CN103997204B - Charge pump circuit - Google Patents
Charge pump circuit Download PDFInfo
- Publication number
- CN103997204B CN103997204B CN201310054610.5A CN201310054610A CN103997204B CN 103997204 B CN103997204 B CN 103997204B CN 201310054610 A CN201310054610 A CN 201310054610A CN 103997204 B CN103997204 B CN 103997204B
- Authority
- CN
- China
- Prior art keywords
- voltage
- pmos transistor
- charge pump
- signal
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Dc-Dc Converters (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
技术领域technical field
本发明是有关于一种稳压技术,且特别是有关于一种电荷泵电路(charge pump circuit)。The present invention relates to a voltage stabilizing technology, and in particular to a charge pump circuit.
背景技术Background technique
随着电子技术趋向于短小轻薄的发展,现今的电子元件,例如处理器、存储器,其驱动电压逐渐下降。另外,对于驱动电压的电压涟波(voltage ripple)的容许度范围也会随之缩减,以使电子元件可以在精准的电压下工作。With the development of electronic technology tending to be smaller and thinner, the driving voltage of today's electronic components, such as processors and memories, is gradually reduced. In addition, the tolerable range of the voltage ripple of the driving voltage is also reduced accordingly, so that the electronic components can work at a precise voltage.
再者,电子元件的驱动电压可能是由电荷泵电路来提供。电荷泵电路是以某一预设倍率将其输入电压电平调升(或调降),以产生不同电平的电压。当电荷泵电路的输出端出现因负载变化而产生电流变化时,若是无法即时检测及针对此电流做变化,将导致输出电压会随负载电流变化而产生较剧烈的涟波。Furthermore, the driving voltage of the electronic components may be provided by a charge pump circuit. The charge pump circuit raises (or lowers) its input voltage level by a predetermined ratio to generate voltages of different levels. When the output terminal of the charge pump circuit has a current change due to the load change, if the current cannot be detected and changed in real time, the output voltage will produce severe ripples with the change of the load current.
为了稳定电荷泵电路的输出电压,过去常利用具有多个比较器来检测电平变化,再调整输出电压至预期的电平。对于这种模拟检测机制,因使用多个比较器而使得电路设计较为复杂,且容易增加功率消耗以及增加制造成本。In order to stabilize the output voltage of the charge pump circuit, in the past, multiple comparators were used to detect level changes, and then adjust the output voltage to a desired level. For this analog detection mechanism, the circuit design is complicated due to the use of multiple comparators, and it is easy to increase power consumption and increase manufacturing cost.
发明内容Contents of the invention
有鉴于此,本发明的目的在于提供一种电荷泵电路,为了要解决现有技术所述及的问题其中之一和/或其他问题。In view of this, the object of the present invention is to provide a charge pump circuit in order to solve one of the problems mentioned in the prior art and/or other problems.
本发明之一实施例提供一种电荷泵电路,其包括:电压源模块、反馈电路、比较器、第一PMOS晶体管、第二PMOS晶体管以及控制电路。电荷泵电路具有电压输出端。电压源模块包括正压电荷泵。电压源模块经配置以提供驱动电压。反馈电路耦接电压输出端,并提供关联于电压输出端的反馈电压。比较器耦接反馈电路与电压源模块,比较参考电压与反馈电压而产生误差信号。第一PMOS晶体管的源极耦接驱动电压,其漏极耦接电压输出端。第二PMOS晶体管的源极耦接驱动电压,其漏极耦接电压输出端。控制电路耦接电压源模块、比较器、第一PMOS晶体管与第二PMOS晶体管,控制电路经配置以在时域上根据振荡信号至少两次取样于误差信号而产生检测信号,通过检测信号与误差信号来切换第一PMOS晶体管,且通过误差信号来切换第二PMOS晶体管,从而稳定电压输出端的电压电平。An embodiment of the present invention provides a charge pump circuit, which includes: a voltage source module, a feedback circuit, a comparator, a first PMOS transistor, a second PMOS transistor, and a control circuit. The charge pump circuit has a voltage output. The voltage source block includes a positive charge pump. The voltage source module is configured to provide a driving voltage. The feedback circuit is coupled to the voltage output terminal and provides a feedback voltage associated with the voltage output terminal. The comparator is coupled to the feedback circuit and the voltage source module, and compares the reference voltage and the feedback voltage to generate an error signal. The source of the first PMOS transistor is coupled to the driving voltage, and the drain of the first PMOS transistor is coupled to the voltage output terminal. The source of the second PMOS transistor is coupled to the driving voltage, and the drain of the second PMOS transistor is coupled to the voltage output terminal. The control circuit is coupled to the voltage source module, the comparator, the first PMOS transistor, and the second PMOS transistor. The control circuit is configured to generate a detection signal in the time domain according to the oscillation signal and the error signal at least twice, through the detection signal and the error The first PMOS transistor is switched by the error signal, and the second PMOS transistor is switched by the error signal, so as to stabilize the voltage level of the voltage output terminal.
于本发明的一示范性实施例中,电压源模块包括振荡器、或门、时脉产生器、正压电荷泵。振荡器用以产生振荡信号。或门接收振荡信号与误差信号。时脉产生器用以依据振荡信号或误差信号而产生时脉信号。正压电荷泵依据时脉信号而产生驱动电压。In an exemplary embodiment of the present invention, the voltage source module includes an oscillator, an OR gate, a clock generator, and a positive charge pump. The oscillator is used to generate an oscillating signal. The OR gate receives the oscillation signal and the error signal. The clock generator is used for generating a clock signal according to the oscillation signal or the error signal. The positive charge pump generates the driving voltage according to the clock signal.
于本发明的一示范性实施例中,反馈电路包括PMOS晶体管串,耦接于电压输出端与接地端之间。In an exemplary embodiment of the present invention, the feedback circuit includes a PMOS transistor string coupled between the voltage output terminal and the ground terminal.
于本发明的一示范性实施例中,PMOS晶体管串中的每一PMOS晶体管的漏极耦接其本身的栅极。In an exemplary embodiment of the present invention, the drain of each PMOS transistor in the PMOS transistor string is coupled to its own gate.
于本发明的一示范性实施例中,比较器的反相输入端耦接参考电压,比较器的非反相输入端耦接反馈电压。In an exemplary embodiment of the present invention, the inverting input terminal of the comparator is coupled to the reference voltage, and the non-inverting input terminal of the comparator is coupled to the feedback voltage.
于本发明的一示范性实施例中,第一PMOS晶体管相对于第二PMOS晶体管具有相对宽的通道宽度。In an exemplary embodiment of the present invention, the first PMOS transistor has a relatively wider channel width than the second PMOS transistor.
于本发明的一示范性实施例中,第一PMOS晶体管与第二PMOS晶体管的通道宽度分别为90微米与10微米。In an exemplary embodiment of the present invention, the channel widths of the first PMOS transistor and the second PMOS transistor are 90 microns and 10 microns, respectively.
于本发明的一示范性实施例中,控制电路包括检测电路、第一开关控制单元以及第二开关控制单元。检测电路接收振荡信号与误差信号,检测电路经配置根据振荡信号的上升边缘与下降边缘分别与误差信号进行取样。第一开关控制单元根据检测信号与误差信号来切换第一PMOS晶体管。第二开关控制单元根据误差信号来切换第二PMOS晶体管。In an exemplary embodiment of the present invention, the control circuit includes a detection circuit, a first switch control unit and a second switch control unit. The detection circuit receives the oscillating signal and the error signal, and the detection circuit is configured to sample the error signal respectively according to the rising edge and the falling edge of the oscillating signal. The first switch control unit switches the first PMOS transistor according to the detection signal and the error signal. The second switch control unit switches the second PMOS transistor according to the error signal.
于本发明的一示范性实施例中,检测电路包括第一触发器、第二触发器以及或非门。第一触发器的输入端接收检测信号,其时脉输入端接收振荡信号。第二触发器的输入端接收检测信号,其反相时脉输入端接收振荡信号。或非门的第一输入端、第二输入端分别耦接第一触发器与第二反相器的输出端,或非门的输出端输出检测信号。In an exemplary embodiment of the invention, the detection circuit includes a first flip-flop, a second flip-flop and a NOR gate. The input terminal of the first flip-flop receives the detection signal, and the clock input terminal of the first flip-flop receives the oscillation signal. The input end of the second flip-flop receives the detection signal, and the inverting clock input end of the second flip-flop receives the oscillation signal. The first input terminal and the second input terminal of the NOR gate are respectively coupled to the output terminals of the first flip-flop and the second inverter, and the output terminal of the NOR gate outputs a detection signal.
于本发明的一示范性实施例中,当控制电路判断出电压输出端的电压电平在预设涟波范围内时,则关闭第一PMOS晶体管。In an exemplary embodiment of the present invention, when the control circuit determines that the voltage level of the voltage output terminal is within a predetermined ripple range, the first PMOS transistor is turned off.
基于上述,在本发明中,由于控制电路根据振荡信号在时域上至少两次取样于误差信号而产生检测信号,通过检测信号与误差信号来切换第一PMOS晶体管,且通过误差信号来切换第二PMOS晶体管,而第一PMOS晶体管可相对于第二PMOS晶体管具有相对宽的通道宽度。因此可以适当地调整电荷泵电路所输出的电压电平而不会产生过大的电压涟波,从而得以解决现有技术所述及的问题。Based on the above, in the present invention, since the control circuit samples the error signal at least twice in the time domain according to the oscillating signal to generate a detection signal, the first PMOS transistor is switched by the detection signal and the error signal, and the first PMOS transistor is switched by the error signal. Two PMOS transistors, and the first PMOS transistor may have a relatively wider channel width than the second PMOS transistor. Therefore, the voltage level output by the charge pump circuit can be properly adjusted without generating excessive voltage ripple, thereby solving the problems mentioned in the prior art.
应了解的是,上述一般描述及以下具体实施方式仅为例示性及阐释性的,其并不能限制本发明所欲主张的权利要求范围。It should be understood that the above-mentioned general description and the following specific embodiments are only illustrative and explanatory, and shall not limit the scope of the claimed claims of the present invention.
附图说明Description of drawings
下面的所附图式是本发明的说明书的一部分,其绘示了本发明的示例实施例,所附图式是与说明书的描述一起用来说明本发明的原理。The accompanying drawings, which are a part of the specification of the invention, illustrate example embodiments of the invention and together with the description serve to explain the principles of the invention.
图1绘示为本发明一示范性实施例的电荷泵电路(charge pumpcircuit)10的电路方块图。FIG. 1 is a circuit block diagram of a charge pump circuit (charge pump circuit) 10 according to an exemplary embodiment of the present invention.
图2绘示为图1的控制电路140的实施示意图。FIG. 2 is a schematic diagram illustrating the implementation of the control circuit 140 in FIG. 1 .
图3和图4绘示为图2的检测电路142的部分操作波形图。3 and 4 are partial operation waveform diagrams of the detection circuit 142 in FIG. 2 .
其中,附图标记说明如下:Wherein, the reference signs are explained as follows:
10:电荷泵电路10: Charge pump circuit
110:电压源模块110: Voltage source module
112:振荡器112: Oscillator
114:或门114: OR gate
116:时脉产生器116: Clock generator
118:正压电荷泵118: Positive charge pump
120:反馈电路120: Feedback circuit
120_1~120_5:PMOS晶体管120_1~120_5: PMOS transistors
130:比较器130: Comparator
140:控制电路140: Control circuit
142:检测电路142: detection circuit
144:第一开关控制单元144: First switch control unit
146:第二开关控制单元146: Second switch control unit
202:第一触发器202: First Trigger
204:第二触发器204: Second trigger
206:或非门206: NOR Gate
A、B:取样内容A, B: sampling content
GND:接地端GND: ground terminal
Sdet:误差信号Sdet: error signal
Shvosc:振荡信号Shvosc: Oscillating signal
Sosc:时脉信号Sosc: clock signal
Svpon:检测信号Svpon: heartbeat
SW1:第一PMOS晶体管SW1: First PMOS transistor
SW2:第二PMOS晶体管SW2: Second PMOS transistor
T_PUMP:电压输出端T_PUMP: voltage output terminal
Vdrive:驱动电压Vdrive: drive voltage
Vfdbk:反馈电压Vfdbk: feedback voltage
Vpump:输出电压Vpump: output voltage
Vref:参考电压Vref: reference voltage
具体实施方式detailed description
现将详细参考本发明的示范性实施例,在附图中说明所述示范性实施例的实例。另外,在图式及实施方式中使用相同或类似标号的元件/构件代表相同或类似部分。Reference will now be made in detail to the exemplary embodiments of the present invention, examples of which are illustrated in the accompanying drawings. In addition, elements/components using the same or similar symbols in the drawings and embodiments represent the same or similar parts.
图1绘示为本发明一示范性实施例之电荷泵电路(charge pumpcircuit)10的电路方块图。请参阅图1,电荷泵电路10包括电压源模块(voltage source module)110、反馈电路(feedback circuit)120、比较器(comparator)130、第一PMOS晶体管(first PMOS transistor)SW1、第二PMOS晶体管(second PMOS transistor)SW2以及控制电路(control circuit)140。FIG. 1 is a circuit block diagram of a charge pump circuit (charge pump circuit) 10 according to an exemplary embodiment of the present invention. 1, the charge pump circuit 10 includes a voltage source module (voltage source module) 110, a feedback circuit (feedback circuit) 120, a comparator (comparator) 130, a first PMOS transistor (first PMOS transistor) SW1, a second PMOS transistor (second PMOS transistor) SW2 and a control circuit (control circuit) 140 .
电荷泵电路10具有电压输出端T_PUMP。电压源模块110包括正压电荷泵118。电压源模块110经配置以提供驱动电压Vdrive。反馈电路120耦接电压输出端T_PUMP,并提供关联于电压输出端T_PUMP的反馈电压Vfdbk。比较器130耦接反馈电路120与电压源模块110。比较器130比较参考电压Vref与反馈电压Vfdbk而产生误差信号Sdet。第一PMOS晶体管SW1的源极耦接驱动电压Vdrive,其漏极耦接电压输出端T_PUMP。第二PMOS晶体管SW2的源极耦接驱动电压Vdrive,其漏极耦接电压输出端T_PUMP。The charge pump circuit 10 has a voltage output T_PUMP. The voltage source module 110 includes a positive charge pump 118 . The voltage source module 110 is configured to provide a driving voltage Vdrive. The feedback circuit 120 is coupled to the voltage output terminal T_PUMP and provides a feedback voltage Vfdbk associated with the voltage output terminal T_PUMP. The comparator 130 is coupled to the feedback circuit 120 and the voltage source module 110 . The comparator 130 compares the reference voltage Vref and the feedback voltage Vfdbk to generate an error signal Sdet. The source of the first PMOS transistor SW1 is coupled to the driving voltage Vdrive, and the drain of the first PMOS transistor SW1 is coupled to the voltage output terminal T_PUMP. The source of the second PMOS transistor SW2 is coupled to the driving voltage Vdrive, and the drain of the second PMOS transistor SW2 is coupled to the voltage output terminal T_PUMP.
于本示范性实施例中,控制电路140耦接电压源模块110、比较器130、第一PMOS晶体管SW1与第二PMOS晶体管SW2。第一PMOS晶体管SW1可以采用相对于第二PMOS晶体管SW2具有相对宽的通道宽度(channel width)。例如,第一PMOS晶体管SW1与第二PMOS晶体管SW2的通道宽度分别为90微米与10微米(micrometer,μm),但并不限制于此。In this exemplary embodiment, the control circuit 140 is coupled to the voltage source module 110 , the comparator 130 , the first PMOS transistor SW1 and the second PMOS transistor SW2 . The first PMOS transistor SW1 may have a relatively wider channel width than the second PMOS transistor SW2. For example, the channel widths of the first PMOS transistor SW1 and the second PMOS transistor SW2 are respectively 90 micrometers and 10 micrometers (micrometer, μm), but not limited thereto.
控制电路140经配置以在时域上根据振荡信号Shvosc至少两次取样于误差信号Sdet而产生检测信号Svpon。通过检测信号Svpon与误差信号Sdet来切换第一PMOS晶体管SW1,且通过误差信号Sdet来切换第二PMOS晶体管SW2。另外,假设第一PMOS晶体管SW1与第二PMOS晶体管SW2的通道宽度分别为90微米与10微米。当同时导通第一PMOS晶体管SW1和第二PMOS晶体管SW2时,具有快速调整(类似粗调,通道宽度100微米)输出电压Vpump的电平效果;而仅导通第二PMOS晶体管SW2时可以产生微步调整(类似细调,通道宽度10微米)输出电压Vpump的电平效果,可避免电压上升过快(或电压爆冲)。The control circuit 140 is configured to generate the detection signal Svpon by sampling the error signal Sdet at least twice in the time domain according to the oscillating signal Shvosc. The first PMOS transistor SW1 is switched by the detection signal Svpon and the error signal Sdet, and the second PMOS transistor SW2 is switched by the error signal Sdet. In addition, it is assumed that the channel widths of the first PMOS transistor SW1 and the second PMOS transistor SW2 are 90 microns and 10 microns respectively. When the first PMOS transistor SW1 and the second PMOS transistor SW2 are turned on at the same time, it has the level effect of quickly adjusting (similar to coarse adjustment, channel width 100 microns) the output voltage Vpump; while only turning on the second PMOS transistor SW2 can produce Microstep adjustment (similar to fine adjustment, channel width 10 microns) level effect of the output voltage Vpump can avoid excessive voltage rise (or voltage burst).
举例而言,当位于电压输出端T_PUMP的输出电压Vpump的电压电平还未到达预设电平时,若第一PMOS晶体管SW1与第二PMOS晶体管SW2皆导通(通道宽度相当于100微米),以便使输出电压Vpump快速到达预设电平。当输出电压Vpump到达预设电平之后,若输出电压Vpump随着时间变化幅度未低于例如±0.1%的预设电平(预设涟波范围)时,则控制电路140仅切换第二PMOS晶体管SW2(通道宽度相当于10微米),且关闭第一PMOS晶体管SW1。而当输出电压Vpump到达预设电平之后,若输出电压Vpump随着时间下降幅度超过例如0.1%的预设电平时,则控制电路140可再次切换第一PMOS晶体管SW1与第二PMOS晶体管SW2,据以快速调整至预设电平。因此,此控制电路140可以减少输出电压Vpump的涟波(ripple)变化,故能够稳定电压输出端T_PUMP的电压电平。For example, when the voltage level of the output voltage Vpump at the voltage output terminal T_PUMP has not reached the preset level, if both the first PMOS transistor SW1 and the second PMOS transistor SW2 are turned on (the channel width is equivalent to 100 microns), In order to make the output voltage Vpump quickly reach the preset level. After the output voltage Vpump reaches the preset level, if the output voltage Vpump does not fall below the preset level (preset ripple range) of ±0.1% over time, the control circuit 140 only switches the second PMOS The transistor SW2 (the channel width is equivalent to 10 microns), and the first PMOS transistor SW1 is turned off. And after the output voltage Vpump reaches the preset level, if the output voltage Vpump decreases over time by exceeding the preset level, for example 0.1%, the control circuit 140 can switch the first PMOS transistor SW1 and the second PMOS transistor SW2 again, to quickly adjust to preset levels. Therefore, the control circuit 140 can reduce the ripple variation of the output voltage Vpump, so the voltage level of the voltage output terminal T_PUMP can be stabilized.
另一方面,电压源模块110可包括振荡器112、或门114、时脉产生器116、正压电荷泵118。振荡器112用以产生振荡信号Shvosc。或门114接收振荡信号Shvosc与误差信号Sdet。时脉产生器116用以依据振荡信号Shvosc或误差信号Sdet而产生时脉信号Sosc。正压电荷泵118依据时脉信号Sosc而产生驱动电压Vdrive。当比较器130所产生的误差信号Sdet表示为逻辑1时,代表输出电压Vpump已经到达预设电平,并且将使得或门114也输出逻辑1以关闭时脉产生器116。On the other hand, the voltage source module 110 may include an oscillator 112 , an OR gate 114 , a clock generator 116 , and a positive charge pump 118 . The oscillator 112 is used to generate an oscillating signal Shvosc. The OR gate 114 receives the oscillation signal Shvosc and the error signal Sdet. The clock generator 116 is used for generating the clock signal Sosc according to the oscillation signal Shvosc or the error signal Sdet. The positive charge pump 118 generates the driving voltage Vdrive according to the clock signal Sosc. When the error signal Sdet generated by the comparator 130 represents a logic 1, it means that the output voltage Vpump has reached a preset level, and the OR gate 114 also outputs a logic 1 to turn off the clock generator 116 .
反馈电路120可包括由PMOS晶体管120_1~120_5所组成的PMOS晶体管串。此PMOS晶体管串(120_1~120_5)耦接于电压输出端T_PUMP与接地端GND之间。PMOS晶体管120_4和120_5的耦接之处可提供反馈电压Vfdbk。此外,也可以在PMOS晶体管120_3和120_4的耦接之处(未绘示)作为提供反馈电压Vfdbk,因此反馈电压Vfdbk可比例于输出电压Vpump。此外,PMOS晶体管串(120_1~120_5)中的每一PMOS晶体管的漏极耦接其本身的栅极,这种接法可以产生类似于二极管的效果。PMOS晶体管串亦可以更换为电阻串,但是PMOS晶体管串能通过较小的电流。The feedback circuit 120 may include a PMOS transistor string composed of PMOS transistors 120_1 - 120_5 . The PMOS transistor strings ( 120_1 - 120_5 ) are coupled between the voltage output terminal T_PUMP and the ground terminal GND. The coupling of the PMOS transistors 120_4 and 120_5 can provide the feedback voltage Vfdbk. In addition, the feedback voltage Vfdbk can also be provided at the coupling position (not shown) of the PMOS transistors 120_3 and 120_4 , so the feedback voltage Vfdbk can be proportional to the output voltage Vpump. In addition, the drain of each PMOS transistor in the PMOS transistor strings ( 120_1 - 120_5 ) is coupled to its own gate, and this connection can produce an effect similar to that of a diode. The PMOS transistor string can also be replaced with a resistor string, but the PMOS transistor string can pass a smaller current.
比较器130的反相输入端耦接参考电压Vref,比较器的非反相输入端耦接反馈电压Vfdbk。The inverting input terminal of the comparator 130 is coupled to the reference voltage Vref, and the non-inverting input terminal of the comparator is coupled to the feedback voltage Vfdbk.
更清楚来说,控制电路140包括检测电路142、第一开关控制单元144以及第二开关控制单元146。检测电路142如图2所示,其可包括第一触发器202、第二触发器204以及或非门206。第一触发器202的输入端接收检测信号Sdet,其时脉输入端接收振荡信号Shvosc。第二触发器204的输入端接收检测信号Sdet,其反相时脉输入端接收振荡信号Shvosc。或非门206的第一输入端、第二输入端分别耦接第一触发器202与第二触发器204的输出端,或非门206的输出端输出检测信号Svpon。More clearly, the control circuit 140 includes a detection circuit 142 , a first switch control unit 144 and a second switch control unit 146 . As shown in FIG. 2 , the detection circuit 142 may include a first flip-flop 202 , a second flip-flop 204 and a NOR gate 206 . An input terminal of the first flip-flop 202 receives the detection signal Sdet, and a clock input terminal thereof receives the oscillation signal Shvosc. An input terminal of the second flip-flop 204 receives the detection signal Sdet, and an inverting clock input terminal thereof receives the oscillation signal Shvosc. The first input terminal and the second input terminal of the NOR gate 206 are respectively coupled to the output terminals of the first flip-flop 202 and the second flip-flop 204 , and the output terminal of the NOR gate 206 outputs the detection signal Svpon.
图3和图4所绘示为图2的检测电路142的部分操作波形图。请合并参阅图2至图4。从图3可以清楚地看出,检测电路142接收振荡信号Shvosc与误差信号Sdet,检测电路142在振荡信号Shvosc的上升边缘(rising edge)与下降边缘(falling edge)分别与误差信号Sdet各进行一次取样,其中第一触发器202、第二触发器204所取样内容分别以符号A、B表示时,A=0且B=0。再将取样内容A和B经由或非门206则产生并输出逻辑1的检测信号Svpon。3 and 4 are partial operation waveform diagrams of the detection circuit 142 in FIG. 2 . Please refer to Figure 2 to Figure 4 together. It can be clearly seen from FIG. 3 that the detection circuit 142 receives the oscillation signal Shvosc and the error signal Sdet. For sampling, when the sampled contents of the first flip-flop 202 and the second flip-flop 204 are represented by symbols A and B respectively, A=0 and B=0. Then, the sampled contents A and B are passed through the NOR gate 206 to generate and output a logic 1 detection signal Svpon.
另外,从图4可以清楚地看出,检测电路142在振荡信号Shvosc的上升边缘与下降边缘分别与误差信号Sdet各进行一次取样,其中第一触发器202、第二触发器204所取样内容分别以符号A、B表示时,A=0且B=1。再将取样内容A和B经由或非门206则产生并输出逻辑0的检测信号Svpon。In addition, it can be clearly seen from FIG. 4 that the detection circuit 142 samples the error signal Sdet once on the rising edge and falling edge of the oscillation signal Shvosc respectively, wherein the sampled contents of the first flip-flop 202 and the second flip-flop 204 are respectively When represented by symbols A and B, A=0 and B=1. Then, the sampled contents A and B are passed through the NOR gate 206 to generate and output a logic 0 detection signal Svpon.
关于取样内容、检测信号的真值表与工作状态的相应关系,如表1所示。Table 1 shows the corresponding relationship between the sampling content, the truth table of the detection signal, and the working state.
【表1】【Table 1】
另一方面,虽然表1是以第一PMOS晶体管SW1与第二PMOS晶体管SW2作为实施方式,但本领域普通技术人员可基于实际设计或应用需求来改变检测电路142的设计,以使得控制电路140可对应地控制两个以上具有不同通道宽度的PMOS晶体管。On the other hand, although Table 1 uses the first PMOS transistor SW1 and the second PMOS transistor SW2 as an implementation mode, those skilled in the art can change the design of the detection circuit 142 based on actual design or application requirements, so that the control circuit 140 More than two PMOS transistors with different channel widths can be correspondingly controlled.
基于上述,控制电路140采用了数字检测机制来检测时域上的信号,因此与现有模拟检测机制相比,本发明的电路设计较为简单,且不会增加额外功率消耗,也可减少制造成本。Based on the above, the control circuit 140 uses a digital detection mechanism to detect signals in the time domain. Therefore, compared with the existing analog detection mechanism, the circuit design of the present invention is relatively simple, does not increase additional power consumption, and can also reduce manufacturing costs. .
综上所述,在本发明中,由于控制电路根据振荡信号在时域上至少两次取样于误差信号而产生检测信号,再通过检测信号与误差信号来切换第一PMOS晶体管,且可通过误差信号来切换第二PMOS晶体管,而第一PMOS晶体管可相对于第二PMOS晶体管具有相对宽的通道宽度。因此可以适当地调整电荷泵电路所输出的电压电平而不会产生过大的电压涟波,从而得以解决现有技术所述及的问题。In summary, in the present invention, since the control circuit samples the error signal at least twice in the time domain according to the oscillating signal to generate a detection signal, and then switches the first PMOS transistor through the detection signal and the error signal, and can pass the error signal to switch the second PMOS transistor, and the first PMOS transistor may have a relatively wide channel width relative to the second PMOS transistor. Therefore, the voltage level output by the charge pump circuit can be properly adjusted without generating excessive voltage ripple, thereby solving the problems mentioned in the prior art.
虽然本发明已以实施例揭示如上,然其并非用以限定本发明,任何所属技术领域中技术人员,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,故本发明的保护范围当视所附的申请专利权利要求范围所界定者为准。Although the present invention has been disclosed above with the embodiments, it is not intended to limit the present invention. Any person skilled in the art can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, this The scope of protection of the invention shall be defined by the scope of the appended patent claims.
另外,本发明的任一实施例或申请专利权利要求范围不须达成本发明所揭示的全部目的或优点或特点。此外,摘要部分和标题仅是用来辅助专利文件搜寻之用,并非用来限制本发明的权利要求范围。In addition, any embodiment of the present invention or the scope of patent claims of the application does not necessarily achieve all the objects or advantages or features disclosed in the present invention. In addition, the abstract and the title are only used to assist in the search of patent documents, and are not used to limit the scope of the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310054610.5A CN103997204B (en) | 2013-02-20 | 2013-02-20 | Charge pump circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310054610.5A CN103997204B (en) | 2013-02-20 | 2013-02-20 | Charge pump circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103997204A CN103997204A (en) | 2014-08-20 |
CN103997204B true CN103997204B (en) | 2016-09-07 |
Family
ID=51311245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310054610.5A Active CN103997204B (en) | 2013-02-20 | 2013-02-20 | Charge pump circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103997204B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112799456B (en) * | 2019-11-14 | 2022-05-17 | 厦门市必易微电子技术有限公司 | Voltage conversion circuit and method and buck-boost conversion circuit |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5490119A (en) * | 1993-04-19 | 1996-02-06 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device including signal generating circuit with level converting function and with reduced area of occupation |
US5880616A (en) * | 1995-12-18 | 1999-03-09 | Electronics And Telecommunications Research Institute | Digital logic level conversion circuit with a small sinusodal wave input |
CN102104330A (en) * | 2009-12-22 | 2011-06-22 | 飞兆半导体公司 | Reduced current charge pump |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4049641B2 (en) * | 2002-09-06 | 2008-02-20 | 株式会社ルネサステクノロジ | Nonvolatile semiconductor memory device |
-
2013
- 2013-02-20 CN CN201310054610.5A patent/CN103997204B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5490119A (en) * | 1993-04-19 | 1996-02-06 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device including signal generating circuit with level converting function and with reduced area of occupation |
US5880616A (en) * | 1995-12-18 | 1999-03-09 | Electronics And Telecommunications Research Institute | Digital logic level conversion circuit with a small sinusodal wave input |
CN102104330A (en) * | 2009-12-22 | 2011-06-22 | 飞兆半导体公司 | Reduced current charge pump |
Also Published As
Publication number | Publication date |
---|---|
CN103997204A (en) | 2014-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6009742B2 (en) | Switching power supply | |
US8643443B1 (en) | Comparator and relaxation oscillator employing same | |
US8922174B2 (en) | Power factor correction circuit with frequency jittering | |
US9300211B2 (en) | DC/DC converter, control circuit thereof, and electronic apparatus | |
CN108649537B (en) | Primary side power tube current sampling resistor short-circuit protection circuit | |
TWI686045B (en) | Zero current detection system | |
CN108508958B (en) | Pseudo-digital low dropout linear regulator and power management chip | |
CN106911330B (en) | A duty cycle stabilization circuit | |
US8400185B2 (en) | Driving circuit with zero current shutdown and a driving method thereof | |
CN105871207B (en) | power converter | |
JP2005011280A (en) | Power supply circuit | |
TW536866B (en) | Amplitude control of an alternating signal generated by an electronic device such as an oscillator circuit | |
CN103997204B (en) | Charge pump circuit | |
TWI473401B (en) | Charge pump circuit | |
TWI535198B (en) | Differential signaling driver | |
TWI449459B (en) | System and method for signal synchronization of driving light emitting diodes | |
TWI692203B (en) | Level shift circuit | |
TW201117541A (en) | Dc-dc converter | |
CN107422773B (en) | Digital low-dropout regulator | |
US20050140410A1 (en) | Circuit for modifying a clock signal to achieve a predetermined duty cycle | |
CN111867183A (en) | LED drive circuit, power frequency square wave signal sampling circuit and method | |
TWI704757B (en) | Boost converter | |
TW201406067A (en) | Driving signal generating system | |
TW202122948A (en) | Boost converter | |
CN205430207U (en) | Treatment circuit and phase -locked loop |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |