CN103985802B - Light-emitting diode and method of making the same - Google Patents
Light-emitting diode and method of making the same Download PDFInfo
- Publication number
- CN103985802B CN103985802B CN201310049983.3A CN201310049983A CN103985802B CN 103985802 B CN103985802 B CN 103985802B CN 201310049983 A CN201310049983 A CN 201310049983A CN 103985802 B CN103985802 B CN 103985802B
- Authority
- CN
- China
- Prior art keywords
- layer
- sublevel
- semiconductor layer
- impurity concentration
- emitting diode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/819—Bodies characterised by their shape, e.g. curved or truncated substrates
- H10H20/82—Roughened surfaces, e.g. at the interface between epitaxial layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/815—Bodies having stress relaxation structures, e.g. buffer layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
Landscapes
- Led Devices (AREA)
Abstract
本发明公开一种发光二极管及其制作方法。该发光二极管包含第一半导体层、位于第一半导体层上的活性层、位于活性层之上的第二半导体层,以及位于第二半导体层之上的半导体接触层。第二半导体层包含第一次层与形成于第一次层之上的第二次层,其中第二次层的材料包含AlxGa1‑xN(0<x<1),且第二次层的表面包含不规则分布的孔洞结构。
The present invention discloses a light emitting diode and a manufacturing method thereof. The light emitting diode comprises a first semiconductor layer, an active layer located on the first semiconductor layer, a second semiconductor layer located on the active layer, and a semiconductor contact layer located on the second semiconductor layer. The second semiconductor layer comprises a first semiconductor layer and a second semiconductor layer formed on the first semiconductor layer, wherein the material of the second semiconductor layer comprises Al x Ga 1‑x N (0<x<1), and the surface of the second semiconductor layer comprises an irregularly distributed hole structure.
Description
技术领域technical field
本发明涉及一种发光二极管及其制作方法,尤其是涉及改善发光二极管的光电特性。The invention relates to a light-emitting diode and a manufacturing method thereof, in particular to improving the photoelectric characteristics of the light-emitting diode.
背景技术Background technique
用于固态照明装置的发光二极管(light-emitting diode;LED)具有耗能低、低发热、操作寿命长、防震、体积小、反应速度快以及输出的光波长稳定等良好光电特性,因此发光二极管被广泛地应用于各种照明用途上。当发光二极管在导通的情况下,通过发光二极管的电流被称做顺向操作电流(If),在通过顺向操作电流下量测发光二极管两端的电压则被称作为顺向电压(Vf)。Light-emitting diodes (LEDs) used in solid-state lighting devices have good photoelectric characteristics such as low energy consumption, low heat generation, long operating life, shock resistance, small size, fast response, and stable output light wavelengths. Therefore, light-emitting diodes It is widely used in various lighting purposes. When the light-emitting diode is turned on, the current passing through the light-emitting diode is called the forward operating current (If), and the voltage measured across the light-emitting diode under the forward operating current is called the forward voltage (Vf). .
发光二极管的优点在于低耗能,但是在日常生活中更需要的是足够的亮光。除了增加所使用的发光二极管之外,也可增加发光二极管的操作电流以提升每个发光二极管的发光强度。但是在增加发光二极管的顺向电流时,同时会造成顺向电压与顺向电流的乘积增加,连带增加了被消耗成热能的能量。为了能让发光二极管被使用在低耗能的状况下,又同时让发光二极管能维持在足够的发光强度,降低发光二极管的顺向电压避免顺向电压与顺向电流的乘积过大,过多的能量被消耗成热能,成为促使发光二极管广泛被应用的重要研究方向。The advantage of light-emitting diodes is low energy consumption, but what is more needed in daily life is sufficient light. In addition to increasing the number of LEDs used, the operating current of the LEDs can also be increased to increase the luminous intensity of each LED. However, when the forward current of the LED is increased, the product of the forward voltage and the forward current will be increased at the same time, and the energy consumed as heat energy will also be increased. In order to allow the LED to be used in a low energy consumption condition, and at the same time allow the LED to maintain a sufficient luminous intensity, reduce the forward voltage of the LED to avoid the product of the forward voltage and the forward current from being too large. The energy is consumed into heat energy, which has become an important research direction to promote the widespread application of light-emitting diodes.
前述的发光二极管可以与其他元件组合连接以形成一发光装置,在发光装置内的元件包含了具有电路的次载体、粘结发光二极管于次载体上并使发光二极管的基板与次载体上的电路电连接的焊料,以及电连接发光二极管的电极与次载体电路的电连接结构。其中,上述的次载体可以是导线架或大尺寸镶嵌基底,以方便发光装置的电路规划并提高其发光二极管的散热效果。The aforementioned light-emitting diodes can be combined with other components to form a light-emitting device. The components in the light-emitting device include a sub-carrier with a circuit, bonding the light-emitting diode on the sub-carrier and making the substrate of the light-emitting diode and the circuit on the sub-carrier Solder for electrical connection, and an electrical connection structure for electrically connecting the electrodes of the light-emitting diode and the sub-carrier circuit. Wherein, the above-mentioned sub-carrier can be a lead frame or a large-sized mosaic substrate, so as to facilitate the circuit planning of the light-emitting device and improve the heat dissipation effect of the light-emitting diode.
发明内容Contents of the invention
为解决上述问题,本发明提供一种发光二极管,其包含第一半导体层、一位于第一半导体层之上的活性层、位于活性层之上的第二半导体层以及位于第二半导体层之上的半导体接触层。第二半导体层包含有第一次层与形成于第一次层之上的第二次层,其中第二次层的材料包含AlxGa1-xN(0<x<1),且第二次层的表面包含不规则分布的孔洞结构。In order to solve the above problems, the present invention provides a light emitting diode, which comprises a first semiconductor layer, an active layer located on the first semiconductor layer, a second semiconductor layer located on the active layer, and an active layer located on the second semiconductor layer. semiconductor contact layer. The second semiconductor layer includes a first layer and a second layer formed on the first layer, wherein the material of the second layer includes AlxGa1-xN (0<x<1), and the second layer The surface contains irregularly distributed pore structures.
本发明公开一种发光二极管的制作方法,包含提供一基板,形成一第一半导体层于基板之上,接着形成一活性层于第一半导体层之上,再外延形成包含AlxGa1-xN(0<x<1)的一第二半导体层于活性层之上;其中,第二半导体层的表面包含不规则分布的孔洞结构。The invention discloses a method for manufacturing a light-emitting diode, which includes providing a substrate, forming a first semiconductor layer on the substrate, then forming an active layer on the first semiconductor layer, and then epitaxially forming an Al x Ga 1-x A second semiconductor layer of N(0<x<1) is on the active layer; wherein, the surface of the second semiconductor layer includes irregularly distributed hole structures.
附图说明Description of drawings
图1所示为本发明所公开的第一发光二极管叠层的实施例;FIG. 1 shows an embodiment of the first light-emitting diode stack disclosed by the present invention;
图2所示为本发明所公开的第二半导体层的实施例;Fig. 2 shows the embodiment of the second semiconductor layer disclosed by the present invention;
图3所示为本发明所公开的第二发光二极管叠层的实施例;FIG. 3 shows an embodiment of the second light-emitting diode stack disclosed by the present invention;
图4所示为本发明所公开的第三发光二极管叠层的实施例。FIG. 4 shows an embodiment of a third LED stack disclosed in the present invention.
主要元件符号说明Description of main component symbols
100、200、300:发光二极管叠层100, 200, 300: LED stacking
102:基板102: Substrate
104:超晶格层104:Superlattice layer
106:第一半导体层106: the first semiconductor layer
108:应变层108: strain layer
110:活性层110: active layer
112:电子阻挡层112: Electron blocking layer
114:第二半导体层114: the second semiconductor layer
1141:第一次层1141: first layer
1142:第一次层1142: first layer
1143:第二次层1143: Second layer
1144:第三次层1144: The third layer
1146:第二次层1146: The second layer
116、118:半导体接触层116, 118: semiconductor contact layer
120:透明导电氧化层120: transparent conductive oxide layer
具体实施方式Detailed ways
图1是根据本发明第一实施例的第一发光二极管叠层100的剖视图,第一发光二极管叠层100包含有基板102、超晶格层104、第一半导体层106、活性层110、第二半导体层114、半导体接触层116与透明导电氧化层120。基板102的材料可包含有Ga、As、Si、C、P、Al、N、、Zn、O、Li等元素或者这些元素的组合但不限于这些元素,基板102可以是导电基板、绝缘性基板或是复合基板,其中的导电基板可以是金属基板,例如包含有铝或是硅的基板;而绝缘基板可以是蓝宝石(Sapphire)基板或者是兼具导热与绝缘的陶瓷基板;又或者是复合基板,例如结合导电材料与绝缘材料以达到改变电流分布以解决电流拥挤(currentcrowding)的现象或改善基板上的反射效果以减少内部吸光的情形。此外,基板102也可以是表面上具有图形的图案化基板。基板102与第一半导体层106之间具有超晶格层104,而超晶格层104是为了减少基板102与第一半导体层106之间因为晶格常数差异所造成的应力而使用的缓冲层,以避免因为两者之间的应力造成外延结构受到破坏或者不稳固。而在其他实施例中,基板102与第一半导体层106之间更包含作为连结用途的粘着层(未绘示于图中),以强化基板102与第一半导体层106之间的结合。当第一半导体层106为p型半导体时,第二半导体层114为相异电性的n型半导体;反之,当第一半导体层106为n型半导体时,第二半导体层114为相异电性的p型半导体,其中第一半导体层106与第二半导体层114可作为束缚层。活性层110位于第一半导体层106与第二半导体层114之间,可以是单层结构或者是由多个阱层和障壁层组成的多重量子阱层结构以发出特定波长的光线。在本实施例中,活性层110发出一主波长介于440~470nm的蓝光,并且是一非同调性的光。1 is a cross-sectional view of a first light emitting diode stack 100 according to a first embodiment of the present invention. The first light emitting diode stack 100 includes a substrate 102, a superlattice layer 104, a first semiconductor layer 106, an active layer 110, a second Two semiconductor layers 114 , a semiconductor contact layer 116 and a transparent conductive oxide layer 120 . The material of the substrate 102 may include Ga, As, Si, C, P, Al, N, , Zn, O, Li and other elements or a combination of these elements but not limited to these elements, the substrate 102 can be a conductive substrate, an insulating substrate or a composite substrate, and the conductive substrate can be a metal substrate, such as containing aluminum or silicon The insulating substrate can be a sapphire (Sapphire) substrate or a ceramic substrate with both thermal conductivity and insulation; or a composite substrate, such as combining conductive materials and insulating materials to change the current distribution to solve current crowding (currentcrowding) phenomenon or improve the reflective effect on the substrate to reduce internal light absorption. In addition, the substrate 102 may also be a patterned substrate with graphics on its surface. There is a superlattice layer 104 between the substrate 102 and the first semiconductor layer 106, and the superlattice layer 104 is a buffer layer used to reduce the stress caused by the lattice constant difference between the substrate 102 and the first semiconductor layer 106 In order to avoid damage or instability of the epitaxial structure due to the stress between the two. In other embodiments, an adhesive layer (not shown in the figure) for connection is further included between the substrate 102 and the first semiconductor layer 106 to strengthen the bonding between the substrate 102 and the first semiconductor layer 106 . When the first semiconductor layer 106 is a p-type semiconductor, the second semiconductor layer 114 is an n-type semiconductor with a different electrical property; A non-conductive p-type semiconductor, wherein the first semiconductor layer 106 and the second semiconductor layer 114 can serve as binding layers. The active layer 110 is located between the first semiconductor layer 106 and the second semiconductor layer 114 and can be a single layer structure or a multiple quantum well layer structure composed of multiple well layers and barrier layers to emit light of a specific wavelength. In this embodiment, the active layer 110 emits a blue light with a dominant wavelength of 440-470 nm, which is an anisotropic light.
在第二半导体层114内分为第一次层1141与位于第一次层1141之上的第二次层1143,且一半导体接触层116覆盖在第二次层1143之上,其中第二半导体层114的组成包含III-V族材料,且第二次层1143的材料为AlxGa1-xN,其中0<x<1。在邻接第二次层1143与半导体接触层116之间的一面为不规则的表面,如图1所示,并且在这不规则的表面上有不规则的孔洞结构。这些不规则表面以及不规则分布的孔洞,是以外延方式形成由AlxGa1-xN组成的第二次层1143时同时形成,这些孔洞以不规则且深度不一的型态散布在前述的不规则表面上。于本实施例中,这些因为外延成长方式形成AlxGa1-xN而同时造成的孔洞结构不仅分布在表面,还包含多个向下延伸的六角孔穴构造,其中至少一六角孔穴会延伸至作为束缚层的第二半导体层114的内部(未绘示于图中)。The second semiconductor layer 114 is divided into the first layer 1141 and the second layer 1143 above the first layer 1141, and a semiconductor contact layer 116 covers the second layer 1143, wherein the second semiconductor The composition of the layer 114 includes III-V materials, and the material of the second sub-layer 1143 is AlxGa1 -xN , where 0<x<1. The side between the adjacent second sub-layer 1143 and the semiconductor contact layer 116 is an irregular surface, as shown in FIG. 1 , and there are irregular hole structures on the irregular surface. These irregular surfaces and irregularly distributed holes are simultaneously formed when the second layer 1143 composed of AlxGa1 -xN is epitaxially formed, and these holes are scattered in the aforementioned on the irregular surface. In this embodiment, the hole structure caused by the formation of AlxGa1 -xN by epitaxial growth is not only distributed on the surface, but also includes a plurality of hexagonal hole structures extending downward, of which at least one hexagonal hole will extend to the inside of the second semiconductor layer 114 as a binding layer (not shown in the figure).
在半导体接触层116之上是透明导电氧化层120,在透明导电氧化层120之上则有一电极层(未绘示于图中)。透明导电氧化层120所使用的材料可以是ITO;半导体接触层116的材料包含能隙低于第二半导体层的材料,例如AlGaN或者InGaN,通过重度掺杂载流子的方式,可降低半导体接触层116的能隙,使得半导体接触层116在透明导电氧化层120与第二半导体层114之间形成良好的欧姆接触(Ohmic contact)。On the semiconductor contact layer 116 is a transparent conductive oxide layer 120 , and on the transparent conductive oxide layer 120 is an electrode layer (not shown in the figure). The material used for the transparent conductive oxide layer 120 can be ITO; the material of the semiconductor contact layer 116 includes a material with an energy gap lower than that of the second semiconductor layer, such as AlGaN or InGaN, which can reduce the semiconductor contact by heavily doping carriers. The energy gap of the layer 116 enables the semiconductor contact layer 116 to form a good Ohmic contact between the transparent conductive oxide layer 120 and the second semiconductor layer 114 .
本实施例中,第一半导体层106具有第一晶格常数,位于第一半导体层106之上的活性层110具有第二晶格常数,而位于活性层110之上的第二半导体层114具有第三晶格常数。因第二晶格常数大于第一晶格常数,造成活性层110受到来自于第一半导体层106向外的应力,使得外延品质不佳。为了改善活性层110所受到的应力,通过选择不同的材料使第二半导体层114具有的第三晶格常数小于第一晶格常数,以对活性层110形成向内的应力,使第一发光二极管叠层100的内部达到应力平衡,提升外延品质。换句话说,第一半导体层106具有的第一晶格常数介于活性层110的第二晶格常数与第二半导体层114的第三晶格常数之间,以形成良好的外延品质,降低第一发光二极管叠层100操作时的顺向电压(Vf)。In this embodiment, the first semiconductor layer 106 has a first lattice constant, the active layer 110 located on the first semiconductor layer 106 has a second lattice constant, and the second semiconductor layer 114 located on the active layer 110 has a third lattice constant. Because the second lattice constant is greater than the first lattice constant, the active layer 110 is subjected to outward stress from the first semiconductor layer 106 , resulting in poor epitaxial quality. In order to improve the stress on the active layer 110, the third lattice constant of the second semiconductor layer 114 is smaller than the first lattice constant by selecting different materials, so as to form an inward stress on the active layer 110 and make the first semiconductor layer 114 emit light. Stress balance is achieved inside the diode stack 100 to improve epitaxial quality. In other words, the first semiconductor layer 106 has a first lattice constant between the second lattice constant of the active layer 110 and the third lattice constant of the second semiconductor layer 114, so as to form good epitaxial quality and reduce The forward voltage (V f ) of the first LED stack 100 in operation.
在本实施例中,位于活性层110之上的第二半导体层114包含多个具有不同杂质浓度但电性相同的次层,如图2所示。在这些多个次层中,第一次层1142最接近活性层110,第二次层1146则位于第一次层1142之上,而第三次层1144位于第一次层1142与第二次层1146之间。其中第二次层1146最接近半导体接触层116,并且在第二次层1146最接近半导体接触层116的外表面上包含有不规则分布的孔洞结构。第一次层1142与第二次层1146的材料包含铝,其中第一次层1142与第二次层1146包含有AlyGa1-yN,其中0<y<0.3;于另一实施例中,为配合邻接第二半导体层114的活性层110与半导体接触层116具有不同晶格常数,例如当活性层110与半导体接触层116晶格常数更大时,便选择更小的y值介于0~0.1之间,使得第一次层1142与第二次层1146具有较大的晶格常数,以减少两个叠层之间相对的应力。这些次层虽然具有相同的导电性但是所具有的杂质浓度不相同,其中第三次层1144具有的第三杂质浓度介于第一次层1142具有的第一杂质浓度以及第二次层1146具有的第二杂质浓度之间。在本实施例中,第一杂质浓度约为5*1018㎝3、第三杂质浓度约为3*1019㎝3、第二杂质浓度约为1*1020㎝3。此外,三个次层的厚度也不相同,第三次层1144的厚度大于第一次层1142与第二次层1146的厚度。于另一实施例中,第三次层1144由不含有铝成分的材料组成,而第一次层1142与第二次层1146包含有铝的成分。In this embodiment, the second semiconductor layer 114 on the active layer 110 includes a plurality of sub-layers with different impurity concentrations but with the same electrical properties, as shown in FIG. 2 . Among these multiple sub-layers, the first sub-layer 1142 is closest to the active layer 110, the second sub-layer 1146 is located on the first sub-layer 1142, and the third sub-layer 1144 is located between the first sub-layer 1142 and the second sub-layer. Between layers 1146. The second sub-layer 1146 is closest to the semiconductor contact layer 116 , and the outer surface of the second sub-layer 1146 closest to the semiconductor contact layer 116 contains irregularly distributed hole structures. The material of the first layer 1142 and the second layer 1146 includes aluminum, wherein the first layer 1142 and the second layer 1146 include Al y Ga 1-y N, where 0<y<0.3; in another embodiment In order to cooperate with the active layer 110 and the semiconductor contact layer 116 adjacent to the second semiconductor layer 114 to have different lattice constants, for example, when the lattice constants of the active layer 110 and the semiconductor contact layer 116 are larger, a smaller value of y is selected between between 0 and 0.1, so that the first layer 1142 and the second layer 1146 have larger lattice constants, so as to reduce the relative stress between the two stacked layers. Although these sublayers have the same electrical conductivity, they have different impurity concentrations. The third impurity concentration of the third sublayer 1144 is between the first impurity concentration of the first layer 1142 and the second impurity concentration of the second sublayer 1146. Between the second impurity concentration. In this embodiment, the first impurity concentration is about 5*10 18 cm 3 , the third impurity concentration is about 3*10 19 cm 3 , and the second impurity concentration is about 1*10 20 cm 3 . In addition, the thicknesses of the three sub-layers are also different, the thickness of the third sub-layer 1144 is greater than the thickness of the first sub-layer 1142 and the second sub-layer 1146 . In another embodiment, the third sub-layer 1144 is made of a material that does not contain aluminum, while the first layer 1142 and the second sub-layer 1146 contain aluminum.
如图3所示,本发明另一实施例第二发光二极管叠层200包含有基板102、超晶格层104、第一半导体层106、应变层108、活性层110、第二半导体层114、电子阻挡层112、半导体接触层116与透明导电氧化层120。在本实施例中,通过超晶格层104减少第二半导体层106与基板102之间因为晶格常数不匹配形成的应力,避免后续形成半导体叠层时受应力影响而造成变形。当活性层110为多重量子阱时,最接近第二半导体层114的一障层包含有氮化铟镓,亦即最接近第一次层1142的障层包含有氮化铟镓。As shown in FIG. 3 , another embodiment of the present invention, a second light emitting diode stack 200 includes a substrate 102, a superlattice layer 104, a first semiconductor layer 106, a strain layer 108, an active layer 110, a second semiconductor layer 114, The electron blocking layer 112 , the semiconductor contact layer 116 and the transparent conductive oxide layer 120 . In this embodiment, the superlattice layer 104 is used to reduce the stress caused by the lattice constant mismatch between the second semiconductor layer 106 and the substrate 102 , so as to avoid deformation caused by stress during the subsequent formation of semiconductor stacks. When the active layer 110 is a multiple quantum well, a barrier layer closest to the second semiconductor layer 114 includes InGaN, that is, a barrier layer closest to the first layer 1142 includes InGaN.
在本实施例中,形成多重量子阱之前先在第一半导体层106上形成一应变层108,而在本实施例中应变层108的材料与活性层110同样由III-V族的材料组成,但是应变层108的杂质浓度小于活性层110,以减少活性层110中多重量子阱与第一半导体层106之间由于晶格常数不同造成差排而产生的应力,以提升活性层110的外延品质。本实施例中,活性层110发出一主波长介于440~470nm的蓝光,并且为一非同调性的光。而本实施例中第一半导体层106、活性层110、第二半导体层114以及应变层108的材料选自包含有Al、In、Ga、以及N等元素的III-V族材料组成不同的叠层,例如InGaN与GaN组成的叠层或是AlGaN和InGaN组成的叠层,使得叠层之间的晶格常数差异在一预定的范围内,以达到减少叠层之间应力的效果。应变层108的材料虽然与活性层110同样以III-V族材料组成,但是组成的成分与活性层110的成分不同,使得应变层108的晶格常数介于活性层110以及第一半导体层106之间,以改善成长于第一半导体层106之上的外延叠层的外延品质,并改善发光效率。In this embodiment, a strained layer 108 is formed on the first semiconductor layer 106 before forming multiple quantum wells, and in this embodiment, the material of the strained layer 108 and the active layer 110 are also composed of III-V materials, However, the impurity concentration of the strained layer 108 is lower than that of the active layer 110, so as to reduce the stress caused by the dislocation between the multiple quantum wells in the active layer 110 and the first semiconductor layer 106 due to the difference in lattice constant, so as to improve the epitaxial quality of the active layer 110 . In this embodiment, the active layer 110 emits a blue light with a dominant wavelength between 440-470 nm, which is a non-coherent light. In this embodiment, the materials of the first semiconductor layer 106, the active layer 110, the second semiconductor layer 114, and the strained layer 108 are selected from stacks with different compositions of III-V materials containing elements such as Al, In, Ga, and N. layer, such as a stack composed of InGaN and GaN or a stack composed of AlGaN and InGaN, so that the lattice constant difference between the stacks is within a predetermined range, so as to achieve the effect of reducing the stress between the stacks. Although the material of the strained layer 108 is composed of III-V materials like the active layer 110, the composition of the composition is different from that of the active layer 110, so that the lattice constant of the strained layer 108 is between the active layer 110 and the first semiconductor layer 106. In between, to improve the epitaxial quality of the epitaxial stack grown on the first semiconductor layer 106 and improve the luminous efficiency.
在本实施例中,第一半导体层106为n型半导体,而第二半导体层114为p型,在活性层110与第二半导体层114之间形成电子阻挡层112,以避免第一半导体层106往活性层110移动的电子溢流到第二半导体层114造成电子在活性层110以外的地方结合而降低发光效率。要达到这个效果,必须让电子阻挡层112的杂质浓度高于第二半导体层114的杂质浓度,或者是高于第二半导体层114所包含的第二次层1146所具有的第二杂质浓度,而电子阻挡层112的材料可以包含III-V族材料例如是AlzGa1-zN,其中0.15<z<0.4,可以通过增加Al的含量以增加阻挡电子的效果。In this embodiment, the first semiconductor layer 106 is an n-type semiconductor, while the second semiconductor layer 114 is a p-type, and an electron blocking layer 112 is formed between the active layer 110 and the second semiconductor layer 114 to prevent the first semiconductor layer from The electrons moving from 106 to the active layer 110 overflow to the second semiconductor layer 114 to cause the electrons to combine in places other than the active layer 110 to reduce the luminous efficiency. To achieve this effect, the impurity concentration of the electron blocking layer 112 must be higher than the impurity concentration of the second semiconductor layer 114, or higher than the second impurity concentration of the second sub-layer 1146 included in the second semiconductor layer 114, The material of the electron blocking layer 112 may include III-V materials such as Al z Ga 1-z N, where 0.15<z<0.4, and the effect of blocking electrons can be increased by increasing the content of Al.
在图3中,第二半导体层114更可以包含多个具有不同Al浓度而由AlGaN组成的次层,这些次层也具有不同的晶格常数。而其中第二半导体层114的晶格常数介于电子阻挡层112与活性层110的晶格常数之间,且活性层110的晶格常数大于电子阻挡层112以及第二半导体层114,除了可避免活性层110直接接触晶格常数差异较大的第二半导体层114,更可以通过电子阻挡层112改善原本活性层110与第二半导体层114晶格常数差异过大时造成的应力。而第二半导体层114内包含的多个具有不同晶格常数的次层与相邻的电子阻挡层112之间的应力也不至于过大,因此可以达到改善外延的品质进而降低第二发光二极管叠层200的顺向电压(Vf)。In FIG. 3 , the second semiconductor layer 114 may further include a plurality of sublayers composed of AlGaN with different Al concentrations, and these sublayers also have different lattice constants. Wherein the lattice constant of the second semiconductor layer 114 is between the lattice constants of the electron blocking layer 112 and the active layer 110, and the lattice constant of the active layer 110 is larger than the electron blocking layer 112 and the second semiconductor layer 114, except that Preventing the active layer 110 from directly contacting the second semiconductor layer 114 with a large difference in lattice constant can improve the stress caused by the large difference in lattice constant between the active layer 110 and the second semiconductor layer 114 through the electron blocking layer 112 . And the stress between the multiple sub-layers with different lattice constants contained in the second semiconductor layer 114 and the adjacent electron blocking layer 112 will not be too large, so the quality of the epitaxy can be improved and the second light-emitting diode can be reduced. The forward voltage (Vf) of the stack 200.
图4是根据本发明的另一实施例,第三发光二极管叠层300的剖视图,第三发光二极管叠层300具有与图3中第二发光二极管叠层200类似的结构,但是基板102、第一半导体层106以及超晶格层104与其他层相比具有较大的面积,使得其他各层仅覆盖第一半导体层106部分的面积。而第三发光二极管叠层300中,半导体接触层118形成于第二半导体层114之上,并且至少覆盖第一半导体层106的部分面积上,后续更可以形成电极层(未绘示于图中)于半导体接触层118之上。4 is a cross-sectional view of a third light emitting diode stack 300 according to another embodiment of the present invention. The third light emitting diode stack 300 has a structure similar to that of the second light emitting diode stack 200 in FIG. A semiconductor layer 106 and a superlattice layer 104 have larger areas than other layers, so that other layers only cover a part of the area of the first semiconductor layer 106 . In the third light-emitting diode stack 300, the semiconductor contact layer 118 is formed on the second semiconductor layer 114, and covers at least part of the area of the first semiconductor layer 106, and an electrode layer (not shown in the figure) can be formed later. ) on the semiconductor contact layer 118.
依据本发明实施例制作的发光二极管叠层100的流程是先提供一基板102,接着在形成第一半导体层106之前,根据第一半导体层106与基板102的晶格常数的差异选择晶格常数介于其中的材料作为超晶格层104形成于基板102之上,在本发明的实施例中是选择III-V族的材料制作第一半导体层106以及超晶格层104,通过加入超晶格层104以减缓基板102与第一半导体层106之间的应力。再形成第一半导体层106于超晶格层104之上,然后形成活性层110在第一半导体层106之上,其中的活性层110也可以是多重量子阱结构。接着在活性层110之上形成包含材料为AlxGa1-xN的第二半导体层114,而其中0<x<1。再接着形成一半导体接触层116于第二半导体层114之上,以及一透明导电氧化层120于半导体接触层116之上。其中,第二半导体层114最接近半导体接触层116的一侧包含AlxGa1-xN(0<x<1)的材料,并在第二半导体层114与半导体接触层116之间有不规则的平面以及在平面上的不规则孔洞结构,这些不规则的孔洞结构是以外延方式形成第二半导体层114时同时形成,并且包含有六角孔穴的构造,其中至少一六角孔穴延伸至第二半导体层114(未绘示于图中)。本实施例中,活性层110发出一主波长介于440~470nm的蓝光,并且为一非同调性的光。The process of manufacturing the LED stack 100 according to the embodiment of the present invention is to provide a substrate 102 first, and then select the lattice constant according to the difference between the lattice constants of the first semiconductor layer 106 and the substrate 102 before forming the first semiconductor layer 106 The intervening material is formed on the substrate 102 as a superlattice layer 104. In an embodiment of the present invention, the material of the III-V group is selected to make the first semiconductor layer 106 and the superlattice layer 104. By adding supercrystalline The lattice layer 104 is used to relieve the stress between the substrate 102 and the first semiconductor layer 106 . Then form a first semiconductor layer 106 on the superlattice layer 104, and then form an active layer 110 on the first semiconductor layer 106, wherein the active layer 110 can also be a multiple quantum well structure. Next, a second semiconductor layer 114 made of AlxGa1 -xN is formed on the active layer 110, where 0<x<1. Then, a semiconductor contact layer 116 is formed on the second semiconductor layer 114 , and a transparent conductive oxide layer 120 is formed on the semiconductor contact layer 116 . Wherein, the side of the second semiconductor layer 114 closest to the semiconductor contact layer 116 contains the material of AlxGa1 -xN (0<x<1), and there are different layers between the second semiconductor layer 114 and the semiconductor contact layer 116. Regular planes and irregular hole structures on the plane, these irregular hole structures are simultaneously formed when the second semiconductor layer 114 is epitaxially formed, and include a structure of hexagonal holes, wherein at least one hexagonal hole extends to the second semiconductor layer 114 Two semiconductor layers 114 (not shown in the figure). In this embodiment, the active layer 110 emits a blue light with a dominant wavelength between 440-470 nm, which is a non-coherent light.
而如图2的结构图所示,第二半导体层114包含第一次层1142、第二次层1146与第三次层1144,形成第二半导体层114的步骤包含以一预定流量通入含有Ga以及N的气体以及含铝的有机金属气体以形成AlGaN,其中通入含铝的有机金属气体的制作工艺条件是在环境温度900~1100℃之间,以压力范围300~500Torr的条件通入30~300sccm的有机金属气体,而含有铝的有机金属气体可以是含有铝的三甲基铝((CH3)3Al,TMAl)。而如前面所述,第一次层1142、第二次层1146与第三次层1144的杂质浓度不同,因此在形成第二次层1146时所通入的具有杂质的气体浓度要大于形成第一次层1142时所通入的气体浓度,接着在形成第三次层1144时更进一步提高所通入的具有杂质的气体浓度,使得各次层所具有的杂质浓度往远离活性层110的方向而增加。在本发明的实施例中,第二半导体层114为p型半导体,因此形成第二半导体层114时通入二茂镁(Mg(C5H5)2,Magnesocene)以提供镁作为掺杂杂质。As shown in the structural diagram of FIG. 2 , the second semiconductor layer 114 includes the first layer 1142, the second layer 1146 and the third layer 1144, and the step of forming the second semiconductor layer 114 includes passing a flow containing Ga and N gases and aluminum-containing organometallic gases are used to form AlGaN, and the production process conditions for introducing aluminum-containing organometallic gases are between 900 and 1100°C at an ambient temperature and at a pressure range of 300 to 500 Torr. 30~300sccm organometallic gas, and the organometallic gas containing aluminum may be trimethylaluminum ((CH 3 ) 3 Al, TMAl) containing aluminum. As mentioned above, the impurity concentrations of the first layer 1142, the second layer 1146 and the third layer 1144 are different, so the concentration of the impurity-containing gas introduced when forming the second layer 1146 is higher than that of forming the first layer 1146. The concentration of the gas injected in the first layer 1142, and then further increase the concentration of the gas with impurities introduced in the formation of the third layer 1144, so that the impurity concentration of each layer moves away from the active layer 110 And increase. In an embodiment of the present invention, the second semiconductor layer 114 is a p-type semiconductor, so when forming the second semiconductor layer 114, magnesium (Mg(C 5 H 5 ) 2 , Magnesocene) is introduced to provide magnesium as a doping impurity .
接着再于第二半导体层114上形成半导体接触层116与透明导电氧化层120,其中透明导电氧化层120的材料为ITO,可作为窗户层而增加出光。接着在透明导电氧化层120上形成电极层(未绘示于图中),而当基板102为导电型材料时,可在基板102上相对于成长半导体叠层的另一侧形成一电极层(未绘示于图中);或者是先移除基板102之后,再将导电基板与超晶格层104相结合,并在导电基板的另一侧上形成电极层。Next, a semiconductor contact layer 116 and a transparent conductive oxide layer 120 are formed on the second semiconductor layer 114 , wherein the material of the transparent conductive oxide layer 120 is ITO, which can be used as a window layer to increase light output. Then an electrode layer (not shown in the figure) is formed on the transparent conductive oxide layer 120, and when the substrate 102 is a conductive material, an electrode layer ( not shown in the figure); or first remove the substrate 102, then combine the conductive substrate with the superlattice layer 104, and form an electrode layer on the other side of the conductive substrate.
图3中,第二发光二极管叠层200与图1中发光二极管叠层100的差异在于形成第二发光二极管叠层200的活性层110之前,先形成应变层108在第一半导体层106之上,接着形成活性层110时会因为应变层108与活性层110之间的晶格常数差异较少使得成长的外延的品质比较好。另一个差异是在形成活性层110之后先形成电子阻挡层112再形成第二半导体层114,使得电子阻挡层112介于活性层110与第二半导体层114之间,而其中电子阻挡层112的材料可以是AlyGa1-yN并且0.15<y<0.4。如前所述,通过电子阻挡层112的加入使得活性层110的晶格常数与第二半导体层114相近,减少外延叠层之间的应力让外延的品质较好而达到降低发光二极管叠层顺向电压的结果。In FIG. 3 , the difference between the second LED stack 200 and the LED stack 100 in FIG. 1 is that before forming the active layer 110 of the second LED stack 200 , a strained layer 108 is first formed on the first semiconductor layer 106 , when the active layer 110 is subsequently formed, the quality of the grown epitaxy is better because the lattice constant difference between the strained layer 108 and the active layer 110 is less. Another difference is that after forming the active layer 110, the electron blocking layer 112 is first formed and then the second semiconductor layer 114 is formed, so that the electron blocking layer 112 is between the active layer 110 and the second semiconductor layer 114, and wherein the electron blocking layer 112 The material may be AlyGa1 -yN and 0.15<y<0.4. As mentioned above, the lattice constant of the active layer 110 is similar to that of the second semiconductor layer 114 through the addition of the electron blocking layer 112, which reduces the stress between the epitaxial stacks and makes the quality of the epitaxy better, thereby reducing the smoothness of the light-emitting diode stack. to the voltage result.
图4中的第三发光二极管叠层300则是在图3中的第二发光二极管叠层200形成之后,再蚀刻发光叠层直到露出部分的第一半导体层106。接着再于露出的部分第一半导体层106之上形成半导体接触层118,使得半导体接触层118至少覆盖在部分的第一半导体层106之上。然后在图4中的第三发光二极管叠层300的透明导电氧化层120与半导体接触层118之上分别形成两个电极层(未绘示于图中)。In the third LED stack 300 in FIG. 4 , after the formation of the second LED stack 200 in FIG. 3 , the light emitting stack is etched until a part of the first semiconductor layer 106 is exposed. Then, a semiconductor contact layer 118 is formed on the exposed part of the first semiconductor layer 106 , so that the semiconductor contact layer 118 covers at least a part of the first semiconductor layer 106 . Then two electrode layers (not shown in the figure) are respectively formed on the transparent conductive oxide layer 120 and the semiconductor contact layer 118 of the third LED stack 300 in FIG. 4 .
上述实施例仅为例示性说明本发明的原理及其功效,而非用于限制本发明。任何本发明所属技术领域中具有通常知识者均可在不违背本发明的技术原理及精神的情况下,对上述实施例进行修改及变化。因此本发明的权利保护范围如所述的权利要求所列。The above-mentioned embodiments are only illustrative to illustrate the principles and effects of the present invention, and are not intended to limit the present invention. Anyone with ordinary knowledge in the technical field of the present invention can modify and change the above-mentioned embodiments without violating the technical principle and spirit of the present invention. Therefore, the protection scope of the present invention is as listed in the claims.
Claims (19)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310049983.3A CN103985802B (en) | 2013-02-08 | 2013-02-08 | Light-emitting diode and method of making the same |
CN201810358160.1A CN108365066B (en) | 2013-02-08 | 2013-02-08 | Light emitting diode and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310049983.3A CN103985802B (en) | 2013-02-08 | 2013-02-08 | Light-emitting diode and method of making the same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810358160.1A Division CN108365066B (en) | 2013-02-08 | 2013-02-08 | Light emitting diode and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103985802A CN103985802A (en) | 2014-08-13 |
CN103985802B true CN103985802B (en) | 2018-05-15 |
Family
ID=51277699
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810358160.1A Active CN108365066B (en) | 2013-02-08 | 2013-02-08 | Light emitting diode and manufacturing method thereof |
CN201310049983.3A Active CN103985802B (en) | 2013-02-08 | 2013-02-08 | Light-emitting diode and method of making the same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810358160.1A Active CN108365066B (en) | 2013-02-08 | 2013-02-08 | Light emitting diode and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN108365066B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200527706A (en) * | 2004-02-04 | 2005-08-16 | South Epitaxy Corp | Structure of light emitting diode |
CN102157654A (en) * | 2011-03-30 | 2011-08-17 | 重庆大学 | Inverted mounting LED chip based on double-faced shrinkage pool substrate and component gradual change buffer layer |
TW201145572A (en) * | 2010-03-05 | 2011-12-16 | Showa Denko Kk | Method for producing semiconductor light emitting device and semiconductor light emitting device, lamp, electronic device, machinery equipment |
CN102903806A (en) * | 2011-07-25 | 2013-01-30 | Lg伊诺特有限公司 | Light emitting device |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6657300B2 (en) * | 1998-06-05 | 2003-12-02 | Lumileds Lighting U.S., Llc | Formation of ohmic contacts in III-nitride light emitting devices |
TWI236160B (en) * | 2003-11-25 | 2005-07-11 | Super Nova Optoelectronics Cor | GaN light emitted diode with high luminescent efficiency and the manufacture method |
US7462884B2 (en) * | 2005-10-31 | 2008-12-09 | Nichia Corporation | Nitride semiconductor device |
US8013320B2 (en) * | 2006-03-03 | 2011-09-06 | Panasonic Corporation | Nitride semiconductor device and method for fabricating the same |
US20080277678A1 (en) * | 2007-05-08 | 2008-11-13 | Huga Optotech Inc. | Light emitting device and method for making the same |
KR101459752B1 (en) * | 2007-06-22 | 2014-11-13 | 엘지이노텍 주식회사 | Semiconductor light emitting device and manufacturing method thereof |
JP5533791B2 (en) * | 2011-06-20 | 2014-06-25 | 豊田合成株式会社 | Group III nitride semiconductor light emitting device manufacturing method |
KR20130005495A (en) * | 2011-07-06 | 2013-01-16 | 삼성전자주식회사 | Nitride semiconductor light emitting device |
-
2013
- 2013-02-08 CN CN201810358160.1A patent/CN108365066B/en active Active
- 2013-02-08 CN CN201310049983.3A patent/CN103985802B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200527706A (en) * | 2004-02-04 | 2005-08-16 | South Epitaxy Corp | Structure of light emitting diode |
TW201145572A (en) * | 2010-03-05 | 2011-12-16 | Showa Denko Kk | Method for producing semiconductor light emitting device and semiconductor light emitting device, lamp, electronic device, machinery equipment |
CN102157654A (en) * | 2011-03-30 | 2011-08-17 | 重庆大学 | Inverted mounting LED chip based on double-faced shrinkage pool substrate and component gradual change buffer layer |
CN102903806A (en) * | 2011-07-25 | 2013-01-30 | Lg伊诺特有限公司 | Light emitting device |
Also Published As
Publication number | Publication date |
---|---|
CN103985802A (en) | 2014-08-13 |
CN108365066A (en) | 2018-08-03 |
CN108365066B (en) | 2020-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7176480B2 (en) | Light-emitting semiconductor device having a quantum well active layer, and method of fabrication | |
KR101174908B1 (en) | Light-emitting device and manufacturing method thereof | |
CN105405939B (en) | A kind of light emitting diode and its manufacture method | |
CN103441196B (en) | Light emitting element and manufacturing method thereof | |
CN104810442A (en) | Light emitting diode epitaxial wafer and growth method thereof | |
CN103311394B (en) | A kind of gallium nitride based light emitting diode and epitaxial growth method thereof | |
TW201338197A (en) | Light-emitting element with gradient content tunneling layer | |
US20090321780A1 (en) | Gallium nitride-based light emitting device with roughened surface and fabricating method thereof | |
CN108565319B (en) | Nitride semiconductor structure and semiconductor light-emitting element | |
CN104993028A (en) | Light-emitting diode epitaxial wafer | |
CN109103312B (en) | Gallium nitride-based light emitting diode epitaxial wafer and manufacturing method thereof | |
CN111987196B (en) | Semiconductor components | |
KR101201641B1 (en) | Transparent thin film, light emitting device comprising the same, and methods for preparing the same | |
CN103311389A (en) | Light-emitting diode epitaxial wafer and manufacturing method thereof | |
TWI584493B (en) | Light-emitting diode and manufacturing method thereof | |
CN214378484U (en) | GaN-based epitaxial wafer structure | |
CN103985802B (en) | Light-emitting diode and method of making the same | |
CN100479210C (en) | Multiple quantum well nitride light emitting diode with carrier providing layer | |
CN203536463U (en) | Gallium-nitride-based light emitting diode | |
CN109473525B (en) | A kind of gallium nitride-based light-emitting diode epitaxial wafer and manufacturing method thereof | |
KR20100026760A (en) | Light emitting devcie | |
KR20160139920A (en) | Ultraviolet light emitting device | |
CN217086610U (en) | LED structure | |
TWI568022B (en) | Semiconductor stack structure | |
TWI455355B (en) | Light emitting diode structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |