (en) | Direct wave interference suppression method | |
CN114624736A (en) | An anti-jamming method for Beidou time synchronization receiver | |
CN103763229A (en) | CDMA communication anti-interference system based on frequency domain filtering | |
CN102508264B (en) | Method for inhibiting pulse interference of satellite navigation system | |
CN106501819B (en) | Interfere implementation method in the anti-narrowband of satellite receiver based on FPGA | |
CN107689814A (en) | A kind of MSK band spread receivers narrow-band interference rejection method | |
CN104880714B (en) | GNSS antenna array anti-interference method based on two-stage filtering structure | |
CN105572695A (en) | Anti-interference method and system | |
CN103078661A (en) | An Interference Suppression Method for Spread Spectrum System Based on Iterative Threshold | |
CN105429720A (en) | Correlation Delay Estimation Method Based on EMD Reconstruction | |
CN108551351A (en) | Method and device for suppressing narrow-band interference | |
Li et al. | Noisy speech enhancement based on discrete sine transform | |
Zhang et al. | Transform domain interference suppression in GPS/BD-2 receiver based on fractional Fourier transforms | |
CN107255809B (en) | A Blocker Array Beamforming Method Based on Broadband Focusing Matrix |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20161207 |