CN104004944A - 一种纳米颗粒改性铝锂合金材料及其制备方法 - Google Patents
一种纳米颗粒改性铝锂合金材料及其制备方法 Download PDFInfo
- Publication number
- CN104004944A CN104004944A CN201410265449.0A CN201410265449A CN104004944A CN 104004944 A CN104004944 A CN 104004944A CN 201410265449 A CN201410265449 A CN 201410265449A CN 104004944 A CN104004944 A CN 104004944A
- Authority
- CN
- China
- Prior art keywords
- silicon carbide
- alloy
- alloy material
- melting
- nano silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 43
- 239000001989 lithium alloy Substances 0.000 title abstract description 12
- 239000002105 nanoparticle Substances 0.000 title abstract description 10
- 238000004519 manufacturing process Methods 0.000 title abstract description 8
- FCVHBUFELUXTLR-UHFFFAOYSA-N [Li].[AlH3] Chemical class [Li].[AlH3] FCVHBUFELUXTLR-UHFFFAOYSA-N 0.000 title abstract 5
- 239000000956 alloy Substances 0.000 claims abstract description 49
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 49
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 46
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 42
- 229910001148 Al-Li alloy Inorganic materials 0.000 claims abstract description 39
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 17
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052802 copper Inorganic materials 0.000 claims abstract description 12
- 239000010949 copper Substances 0.000 claims abstract description 12
- 239000001257 hydrogen Substances 0.000 claims abstract description 12
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 12
- 239000002245 particle Substances 0.000 claims abstract description 12
- 239000002994 raw material Substances 0.000 claims abstract description 9
- 238000002844 melting Methods 0.000 claims description 69
- 230000008018 melting Effects 0.000 claims description 69
- 239000005543 nano-size silicon particle Substances 0.000 claims description 47
- 239000008187 granular material Substances 0.000 claims description 44
- 239000007789 gas Substances 0.000 claims description 25
- 239000007788 liquid Substances 0.000 claims description 20
- 238000002360 preparation method Methods 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 14
- 239000004411 aluminium Substances 0.000 claims description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical group [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 8
- 238000004458 analytical method Methods 0.000 claims description 7
- 239000013078 crystal Substances 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 7
- 230000005484 gravity Effects 0.000 claims description 7
- 238000009413 insulation Methods 0.000 claims description 7
- 229910052786 argon Inorganic materials 0.000 claims description 5
- 238000004512 die casting Methods 0.000 claims description 2
- 230000002045 lasting effect Effects 0.000 claims description 2
- 238000005275 alloying Methods 0.000 abstract description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 abstract description 2
- 230000032683 aging Effects 0.000 abstract description 2
- 239000012535 impurity Substances 0.000 abstract description 2
- 239000011777 magnesium Substances 0.000 abstract description 2
- 229910052749 magnesium Inorganic materials 0.000 abstract description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 abstract 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 abstract 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 abstract 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 abstract 1
- 239000000155 melt Substances 0.000 abstract 1
- 238000010309 melting process Methods 0.000 abstract 1
- 229910052700 potassium Inorganic materials 0.000 abstract 1
- 239000011591 potassium Substances 0.000 abstract 1
- 229910052708 sodium Inorganic materials 0.000 abstract 1
- 239000011734 sodium Substances 0.000 abstract 1
- 229910000838 Al alloy Inorganic materials 0.000 description 10
- 238000005266 casting Methods 0.000 description 10
- 238000003801 milling Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- 230000035882 stress Effects 0.000 description 6
- 229910000733 Li alloy Inorganic materials 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 230000003466 anti-cipated effect Effects 0.000 description 5
- 238000001311 chemical methods and process Methods 0.000 description 5
- 238000005097 cold rolling Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000009833 condensation Methods 0.000 description 5
- 230000005494 condensation Effects 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 210000002615 epidermis Anatomy 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 5
- 238000005554 pickling Methods 0.000 description 5
- 238000000207 volumetry Methods 0.000 description 5
- 230000003628 erosive effect Effects 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
本发明涉及一种纳米颗粒改性铝锂合金材料及其制备方法。本发明铝锂合金棒由如下重量百分比的组分组成:锂2.0-3.5wt%,铜0.05-0.5wt%,纳米碳化硅颗粒:0.05-05wt%,余量为铝。向原料中添加纳米碳化硅(SiC)颗粒,从而不需要再经过相应的时效处理便能从分子的角度降低合金的各向异性,同时由于添加了纳米硅颗粒,合金材料的韧性和超塑性也进一步提高。优选地改进真空熔炼工艺,有效防止铝锂合金熔体吸氢,清除氢钠钾等杂质的同时减少熔体中锂、镁等易挥发的合金元素大量烧损,避免材料产生成份偏差。本发明的铝锂合金棒可广泛用于航空、航天、汽车、机械制造及船舶工业等方面。
Description
技术领域
本发明涉及一种铝锂合金材料及其制备方法,特别是涉及一种纳米颗粒改性铝锂合金材料及其制备方法。
背景技术
铝合金是工业中应用最广泛的一类有色金属结构材料,在航空、航天、汽车、机械制造、船舶及化学工业中已大量应用。在铝合金中加入金属元素锂(Li),铝锂合金具有低密度、高比强度和比刚度、优良的低温性能和耐腐蚀性以及良好的超塑性等优点,同时提高合金的弹性模量。研究表明,在铝合金中每添加1%的Li,可使合金密度降低3%,而弹性模量提高6%,因此,铝锂合金作为结构材料具有巨大的技术经济意义。随着航空航天工业的迅猛发展,铝锂合金作为一种低密度、高弹性模量、高比强度和高比刚度的合金,在航空航天领域显示出了广阔的应用前景。
铝锂合金在现代航天产品中可以用于制造承受轴向压缩在和和外部破坏应力结构(如液体运载火箭的贮箱、尾部、级间段、仪器舱和头部壳体、战术导弹各舱段)。目前,铝锂合金用作航天产品主要分为三类:一类是焊接承力构件,如贮箱、导弹壳锥等;另一类是铆接承力结构,如仪器舱、末段仓等;第三类是锻件、铸件、旋压件和超塑成形制品等。
1957年,英国研制成功了含锂1.1%的X-2020铝合金。这种合金用于美国舰载超音速攻击机的机翼和水平尾翼的蒙皮上,取代原设计中的铝合金后,RA-5C飞机的重量减轻6%。西欧于20世纪80年代推出了8090合金材料,其化学成分如表1所示。8090铝锂合金是目前应用相当成熟的高强型合金,具有密度低、弹性模量高、低温力学性能好等特点,它是航天产品选用的主要材料,但是存在塑性低、高各异性、热稳定性差等缺点。
表1
综上,目前需要一种不仅成本较低,而且具有低各异性,韧性和塑性能够进一步提高的铝锂合金材料。
发明内容
本发明的目的在于,通过改进合金成分,添加纳米碳化硅(SiC)颗粒并根据该合金的特点优化生产工艺,提供一种有效降低现有技术中铝锂合金的各向异性,同时提高合金材料的韧性和塑性,并且降低材料成本的纳米颗粒改性铝锂合金材料及其制备方法。
为实现上述发明目的,本发明所提供的技术方案是:
一种铝锂合金材料,由如下重量百分比的组分组成:锂2.0-3.5wt%,铜0.05-0.5wt%,纳米碳化硅颗粒:0.05-05wt%,余量为铝。
优选地一种铝锂合金材料,由如下重量百分比的组分组成:锂2.5-3.0wt%,铜0.1-0.3wt%,纳米碳化硅颗粒:0.1-0.3wt%,余量为铝。
优选地一种铝锂合金材料,由如下重量百分比的组分组成:锂2.75wt%,铜0.2wt%,纳米碳化硅颗粒:0.2wt%,余量为铝。
进一步地,其中,所述纳米碳化硅颗粒粒径大于等于500nm,小于等于800nm。
本发明提供一种铝锂合金材料的制备方法,具有以下步骤:
1)将原料按所述质量比混匀置于具有熔炼加热装置和纳米碳化硅颗粒添加装置的工频电炉中,打开机械泵,抽取炉内空气20分钟所述炉内气压达到5Pa;
2)开启所述熔炼加热装置,待温度达到310℃冲入惰性气体进行保护,炉内气压维持在30-35Pa,升温,温度控制在750℃持续3-3.5小时,熔炼为合金溶液;
3)开启所述纳米碳化硅颗粒添加装置,按纳米硅颗粒的质量百分比将所述纳米碳化硅颗粒熔入所述合金溶液;
4)开启所述工频电炉中的震动装置和倾斜运动装置,所述电炉前后倾斜运动30分钟,关闭所述震动装置和倾斜运动装置并保温1-1.5小时;
5)对熔炼完成的合金液体进行成分检测,进行晶向分析,确定晶粒组织在预定状态下;
6)将合金液体保温至700℃之后置于真空熔炼炉中再次熔炼,在700℃温度、500-2000Pa真空度的条件下,真空熔炼20分钟;
7)检测氢含量至小于等于质量分数1×10-7;
8)采用重力压铸的方式生产毛坯圆锭;
9)将所述完成的合金材料拉制成形、抛光处理。
进一步地,其中在步骤2)中,所述惰性气体为氩气。
进一步地,其中在步骤6)中,将所述真空熔炼炉中的真空度设置为1000Pa。
本发明还提供了上述铝锂合金棒在制备航天航空结构材料中的用途。
采用上述技术方案,本发明的有益效果有:
1、本发明提供了一种纳米颗粒改性铝锂合金材料及其制备方法,同时满足了对多用途材料的低各异性、超塑性、低密度、高比强度和比刚度、低温性能和耐腐蚀性、高强度、可焊接性和低成本的多种需要。
2、本发明在制备方法的改进中,向原料中添加纳米碳化硅(SiC)颗粒,从而不需要再经过相应的时效处理便能从分子的角度降低合金的各向异性,同时由于添加了纳米硅颗粒,合金材料的韧性和超塑性也进一步提高。
3、本发明通过改进真空熔炼工艺的制备方法,有效防止铝锂合金熔体吸氢,清除氢钠钾等杂质的同时减少熔体中锂、镁等易挥发的合金元素大量烧损,避免材料产生成份偏差,并且改进了熔炼的温度和时间。
4、本发明适当地提高锂的含量,提高了合金材料的可焊接性和低各异性并且降低了生产成本,同时调整了生产工艺,以挤压取代多次热处理或锻打的方式实现了材料质量的整体减小。
5、本发明的纳米颗粒改性铝锂合金材料由于具有较低的合金各向异性、较高合金塑韧性、较低的密度及较高的强度,是一种理想的结构材料,可广泛用于航空工业、运输机械、动力机械及等方面,比如飞机内部的连接架,高速动车车厢内部的连接杆等。
具体实施方式
实施例1 本发明的铝锂合金材料的制备
配料混合:将原料按质量含量比为:锂2.0wt%,铜0.5wt%,余量为铝,混匀置于具有熔炼加热装置和纳米碳化硅颗粒添加装置的工频电炉中,打开机械泵,抽取炉内空气20分钟所述炉内气压达到5Pa。
熔炼:开启所述熔炼加热装置,待温度达到310℃冲入惰性气体进行保护,炉内气压维持在30Pa,升温,温度控制在750℃持续3.5小时,熔炼为合金溶液。
添加纳米碳化硅颗粒:开启纳米碳化硅颗粒添加装置,添加质量含量为0.3wt%的纳米碳化硅颗粒,其中纳米碳化硅颗粒粒径大于等于500nm,小于等于800nm,将纳米碳化硅颗粒熔入所述合金溶液。同时开启工频电炉中的震动装置和倾斜运动装置,电炉前后倾斜运动30分钟,然后关闭震动装置和倾斜运动装置并保温1.5小时。
检测:对熔炼完成的合金液体进行成分检测,进行晶向分析,确定晶粒组织在预定状态下。
真空熔炼:将合金液体保温至700℃之后置于真空熔炼炉中再次熔炼,在700℃温度、500Pa真空度的条件下,真空熔炼20分钟。
吸氢量检测:通过容量法、重量法等化学方法检测合金吸氢量至小于等于质量分数1×10-7。
重力浇铸:把熔炼完成的合金液体注入铸型中,冷凝后得到预期形状的坯锭,经过双面铣削铣面机组铣去坯锭表皮缺陷,经过冷轧机,切割成该毛坯坯锭。
挤压成型:在挤压筒中对锭坯使之从模孔中流出。
洗刷矫直:通过酸洗洗刷工序,除去表面残留和氧化物,通过矫直工序,消除内应力。
将按照本实施例制备的铝锂合金材料与传统航空航天用的铝合金7050以及航空航天用铝锂合金8090相对比,比较相关的性能,如表2所示。
表2
实施例2 本发明的铝锂合金材料的制备
配料混合:将原料按质量含量比为:锂2.5wt%,铜0.3wt%,余量为铝,混匀置于具有熔炼加热装置和纳米碳化硅颗粒添加装置的工频电炉中,打开机械泵,抽取炉内空气20分钟所述炉内气压达到5Pa。
熔炼:开启所述熔炼加热装置,待温度达到310℃冲入氩气进行保护,炉内气压维持在35Pa,升温,温度控制在750℃持续3.5小时,熔炼为合金溶液。
添加纳米碳化硅颗粒:开启纳米碳化硅颗粒添加装置,添加质量含量为0.5wt%的纳米碳化硅颗粒,其中纳米碳化硅颗粒粒径大于等于500nm,小于等于800nm,将纳米碳化硅颗粒熔入所述合金溶液。同时开启工频电炉中的震动装置和倾斜运动装置,电炉前后倾斜运动30分钟,然后关闭震动装置和倾斜运动装置并保温1.5小时。
检测:对熔炼完成的合金液体进行成分检测,进行晶向分析,确定晶粒组织在预定状态下。
真空熔炼:将合金液体保温至700℃之后置于真空熔炼炉中再次熔炼,在700℃温度、1000Pa真空度的条件下,真空熔炼20分钟。
吸氢量检测:通过容量法、重量法等化学方法检测合金吸氢量至小于等于质量分数1×10-7。
重力浇铸:把熔炼完成的合金液体注入铸型中,冷凝后得到预期形状的坯锭,经过双面铣削铣面机组铣去坯锭表皮缺陷,经过冷轧机,切割成该毛坯坯锭。
挤压成型:在挤压筒中对锭坯使之从模孔中流出。
洗刷矫直:通过酸洗洗刷工序,除去表面残留和氧化物,通过矫直工序,消除内应力。
将按照本实施例制备的铝锂合金材料与传统航空航天用的铝合金7050以及航空航天用铝锂合金8090相对比,比较相关的性能,如表3所示。
表3
实施例3 本发明的铝锂合金材料的制备
配料混合:将原料按质量含量比为:锂3wt%,铜0.2wt%,余量为铝,混匀置于具有熔炼加热装置和纳米碳化硅颗粒添加装置的工频电炉中,打开机械泵,抽取炉内空气20分钟所述炉内气压达到5Pa。
熔炼:开启所述熔炼加热装置,待温度达到310℃冲入氩气进行保护,炉内气压维持在30Pa,升温,温度控制在750℃持续3.5小时,熔炼为合金溶液。
添加纳米碳化硅颗粒:开启纳米碳化硅颗粒添加装置,添加质量含量为0.2wt%的纳米碳化硅颗粒,其中纳米碳化硅颗粒粒径大于等于500nm,小于等于800nm,将纳米碳化硅颗粒熔入所述合金溶液。同时开启工频电炉中的震动装置和倾斜运动装置,电炉前后倾斜运动30分钟,然后关闭震动装置和倾斜运动装置并保温1.5小时。
检测:对熔炼完成的合金液体进行成分检测,进行晶向分析,确定晶粒组织在预定状态下。
真空熔炼:将合金液体保温至700℃之后置于真空熔炼炉中再次熔炼,在700℃温度、1000Pa真空度的条件下,真空熔炼20分钟。
吸氢量检测:通过容量法、重量法等化学方法检测合金吸氢量至小于等于质量分数1×10-7。
重力浇铸:把熔炼完成的合金液体注入铸型中,冷凝后得到预期形状的坯锭,经过双面铣削铣面机组铣去坯锭表皮缺陷,经过冷轧机,切割成该毛坯坯锭。
挤压成型:在挤压筒中对锭坯使之从模孔中流出。
洗刷矫直:通过酸洗洗刷工序,除去表面残留和氧化物,通过矫直工序,消除内应力。
将按照本实施例制备的铝锂合金材料与传统航空航天用的铝合金7050以及航空航天用铝锂合金8090相对比,比较相关的性能,如表4所示。
表4
实施例4 本发明的铝锂合金材料的制备
配料混合:将原料按质量含量比为:锂2.75wt%,铜0.1wt%,余量为铝,混匀置于具有熔炼加热装置和纳米碳化硅颗粒添加装置的工频电炉中,打开机械泵,抽取炉内空气20分钟所述炉内气压达到5Pa。
熔炼:开启所述熔炼加热装置,待温度达到310℃冲入氩气进行保护,炉内气压维持在35Pa,升温,温度控制在750℃持续3.5小时,熔炼为合金溶液。
添加纳米碳化硅颗粒:开启纳米碳化硅颗粒添加装置,添加质量含量为0.1wt%的纳米碳化硅颗粒,其中纳米碳化硅颗粒粒径大于等于500nm,小于等于800nm,将纳米碳化硅颗粒熔入所述合金溶液。同时开启工频电炉中的震动装置和倾斜运动装置,电炉前后倾斜运动30分钟,然后关闭震动装置和倾斜运动装置并保温1小时。
检测:对熔炼完成的合金液体进行成分检测,进行晶向分析,确定晶粒组织在预定状态下。
真空熔炼:将合金液体保温至700℃之后置于真空熔炼炉中再次熔炼,在700℃温度、2000Pa真空度的条件下,真空熔炼20分钟。
吸氢量检测:通过容量法、重量法等化学方法检测合金吸氢量至小于等于质量分数1×10-7。
重力浇铸:把熔炼完成的合金液体注入铸型中,冷凝后得到预期形状的坯锭,经过双面铣削铣面机组铣去坯锭表皮缺陷,经过冷轧机,切割成该毛坯坯锭。
挤压成型:在挤压筒中对锭坯使之从模孔中流出。
洗刷矫直:通过酸洗洗刷工序,除去表面残留和氧化物,通过矫直工序,消除内应力。
将按照本实施例制备的铝锂合金材料与传统航空航天用的铝合金7050以及航空航天用铝锂合金8090相对比,比较相关的性能,如表5所示。
表5
实施例5 本发明的铝锂合金材料的制备
配料混合:将原料按质量含量比为:锂3.5wt%,铜0.05wt%,余量为铝,混匀置于具有熔炼加热装置和纳米碳化硅颗粒添加装置的工频电炉中,打开机械泵,抽取炉内空气20分钟所述炉内气压达到5Pa。
熔炼:开启所述熔炼加热装置,待温度达到310℃冲入惰性气体进行保护,炉内气压维持在30Pa,升温,温度控制在750℃持续3小时,熔炼为合金溶液。
添加纳米碳化硅颗粒:开启纳米碳化硅颗粒添加装置,添加质量含量为0.05wt%的纳米碳化硅颗粒,其中纳米碳化硅颗粒粒径大于等于300nm,小于等于800nm,将纳米碳化硅颗粒熔入所述合金溶液。同时开启工频电炉中的震动装置和倾斜运动装置,电炉前后倾斜运动30分钟,然后关闭震动装置和倾斜运动装置并保温1.5小时。
检测:对熔炼完成的合金液体进行成分检测,进行晶向分析,确定晶粒组织在预定状态下。
真空熔炼:将合金液体保温至700℃之后置于真空熔炼炉中再次熔炼,在700℃温度、1000Pa真空度的条件下,真空熔炼20分钟。
吸氢量检测:通过容量法、重量法等化学方法检测合金吸氢量至小于等于质量分数1×10-7。
重力浇铸:把熔炼完成的合金液体注入铸型中,冷凝后得到预期形状的坯锭,经过双面铣削铣面机组铣去坯锭表皮缺陷,经过冷轧机,切割成该毛坯坯锭。
挤压成型:在挤压筒中对锭坯使之从模孔中流出。
洗刷矫直:通过酸洗洗刷工序,除去表面残留和氧化物,通过矫直工序,消除内应力。
将按照本实施例制备的铝锂合金材料与传统航空航天用的铝合金7050以及航空航天用铝锂合金8090相对比,比较相关的性能,如表6所示。
表6
记录上述实施例中不同真空度下真空熔炼时合金中氢含量低于1×10-7的时间,以及材料烧损率,如表7所示。
表7
以上所述实施例仅表达了本发明的实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。
Claims (8)
1.一种铝锂合金材料,其特征在于,由如下重量百分比的组分组成:锂2.0-3.5wt%,铜0.05-0.5wt%,纳米碳化硅颗粒:0.05-05wt%,余量为铝。
2.根据权利要求1所述的铝锂合金材料,其特征在于,由如下重量百分比的组分组成:锂2.5-3.0wt%,铜0.1-0.3wt%,纳米碳化硅颗粒:0.1-0.3wt%,余量为铝。
3.根据权利要求1所述的铝锂合金材料,其特征在于,由如下重量百分比的组分组成:锂2.75wt%,铜0.2wt%,纳米碳化硅颗粒:0.2wt%,余量为铝。
4.根据权利要求1-3中任一项的铝锂合金材料,其特征在于,其中,所述纳米碳化硅颗粒粒径大于等于500nm,小于等于800nm。
5.根据权利要求1-3中任一项所述铝锂合金材料的制备方法,其特征在于,具有以下步骤:
1)将原料按所述质量比混匀置于具有熔炼加热装置和纳米碳化硅颗粒添加装置的工频电炉中,打开机械泵,抽取炉内空气20分钟所述炉内气压达到5Pa;
2)开启所述熔炼加热装置,待温度达到310℃冲入惰性气体进行保护,炉内气压维持在30-35Pa,升温,温度控制在750℃持续3-3.5小时,熔炼为合金溶液;
3)开启所述纳米碳化硅颗粒添加装置,按纳米硅颗粒的质量百分比将所述纳米碳化硅颗粒熔入所述合金溶液;
4)开启所述工频电炉中的震动装置和倾斜运动装置,所述电炉前后倾斜运动30分钟,关闭所述震动装置和倾斜运动装置并保温1-1.5小时;
5)对熔炼完成的合金液体进行成分检测,进行晶向分析,确定晶粒组织在预定状态下;
6)将合金液体保温至700℃之后置于真空熔炼炉中再次熔炼,在700℃温度、500-2000Pa真空度的条件下,真空熔炼20分钟;
7)检测氢含量至小于等于质量分数1×10-7;
8)采用重力压铸的方式生产毛坯圆锭;
9)将所述完成的合金材料拉制成形、抛光处理。
6.根据权利要求5所述的铝锂合金材料的制备方法,其特征在于:其中在步骤2)中,所述惰性气体为氩气。
7.根据权利要求5所述的铝锂合金材料的制备方法,其特征在于:其中在步骤6)中,将所述真空熔炼炉中的真空度设置为1000Pa。
8.根据权利要求1或2所述的铝锂合金材料在制备航天航空结构材料中的用途。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410265449.0A CN104004944B (zh) | 2014-06-13 | 2014-06-13 | 一种纳米颗粒改性铝锂合金材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410265449.0A CN104004944B (zh) | 2014-06-13 | 2014-06-13 | 一种纳米颗粒改性铝锂合金材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104004944A true CN104004944A (zh) | 2014-08-27 |
CN104004944B CN104004944B (zh) | 2016-10-26 |
Family
ID=51365850
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410265449.0A Active CN104004944B (zh) | 2014-06-13 | 2014-06-13 | 一种纳米颗粒改性铝锂合金材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104004944B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016179734A1 (zh) * | 2015-05-12 | 2016-11-17 | 苏州列治埃盟新材料技术转移有限公司 | 一种镁-铝-碳化硅中间合金材料及其制备方法 |
CN108754358A (zh) * | 2018-05-29 | 2018-11-06 | 江苏理工学院 | 一种耐低温铝合金复合材料及其制备方法 |
CN114164360A (zh) * | 2020-09-11 | 2022-03-11 | 延世大学校产学协力团 | 包括铝系基体的复合材料及适用其的装置 |
CN116875839A (zh) * | 2023-09-06 | 2023-10-13 | 山东伟盛铝业有限公司 | 一种铝锂合金型材及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1030259A (zh) * | 1987-06-09 | 1989-01-11 | 艾尔坎国际有限公司 | 铝合金复合材料 |
EP0460809A1 (en) * | 1990-06-08 | 1991-12-11 | The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And | Method of treatment of metal matrix composites |
CN102747246A (zh) * | 2012-06-06 | 2012-10-24 | 苏州阿罗米科技有限公司 | 一种微纳米颗粒增强铝基复合材料的制备方法 |
CN103045914A (zh) * | 2012-12-06 | 2013-04-17 | 南京航空航天大学 | 一种纳米碳化硅增强铝基复合材料的制备方法 |
CN103305726A (zh) * | 2013-06-26 | 2013-09-18 | 苏州金仓合金新材料有限公司 | 一种纳米级碳化硅铝合金棒的制备方法 |
CN103556018A (zh) * | 2013-10-17 | 2014-02-05 | 常熟市良益金属材料有限公司 | 一种高强度合金 |
-
2014
- 2014-06-13 CN CN201410265449.0A patent/CN104004944B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1030259A (zh) * | 1987-06-09 | 1989-01-11 | 艾尔坎国际有限公司 | 铝合金复合材料 |
EP0460809A1 (en) * | 1990-06-08 | 1991-12-11 | The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And | Method of treatment of metal matrix composites |
CN102747246A (zh) * | 2012-06-06 | 2012-10-24 | 苏州阿罗米科技有限公司 | 一种微纳米颗粒增强铝基复合材料的制备方法 |
CN103045914A (zh) * | 2012-12-06 | 2013-04-17 | 南京航空航天大学 | 一种纳米碳化硅增强铝基复合材料的制备方法 |
CN103305726A (zh) * | 2013-06-26 | 2013-09-18 | 苏州金仓合金新材料有限公司 | 一种纳米级碳化硅铝合金棒的制备方法 |
CN103556018A (zh) * | 2013-10-17 | 2014-02-05 | 常熟市良益金属材料有限公司 | 一种高强度合金 |
Non-Patent Citations (3)
Title |
---|
田晓风: "《纳米SiC 颗粒增强2024 铝基复合材料的力学性能研究》", 《稀有金属》 * |
霍红庆: "《航天轻型结构材料——铝锂合金的发展》", 《真空与低温》 * |
高飞鹏: "《纳米SiC颗粒增强ADC12铝基复合材料的制备及性能》", 《特种铸造及有色合金》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016179734A1 (zh) * | 2015-05-12 | 2016-11-17 | 苏州列治埃盟新材料技术转移有限公司 | 一种镁-铝-碳化硅中间合金材料及其制备方法 |
CN108754358A (zh) * | 2018-05-29 | 2018-11-06 | 江苏理工学院 | 一种耐低温铝合金复合材料及其制备方法 |
CN108754358B (zh) * | 2018-05-29 | 2020-03-17 | 江苏理工学院 | 一种耐低温铝合金复合材料及其制备方法 |
CN114164360A (zh) * | 2020-09-11 | 2022-03-11 | 延世大学校产学协力团 | 包括铝系基体的复合材料及适用其的装置 |
US12234532B2 (en) | 2020-09-11 | 2025-02-25 | Industry-Academic Cooperation Foundation, Yonsei University | Composite material including aluminum-based matrix and device adopting the same |
CN116875839A (zh) * | 2023-09-06 | 2023-10-13 | 山东伟盛铝业有限公司 | 一种铝锂合金型材及其制备方法 |
CN116875839B (zh) * | 2023-09-06 | 2023-12-12 | 山东伟盛铝业有限公司 | 一种铝锂合金型材及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104004944B (zh) | 2016-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104263981B (zh) | 一种粉末冶金钛合金棒材的制备方法 | |
CN104711468A (zh) | 一种高强高耐热性铝合金材料及其制备方法 | |
CN101363092A (zh) | 一种高强度铸造铝合金材料 | |
CN103290278B (zh) | 一种汽车车身用高吸能性铝合金 | |
CN101363093B (zh) | 一种高强度铸造铝合金材料 | |
CN104004944A (zh) | 一种纳米颗粒改性铝锂合金材料及其制备方法 | |
CN103773997A (zh) | 一种航空用仪表级碳化硅增强铝基复合材料及其制备方法 | |
CN103388095B (zh) | Mg-Gd-Y-Zr系镁合金及其大型复杂铸件的热处理方法 | |
CN105772981A (zh) | 高速列车用铝合金焊丝及其制备方法 | |
CN115261686B (zh) | 3d打印铝镁合金粉末及其制备方法与应用 | |
CN106011537B (zh) | 一种细晶高强韧β钛合金及其制作方法 | |
CN110129629B (zh) | 耐热铸造Al-Si-Ni-Cu铝合金及重力铸造制备 | |
CN106521378A (zh) | 一种铝硅镁合金压铸件节能高效热处理方法 | |
CN102628132B (zh) | 一种镁锂合金低温超塑性材料及其制备工艺 | |
CN116574944A (zh) | 一种新能源汽车电池包用免热处理铝合金及其制备方法 | |
CN111041287A (zh) | 一种石墨烯增强Al-Si铸造铝合金及其制备方法 | |
CN110684913B (zh) | 一种超高强高韧铝合金的制备方法 | |
CN103993210A (zh) | 一种铝锂合金材料及其改进真空熔炼工艺的制备方法 | |
CN101985715A (zh) | 高性能铸造镁合金及其制备方法 | |
CN103866169A (zh) | 一种室温高塑性变形镁合金及其制备方法 | |
CN114082951B (zh) | 一种强塑性匹配的钛合金复合体材料及其制备方法 | |
CN108642311B (zh) | 一种镁合金材料的制备方法 | |
CN103074531A (zh) | 一种耐热稀土镁合金及其制备方法 | |
CN101984113A (zh) | 一种耐热铸造镁合金及其制备方法 | |
CN113502421A (zh) | 一种Al-Zn-Mg-Fe系铝合金材料及其制备方法与应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder | ||
CP01 | Change in the name or title of a patent holder |
Address after: 215412 Building 11, No. 88, Zhenghe Middle Road, Ludu Town, Taicang City, Suzhou, Jiangsu Province Patentee after: Suzhou Boyuan Aerospace New Materials Co.,Ltd. Address before: 215412 Building 11, No. 88, Zhenghe Middle Road, Ludu Town, Taicang City, Suzhou, Jiangsu Province Patentee before: SUZHOU RICHMOND ADVANCED MATERIAL TECHNOLOGY TRANSFER Co.,Ltd. |