CN103989474B - Human visual electrophysiological simulation device and method - Google Patents
Human visual electrophysiological simulation device and method Download PDFInfo
- Publication number
- CN103989474B CN103989474B CN201410259010.7A CN201410259010A CN103989474B CN 103989474 B CN103989474 B CN 103989474B CN 201410259010 A CN201410259010 A CN 201410259010A CN 103989474 B CN103989474 B CN 103989474B
- Authority
- CN
- China
- Prior art keywords
- module
- chip
- signal
- timing
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Eye Examination Apparatus (AREA)
Abstract
本发明提供了一种人眼视觉电生理模拟装置,包括光电转换模块、积分测量模块、脉冲整形模块、计时模块、定时模块、信号发生模块、运算控制模块、输入界面模块和显示界面模块。外界光信号输入至光电转换模块,光电转换模块、脉冲整形模块、计时模块、定时模块、信号发生模块依次相连,光电转换模块经积分测量模块与运算控制模块相连,运算控制模块与计时模块、定时模块、信号发生模块、显示界面模块和输入界面模块分别相连。本发明还提供了人眼视觉电生理模拟的方法。本发明人眼视觉电生理模拟装置及方法的优点是:可以定量模拟视觉电生理检查中人眼在受到闪光刺激和图形刺激时的视觉电生理活动,精度高,便于调校,广泛适用于计量和质检领域。
The invention provides a human eye visual electrophysiological simulation device, which includes a photoelectric conversion module, an integral measurement module, a pulse shaping module, a timing module, a timing module, a signal generation module, an operation control module, an input interface module and a display interface module. The external optical signal is input to the photoelectric conversion module, the photoelectric conversion module, the pulse shaping module, the timing module, the timing module, and the signal generation module are connected in sequence. The module, the signal generating module, the display interface module and the input interface module are respectively connected. The invention also provides a method for simulating human visual electrophysiology. The advantages of the human eye visual electrophysiological simulation device and method of the present invention are: it can quantitatively simulate the visual electrophysiological activities of the human eye when receiving flash stimulation and graphic stimulation in visual electrophysiological examination, the accuracy is high, it is easy to adjust, and it is widely applicable to measurement and quality control areas.
Description
技术领域technical field
本发明涉及检测装置和方法,特别涉及一种人眼视觉电生理模拟装置及方法。The invention relates to a detection device and method, in particular to a human eye visual electrophysiological simulation device and method.
背景技术Background technique
人眼受到光信号刺激时,人的视觉系统会在一定延时后产生相应的电信号,称为视觉电生理信号。该信号可通过电极在人眼角膜、鼻颞或枕叶等位置检出。视觉电生理信号的持续时间一般为数十至数百毫秒,幅值一般为几微伏到几百微伏。When the human eye is stimulated by a light signal, the human visual system will generate a corresponding electrical signal after a certain delay, which is called a visual electrophysiological signal. The signal can be detected by electrodes in the cornea, nasotemporal or occipital lobe of the human eye. The duration of the visual electrophysiological signal is generally tens to hundreds of milliseconds, and the amplitude is generally several microvolts to hundreds of microvolts.
检测视觉电生理信号的过程分为对人眼施加光刺激信号和测量视觉电生理信号两个步骤。在视网膜电图、视诱发电位等视觉电生理检查项目中通常采用闪光或图形刺激信号。前者为氙灯或LED发出的持续时间短、瞬时亮度高的光刺激信号,可以是单次闪光或周期性多次闪光;后者为显示器所显示的亮暗棋盘格图形的亮格和暗格交替变化的光刺激信号,一般是周期性多次交替变化。人眼对闪光刺激的响应是在每个闪光脉冲结束时开始的,而对图形刺激的响应是在亮格变为暗格和暗格变为亮格的瞬间开始的。利用标准化的光刺激信号刺激人眼,测量得到的视觉电生理信号幅值和延时的异常变化隐含了视觉系统不同环节的病变信息。例如,单次闪烁视网膜电图的测量指标包括潜伏期、a波和b波的峰时和幅值等,而图形视网膜电图的测量指标包括P50和N95的峰时和幅值等。峰时的延长或幅值的减小通常意味着视觉系统的局部病变,临床视觉电生理检查中通常将测量结果与该检查项目对应的参考值对比进行诊断。The process of detecting visual electrophysiological signals is divided into two steps: applying light stimulation signals to human eyes and measuring visual electrophysiological signals. In visual electrophysiological examination items such as electroretinogram and visual evoked potential, flashing or graphic stimulation signals are usually used. The former is a light stimulation signal with short duration and high instantaneous brightness emitted by a xenon lamp or LED, which can be a single flash or multiple flashes periodically; the latter is the alternating light and dark grids of the bright and dark checkerboard graphics displayed on the monitor. The changing light stimulation signal is generally alternately changing periodically and multiple times. The human eye's response to the flash stimulus starts at the end of each flash pulse, while the response to the graphic stimulus starts at the moment when the bright grid changes to dark grid and the dark grid changes to bright grid. The human eye is stimulated by a standardized light stimulation signal, and the abnormal changes in the measured visual electrophysiological signal amplitude and delay imply pathological information in different links of the visual system. For example, the measurement indicators of a single flash ERG include the latency, the peak times and amplitudes of waves a and b, etc., while the measurement indicators of the graphic ERG include the peak times and amplitudes of P50 and N95, etc. The prolongation of the peak time or the decrease of the amplitude usually means a local lesion of the visual system, and in the clinical visual electrophysiological examination, the measurement result is usually compared with the reference value corresponding to the examination item for diagnosis.
通过测量视觉电生理信号进行视觉疾病诊断的仪器统称为视觉电生理仪。视觉电生理仪发出的闪光刺激的参数包括闪光强度、闪光时程、闪光频率、背景亮度等,图形刺激的参数包括图形亮格和暗格的亮度、图形翻转频率等,其检测到的视觉电生理信号参数包括幅值和时间,前者即信号的峰值和谷值的大小,后者即施加光刺激信号到出现特征电信号所经历的时间,表示了电信号与光刺激信号的同步延时关系。光刺激参数的改变直接影响人眼的视觉反应,从而影响医生对视觉疾病的诊断。为此,在国际临床视觉电生理协会发布的标准文件中对视觉电生理检查中所用的光刺激参数的量值有明确的规定,并且需要定期对仪器进行检测校准。例如,文件中规定标准闪光视网膜电图检查的闪光强度为3.0cd·s/m2,误差不超过±10%,闪光时程不超过5ms。在标准化的光刺激信号作用下,视觉电生理仪还需要准确地测量出人眼的视觉电生理信号的幅值和时间参数,才能保证临床诊断的可靠性。视觉电生理仪被广泛用于各种眼底疾病的临床诊断,如视网膜病,黄斑病变,视神经疾患,白内障及青光眼等,对婴幼儿,老年人,不合作或者伪盲者,更可作为有效的客观视功能检测。视觉电生理仪是定量检测仪器。其光刺激参数和电信号测量结果准确与否直接影响医生的诊断,关乎患者的健康和利益,所以需要利用专用的检测工具对其进行定期检测。Instruments that diagnose visual diseases by measuring visual electrophysiological signals are collectively referred to as visual electrophysiological instruments. The parameters of the flash stimulus sent by the visual electrophysiological instrument include flash intensity, flash duration, flash frequency, background brightness, etc., and the parameters of the graphic stimulus include the brightness of the bright grid and the dark grid of the graphic, and the flipping frequency of the graphic. Physiological signal parameters include amplitude and time. The former is the peak value and valley value of the signal, and the latter is the time elapsed from the application of the optical stimulation signal to the appearance of the characteristic electrical signal, which represents the synchronous delay relationship between the electrical signal and the optical stimulation signal. . The change of light stimulation parameters directly affects the visual response of the human eye, thereby affecting the diagnosis of visual diseases by doctors. For this reason, in the standard documents issued by the International Society for Clinical Visual Electrophysiology, there are clear regulations on the values of the light stimulation parameters used in the visual electrophysiological examination, and the instrument needs to be checked and calibrated regularly. For example, the document stipulates that the flash intensity of the standard flash electroretinogram examination is 3.0cd·s/m2, the error is not more than ±10%, and the flash duration is not more than 5ms. Under the action of standardized light stimulation signals, the visual electrophysiological instrument also needs to accurately measure the amplitude and time parameters of the visual electrophysiological signals of the human eye in order to ensure the reliability of clinical diagnosis. Visual electrophysiology instrument is widely used in the clinical diagnosis of various fundus diseases, such as retinopathy, macular degeneration, optic nerve disease, cataract and glaucoma, etc. It can be used as an effective objective test for infants, the elderly, uncooperative or pseudoblind people. Visual function detection. Visual electrophysiology is a quantitative detection instrument. The accuracy of its light stimulation parameters and electrical signal measurement results directly affects the doctor's diagnosis and is related to the health and interests of patients, so it is necessary to use special detection tools for regular detection.
为了实现视觉电生理仪的检测和校准,需要一套能定量模拟人眼视觉电生理活动的装置,需同时满足以下要求:In order to realize the detection and calibration of the visual electrophysiological instrument, a device that can quantitatively simulate the visual electrophysiological activity of the human eye is required, and the following requirements must be met at the same time:
自动识别闪光刺激和图形刺激,并根据光刺激的类型和参数发出相应的标准电信号,从而模拟人眼的视觉电生理活动;Automatically identify flash stimulation and graphic stimulation, and send corresponding standard electrical signals according to the type and parameters of light stimulation, thereby simulating the visual electrophysiological activities of the human eye;
可测量闪光刺激的闪光强度、闪光时程、闪光频率、背景亮度;It can measure the flash intensity, flash duration, flash frequency and background brightness of flash stimulation;
可测量图形刺激的亮格亮度、暗格亮度、图形翻转频率;It can measure the brightness of the bright grid, the brightness of the dark grid and the flipping frequency of graphics stimulation;
可在检测到光刺激信号后,经过一定时间的延迟发出标准电信号;After detecting the light stimulation signal, a standard electrical signal can be sent after a certain time delay;
接收到光刺激信号到发出标准电信号之间的延迟时间可调;The delay time between receiving the light stimulation signal and sending out the standard electrical signal is adjustable;
便于调校,以保证自身的准确性。It is easy to adjust to ensure its own accuracy.
然而在现有技术中,尚未有人眼视觉电生理模拟装置或视觉电生理仪检测装置出现,对能定量模拟人眼视觉电生理活动装置的需求,现有技术还不能给予满足。However, in the prior art, no human eye visual electrophysiological simulation device or visual electrophysiological instrument detection device has appeared, and the demand for a device capable of quantitatively simulating human visual electrophysiological activity cannot be met by the prior art.
发明内容Contents of the invention
本发明的目的是克服现有技术存在的问题和缺陷,提供一种可以自动识别光刺激的类型,定量模拟人眼视觉电生理活动,对视觉电生理仪进行检测和校准的人眼视觉电生理模拟装置及方法。The purpose of the present invention is to overcome the existing problems and defects of the prior art, to provide a human visual electrophysiological system that can automatically identify the type of light stimulus, quantitatively simulate the visual electrophysiological activity of the human eye, and detect and calibrate the visual electrophysiological instrument. Simulation device and method.
为达到上述目的,本发明提供的人眼视觉电生理模拟装置,包括光电转换模块、积分测量模块、脉冲整形模块、计时模块、定时模块、信号发生模块、运算控制模块、输入界面模块和显示界面模块,其中:外界光信号输入至所述光电转换模块,所述光电转换模块、脉冲整形模块、计时模块、定时模块、信号发生模块依次相连,所述光电转换模块经所述积分测量模块与所述运算控制模块相连,所述运算控制模块与所述计时模块、定时模块、信号发生模块、显示界面模块和输入界面模块分别相连;所述光电转换模块将光刺激信号转化为电信号,输出至所述脉冲整形模块和积分测量模块,所述脉冲整形模块输出与光刺激信号对应的方波信号,所述方波信号触发所述计时模块和定时模块,所述计时模块判断光刺激类型并控制所述定时模块从相应的时间点开始计时,所述积分测量模块在所述脉冲测量模块的同步控制下测量光刺激信号的亮度与时间的积分值,所述运算控制模块接收所述输入界面模块输入的参数设定,运算积分测量结果,并经所述信号发生模块输出电信号,同时,输出状态参数和测量结果至所述显示界面模块。In order to achieve the above object, the human eye visual electrophysiological simulation device provided by the present invention includes a photoelectric conversion module, an integral measurement module, a pulse shaping module, a timing module, a timing module, a signal generation module, an operation control module, an input interface module and a display interface module, wherein: the external optical signal is input to the photoelectric conversion module, the photoelectric conversion module, pulse shaping module, timing module, timing module, and signal generation module are connected in sequence, and the photoelectric conversion module is connected to the photoelectric conversion module through the integral measurement module The operation control module is connected to the operation control module, and the operation control module is connected to the timing module, timing module, signal generation module, display interface module and input interface module respectively; the photoelectric conversion module converts the light stimulation signal into an electrical signal and outputs it to the The pulse shaping module and the integral measurement module, the pulse shaping module outputs a square wave signal corresponding to the light stimulation signal, the square wave signal triggers the timing module and the timing module, and the timing module judges the type of light stimulation and controls The timing module starts timing from the corresponding time point, the integral measurement module measures the integral value of the brightness and time of the light stimulation signal under the synchronous control of the pulse measurement module, and the operation control module receives the input interface module The input parameters are set, the integral measurement results are calculated, and electrical signals are output through the signal generation module, and at the same time, the state parameters and measurement results are output to the display interface module.
本发明人眼视觉电生理模拟装置,其中所述运算控制模块采用型号为STC89C51的单片机芯片和型号为SG-8002的可编程晶振芯片构成;积分测量模块采用型号为OPA642的运算放大器芯片、型号为ADS804的12位模数转换芯片、型号为TL431的参考电压芯片和型号为STC89C51的单片机芯片构成;脉冲整形模块由两个型号为OP07AJ的运算放大器芯片构成的比例放大电路以及型号为74LS312的与非门芯片构成;计时模块采用型号为74LS90的计数器芯片、型号为82C54的计数器芯片、型号为74LS121的单稳态触发器芯片、型号为的74V1T32或门芯片、型号为74LS132的与非门芯片、型号为LN74SZ08的与门芯片构成;定时模块采用型号为82C54的计数器芯片构成;其中:运算控制模块中的单片机芯片的数据位引脚和控制位引脚以总线方式分别与积分测量模块的单片机芯片、计时模块和定时模块中的计数器芯片、信号发生模块、输入界面模块和显示界面模块相连接;光电探测模块的输出引脚分别经电阻与脉冲整形模块中的运算放大器芯片的同相输入端和积分测量模块中的运算放大器芯片的同相输入端相连接;积分测量模块中的单片机的TXD和RXD引脚与运算控制模块中的单片机的RXD和TXD引脚对应连接;脉冲整形模块中的与非门芯片的2Y引脚与积分测量模块中的单片机芯片的P2.1引脚连接,与计时模块中的一个单稳态触发器芯片的B引脚和另一个单稳态触发器芯片的A1和A2引脚、计数器芯片的计数器0和GATE0引脚、与非门芯片的4A和4B引脚对应连接;计时模块中的或门芯片的1Y引脚与定时模块中的计数器芯片的GATE0引脚连接,单稳态触发器芯片的A1和A2引脚与单片机芯片的P2.0引脚连接;定时模块中的芯片的OUT0引脚与信号发生模块连接。The human eye visual electrophysiological simulation device of the present invention, wherein said operation control module adopts the single-chip microcomputer chip that the model is STC89C51 and the programmable crystal oscillator chip that the model is SG-8002 to form; The 12-bit analog-to-digital conversion chip of ADS804, the reference voltage chip of model TL431 and the single-chip microcomputer chip of model STC89C51; The timing module adopts the counter chip of model 74LS90, the counter chip of model 82C54, the monostable flip-flop chip of model 74LS121, the OR chip of model 74V1T32, the NAND chip of model 74LS132, the model It is composed of an AND gate chip of LN74SZ08; the timing module is composed of a counter chip of the type 82C54; wherein: the data bit pin and the control bit pin of the single-chip microcomputer chip in the operation control module are respectively connected with the single-chip microcomputer chip of the integral measurement module, The timing module is connected with the counter chip, signal generation module, input interface module and display interface module in the timing module; the output pin of the photoelectric detection module is respectively measured by the non-inverting input terminal and integral measurement of the operational amplifier chip in the pulse shaping module through the resistance The non-inverting input terminal of the operational amplifier chip in the module is connected; the TXD and RXD pins of the single-chip microcomputer in the integral measurement module are connected with the RXD and TXD pins of the single-chip microcomputer in the operation control module; the NAND gate chip in the pulse shaping module The 2Y pin of the integrated measurement module is connected to the P2.1 pin of the single-chip microcomputer chip in the integral measurement module, and the B pin of one monostable flip-flop chip in the timing module and the A1 and A2 pins of the other monostable flip-flop chip Pins, counter 0 and GATE0 pins of the counter chip, and 4A and 4B pins of the NAND gate chip are connected correspondingly; the 1Y pin of the OR gate chip in the timing module is connected to the GATE0 pin of the counter chip in the timing module. The A1 and A2 pins of the steady-state trigger chip are connected with the P2.0 pin of the single-chip microcomputer chip; the OUT0 pin of the chip in the timing module is connected with the signal generation module.
为达到上述目的,本发明提供的人眼视觉电生理模拟装置的模拟方法,该方法包括如下步骤:In order to achieve the above object, the simulation method of the human eye visual electrophysiological simulation device provided by the present invention comprises the following steps:
步骤1,将光刺激信号转化为幅值与光刺激信号的亮度成正比的电信号,并对该电信号进行积分测量;Step 1, converting the photostimulation signal into an electrical signal whose amplitude is proportional to the brightness of the photostimulation signal, and performing integral measurement on the electrical signal;
步骤2,识别光刺激信号的类型,将积分测量信号转换为方波信号,通过计时测量方波的宽度,以其时间特性差异来识别闪光刺激信号和图形刺激信号,如果是闪光刺激信号,执行下一步;如果是图形刺激信号,执行步骤4;Step 2. Identify the type of light stimulus signal, convert the integral measurement signal into a square wave signal, measure the width of the square wave by timing, and identify the flash stimulus signal and the graphic stimulus signal by the difference in time characteristics. If it is a flash stimulus signal, execute Next step; if it is a graphic stimulus signal, perform step 4;
步骤3,如果发光对应方波的高电平,两次发光之间的间歇对应方波的低电平,那么,高电平期间积分测量结果作为闪光脉冲的强度,而低电平期间积分测量结果作为背景亮度对时间的积分值,计时测量结果的高电平时间作为闪光刺激的时程,高电平时间与低电平时间之和作为闪光刺激的周期,取倒数作为闪光刺激的频率,背景亮度对时间的积分值除以时间间隔作为背景亮度值,执行步骤5;Step 3, if the luminescence corresponds to the high level of the square wave, and the interval between two luminescences corresponds to the low level of the square wave, then the integrated measurement result during the high level period is used as the intensity of the flash pulse, while the integral measurement during the low level period The result is taken as the integral value of the background brightness versus time, the high-level time of the timing measurement results is taken as the time course of the flash stimulus, the sum of the high-level time and the low-level time is taken as the period of the flash stimulus, and the reciprocal is taken as the frequency of the flash stimulus, The integral value of the background brightness to time is divided by the time interval as the background brightness value, and step 5 is performed;
步骤4,以方波信号的边沿进行分段积分测量,方波处于高电平对应图形刺激的亮格状态,方波处于低电平对应图形刺激的暗格状态,分别进行积分测量得到方波处于高电平和低电平时的图形亮度对时间的积分值,计时测量得到高电平持续的时间值和低电平持续的时间值,并将两积分值分别除以所对应的时间,并分别作为图形亮格和暗格的亮度,将高电平持续的时间值和低电平持续的时间值相加作为图形翻转周期,取其倒数作为图形翻转频率,执行下一步;Step 4. Use the edge of the square wave signal to perform segmented integral measurement. The square wave is in the bright grid state corresponding to the graphic stimulus at a high level, and the square wave is in the dark grid state corresponding to the graphic stimulus at a low level. The square wave is obtained by integral measurement respectively. Integral value of graphics brightness to time at high level and low level, timing measurement to obtain high level duration time value and low level duration time value, and divide the two integral values by the corresponding time respectively, and respectively As the brightness of the bright grid and the dark grid of the graphics, add the duration value of the high level and the duration of the low level as the graphics flip cycle, take its reciprocal as the graphics flip frequency, and execute the next step;
步骤5,输入界面输入设定参数,积分测量和计时测量及其运算结果输出至显示界面。Step 5, input setting parameters on the input interface, and output integral measurement, timing measurement and their calculation results to the display interface.
本发明人眼视觉电生理模拟装置及方法的优点是:由于设置了积分测量模块、计时模块、定时模块、信号发生模块、运算控制模块,可以定量模拟视觉电生理检查中人眼在受到闪光刺激和图形刺激时的视觉电生理活动,包括自动判断光刺激信号的类型,并根据光刺激的类型和测量得到的光刺激参数发出对应的标准视觉电生理模拟信号。将计时模块和定时模块与运算控制模块和信号发生模块相互独立,精度高,便于调校,广泛适用于计量和质检领域。The advantages of the human eye visual electrophysiological simulation device and method of the present invention are: due to the integration measurement module, timing module, timing module, signal generation module, and operation control module, the human eye can be quantitatively simulated when the visual electrophysiological examination is stimulated by flashing light. Visual electrophysiological activity during graphic stimulation, including automatically judging the type of optical stimulation signal, and sending out a corresponding standard visual electrophysiological analog signal according to the type of optical stimulation and the measured optical stimulation parameters. The timing module and the timing module are independent from the operation control module and the signal generation module, which has high precision and is easy to adjust, and is widely used in the fields of measurement and quality inspection.
附图说明Description of drawings
图1是本发明人眼视觉电生理模拟装置的方框图;Fig. 1 is the block diagram of human eye visual electrophysiological simulation device of the present invention;
图2是闪光刺激的波形示意图;Figure 2 is a schematic diagram of the waveform of flash stimulation;
图3是图形刺激的波形示意图;Fig. 3 is a schematic diagram of the waveform of graphic stimulation;
图4是本发明人眼视觉电生理模拟装置的电路原理图。Fig. 4 is a schematic circuit diagram of the human eye visual electrophysiological simulation device of the present invention.
具体实施方式Detailed ways
下面结合附图详细说明本发明人眼视觉电生理模拟装置及方法的实施例。Embodiments of the human eye visual electrophysiological simulation device and method of the present invention will be described in detail below with reference to the accompanying drawings.
参照图1,本发明提供的人眼视觉电生理模拟装置,包括光电转换模块、积分测量模块、脉冲整形模块、计时模块、定时模块、信号发生模块、运算控制模块、输入界面模块和显示界面模块。外界光信号输入至光电转换模块,光电转换模块、脉冲整形模块、计时模块、定时模块、信号发生模块依次相连,光电转换模块经积分测量模块与运算控制模块相连,运算控制模块与计时模块、定时模块、信号发生模块、显示界面模块和输入界面模块分别相连。Referring to Fig. 1, the human eye visual electrophysiological simulation device provided by the present invention includes a photoelectric conversion module, an integral measurement module, a pulse shaping module, a timing module, a timing module, a signal generation module, an operation control module, an input interface module and a display interface module . The external optical signal is input to the photoelectric conversion module, and the photoelectric conversion module, pulse shaping module, timing module, timing module, and signal generation module are connected in sequence. The photoelectric conversion module is connected to the operation control module through the integral measurement module. The module, the signal generating module, the display interface module and the input interface module are respectively connected.
光电转换模块将光刺激信号转化为电信号,输出至脉冲整形模块和积分测量模块,脉冲整形模块输出与光刺激信号对应的方波信号,方波信号触发计时模块和定时模块,计时模块判断光刺激类型并控制定时模块从相应的时间点开始计时,积分测量模块在脉冲测量模块的同步控制下测量光刺激信号的亮度与时间的积分值,运算控制模块接收输入界面模块输入的参数设定,运算积分测量结果,并经信号发生模块输出电信号,同时,输出状态参数和测量结果至显示界面模块。The photoelectric conversion module converts the light stimulation signal into an electrical signal and outputs it to the pulse shaping module and the integral measurement module. The pulse shaping module outputs a square wave signal corresponding to the light stimulation signal. The square wave signal triggers the timing module and the timing module, and the timing module judges the light Stimulus type and control the timing module to start timing from the corresponding time point, the integral measurement module measures the brightness and time integral value of the light stimulation signal under the synchronous control of the pulse measurement module, the operation control module receives the parameter setting input by the input interface module, Calculate and integrate the measurement results, and output electrical signals through the signal generation module, and at the same time, output state parameters and measurement results to the display interface module.
在模拟视觉电生理检查中,包括人眼受到闪光刺激和图形刺激时的视网膜电图和视诱发电位活动。在接收到闪光刺激或图形刺激时,测量闪光刺激的闪光强度、闪光时程、闪光频率和背景亮度,图形刺激的亮格亮度、暗格亮度和图形翻转频率,同时,经过预先设定的延迟时间发出标准电信号,且电信号的幅值、波形和延时等参数均可预先设定,标准电信号与光刺激信号之间的参数对应关系也可预先设定。其中:In the simulated visual electrophysiological examination, it includes the electroretinogram and visual evoked potential activities when the human eye is stimulated by flashes and graphics. When receiving a flash stimulus or a graphic stimulus, measure the flash intensity, flash duration, flash frequency and background brightness of the flash stimulus, the bright grid brightness, dark grid brightness and graphic flipping frequency of the graphic stimulus, and at the same time, after a preset delay A standard electrical signal is sent out at time, and parameters such as the amplitude, waveform and delay of the electrical signal can be preset, and the parameter correspondence between the standard electrical signal and the light stimulation signal can also be preset. in:
闪光强度:闪光的亮度对时间的积分,单位为cd·s/m2;Flash intensity: the integral of flash brightness versus time, in cd s/m2;
闪光时程:闪光持续的时间,单位为ms;Flash duration: the duration of the flash, in ms;
闪光频率:单位时间内闪光的次数,单位为Hz;Flash frequency: the number of flashes per unit time, in Hz;
背景亮度:闪光刺激器在发出闪光刺激前的亮度,单位为cd/m2;Background brightness: the brightness of the flash stimulator before emitting flash stimulation, the unit is cd/m2;
图形翻转频率:单位时间内图形亮格变为暗格又变为亮格的次数,单位为Hz。Graphics flip frequency: the number of times that the bright grid changes to dark grid and back to bright grid in unit time, the unit is Hz.
下面对本发明人眼视觉电生理模拟装置提供的实施例分述如下:Below the embodiment that the human eye visual electrophysiological simulation device of the present invention provides is described as follows:
1.光刺激信号类型的识别1. Identification of the type of photostimulation signal
人眼视觉电生理模拟装置是基于闪光刺激和图形刺激的时间特性差异来识别光刺激类型的。无论视觉电生理仪的闪光刺激采用的光源是氙灯还是LED,其发光持续时间都不超过5ms。闪光刺激的频率不大于30Hz,图形翻转频率不超过10Hz,意味着连续两次闪光之间的间隔和图形翻转之间的间隔均远大于5ms。参照图2和图3,所示是闪光刺激和图形刺激经过光电转换模块和脉冲整形模块后所输出的方波的波形示意图,利用计时模块测量方波的宽度就可判断光刺激类型,从而进一步控制定时模块的工作方式和信号发生模块的输出。The human eye visual electrophysiological simulation device identifies the type of light stimulus based on the difference in time characteristics between the flash stimulus and the graphic stimulus. Regardless of whether the light source used for the flash stimulation of the visual electrophysiological apparatus is a xenon lamp or an LED, the duration of light emission does not exceed 5ms. The frequency of flash stimulation is not more than 30Hz, and the pattern flip frequency is not more than 10Hz, which means that the interval between two consecutive flashes and the interval between pattern flips are both much greater than 5ms. Referring to Fig. 2 and Fig. 3, shown is the waveform schematic diagram of the square wave outputted by the flash stimulus and the pattern stimulus after passing through the photoelectric conversion module and the pulse shaping module, and the light stimulus type can be judged by measuring the width of the square wave by the timing module, thereby further Control the working mode of the timing module and the output of the signal generation module.
2.闪光参数的测量2. Measurement of Flash Parameters
闪光刺激信号经过光电转换模块变成电脉冲信号后,分别由脉冲整形模块和积分测量模块接收。脉冲整形模块探测到脉冲信号开始和结束的时间,发出与其对应的方波信号,用于控制积分测量模块。如果发光对应方波的高电平,两次发光之间的间歇对应方波的低电平。那么,在高电平期间积分测量模块测量得到的结果为闪光脉冲的强度,而在低电平期间测量得到的结果为背景亮度对时间的积分值。脉冲整形模块将方波信号输出至计时模块,计时模块测量得到方波信号的高电平时间和低电平时间,将测量结果输出值运算控制模块。高电平时间即为闪光刺激的时程;高电平时间与低电平时间之和即为闪光刺激的周期,取倒数即为闪光刺激的频率。运算控制模块将积分测量模块测量得到的背景亮度对时间的积分值除以时间间隔,结果即为背景亮度值。如果发光对应方波低电平,间歇对应方波高电平,工作原理类似。After the flash stimulation signal is converted into an electric pulse signal by the photoelectric conversion module, it is respectively received by the pulse shaping module and the integral measurement module. The pulse shaping module detects the start and end times of the pulse signal, and sends out a corresponding square wave signal, which is used to control the integral measurement module. If the light emission corresponds to the high level of the square wave, the interval between two light emission corresponds to the low level of the square wave. Then, the result measured by the integral measurement module during the high level period is the intensity of the flash pulse, and the result measured during the low level period is the integral value of the background brightness versus time. The pulse shaping module outputs the square wave signal to the timing module, and the timing module measures the high level time and low level time of the square wave signal, and outputs the measurement result to the calculation control module. The high-level time is the duration of flash stimulation; the sum of high-level time and low-level time is the period of flash stimulation, and the reciprocal is the frequency of flash stimulation. The operation control module divides the integrated value of the background brightness versus time measured by the integral measurement module by the time interval, and the result is the background brightness value. If the light corresponds to the low level of the square wave, and the intermittent corresponds to the high level of the square wave, the working principle is similar.
3.图形参数的测量3. Measurement of graphic parameters
图形翻转信号经过光电转换模块和脉冲整形模块后,图形亮格和暗格的翻转变化转变为对应的方波信号。方波信号的边沿控制积分测量模块进行分段积分测量。方波处于高电平和低电平状态时分别对应图形刺激的亮格和暗格状态。积分测量模块分别测量得到方波处于高电平和低电平时的图形亮度对时间的积分值,计时模块测量得到高电平和低电平的持续时间值。控制运算模块将积分值分别除以对应的时间就可得到图形亮格和暗格的亮度;将高电平和低电平的持续时间相加即可得到图形翻转周期,取其倒数即为图形翻转频率。After the pattern inversion signal passes through the photoelectric conversion module and the pulse shaping module, the inversion changes of the bright grid and the dark grid of the graphic are converted into corresponding square wave signals. The edge-controlled integral measurement module of the square wave signal performs subsection integral measurement. When the square wave is in the state of high level and low level, it corresponds to the state of bright grid and dark grid of graphic stimulation respectively. The integral measurement module respectively measures the integrated value of the graphic brightness versus time when the square wave is at high level and low level, and the timing module measures the duration value of the high level and low level. The control calculation module divides the integral value by the corresponding time to obtain the brightness of the bright grid and the dark grid of the graphic; the duration of the high level and the low level is added to obtain the graphic flip cycle, and the inverse of it is the graphic flip frequency.
4.电信号延时发生4. Electric signal delay occurs
闪光刺激信号或图形刺激信号经过光电转换模块和脉冲整形模块后转换为方波信号,计时模块根据方波的宽度判断光刺激信号的类型并根据判断结果控制定时模块的工作。若为闪光刺激信号,则使定时模块从每个闪光结束的时刻开始定时;若为图形刺激信号,则定时模块从每次图形翻转的时刻开始定时。运算控制模块可根据光刺激类型和测量得到的参数输出控制信号发生模块输出相应的标准视觉电生理模拟信号,也可根据输入界面模块的输入参数控制信号发生模块输出方波、正弦波等标准电信号。信号发生模块就绪后,定时模块达到定时时间触发信号发生模块开始输出标准电信号。光电转换模块和脉冲整形模块引入的延迟可以控制在微秒级,与计时模块和定时模块的毫秒级时间相比可忽略不计;运算控制模块与信号发生模块的运行与计时模块和定时模块的运行是同时进行的,信号发生模块准备就绪后再由定时模块触发向外输出标准电信号,避免了其自身运行时间不确定引入的延迟误差;计时模块和定时模块独立运行,可保证时间的准确性,且更便于调校。The flash stimulation signal or graphic stimulation signal is converted into a square wave signal after passing through the photoelectric conversion module and the pulse shaping module. The timing module judges the type of the light stimulation signal according to the width of the square wave and controls the work of the timing module according to the judgment result. If it is a flash stimulation signal, the timing module starts timing from the moment when each flash ends; if it is a pattern stimulation signal, the timing module starts timing from the moment of each pattern flip. The operation control module can control the signal generation module to output corresponding standard visual electrophysiological analog signals according to the type of light stimulation and the measured parameters, and can also control the signal generation module to output standard electrical signals such as square waves and sine waves according to the input parameters of the input interface module. Signal. After the signal generation module is ready, the timing module reaches the timing time to trigger the signal generation module to start outputting standard electrical signals. The delay introduced by the photoelectric conversion module and the pulse shaping module can be controlled at the microsecond level, which is negligible compared with the millisecond time of the timing module and the timing module; the operation of the operation control module and the signal generation module is the same as that of the timing module and the timing module It is carried out at the same time. After the signal generation module is ready, the timing module triggers the output of standard electrical signals, which avoids the delay error caused by the uncertainty of its own running time; the timing module and the timing module operate independently to ensure the accuracy of time. , and easier to adjust.
参照图4,在本发明人眼视觉电生理模拟装置的实施例中,运算控制模块采用型号为STC89C51的单片机芯片U1和型号为SG-8002的可编程晶振芯片构成,其中SG-8002产生频率为10MHz的时钟信号。With reference to Fig. 4, in the embodiment of human eye visual electrophysiological simulation device of the present invention, operation control module adopts the single-chip microcomputer chip U1 of model STC89C51 and the programmable crystal oscillator chip of model SG-8002 to form, wherein SG-8002 generation frequency is 10MHz clock signal.
积分测量模块采用型号为OPA642的运算放大器芯片、型号为ADS804的12位模数转换芯片、型号为TL431的参考电压芯片和型号为STC89C51的单片机芯片U3构成,其中TL431向ADS804提供用于模数转换的参考电压,单片机芯片U3读取模数转换数据进行计算并将结果输出。The integral measurement module is composed of an operational amplifier chip model OPA642, a 12-bit analog-to-digital conversion chip model ADS804, a reference voltage chip model TL431 and a single-chip microcomputer chip U3 model STC89C51, in which TL431 provides ADS804 for analog-to-digital conversion The reference voltage of the single-chip microcomputer chip U3 reads the analog-to-digital conversion data for calculation and outputs the result.
脉冲整形模块由两个型号为OP07AJ的运算放大器芯片构成的比例放大电路以及型号为74LS312的与非门芯片U12构成,其中74LS312将第二级运算放大电路输出的信号反相后输出。The pulse shaping module is composed of a proportional amplifier circuit composed of two operational amplifier chips of model OP07AJ and a NAND gate chip U12 of model 74LS312, in which 74LS312 inverts the signal output by the second stage operational amplifier circuit and then outputs it.
计时模块采用型号为74LS90的计数器芯片、型号为82C54的计数器芯片U7、型号为74LS121的单稳态触发器芯片U15和U17、型号为的74V1T32或门芯片、型号为74LS132的与非门芯片U10、型号为LN74SZ08的与门芯片构成,其中74LS90将系统10MHz时钟信号转换为2MHz时钟信号提供给计数器芯片U7、和定时模块中的计数器芯片U14,两个单稳态触发器芯片分别检测输入信号的上升沿和下降沿输出正脉冲,计数器芯片U7的计数器0和计数器1分别测量输入信号的高电平时间和高电平时间,计数器2测量方波的宽度用于判断光刺激信号的类型,74V1T32将两个74LS121输出的脉冲信号合成,74LS312将74LS90中的计数器2的输出信号OUT2反相后输出,LN74SZ08输出信号至运算控制模块。The timing module adopts the counter chip of model 74LS90, the counter chip U7 of model 82C54, the monostable flip-flop chips U15 and U17 of model 74LS121, the OR chip of model 74V1T32, the NAND chip U10 of model 74LS132, The AND gate chip model is LN74SZ08, in which 74LS90 converts the system 10MHz clock signal into a 2MHz clock signal and provides it to the counter chip U7 and the counter chip U14 in the timing module. The two monostable trigger chips detect the rise of the input signal respectively. Output positive pulse along edge and falling edge, counter 0 and counter 1 of counter chip U7 measure the high level time and high level time of the input signal respectively, counter 2 measures the width of square wave to judge the type of light stimulation signal, 74V1T32 will The pulse signals output by two 74LS121 are synthesized, 74LS312 inverts the output signal OUT2 of counter 2 in 74LS90 and outputs it, and LN74SZ08 outputs the signal to the operation control module.
定时模块采用型号为82C54的计数器芯片U14构成,其中计数器芯片U14的计数器0用于控制光刺激信号与发出电信号之间的时间延迟。The timing module is composed of a counter chip U14 with a model number of 82C54, and the counter 0 of the counter chip U14 is used to control the time delay between the light stimulation signal and the electrical signal.
各个模块的连接关系为:运算控制模块中的单片机芯片U1的数据位引脚和控制位引脚以总线方式分别与积分测量模块的单片机芯片U3、计时模块和定时模块中的计数器芯片、信号发生模块、输入界面模块和显示界面模块相连接;光电探测模块的输出引脚分别经电阻与脉冲整形模块中的运算放大器芯片的同相输入端和积分测量模块中的运算放大器芯片的同相输入端相连接;积分测量模块中的单片机U3的TXD和RXD引脚与运算控制模块中的单片机U1的RXD和TXD引脚对应连接;脉冲整形模块中的与非门芯片的2Y引脚与积分测量模块中的单片机芯片U3的P2.1引脚连接,与计时模块中的一个单稳态触发器芯片U15的B引脚和另一个单稳态触发器芯片U17的A1和A2引脚、计数器芯片U7的计数器0和GATE0引脚、与非门芯片U10的4A和4B引脚对应连接;计时模块中的或门芯片的1Y引脚与定时模块中的计数器芯片U14的GATE0引脚连接,单稳态触发器芯片U15的A1和A2引脚与单片机芯片U1的P2.0引脚连接;定时模块中的芯片U14的OUT0引脚与信号发生模块连接。The connection relationship of each module is: the data bit pin and the control bit pin of the single-chip microcomputer chip U1 in the operation control module are respectively connected with the single-chip microcomputer chip U3 of the integral measurement module, the timing module and the counter chip and signal generation in the timing module in the form of a bus. The module, the input interface module and the display interface module are connected; the output pins of the photoelectric detection module are respectively connected to the non-inverting input terminal of the operational amplifier chip in the pulse shaping module and the non-inverting input terminal of the operational amplifier chip in the integral measurement module through a resistor ; The TXD and RXD pins of the single-chip microcomputer U3 in the integral measurement module are correspondingly connected with the RXD and TXD pins of the single-chip microcomputer U1 in the operation control module; the 2Y pins of the NAND gate chip in the pulse shaping module are connected with the The P2.1 pin of the single-chip microcomputer chip U3 is connected to the B pin of one monostable flip-flop chip U15 in the timing module, the A1 and A2 pins of another monostable flip-flop chip U17, and the counter of the counter chip U7 0 and GATE0 pins, 4A and 4B pins of the NAND gate chip U10 are connected correspondingly; the 1Y pin of the OR gate chip in the timing module is connected with the GATE0 pin of the counter chip U14 in the timing module, and the monostable trigger The A1 and A2 pins of the chip U15 are connected to the P2.0 pin of the single-chip microcomputer chip U1; the OUT0 pin of the chip U14 in the timing module is connected to the signal generation module.
在本发明人眼视觉电生理模拟装置的实施例中,工作方式如下:In the embodiment of the human eye visual electrophysiological simulation device of the present invention, the working mode is as follows:
人眼视觉电生理模拟装置开机后,其中的控制模块将装置的状态信息输出至显示界面模块,接收用户通过输入界面模块输入的参数、设定计时模块和定时模块的计时时间和信号发生模块的输出波形参数,或保持默认的参数状态。After the human visual electrophysiological simulation device is turned on, the control module in it outputs the status information of the device to the display interface module, receives the parameters input by the user through the input interface module, sets the timing module and the timing time of the timing module and the signal generation module. Output waveform parameters, or keep the default parameter state.
1)当光电转换模块接收到一个闪光刺激信号时,光电转换模块的输出端输出一个与闪光刺激脉冲波形一致的电脉冲信号,输出至脉冲整形模块,脉冲整形模块将放大后的电压脉冲信号转换成一个方波信号,方波信号的宽度与闪光脉冲的宽度相同,其上升沿和下降沿或下降沿和上升沿分别对应闪光信号的开始和结束时刻,方波信号的高电压和低电压或低电压和高电压分别对应数字高电平和低电平。1) When the photoelectric conversion module receives a flash stimulation signal, the output terminal of the photoelectric conversion module outputs an electrical pulse signal consistent with the flash stimulation pulse waveform, which is output to the pulse shaping module, and the pulse shaping module converts the amplified voltage pulse signal into a square wave signal, the width of the square wave signal is the same as the width of the flash pulse, its rising edge and falling edge or falling edge and rising edge correspond to the start and end of the flash signal respectively, the high voltage and low voltage of the square wave signal or Low and high voltages correspond to digital high and low levels, respectively.
方波信号同时输出至积分测量模块、计时模块和定时模块;方波信号控制积分测量模块开始积分和结束积分的时间,积分测量模块测量闪光持续时间内的亮度对时间的积分值,即闪光强度值,并将结果输出至运算控制模块;在方波信号的前边沿触发下计时模块和定时模块开始计时,计时模块测量方波的宽度,即闪光时程;计时模块测量得到的方波宽度小于5ms,计时模块内部逻辑判断光刺激信号为闪光刺激,向定时模块发出信号使定时模块复位清零重新计时;计时模块将光刺激类型、闪光时程测量结果输出至运算控制模块;运算控制模块对测量结果进行计算并输出至显示界面模块;运算控制模块根据闪光参数测量结果向信号发生模块发出相应的状态信号,信号发生模块准备就绪;定时模块经过预先设定的时间延迟后,向信号发生模块发出信号,使信号发生模块通过电信号输出接口输出标准电信号,同时定时模块自身复位清零;信号发生模块输出与闪光参数对应的视觉电生理模拟信号或其他类型的波形的电信号如正弦波、方波、锯齿波等。The square wave signal is output to the integral measurement module, the timing module and the timing module at the same time; the square wave signal controls the time when the integral measurement module starts integration and ends the integration, and the integral measurement module measures the integrated value of the brightness to time within the duration of the flash, that is, the flash intensity value, and output the result to the operation control module; the timing module and the timing module start timing under the trigger of the front edge of the square wave signal, and the timing module measures the width of the square wave, that is, the flash duration; the square wave width measured by the timing module is less than 5ms, the internal logic of the timing module judges that the light stimulation signal is a flash stimulation, and sends a signal to the timing module to reset the timing module to reset and re-time; The measurement results are calculated and output to the display interface module; the operation control module sends a corresponding status signal to the signal generation module according to the flash parameter measurement results, and the signal generation module is ready; the timing module sends a signal to the signal generation module after a preset time delay Send a signal to make the signal generation module output a standard electrical signal through the electrical signal output interface, and at the same time the timing module resets itself to zero; the signal generation module outputs a visual electrophysiological analog signal corresponding to the flash parameters or other types of electrical signals such as sine waves , square wave, sawtooth wave, etc.
在方波信号的后边沿触发下,计时模块重新开始计时,积分测量模块重新开始测量背景亮度对时间的积分,直到下一个闪光刺激信号出现;计时模块和积分测量模块将测量结果输出至运算控制模块,运算控制模块用积分测量模块的结果除以计时模块的结果,得到背景亮度;对计时模块相邻两次测量结果求和,得到闪光刺激的周期,取其倒数即为闪光频率;若光刺激为单次闪光,则计时模块和积分测量模块可根据预先设定的最大计时时间(大于多次闪光的周期,如100ms)进行计时和测量,无需等待下一个闪光刺激信号。Triggered by the rear edge of the square wave signal, the timing module restarts timing, and the integral measurement module restarts measuring the integration of background brightness against time until the next flash stimulus signal appears; the timing module and integral measurement module output the measurement results to the calculation control module, the operation control module divides the result of the integral measurement module by the result of the timing module to obtain the background brightness; the two adjacent measurement results of the timing module are summed to obtain the period of the flash stimulation, and the reciprocal of it is the flash frequency; If the stimulus is a single flash, the timing module and integral measurement module can perform timing and measurement according to the preset maximum timing time (greater than the period of multiple flashes, such as 100ms), without waiting for the next flash stimulation signal.
光电转换模块接收到下一个闪光刺激信号时,装置的各个模块重复上述流程开始工作。When the photoelectric conversion module receives the next flash stimulation signal, each module of the device repeats the above process to start working.
2)当光电转换模块接收到一个图形刺激由亮格翻转为暗格或暗格翻转为亮格的信号时,光电转换模块的输出端输出电压与图形翻转同步下降或上升,输出电信号的幅值经过信号放大模块放大后,输出至脉冲整形模块,脉冲整形模块将电信号的变化转换成一个阶跃信号,阶跃信号的下降沿或上升沿与图形翻转同步,阶跃信号的高电压和低电压或低电压和高电压分别对应计时模块和定时模块输入端的数字高电平和低电平。2) When the photoelectric conversion module receives a signal that the graphic stimulus is flipped from bright grid to dark grid or from dark grid to bright grid, the output voltage of the output terminal of the photoelectric conversion module drops or rises synchronously with the graphic flip, and the amplitude of the output electrical signal After the value is amplified by the signal amplification module, it is output to the pulse shaping module. The pulse shaping module converts the change of the electrical signal into a step signal. The falling edge or rising edge of the step signal is synchronized with the graph flip. The high voltage and The low voltage or the low voltage and the high voltage correspond to the digital high level and low level of the timing module and the input terminal of the timing module respectively.
阶跃信号同时输出至积分测量模块、计时模块和定时模块;在此阶跃信号的触发下积分测量模块开始积分测量,在阶跃信号的触发下计时模块和定时模块开始计时;经过一段时间延迟后,光电转换模块接收到的图形翻转信号与上一个图形翻转信号相反,经过信号放大模块和脉冲整形模块后,脉冲整形模块输出一个相反方向的阶跃信号,与上一个阶跃信号形成一个完整的方波,在此阶跃信号的触发下积分测量模块将积分测量结果输出至运算控制模块,计时模块将时间测量结果输出至运算控制模块,积分测量模块清零重新开始测量。The step signal is output to the integral measurement module, the timing module and the timing module at the same time; the integral measurement module starts integral measurement under the trigger of the step signal, and the timing module and the timing module start timing under the trigger of the step signal; after a period of delay Finally, the pattern inversion signal received by the photoelectric conversion module is opposite to the previous pattern inversion signal. After passing through the signal amplification module and the pulse shaping module, the pulse shaping module outputs a step signal in the opposite direction, forming a complete pattern with the previous step signal. Triggered by the step signal, the integral measurement module outputs the integral measurement result to the operation control module, the timing module outputs the time measurement result to the operation control module, and the integral measurement module resets to zero and restarts the measurement.
计时模块测量得到的方波宽度大于5ms,计时模块内部逻辑判断光刺激信号为图形刺激,向控制模块发出标示光刺激类型的信号,计时模块自身复位清零重新开始计时;计时模块将光刺激类型、时间测量结果输出至运算控制模块;运算控制模块根据积分测量模块和计时模块的测量结果计算得到所测量的图形亮格或暗格的亮度,将计算结果输出至显示界面模块;运算控制模块根据图形参数测量结果向信号发生模块发出相应的状态信号,信号发生模块准备就绪;定时模块经过预先设定的时间延迟后,向信号发生模块发出信号,使信号发生模块通过电信号输出接口输出电信号,同时定时模块自身复位清零;信号发生模块输出与图形参数对应的视觉电生理模拟信号或其他类型的波形的电信号如正弦波、方波、锯齿波等。The width of the square wave measured by the timing module is greater than 5ms. The internal logic of the timing module judges that the light stimulation signal is a graphic stimulus, and sends a signal indicating the type of light stimulation to the control module. The timing module resets itself and restarts timing; , time measurement results are output to the operation control module; the operation control module calculates the brightness of the measured graphic bright grid or dark grid according to the measurement results of the integral measurement module and the timing module, and outputs the calculation results to the display interface module; the operation control module according to The graphic parameter measurement results send a corresponding status signal to the signal generation module, and the signal generation module is ready; the timing module sends a signal to the signal generation module after a preset time delay, so that the signal generation module outputs an electrical signal through the electrical signal output interface At the same time, the timing module resets and clears itself; the signal generation module outputs visual electrophysiological analog signals corresponding to the graphic parameters or other types of electrical signals such as sine waves, square waves, and sawtooth waves.
到光电转换模块接收到下一个图形翻转信号时,积分测量模块测量得到图形暗格或亮格的亮度对时间的积分值,计时模块测量饿到其持续时间;积分测量模块和计时模块将测量结果输出至运算控制模块;运算控制模块将积分测量模块的测量结果除以计时模块的测量结果得到图形暗格或亮格的亮度值,将计时模块相邻两次的测量结果求和得到图形翻转信号的周期,取其倒数即为图形翻转频率;运算控制模块将计算结果输出至显示界面模块。When the photoelectric conversion module receives the next graphic flip signal, the integral measurement module measures the integral value of the brightness of the dark or bright grid of the graphic to the time, and the timing module measures its duration; the integral measurement module and the timing module will measure the result Output to the calculation control module; the calculation control module divides the measurement result of the integral measurement module by the measurement result of the timing module to obtain the brightness value of the dark or bright grid of the graph, and sums the measurement results of two adjacent timing modules to obtain a graph flip signal The period of , taking its reciprocal is the graphic flipping frequency; the calculation control module outputs the calculation result to the display interface module.
光电转换模块接收到下一个图形翻转信号时,装置的各个模块重复上述流程开始工作。具体工作过程如下:When the photoelectric conversion module receives the next graphic inversion signal, each module of the device repeats the above process to start working. The specific working process is as follows:
人眼视觉电生理模拟装置开机后,运算控制模块的单片机通过总线分别对各个模块进行初始化,将装置的状态信息输出至显示界面模块,接收用户通过输入界面模块输入的参数,工作方式如下:After the human visual electrophysiological simulation device is turned on, the single-chip microcomputer of the operation control module initializes each module through the bus, outputs the status information of the device to the display interface module, and receives the parameters input by the user through the input interface module. The working method is as follows:
开机后,运算控制模块的单片机芯片对各个芯片进行初始化,其中将计时模块中的计数器芯片U7的计数器0和计数器1的初始计数值设置为0(对应最大计数值),根据输入参数将计时模块中的计数器2设定为用于判别光刺激类型为闪光刺激的时间参数,如5ms,将定时模块中的计数器芯片U14的计数器0设定为接收到光刺激到发出电信号的延迟时间,如10ms,计时模块中的计数器0和计数器1以方式4工作,计时模块中U7的计数器2和定时模块中U14的计数器0以方式5工作;将单稳态触发器芯片U15的A1和A2引脚设置成0,使其处于检测上升沿的正常工作状态;当光电转换模块接收到光刺激信号时,光电转换模块的输出端输出一个与光刺激信号波形一致的电脉冲信号,脉冲信号经过积分测量模块的两级放大电路放大后,在与非门芯片U12的2Y引脚输出一个方波信号;方波信号同时输出积分测量模块、计时模块和定时模块;脉冲信号输出至积分测量模块放大电路的输入端,方波信号输出至积分测量模块的单片机芯片U3的P2.2引脚,脉冲信号经放大后再经模数转换芯片ADS804转换为数字信号,输入单片机芯片U3,单片机芯片U3根据P2.2引脚的电平状态分别计算出高电平和低电平状态下的亮度对时间的积分值;方波经两个单稳态触发器和一个与门后转化为两个短脉冲,分别对应方波的上升沿和下降沿,输出至定时模块的计数器芯片82C54(U14)的GATE0引脚,计数器0从预设值开始减法计数,计数结束时在OUT0引脚输出一个负脉冲至信号发生模块,控制信号发生模块输出信号;方波输出至计时模块的计数器芯片82C54(U7)的GATE0引脚和GATE2引脚,反相后输出至GATE1引脚,计数器0在方波的高电平时计数,计数器1在方波的低电平时计数,计数状态信号OUT0和OUT1输出至运算控制模块的单片机芯片U1,单片机芯片U1读取计数值,计数器2用于判断光刺激信号的类型,经方波的上升沿触发开始计数,计数结束前OUT2输出为0,计数结束后OUT2输出为1。After starting up, the single-chip microcomputer chip of the operation control module initializes each chip, wherein the counter 0 and the initial count value of the counter 1 of the counter chip U7 in the timing module are set to 0 (corresponding to the maximum count value), and the timing module is set according to the input parameters. The counter 2 in is set as the time parameter for distinguishing the light stimulation type as flash stimulation, such as 5ms, and the counter 0 of the counter chip U14 in the timing module is set as the delay time from receiving the light stimulation to sending out the electrical signal, such as 10ms, the counter 0 and counter 1 in the timing module work in mode 4, the counter 2 of U7 in the timing module and the counter 0 of U14 in the timing module work in mode 5; the A1 and A2 pins of the monostable flip-flop chip U15 Set it to 0, so that it is in the normal working state of detecting the rising edge; when the photoelectric conversion module receives the light stimulation signal, the output terminal of the photoelectric conversion module outputs an electric pulse signal consistent with the light stimulation signal waveform, and the pulse signal is measured by integration After the two-stage amplifying circuit of the module is amplified, a square wave signal is output at the 2Y pin of the NAND gate chip U12; the square wave signal is output to the integral measurement module, the timing module and the timing module at the same time; the pulse signal is output to the amplifying circuit of the integral measurement module At the input end, the square wave signal is output to the P2.2 pin of the single-chip microcomputer chip U3 of the integral measurement module. After the pulse signal is amplified, it is converted into a digital signal by the analog-to-digital conversion chip ADS804, and then input to the single-chip microcomputer chip U3. The single-chip microcomputer chip U3 is based on P2. The level state of the 2 pins respectively calculates the integral value of the brightness to time in the high level and low level states; the square wave is converted into two short pulses after passing through two monostable triggers and an AND gate, corresponding to The rising edge and falling edge of the square wave are output to the GATE0 pin of the counter chip 82C54 (U14) of the timing module, and the counter 0 starts to count down from the preset value, and outputs a negative pulse on the OUT0 pin to the signal generation module at the end of the counting , the output signal of the control signal generating module; the square wave is output to the GATE0 pin and the GATE2 pin of the counter chip 82C54 (U7) of the timing module, and output to the GATE1 pin after inversion, and the counter 0 counts when the square wave is at a high level. Counter 1 counts at the low level of the square wave, and the counting status signals OUT0 and OUT1 are output to the single-chip microcomputer chip U1 of the operation control module. The rising edge triggers to start counting, the OUT2 output is 0 before the counting ends, and the OUT2 output is 1 after the counting ends.
(1)如果光刺激信号为闪光信号,则在计时模块的计数器芯片U7的计数器2计数结束前,单稳态触发器芯片U17检测到对应闪光结束状态的方波下降沿从而输出一个正脉冲,经与非门芯片U10后输出一个正脉冲至运算控制模块的单片机芯片U1,单片机芯片U1接收到正脉冲后,将单稳态触发器芯片U15的A1和A2引脚置1,单稳态触发器芯片U15不再检测方波的上升沿,定时模块的计数器芯片U14的计数器0只受到方波下降沿的触发,从而实现只在在闪光刺激结束后延时输出电信号的功能。单片机根据计时模块和积分测量模块测量得到的结果进行计算,分别得到闪光强度值、闪光持续时间、背景亮度值、闪光频率等参数,输出至显示界面模块,并根据结果发出相应的指令至信号发生模块,输出与之对应的电信号。若光刺激为单次闪光,则计时模块的计数器1从最大值减法计数至0后自动结束,积分测量模块相应地停止积分,无需等待下一个闪光刺激信号。光电转换模块接收到下一个闪光刺激信号时,装置的各个模块重复上述流程开始工作。(1) If the optical stimulation signal is a flash signal, before the counter 2 of the counter chip U7 of the timing module counts, the monostable flip-flop chip U17 detects the falling edge of the square wave corresponding to the end state of the flash and outputs a positive pulse, After the NAND gate chip U10 outputs a positive pulse to the single-chip microcomputer chip U1 of the operation control module, after the single-chip microcomputer chip U1 receives the positive pulse, it sets the A1 and A2 pins of the monostable trigger chip U15 to 1, and the monostable trigger The timer chip U15 no longer detects the rising edge of the square wave, and the counter 0 of the counter chip U14 of the timing module is only triggered by the falling edge of the square wave, so as to realize the function of delaying the output of the electrical signal only after the flash stimulation ends. The single-chip microcomputer calculates according to the measurement results obtained by the timing module and the integral measurement module, respectively obtains the flash intensity value, flash duration, background brightness value, flash frequency and other parameters, and outputs them to the display interface module, and sends corresponding instructions to the signal generation according to the results The module outputs an electrical signal corresponding thereto. If the light stimulus is a single flash, the counter 1 of the timing module will automatically end after counting down from the maximum value to 0, and the integral measurement module will stop integrating accordingly without waiting for the next flash stimulation signal. When the photoelectric conversion module receives the next flash stimulation signal, each module of the device repeats the above process to start working.
(2)如果光刺激信号为图形信号,则在计时模块的计数器芯片U7的计数器2计数结束后,单稳态触发器芯片U17才检测到方波下降沿输出脉冲,而此时计数器芯片U7的计数器2输出OUT2引脚为1,非门芯片U10输出为保持为0,单片机芯片U1无动作,单稳态触发器芯片U15的A1和A2引脚保持为0,单稳态触发器芯片U15可以正常检测方波的上升沿,定时模块的计数器芯片U14的计数器0同时受到方波上升沿和下降沿的触发,从而实现在图形刺激的亮格变暗格或暗格变亮格时均触发信号发生模块延时输出电信号。单片机根据计时模块和积分测量模块测量得到的结果进行计算,分别得到亮格亮度值、暗格亮度值和图形翻转频率等参数,输出至显示界面模块,并根据结果发出相应的指令至信号发生模块,输出与之对应的电信号。光电转换模块接收到下一个图形翻转信号时,装置的各个模块重复上述流程开始工作。(2) If the optical stimulation signal is a graphic signal, after the counter 2 of the counter chip U7 of the timing module counts, the monostable flip-flop chip U17 detects the square wave falling edge output pulse, and at this time the counter chip U7 The counter 2 output OUT2 pin is 1, the output of the non-gate chip U10 is kept as 0, the single-chip microcomputer chip U1 has no action, the A1 and A2 pins of the monostable flip-flop chip U15 are kept as 0, and the monostable flip-flop chip U15 can be The rising edge of the square wave is normally detected, and the counter 0 of the counter chip U14 of the timing module is triggered by the rising and falling edges of the square wave at the same time, so as to realize the trigger signal when the bright grid becomes dark or the dark grid becomes bright in the graphic stimulus The generation module delays outputting electrical signals. The single-chip microcomputer calculates according to the measurement results obtained by the timing module and the integral measurement module, respectively obtains parameters such as bright grid brightness value, dark grid brightness value and graphic flip frequency, and outputs them to the display interface module, and sends corresponding instructions to the signal generation module according to the results , and output the corresponding electrical signal. When the photoelectric conversion module receives the next graphic inversion signal, each module of the device repeats the above process to start working.
本发明提供的人眼视觉电生理模拟装置的模拟方法,包括如下步骤:The simulation method of the human eye visual electrophysiological simulation device provided by the invention comprises the following steps:
步骤1,将光刺激信号转化为幅值与光刺激信号的亮度成正比的电信号,并对该电信号进行积分测量;Step 1, converting the photostimulation signal into an electrical signal whose amplitude is proportional to the brightness of the photostimulation signal, and performing integral measurement on the electrical signal;
步骤2,识别光刺激信号的类型,将积分测量信号转换为方波信号,通过计时测量方波的宽度,以其时间特性差异来识别闪光刺激信号和图形刺激信号,如果是闪光刺激信号,执行下一步;如果是图形刺激信号,执行步骤4;Step 2. Identify the type of light stimulus signal, convert the integral measurement signal into a square wave signal, measure the width of the square wave by timing, and identify the flash stimulus signal and the graphic stimulus signal by the difference in time characteristics. If it is a flash stimulus signal, execute Next step; if it is a graphic stimulus signal, perform step 4;
步骤3,如果发光对应方波的高电平,两次发光之间的间歇对应方波的低电平,那么,高电平期间积分测量结果作为闪光脉冲的强度,而低电平期间积分测量结果作为背景亮度对时间的积分值,计时测量结果的高电平时间作为闪光刺激的时程,高电平时间与低电平时间之和作为闪光刺激的周期,取倒数作为闪光刺激的频率,背景亮度对时间的积分值除以时间间隔作为背景亮度值,执行步骤5;Step 3, if the luminescence corresponds to the high level of the square wave, and the interval between two luminescences corresponds to the low level of the square wave, then the integrated measurement result during the high level period is used as the intensity of the flash pulse, while the integral measurement during the low level period The result is taken as the integral value of the background brightness versus time, the high-level time of the timing measurement results is taken as the time course of the flash stimulus, the sum of the high-level time and the low-level time is taken as the period of the flash stimulus, and the reciprocal is taken as the frequency of the flash stimulus, The integral value of the background brightness to time is divided by the time interval as the background brightness value, and step 5 is performed;
步骤4,以方波信号的边沿进行分段积分测量,方波处于高电平对应图形刺激的亮格状态,方波处于低电平对应图形刺激的暗格状态,分别进行积分测量得到方波处于高电平和低电平时的图形亮度对时间的积分值,计时测量得到高电平持续的时间值和低电平持续的时间值,并将两积分值分别除以所对应的时间,并分别作为图形亮格和暗格的亮度,将高电平持续的时间值和低电平持续的时间值相加作为图形翻转周期,取其倒数作为图形翻转频率,执行下一步;Step 4. Use the edge of the square wave signal to perform segmented integral measurement. The square wave is in the bright grid state corresponding to the graphic stimulus at a high level, and the square wave is in the dark grid state corresponding to the graphic stimulus at a low level. The square wave is obtained by integral measurement respectively. Integral value of graphics brightness to time at high level and low level, timing measurement to obtain high level duration time value and low level duration time value, and divide the two integral values by the corresponding time respectively, and respectively As the brightness of the bright grid and the dark grid of the graphics, add the duration value of the high level and the duration of the low level as the graphics flip cycle, take its reciprocal as the graphics flip frequency, and execute the next step;
步骤5,输入界面输入设定参数,积分测量和计时测量及其运算结果输出至显示界面。本发明人眼视觉电生理模拟装置及方法,使用同一套积分测量模块、脉冲整形模块和计时模块实现了闪光刺激的闪光强度、闪光时程、闪光频率、背景亮度和图形刺激的亮格亮度、暗格亮度、图形翻转频率的测量,同时根据光刺激信号的类型自动输出对应的标准电信号、根据光刺激信号的参数自动输出对应的标准电信号。并采用外部定时模块实现了光刺激到电信号输出时间可调延时。Step 5, input setting parameters on the input interface, and output integral measurement, timing measurement and their calculation results to the display interface. The human eye visual electrophysiological simulation device and method of the present invention use the same set of integral measurement module, pulse shaping module and timing module to realize the flash intensity, flash time course, flash frequency, background brightness and bright frame brightness of graphic stimulation, Measure the brightness of the dark grid and the frequency of graphic flipping, and at the same time automatically output the corresponding standard electrical signal according to the type of the optical stimulation signal, and automatically output the corresponding standard electrical signal according to the parameters of the optical stimulation signal. And an external timing module is used to realize the adjustable time delay from light stimulation to electrical signal output.
上面所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的构思和范围进行限定。在不脱离本发明设计构思的前提下,本领域普通人员对本发明的技术方案做出的各种变型和改进,均应落入到本发明的保护范围,本发明请求保护的技术内容,已经全部记载在权利要求书中。The above-mentioned embodiments are only descriptions of preferred implementations of the present invention, and are not intended to limit the concept and scope of the present invention. Under the premise of not departing from the design concept of the present invention, various modifications and improvements made by ordinary persons in the art to the technical solution of the present invention shall fall within the scope of protection of the present invention, and the technical content claimed in the present invention has been fully described in the claims.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410259010.7A CN103989474B (en) | 2014-06-11 | 2014-06-11 | Human visual electrophysiological simulation device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410259010.7A CN103989474B (en) | 2014-06-11 | 2014-06-11 | Human visual electrophysiological simulation device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103989474A CN103989474A (en) | 2014-08-20 |
CN103989474B true CN103989474B (en) | 2015-12-09 |
Family
ID=51303996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410259010.7A Active CN103989474B (en) | 2014-06-11 | 2014-06-11 | Human visual electrophysiological simulation device and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103989474B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109452937B (en) * | 2018-12-26 | 2022-04-08 | 中国计量科学研究院 | Multifunctional human body electrophysiological simulation device and control method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN87105377A (en) * | 1986-08-06 | 1988-03-23 | 西屋电气公司 | The subjective refraction system that has stable state vision stimulated voltage activator and product detector |
EP1018691A1 (en) * | 1998-10-09 | 2000-07-12 | Hoya Corporation | Ocular optical system and simulating method and simulating apparatus |
EP0734683B1 (en) * | 1995-03-29 | 2005-10-12 | Hoya Corporation | Apparatus for and method of simulating ocular optical system |
CN1849993A (en) * | 2006-05-18 | 2006-10-25 | 上海交通大学 | Artificial vision emulation and experiment system |
CN103211575A (en) * | 2013-03-06 | 2013-07-24 | 南京航空航天大学 | Control method for human eye aberration correction |
CN104182979A (en) * | 2014-08-22 | 2014-12-03 | 中国科学技术大学 | Visual impairment simulation method and device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3347514B2 (en) * | 1995-03-31 | 2002-11-20 | ホーヤ株式会社 | Eye optical system simulation device |
JP4121890B2 (en) * | 2003-04-30 | 2008-07-23 | 株式会社トプコン | Fundus observation apparatus and fundus observation method |
-
2014
- 2014-06-11 CN CN201410259010.7A patent/CN103989474B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN87105377A (en) * | 1986-08-06 | 1988-03-23 | 西屋电气公司 | The subjective refraction system that has stable state vision stimulated voltage activator and product detector |
EP0734683B1 (en) * | 1995-03-29 | 2005-10-12 | Hoya Corporation | Apparatus for and method of simulating ocular optical system |
EP1018691A1 (en) * | 1998-10-09 | 2000-07-12 | Hoya Corporation | Ocular optical system and simulating method and simulating apparatus |
CN1849993A (en) * | 2006-05-18 | 2006-10-25 | 上海交通大学 | Artificial vision emulation and experiment system |
CN103211575A (en) * | 2013-03-06 | 2013-07-24 | 南京航空航天大学 | Control method for human eye aberration correction |
CN104182979A (en) * | 2014-08-22 | 2014-12-03 | 中国科学技术大学 | Visual impairment simulation method and device |
Also Published As
Publication number | Publication date |
---|---|
CN103989474A (en) | 2014-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3893450A (en) | Method and apparatus for brain waveform examination | |
CN106667484B (en) | Electrode looseness detection and automatic alarm device in EEG collection and its control method | |
KR100945197B1 (en) | A system for performing medical examinations, a method for performing visual examinations and a method of synchronizing a series of sensory stimulus indications with the sampling rate of a visually induced potential signal | |
Williams et al. | Oblique effects in normally reared monkeys (Macaca nemestrina): Meridional variations in contrast sensitivity measured with operant techniques | |
US7133715B1 (en) | Hearing evaluation device with noise detection and evaluation capability | |
CN103989474B (en) | Human visual electrophysiological simulation device and method | |
EP1114614A2 (en) | Hearing evaluation device with predictive capabilities | |
CN204931653U (en) | A kind of finger cot type pulse measurement device | |
CN104523271A (en) | Myoelectricity pain measurement method and device for clinical use | |
Qu et al. | Improvement of the detection of human pulpal blood flow using a laser Doppler flowmeter modified for low flow velocity | |
CN104825146A (en) | Watch type cacosphyxia alarm | |
CN209091405U (en) | A kind of lip muscular strength amount sieve surveys instrument, instrument for training and diagnosis and therapy system | |
JP3313812B2 (en) | Biological muscle activity measurement device | |
CN203591256U (en) | Vision electrophysiological examination system | |
KR101462084B1 (en) | Simulation apparatus for medical pacemaker | |
CN101766470A (en) | Portable anerythrochloropsia quantitative analyzer | |
CN105996992B (en) | A kind of human perception characteristic test method based on Ergonomics Data | |
CN204028154U (en) | Defibrillation energy standard source | |
CN109452937B (en) | Multifunctional human body electrophysiological simulation device and control method | |
CN204428031U (en) | A kind of clinical myoelectricity surveys pain device | |
CN103735246A (en) | Wearable tonometer | |
CN203576471U (en) | Wear type intraocular pressure apparatus | |
CN211299917U (en) | Signal generator | |
CN104688212A (en) | Blood pressure and heart rate test instrument | |
CN203169166U (en) | Heart rate alarm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |