[go: up one dir, main page]

CN103965359B - Anti-epithelial cell adhesion molecule and the bi-specific antibody of T cell antigen - Google Patents

Anti-epithelial cell adhesion molecule and the bi-specific antibody of T cell antigen Download PDF

Info

Publication number
CN103965359B
CN103965359B CN201310025302.XA CN201310025302A CN103965359B CN 103965359 B CN103965359 B CN 103965359B CN 201310025302 A CN201310025302 A CN 201310025302A CN 103965359 B CN103965359 B CN 103965359B
Authority
CN
China
Prior art keywords
seqidno
antibody
cells
nucleic acid
variable region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310025302.XA
Other languages
Chinese (zh)
Other versions
CN103965359A (en
Inventor
李宗海
张鹏飞
石必枝
王华茂
高慧萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Cancer Institute
Original Assignee
Shanghai Cancer Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Cancer Institute filed Critical Shanghai Cancer Institute
Priority to CN201310025302.XA priority Critical patent/CN103965359B/en
Publication of CN103965359A publication Critical patent/CN103965359A/en
Application granted granted Critical
Publication of CN103965359B publication Critical patent/CN103965359B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

一种双特异性抗体,其包含(1)结合EpCAM的第一功能域,(2)结合CD3的第二功能域,以及(3)连接所述第一和第二功能域的接头,所述第一功能域包含至少一个轻链可变区和至少一个重链可变区,所述轻链可变区包含如下三个互补决定区:CDR-L1:RASQDISNYLN;CDR-L2:YTSRLHS;CDR-L3:QQGSTLPYT,所述重链可变区包含如下三个互补决定区:CDR-H1:GYTFTYYGMN;CDR-H2:WINTYTGEPTYGDDFKG;CDR-H3:TGRATSFDY。

A bispecific antibody comprising (1) a first functional domain binding to EpCAM, (2) a second functional domain binding to CD3, and (3) a linker connecting the first and second functional domains, the The first functional domain comprises at least one light chain variable region and at least one heavy chain variable region, the light chain variable region comprising the following three complementarity determining regions: CDR-L1: RASQDISNYLN; CDR-L2: YTSRLHS; CDR-L1: L3: QQGSTLPYT, the heavy chain variable region includes the following three complementarity determining regions: CDR-H1: GYTFTYYGMN; CDR-H2: WINTYTGEPTYGDDFKG; CDR-H3: TGRATSFDY.

Description

抗上皮细胞粘附分子和T细胞抗原的双特异性抗体Bispecific antibodies against epithelial cell adhesion molecules and T cell antigens

技术领域technical field

本发明涉及肿瘤治疗相关抗体,更具体的,基因工程抗体领域。The present invention relates to antibodies related to tumor treatment, more specifically, the field of genetically engineered antibodies.

背景技术Background technique

目前的研究已知上皮细胞粘附分子(EpCAM,Epithelialcelladhesionmolecule;CD326)是糖基化的I型跨膜糖蛋白,分子量为30到40kD,其结构包括一个表皮生长因子样,一个甲状腺球蛋白样的胞膜外区,一段跨膜区和一段26氨基酸的胞浆区。EpCAM主要定位于上皮细胞之间,以定向和高度有序的方式起作用来粘附上皮细胞。而一旦上皮细胞恶性转化,快速生长的肿瘤细胞将废弃上皮细胞的高度有序性。结果,EpCAM的表面分布变得较少受约束并且分子更多地暴露于肿瘤细胞上。大多数肿瘤细胞由于其上皮细胞的来源,其表面表达有EpCAM[7]。因此EpCAM可以成为对表面表达有该种分子的肿瘤细胞和肿瘤干细胞进行抗体免疫治疗的靶位点。Current studies have known that epithelial cell adhesion molecule (EpCAM, Epithelialcelladhesionmolecule; CD326) is a glycosylated type I transmembrane glycoprotein with a molecular weight of 30 to 40kD, and its structure includes an epidermal growth factor-like, a thyroglobulin-like The extracellular region, a transmembrane region and a 26 amino acid cytoplasmic region. EpCAM is mainly localized between epithelial cells and functions in a directed and highly ordered manner to adhere epithelial cells. Once the malignant transformation of epithelial cells, the rapid growth of tumor cells will abandon the high order of epithelial cells. As a result, the surface distribution of EpCAM becomes less constrained and the molecule is more exposed on tumor cells. Most tumor cells express EpCAM on their surface due to their epithelial origin [7]. Therefore, EpCAM can be the target site for antibody immunotherapy on tumor cells and tumor stem cells expressing this molecule on the surface.

目前已有大量以EpCAM为靶标的免疫治疗研究开展,例如Adecatumumab,Catumaxomab,和一种抗EpCAM/CD3三功能抗体已进入临床试验研究阶段。其中Catumaxomab抗体在治疗结肠癌/胃癌/或胰腺癌中的效果,Adecatumumab抗体针对前列腺癌的治疗效果,和抗EpCAM/CD3的三功能抗体对卵巢癌的治疗效果在文献中[12-14]被记载。At present, a large number of immunotherapy studies targeting EpCAM have been carried out, such as Adecatumumab, Catumaxomab, and an anti-EpCAM/CD3 trifunctional antibody have entered the clinical trial research stage. Among them, the effect of Catumaxomab antibody in the treatment of colon cancer/gastric cancer/or pancreatic cancer, the therapeutic effect of Adecatumumab antibody against prostate cancer, and the therapeutic effect of anti-EpCAM/CD3 trifunctional antibody against ovarian cancer have been reported in the literature [12-14]. recorded.

据称显示具有治疗胰腺癌,结肠直肠癌及卵巢癌的抗EpCAM/CD3双特异性抗体也已分别发表在研究文献[15-18]中。此外,中国专利申请CN1812999A也报道了包含抗EpCAM×CD3的双特异性单链抗体构建物的药物,其被预期用于治疗,缓解和/或预防上皮癌或微量残留癌。Anti-EpCAM/CD3 bispecific antibodies purportedly shown to treat pancreatic cancer, colorectal cancer, and ovarian cancer have also been published in research literature [15-18], respectively. In addition, Chinese patent application CN1812999A also reported a drug comprising an anti-EpCAM×CD3 bispecific single-chain antibody construct, which is expected to be used for the treatment, alleviation and/or prevention of epithelial cancer or minimal residual cancer.

但目前尚未发现显示具有期待的和理想的肝癌治疗效果的EpCAM抗体被报道。因此,本领域还需要研制具有优良特性包括但不限于有效针对和治疗肝癌的抗EpCAM抗体,从而开发出肿瘤免疫治疗效果更显著的针对性药物。However, no EpCAM antibody that has expected and ideal therapeutic effect on liver cancer has been reported so far. Therefore, there is still a need in this field to develop anti-EpCAM antibodies with excellent properties including but not limited to effective targeting and treatment of liver cancer, so as to develop targeted drugs with more significant tumor immunotherapy effects.

发明内容Contents of the invention

本发明提供具有EpCAM特异性结合功能域的双特异性抗体分子,该分子同时还具有通过与CD3分子的结合引发T细胞靶向细胞毒作用来杀伤肿瘤细胞。本发明的双特异性抗体显示了优良的针对多种肝癌肿瘤细胞系和对瘤小鼠体内肿瘤的特异性杀伤,特别是针对肝癌细胞的特异性杀伤作用。The present invention provides a bispecific antibody molecule with EpCAM specific binding functional domain, and the molecule also has the ability to trigger T cell targeting cytotoxicity through binding with CD3 molecule to kill tumor cells. The bispecific antibody of the present invention shows excellent specific killing effect on various liver cancer tumor cell lines and tumors in tumor mice, especially specific killing effect on liver cancer cells.

本发明涉及一种双特异性抗体,其包含(1)特异性结合EpCAM的第一功能域(2)特异性结合CD3的第二功能域以及(3)连接所述第一和第二功能域的接头,所述第一功能域包含至少一个轻链可变区和至少一个重链可变区,所述轻链可变区包含如下的三个互补决定区:The present invention relates to a bispecific antibody comprising (1) a first functional domain specifically binding to EpCAM (2) a second functional domain specifically binding to CD3 and (3) connecting the first and second functional domains The linker of said first functional domain comprises at least one light chain variable region and at least one heavy chain variable region, said light chain variable region comprises three complementarity determining regions as follows:

CDR-L1:RASQDISNYLN(SEQIDNO:7)CDR-L1: RASQDISNYLN (SEQ ID NO: 7)

CDR-L2:YTSRLHS(SEQIDNO:8)CDR-L2: YTSRLHS (SEQ ID NO: 8)

CDR-L3:QQGSTLPYT(SEQIDNO:9)CDR-L3: QQGSTLPYT (SEQ ID NO: 9)

所述重链可变区包含如下三个互补决定区:The heavy chain variable region comprises the following three complementarity determining regions:

CDR-H1:GYTFTYYGMN(SEQIDNO:10)CDR-H1: GYTFTYYGMN (SEQ ID NO: 10)

CDR-H2:WINTYTGEPTYGDDFKG(SEQIDNO:11)CDR-H2: WINTYTGEPTYGDDFKG (SEQ ID NO: 11)

CDR-H3:TGRATSFDY(SEQIDNO:12)。CDR-H3: TGRATSFDY (SEQ ID NO: 12).

“功能域”指的是能够特异性识别和/或结合到表位上的三维结构,例如抗体或抗体片段,包括天然完整抗体,单链抗体(scFV),Fd片段,Fab片段,F(ab’)2片段,单结构域抗体片段,分离的CDR片段,及其衍生物。此处“单链”意思是第一和第二功能域共价连接,优选地以一个核酸分子可编码的共线性氨基酸序列行形成。"Functional domain" refers to a three-dimensional structure capable of specifically recognizing and/or binding to an epitope, such as an antibody or antibody fragment, including native intact antibody, single chain antibody (scFV), Fd fragment, Fab fragment, F(ab ') 2 fragments, single domain antibody fragments, isolated CDR fragments, and derivatives thereof. "Single-stranded" here means that the first and second functional domains are covalently linked, preferably in the form of a colinear amino acid sequence that can be encoded by one nucleic acid molecule.

优选地或备选地,上述本发明的双特异性抗体中的第一和/或第二功能域选自单克隆抗体,完整抗体,单链抗体(scFV),Fab片段,Fd片段,Fv片段,F(ab’)2片段和其功能性衍生物。值得注意的是,本发明的功能域的结合位点可以不仅来自于抗体,也可以来自其他与EpCAM和/或CD3结合的蛋白质,例如天然存在的表面受体或配体。Preferably or alternatively, the first and/or second functional domains in the above-mentioned bispecific antibody of the present invention are selected from monoclonal antibodies, intact antibodies, single-chain antibodies (scFV), Fab fragments, Fd fragments, and Fv fragments , F(ab')2 fragments and functional derivatives thereof. It is worth noting that the binding sites of the functional domains of the present invention may not only come from antibodies, but also from other proteins that bind to EpCAM and/or CD3, such as naturally occurring surface receptors or ligands.

“完整抗体”由两个同样的重链和轻链组成,各条链分别包含一个可变区(V区)和一个或多个恒定区(C区)。可变区负责与抗原结合,而恒定区主要负责结合效应分子。在各可变区有三个具有高度多样性的柔性的环,称作互补决定区(CDR),其主要负责识别抗原。可变区的其他部分包含刚性的β片层并支持所谓的框架区(FRs)。CDR和FR间隔排列形成三明治结构。A "whole antibody" is composed of two identical heavy and light chains, each chain comprising a variable region (V region) and one or more constant regions (C regions), respectively. The variable region is responsible for binding to the antigen, while the constant region is primarily responsible for binding effector molecules. Within each variable domain are three flexible loops of high diversity, called complementarity determining regions (CDRs), which are primarily responsible for antigen recognition. The rest of the variable domains contain rigid beta sheets and support the so-called framework regions (FRs). CDRs and FRs are arranged alternately to form a sandwich structure.

“单链抗体(scFV)片段”指的是通过基因工程构建的抗体片段,其是有通过接头(linker)连接的重链可变区(VH)和轻链可变区(VL)的重组蛋白,接头使得这两个结构域相关联以形成抗原结合位点。ScFV的大小一般是一个完整抗体的1/6。单链抗体优选是由一个核苷酸链编码的一条氨基酸链序列。"Single-chain antibody (scFV) fragment" refers to an antibody fragment constructed by genetic engineering, which is a recombinant protein with a heavy chain variable region (VH) and a light chain variable region (VL) connected by a linker , the linker brings these two domains into association to form an antigen-binding site. The size of ScFv is generally 1/6 of a whole antibody. A single-chain antibody is preferably a sequence of one amino acid chain encoded by one nucleotide chain.

“Fd片段”指的是由重链VH和CH1组成抗体片段。"Fd fragment" refers to an antibody fragment composed of heavy chain VH and CH1.

“Fab片段”指的是由Fd片段(由重链VH和CH1组成)和整条轻链通过链间二硫键形成的异二聚物。“Fab抗体”的大小是完整抗体的1/3,其只包含一个抗原结合位点。"Fab fragment" refers to the heterodimer formed by the Fd fragment (consisting of heavy chain VH and CH1) and the entire light chain via interchain disulfide bonds. A "Fab antibody" is 1/3 the size of a full antibody and contains only one antigen-binding site.

“F(ab’)2片段“指的是包含两个相连的Fab片段的二价片段。"F(ab') 2 fragment" refers to a bivalent fragment comprising two linked Fab fragments.

“单结构域抗体”由重链可变区或轻链可变区组成。由于该抗体片段只由一个结构域组成,所以得名。该片段的大小是一个完整抗体的1/12。A "single domain antibody" consists of either a heavy chain variable region or a light chain variable region. The antibody fragment is so named because it consists of only one domain. The size of this fragment is 1/12 of a whole antibody.

“抗体的衍生物”包括例如当通过噬菌体展示技术获得所述抗体的衍生物时,可使用如BIAcore系统中使用的表面等离子共振技术来增加与GPC3或CD3抗原表位结合的噬菌体抗体的效率(Schier,人抗体杂交瘤7(1996),97-105;Malmborg,免疫学方法杂志183(1995),7-13)。还包括,例如WO89/09622中描述的嵌合抗体的产生的方法,EP-A10239400和WO90/07861中描述的人源化抗体产生的方法,WO91/10741,WO94/02602和WO96/33735中有描述的产生异种抗体例如小鼠中的人抗体的方法。"Derivatives of antibodies" include, for example, when the derivatives of the antibodies are obtained by phage display technology, surface plasmon resonance technology as used in BIAcore system can be used to increase the efficiency of phage antibody binding to GPC3 or CD3 epitope ( Schier, Human Antibody Hybridoma 7 (1996), 97-105; Malmborg, J Immunol Methods 183 (1995), 7-13). Also included are methods for the production of chimeric antibodies as described, for example, in WO89/09622, methods for the production of humanized antibodies as described in EP-A10239400 and WO90/07861, as described in WO91/10741, WO94/02602 and WO96/33735 Method for generating heterologous antibodies, such as human antibodies in mice.

本发明使用的抗体或其片段可单独或联合使用本领域已知的常规技术,例如氨基酸缺失、插入、取代、增加、和/或重组以及/或其他修饰方法作进一步修饰。根据一种抗体的氨基酸序列在其DNA序列中引入这种修饰的方法对本领域技术人员来说是众所周知的;见例如,Sambrook,分子克隆:实验手册,ColdSpringHarborLaboratory(1989)N.Y.。所指的修饰优选在核酸水平上进行。The antibodies or fragments thereof used in the present invention can be further modified individually or in combination using conventional techniques known in the art, such as amino acid deletion, insertion, substitution, addition, and/or recombination and/or other modification methods. Methods for introducing such modifications into the DNA sequence of an antibody based on its amino acid sequence are well known to those skilled in the art; see, eg, Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory (1989) N.Y. The modifications referred to are preferably carried out at the nucleic acid level.

“结合”定义抗原上的特定表位与其对应抗体之间的亲和性相互作用,一般也理解为“特异性识别”。“特异性识别”的意思是本发明的双特异性抗体不与或基本上不与目标抗原以外的任意多肽交叉反应。和特异性的程度可以通过免疫学技术来判断,包括但不限于免疫印迹,免疫亲和层析,流式细胞分析等。在本发明中,特异性识别优选通过流式细胞技术来确定,而具体情况下特异性识别的标准可由本领域一般技术人员根据其掌握的本领域常识来判断。"Binding" defines the affinity interaction between a specific epitope on an antigen and its corresponding antibody, and is generally understood as "specific recognition". "Specific recognition" means that the bispecific antibody of the present invention does not or substantially does not cross-react with any polypeptide other than the target antigen. And the degree of specificity can be judged by immunological techniques, including but not limited to western blotting, immunoaffinity chromatography, flow cytometry and so on. In the present invention, the specific recognition is preferably determined by flow cytometry, and in specific cases, the standard of specific recognition can be judged by those of ordinary skill in the art based on their common knowledge in the field.

“CD3”指的是作为T细胞受体复合物的一部分的表达于T细胞的抗原,其由三个不同的链CD3ε,CD3δ和CD3γ组成。CD3在T细胞上通过例如抗CD3抗体对其的固定作用而产生的集中(clustering),导致T细胞的活化,与T细胞受体介导的活化类似,但是不依赖于TCR克隆的特异性。绝大多数抗CD3抗体识别CD3ε链。"CD3" refers to the antigen expressed on T cells as part of the T cell receptor complex, which consists of three distinct chains CD3ε, CD3δ and CD3γ. Clustering of CD3 on T cells by, for example, their immobilization by anti-CD3 antibodies results in T cell activation similar to T cell receptor mediated activation, but independent of the specificity of the TCR clone. The vast majority of anti-CD3 antibodies recognize the CD3ε chain.

本发明的特异性识别T细胞表面受体CD3的第二功能域不受具体的限制,只要其能够特异性地识别CD3。例如但不限于在下列专利中提到的CD3抗体:US7,994,289,US6,750,325;US6,706,265;US5,968,509;US8,076,459;US7,728,114;US20100183615。The second functional domain that specifically recognizes the T cell surface receptor CD3 of the present invention is not specifically limited, as long as it can specifically recognize CD3. For example but not limited to CD3 antibodies mentioned in the following patents: US7,994,289, US6,750,325; US6,706,265; US5,968,509; US8,076,459; US7,728,114; US20100183615.

在本发明的一个实施方案中,所述双特异性抗体的第一功能域是单链抗体,其包含具有如SEQIDNO:1所述氨基酸序列的轻链和具有如SEQIDNO:3所述氨基酸序列的重链的。In one embodiment of the present invention, the first functional domain of the bispecific antibody is a single-chain antibody comprising a light chain having the amino acid sequence described in SEQ ID NO: 1 and a light chain having the amino acid sequence described in SEQ ID NO: 3. heavy chain.

在本发明的一个实施方案中,所述双特异性抗体具有如SEQIDNO:5所述的氨基酸序列。In one embodiment of the present invention, the bispecific antibody has the amino acid sequence set forth in SEQ ID NO:5.

如上所述,本发明的双特异性抗体还包括连接第一和第二功能域的接头。接头序列可以是短的肽链,例如但不限于(Gly4Ser)n,其中n从1到5,n为整数。在一个具体实施方案中,n优选为3。包含缺乏二级结构促进作用的所述接头的特征是本领域中已知的,并描述在例如Dall’sAcqua等(Biochem.1998,37,9266-9273)。所设想的具有少于5个氨基酸的接头可以包含4,3,2,或1个氨基酸。优选的单个氨基酸是Gly。如下文实施例中所描述,通过例如基因工程方法接头提供所述第一和第二功能域的相互连接。制备融合的且有效连接的双特异性抗体和在哺乳动物细胞或细菌中表达抗体的方法在本领域中是公知的。As mentioned above, the bispecific antibody of the present invention also includes a linker linking the first and second functional domains. The linker sequence can be a short peptide chain, such as but not limited to (Gly 4 Ser)n, where n is from 1 to 5, and n is an integer. In a particular embodiment, n is preferably 3. Characterization of such linkers comprising a lack of secondary structure promotion is known in the art and described eg in Dall's Acqua et al. (Biochem. 1998, 37, 9266-9273). Contemplated linkers having fewer than 5 amino acids may comprise 4, 3, 2, or 1 amino acid. A preferred single amino acid is Gly. Interlinkage of said first and second functional domains is provided by, for example, a genetically engineered linker, as described in the Examples below. Methods for making fused and operably linked bispecific antibodies and expressing antibodies in mammalian cells or bacteria are well known in the art.

在本发明的一个实施方案中,所述双特异性抗体是嵌合抗体或人源化抗体。In one embodiment of the invention, said bispecific antibody is a chimeric antibody or a humanized antibody.

在本发明的一个实施方案中,所述双特异性抗体还与其他药物或标记物连接。In one embodiment of the present invention, the bispecific antibody is also linked to other drugs or labels.

本发明还涉及编码上述双特异性抗体的核酸,或与所述核酸在严格条件下杂交的核酸,或由所述核酸的简并序列构成的核酸。术语“杂交”是本领域公职的,即本领域的技术人员知道必须使用什么样的杂交条件。根据本发明的严格杂交条件是指在例如含有50%甲酰胺,5×SSC(750mM氯化钠,75mM柠檬酸钠),50mM磷酸钠,5×Denhardt氏溶液和10%硫酸葡聚糖和20μg/ml变性的剪切鲑鱼精DNA的溶液中42度孵育过夜,然后用0.1×SSC在大约65度洗涤滤膜。同样涉及在较低严格条件下杂交至本发明核酸的核酸分子。通过控制甲酰胺浓度(较低浓度的甲酰胺导致较低的严格性),盐浓度或温度可以实现杂交和信号检测严格性的变化。此外,为了实现较低的严格性,可以在较高盐浓度(例如5×SSC)条件下进行严格杂交后的洗涤。另外,通过包含和/或替换用于抑制杂交实验背景的封闭实际可以实现上述严格条件的变化。典型的封闭试剂包括Denhardt氏试剂,肝素,变性鲑鱼精DNA和其他商业可获得的制剂。所述核酸分子可以是例如DNA,cDNA,RNA或包含任意这些核酸(单独地或组合地)的重组产生的嵌合核酸分子。The present invention also relates to a nucleic acid encoding the above-mentioned bispecific antibody, or a nucleic acid that hybridizes to said nucleic acid under stringent conditions, or a nucleic acid composed of a degenerate sequence of said nucleic acid. The term "hybridization" is official in the art, ie the person skilled in the art knows what hybridization conditions have to be used. According to the stringent hybridization conditions of the present invention, it is meant to contain, for example, 50% formamide, 5*SSC (750mM sodium chloride, 75mM sodium citrate), 50mM sodium phosphate, 5*Denhardt's solution and 10% dextran sulfate and 20 μg /ml of denatured sheared salmon sperm DNA was incubated overnight at 42°C, and then the filter was washed with 0.1×SSC at approximately 65°C. Also contemplated are nucleic acid molecules that hybridize to the nucleic acids of the invention under less stringent conditions. Variations in the stringency of hybridization and signal detection can be achieved by controlling formamide concentration (lower concentrations of formamide result in lower stringency), salt concentration or temperature. In addition, to achieve lower stringency, washes after stringent hybridization can be performed at higher salt concentrations (eg, 5×SSC). In addition, variations in the stringency conditions described above may actually be achieved by including and/or replacing blocks used to suppress background in hybridization experiments. Typical blocking reagents include Denhardt's reagent, heparin, denatured salmon sperm DNA and other commercially available preparations. The nucleic acid molecule can be, for example, DNA, cDNA, RNA or a recombinantly produced chimeric nucleic acid molecule comprising any of these nucleic acids, alone or in combination.

在本发明的一个实施方案中,编码上述双特异性抗体的核酸包含(1)编码SEQIDNO:1氨基酸序列的核酸序列SEQIDNO:2,和(2)编码SEQIDNO:2氨基酸序列的核酸序列SEQIDNO:4。In one embodiment of the present invention, the nucleic acid encoding the above-mentioned bispecific antibody comprises (1) the nucleic acid sequence SEQ ID NO: 2 encoding the amino acid sequence of SEQ ID NO: 1, and (2) the nucleic acid sequence SEQ ID NO: 4 encoding the amino acid sequence of SEQ ID NO: 2 .

在本发明的一个实施方案中,编码上述双特异性抗体的核酸具有编码SEQIDNO:5所述氨基酸序列的核酸序列SEQIDNO:6。In one embodiment of the present invention, the nucleic acid encoding the above-mentioned bispecific antibody has the nucleic acid sequence SEQ ID NO:6 encoding the amino acid sequence described in SEQ ID NO:5.

本发明还涉及包含所述核酸的载体。许多适当的载体对于本领域技术人员而言是公知的,对载体的选择取决于预期的功能,包括克隆载体和表达载体。载体包括质粒,粘粒,病毒,噬菌体和常规用于基因工程的其他载体。此外,本发明的核酸和载体可以重建入脂质体内以递送到靶细胞。The invention also relates to a vector comprising said nucleic acid. Many suitable vectors are known to those skilled in the art, the choice of which depends on the intended function, including cloning and expression vectors. Vectors include plasmids, cosmids, viruses, bacteriophages and other vectors routinely used in genetic engineering. In addition, nucleic acids and vectors of the invention can be reconstituted into liposomes for delivery to target cells.

表达载体可以是真核细胞载体或原核细胞载体,优选的,所述表达载体还包括有效连接到所述核酸的调节序列。调节序列是指影响连接到其上的编码序列的表达所需的DNA序列。有效连接是指编码序列的调节序列是以与其相容的实现编码序列表达的方式进行连接的。此类调节序列包括例如:(a)复制起始的序列,使得该载体能够在宿主细胞中得以复制,(b)其包含有编码筛选标记的基因序列,该基因编码的蛋白是该宿主细胞在特定的选择培养基中生存和生长所必需的,等等。在宿主细胞如果没有被转染或转化包含该基因的载体的情况下,宿主细胞不能在特定选择培养基中生存。典型的筛选标记基因编码的蛋白包括具有对抗生素或毒素具有耐受性的蛋白,抗生素或毒素包括例如氨苄青霉素、卡那霉素、四环素、新霉素、潮霉素、氨甲蝶呤等;补偿营养缺陷的相关蛋白,供应培养基中不存在的关键营养成分,例如编码D-丙氨酸消旋酶基因。采用抗性筛选的例子包括,通过转染包含新霉素抗性基因的外源载体,使宿主细胞获得在含有药物新霉素或G418的培养基的情况下,继续生存生长。另外一个例子是在哺乳动物细胞例如中国仓鼠卵巢细胞(CHO)中使用二氢叶酸还原酶(DHFR)筛选标记,哺乳动物细胞宿主细胞是指DHFR缺陷型的细胞,不含二氢叶酸还原酶基因,不能合成核酸,必须在含有HT的培养基里生长。在利用载体转染宿主细胞时,可以通过上述培养基条件的选择筛选得到同时包含目的基因和DHFR基因的外源载体的阳性克隆。(c)其编码序列包含启动子的序列,(d)表达载体还可能包括其它组成序列,包括信号肽序列、转录终止序列、增强子序列等,优选地,本发明的载体为真核细胞载体。优选地,本发明的载体为来自用于抗体真核表达的的pH载体,其包含了CMV的启动子、内部核糖体进入位点序列(Internalribosomeentrysite,IRES)、DHFR筛选标记等元件。氨甲喋呤(MTX)是DHFR的抑制剂,可阻碍其作用。当细胞培养基内含有MTX时,DHFR被抑制,通过反馈调节,使得该基因自我扩增,连带其上下游基因都会扩增,如此目的基因也得到扩增,即可提高目的蛋白的表达量。有用的调节序列对本领域技术人员而言是可知的并且是可以商业得到的。The expression vector may be a eukaryotic cell vector or a prokaryotic cell vector. Preferably, the expression vector further includes a regulatory sequence operatively linked to the nucleic acid. Regulatory sequences refer to DNA sequences required to affect the expression of coding sequences to which they are linked. Operative linkage means that the regulatory sequences of the coding sequences are linked in a manner compatible therewith to achieve the expression of the coding sequences. Such regulatory sequences include, for example: (a) an origin of replication sequence that enables the vector to replicate in the host cell, (b) a gene sequence that encodes a selectable marker that encodes a protein that is activated by the host cell Necessary for survival and growth in specific selective media, etc. In case the host cell is not transfected or transformed with a vector containing the gene, the host cell cannot survive in the specific selection medium. The proteins encoded by typical selection marker genes include proteins that are resistant to antibiotics or toxins, such as ampicillin, kanamycin, tetracycline, neomycin, hygromycin, methotrexate, etc.; Related proteins that compensate for auxotrophs and supply key nutrients that are not present in the medium, such as the gene encoding D-alanine racemase. An example of using resistance selection includes transfecting a foreign vector containing a neomycin resistance gene so that the host cells can continue to survive and grow in the medium containing the drug neomycin or G418. Another example is the use of the dihydrofolate reductase (DHFR) selection marker in mammalian cells such as Chinese hamster ovary cells (CHO). A mammalian cell host cell is a DHFR-deficient cell that does not contain the dihydrofolate reductase gene. , cannot synthesize nucleic acid and must grow in a medium containing HT. When using the vector to transfect host cells, the positive clones of the exogenous vector containing both the target gene and the DHFR gene can be obtained through selection and screening of the above-mentioned medium conditions. (c) its coding sequence contains the sequence of the promoter, (d) the expression vector may also include other constituent sequences, including signal peptide sequence, transcription termination sequence, enhancer sequence, etc., preferably, the vector of the present invention is a eukaryotic cell vector . Preferably, the vector of the present invention is a pH vector used for antibody eukaryotic expression, which contains CMV promoter, internal ribosome entry site sequence (Internal ribosome entry site, IRES), DHFR screening marker and other elements. Methotrexate (MTX) is an inhibitor of DHFR that blocks its action. When the cell culture medium contains MTX, DHFR is inhibited, and through feedback regulation, the gene self-amplifies, and its upstream and downstream genes are also amplified, so that the target gene is also amplified, and the expression of the target protein can be increased. Useful regulatory sequences are known to those skilled in the art and are commercially available.

本发明还涉及包含有上述载体的表达体系,即涉及包含有所述载体的宿主细胞,用于表达所需的多功能抗体多肽。与使用的载体相适应,本发明的宿主细胞可以是任意的原核宿主细胞或真核宿主细胞。根据所使用的宿主,本发明的核酸编码的蛋白质可以是糖基化的或非糖基化的。是使本发明的核酸序列融合C末端His标签。真核宿主细胞,包括酵母、昆虫细胞、植物细胞,哺乳动物细胞等可以是优选的,因为真核细胞存在复杂的目的蛋白的翻译后修饰(例如糖基化),越来越多的被用于规模化的培养。常用的宿主细胞系包括猴肾细胞(COS-7ATCCCRL1651)、人胚胎肾细胞293及其亚克隆细胞系,幼仓鼠肾细胞(BHK,ATCCCCL10),中国仓鼠卵巢细胞(CHO)等。优选地,本发明的真核宿主细胞是中国仓鼠卵巢细胞。The present invention also relates to an expression system containing the above-mentioned vector, that is, to a host cell containing the vector for expressing the desired multifunctional antibody polypeptide. According to the vector used, the host cell of the present invention can be any prokaryotic host cell or eukaryotic host cell. Depending on the host used, the protein encoded by the nucleic acid of the invention may be glycosylated or non-glycosylated. It is to fuse the nucleic acid sequence of the present invention with a C-terminal His tag. Eukaryotic host cells, including yeast, insect cells, plant cells, mammalian cells, etc. may be preferred, because eukaryotic cells have complex post-translational modifications (such as glycosylation) of the protein of interest, and are increasingly used for large-scale cultivation. Commonly used host cell lines include monkey kidney cells (COS-7ATCCCRL1651), human embryonic kidney cells 293 and its subclone cell lines, baby hamster kidney cells (BHK, ATCCCCL10), Chinese hamster ovary cells (CHO), etc. Preferably, the eukaryotic host cell of the present invention is a Chinese hamster ovary cell.

本发明还涉及抗EpCAM/CD3双特异性抗体在制备治疗,预防或缓解肿瘤的药物中的应用。所述肿瘤包括但不限于肝癌,胰腺癌,结直肠癌,卵巢癌,肺癌,乳腺癌,头颈部肿瘤。优选的,所述肿瘤是肝癌。The present invention also relates to the application of the anti-EpCAM/CD3 bispecific antibody in the preparation of drugs for treating, preventing or alleviating tumors. The tumors include but not limited to liver cancer, pancreatic cancer, colorectal cancer, ovarian cancer, lung cancer, breast cancer, head and neck tumors. Preferably, the tumor is liver cancer.

本发明还涉及一种药物组合物,其包含安全有效量的抗EpCAM/CD3双特异性抗体,和药学可接受的载体。The present invention also relates to a pharmaceutical composition, which comprises a safe and effective amount of anti-EpCAM/CD3 bispecific antibody and a pharmaceutically acceptable carrier.

附图说明Description of drawings

图1是包含编码本发明的双特异性抗体EpCAM/CD3的核酸序列的重组质粒pIH-anti-EpCAM/CD3scFv的结构示意图。Figure 1 is a schematic structural view of the recombinant plasmid pIH-anti-EpCAM/CD3scFv comprising the nucleic acid sequence encoding the bispecific antibody EpCAM/CD3 of the present invention.

图2是基因工程方式重组表达的本发明的双特异性抗体1H8/CD3的凝胶变性蛋白电泳图(SDS-PAGE)结果,左栏为核酸分子量标记物(购自:上海升正生物技术公司,商品名:低分子量标准蛋白标记)。Figure 2 is the gel denatured protein electrophoresis (SDS-PAGE) results of the bispecific antibody 1H8/CD3 of the present invention recombinantly expressed in a genetic engineering manner, and the left column is a nucleic acid molecular weight marker (purchased from: Shanghai Shengzheng Biotechnology Co., Ltd. , trade name: low molecular weight standard protein marker).

图3是本发明的双特异性抗体1H8/CD3与外周血淋巴细胞(PBMC)结合的流式细胞分析图(FACS)。Fig. 3 is a flow cytometric analysis graph (FACS) of the binding of the bispecific antibody 1H8/CD3 of the present invention to peripheral blood lymphocytes (PBMC).

图4是本发明的双特异性抗体1H8/CD3分别与EpCAM阳性的肿瘤细胞Huh-7和SMMC-7721以及与EpCAM阴性肿瘤细胞PLC/PRF/5和SK-Hep-1结合的流式细胞分析图。Figure 4 is a flow cytometric analysis of the binding of the bispecific antibody 1H8/CD3 of the present invention to EpCAM-positive tumor cells Huh-7 and SMMC-7721 and to EpCAM-negative tumor cells PLC/PRF/5 and SK-Hep-1 respectively picture.

图5是显示本发明的双特异性抗体1H8/CD3诱导PBMC介导的对EpCAM阳性肿瘤细胞Hep3B和Huh-7的细胞毒作用数值百分比(%)的条状图。Fig. 5 is a bar graph showing the numerical percentage (%) of PBMC-mediated cytotoxicity against EpCAM-positive tumor cells Hep3B and Huh-7 induced by the bispecific antibody 1H8/CD3 of the present invention.

图6显示本发明的双特异性抗体1H8/CD3诱导PBMC介导的对EpCAM阴性肿瘤细胞SK-Hep-1的细胞毒作用数值百分比(%)的条状图。Fig. 6 is a bar graph showing the numerical percentage (%) of the PBMC-mediated cytotoxic effect on the EpCAM-negative tumor cell SK-Hep-1 induced by the bispecific antibody 1H8/CD3 of the present invention.

图7是显示本发明的双特异性抗体1H8/CD3募集PBMC至EpCAM阳性肿瘤细胞Huh-7的显微镜放大照片。其中红色箭头所示是Huh-7细胞,绿色箭头所示是PBMC,黑色箭头所示是聚集在Huh-7细胞周围的PBMC。Fig. 7 is a microscopic enlarged photo showing that the bispecific antibody 1H8/CD3 of the present invention recruits PBMCs to the EpCAM-positive tumor cell Huh-7. The red arrows indicate Huh-7 cells, the green arrows indicate PBMCs, and the black arrows indicate PBMCs gathered around Huh-7 cells.

图8显示本发明的双特异性抗体1H8/CD3不募集PBMC至EpCAM阴性肿瘤细胞SK-Hep-1的显微镜放大照片。其中图8中红色箭头所示是SK-Hep-1细胞,绿色箭头所示是PBMC。Fig. 8 shows enlarged micrographs showing that the bispecific antibody 1H8/CD3 of the present invention does not recruit PBMCs to EpCAM-negative tumor cell SK-Hep-1. The red arrows in Figure 8 indicate SK-Hep-1 cells, and the green arrows indicate PBMCs.

图9是显示使用不同剂量的本发明的双特异性抗体1H8/CD3及对照介质治疗Huh-7荷瘤小鼠体后体内种植瘤体积改变的折线图,Fig. 9 is a line graph showing the volume change of implanted tumors in Huh-7 tumor-bearing mice treated with different doses of the bispecific antibody 1H8/CD3 of the present invention and control medium,

图10显示使用不同剂量的本发明的双特异性抗体1H8/CD3及对照介质治疗Hep3B荷瘤小鼠体后体内种植瘤体积改变的折线图。Fig. 10 is a line graph showing the changes in the volume of implanted tumors in vivo after treatment of Hep3B tumor-bearing mice with different doses of the bispecific antibody 1H8/CD3 of the present invention and a control medium.

具体实施方式detailed description

下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不能理解为用于限制本发明的范围。下面实施例中如未注明具体条件的实验方法,则按照常规条件如Sambrook等,“分子克隆:实验手册(NewYork:ColdSpringHarborlaboratoryPress,1989)”中所述的条件,而在实施例中明确说明有试剂公司说明书时,则按照说明书所建议的条件进行。Below in conjunction with specific embodiment, further illustrate the present invention. It should be understood that these examples are only for illustrating the present invention and should not be construed as limiting the scope of the present invention. In the following examples, as the experimental method of specific conditions is not indicated, then according to conventional conditions such as Sambrook etc., the conditions described in "Molecular Cloning: Experimental Handbook (NewYork: Cold Spring Harbor Laboratory Press, 1989)", and clearly stated in the examples that there are When using the instructions from the reagent company, follow the conditions suggested in the instructions.

实施例1.抗原免疫及杂交瘤筛选Example 1. Antigen immunization and hybridoma screening

1.1抗原免疫1.1 Antigen immunization

(1)重组蛋白免疫(1) Recombinant protein immunization

EpCAM胞外区重组蛋白(购于上海锐劲生物技术有限公司,货号:RO720)与等体积完全弗氏佐剂(购自Sigma,货号:5881)充分乳化混合得到总体积200μL,其中含EpCAM抗原100μg,皮下注射免疫六周龄BALB/c小鼠。4周后,将重组EpCAM抗原与等体积不完全弗氏佐剂(购自Sigma,货号:5506)乳化混合得到总体积200μL,其中含EpCAM抗原50μg,腹腔注射免疫小鼠。间隔2周,重复进行一次腹腔加强免疫。最后一次加强免疫完成3周后,对小鼠进行脾内免疫注射20μgEpCAM抗原。EpCAM extracellular region recombinant protein (purchased from Shanghai Ruijin Biotechnology Co., Ltd., product number: RO720) was fully emulsified and mixed with an equal volume of complete Freund's adjuvant (purchased from Sigma, product number: 5881) to obtain a total volume of 200 μL, which contained EpCAM antigen 100μg, subcutaneous injection to immunize six-week-old BALB/c mice. After 4 weeks, the recombinant EpCAM antigen was emulsified and mixed with an equal volume of incomplete Freund's adjuvant (purchased from Sigma, product number: 5506) to obtain a total volume of 200 μL, which contained 50 μg of EpCAM antigen, and intraperitoneally injected to immunize mice. At intervals of 2 weeks, intraperitoneal booster immunization was repeated once. Three weeks after the completion of the last booster immunization, the mice were immunized intrasplenicly with 20 μg of EpCAM antigen.

1.2杂交瘤细胞株建立和筛选1.2 Establishment and screening of hybridoma cell lines

小鼠脾内免疫后4天,在无菌条件下取脾,用100目滤网分离淋巴细胞,与骨髓瘤SP2/0细胞系融合,用含次黄嘌呤,氨基蝶呤和胸苷的含10%胎牛血清(购于:PAA公司,货号:A15-151),DMEM(购于Gibco公司,货号:12800-082)择性培养基进行培养,3天后补加黄嘌呤和胸苷继续细胞培养一周。Four days after intrasplenic immunization of the mice, the spleen was taken under aseptic conditions, the lymphocytes were separated with a 100-mesh filter, fused with the myeloma SP2/0 cell line, and treated with hypoxanthine, aminopterin and thymidine containing 10% fetal bovine serum (purchased from: PAA Company, product number: A15-151), DMEM (purchased from Gibco Company, product number: 12800-082) selective medium for culture, add xanthine and thymidine after 3 days to continue the cell Cultivate for a week.

用EpCAM胞外区重组蛋白抗原进行包被,通过酶联免疫吸附(ELISA)方法筛选阳性克隆,并对阳性克隆通过有限稀释法继续进行3次亚克隆,连续培养2个月,最后获得稳定的阳性克隆,该杂交瘤细胞株命名为1H8。Coating with recombinant protein antigen of EpCAM extracellular region, positive clones were screened by enzyme-linked immunosorbent assay (ELISA), and positive clones were subcloned three times by limiting dilution method, cultured continuously for 2 months, and finally stable Positive clone, the hybridoma cell line was named 1H8.

实施例2.制备抗EpCAM双特异性抗体Example 2. Preparation of anti-EpCAM bispecific antibody

2.1抗EpCAM单链抗体的基因工程制备2.1 Genetic engineering preparation of anti-EpCAM single-chain antibody

使用Trizol(Invitrogene公司,货号:15596-026)提取上述实施例1的杂交瘤细胞株1H8的总RNA,然后使用逆转录RT-PCR试剂盒(Promega公司,货号:A3800)按照试剂盒说明书的操作步骤对上述所提取的总RNA进行逆转录得到互补DNA序列。Use Trizol (Invitrogene Company, product number: 15596-026) to extract the total RNA of the hybridoma cell line 1H8 in the above-mentioned Example 1, and then use a reverse transcription RT-PCR kit (Promega Company, product number: A3800) to operate according to the instructions of the kit The step is to perform reverse transcription on the total RNA extracted above to obtain a complementary DNA sequence.

利用5’-FullRace试剂盒(Takara公司,货号:D315)按照试剂盒说明的步骤,以上述得到的互补DNA序列为模板,扩增包含抗体重链或轻链可变区及其上下游序列的一段DNA序列,其中:Use the 5'-FullRace kit (Takara, product number: D315) to amplify the antibody heavy chain or light chain variable region and its upstream and downstream sequences using the complementary DNA sequence obtained above as a template according to the steps described in the kit. A DNA sequence in which:

上游引物由该试剂盒所提供,The upstream primers are provided by the kit,

下游外侧引物为:CCAGAGTTCCAGGTCACTGTCACT(SEQIDNO:13),The downstream outer primer is: CCAGAGTTCCAGGTCACTGTCACT (SEQ ID NO: 13),

下游内侧引物为:CCAGGGTCACCATGGAGTTAGTTT(SEQIDNO:14),The downstream inner primer is: CCAGGGTCACCATGGAGTTAGTTT (SEQ ID NO: 14),

然后将PCR扩增得到的抗体重链及轻链可变区分别克隆到T-easy载体(Promega公司,货号:A1360)后,转化感受态大肠杆菌Top10,抗性培养筛选,挑取单克隆菌株,分别进行测序。Then clone the antibody heavy chain and light chain variable regions amplified by PCR into T-easy vectors (Promega, Cat. No.: A1360), transform competent Escherichia coli Top10, and screen for resistance culture to pick out monoclonal strains , were sequenced separately.

然后将测序结果分别输入PubmedBlastIgBlast数据库进行对比,数据库根据对比结果显示抗体的FWR1-CDR1-FWR2-CDR2-FWR3,根据小鼠抗体CDR3末尾特征性氨基酸,即重链:Val-Ser-Ala或Val-Ser-Ser;轻链:Ile-Lys-Arg,精确找出杂交瘤1H8单克隆细胞株重链和轻链可变区的起始部位。确定得到轻链可变区的氨基酸酸序列为SEQIDNO:1,编码其的核酸序列为SEQIDNO:2;重链可变区的氨基酸序列为SEQIDNO:3,编码其的核酸序列为SEQIDNO:4。Then the sequencing results were entered into the PubmedBlastIgBlast database for comparison. According to the comparison results, the database showed FWR1-CDR1-FWR2-CDR2-FWR3 of the antibody, and according to the characteristic amino acids at the end of the mouse antibody CDR3, that is, the heavy chain: Val-Ser-Ala or Val- Ser-Ser; light chain: Ile-Lys-Arg, accurately identify the starting sites of the heavy chain and light chain variable regions of the hybridoma 1H8 monoclonal cell line. The determined amino acid sequence of the variable region of the light chain is SEQ ID NO: 1, and the nucleic acid sequence encoding it is SEQ ID NO: 2; the amino acid sequence of the variable region of the heavy chain is SEQ ID NO: 3, and the nucleic acid sequence encoding it is SEQ ID NO: 4.

SEQIDNO:1(1H8VL)SEQ ID NO: 1 (1H8V L )

DIQMTQTTSSLSASLGDRVTISCRASQDISNYLNWYQQKPDGTVKLLIYYTSRLHSGVPSRFSGSGSGTDFSLTISNLDQEDIATYFCQQGSTLPYTFGGGTKLEIKRDIQMTQTTSSLSASLGDRVTISCRASQDISNYLNWYQQKPDGTVKLLIYYTSRLHSGVPSRFSGSGSGTDFSLTISNLDQEDIATYFCQQGSTLPYTFGGGTKLEIKR

SEQIDNO:2(1H8VL)SEQ ID NO: 2 (1H8V L )

GATATCCAGATGACACAGACTACATCCTCCCTGTCTGCCTCTCTGGGAGACAGAGTCACCATCAGTTGCAGGGCAAGTCAGGACATTTCCAATTATTTAAACTGGTATCAACAGAAACCAGATGGAACTGTTAAACTCCTGATCTACTACACATCAAGATTACACTCAGGAGTCCCATCAAGGTTCAGTGGCAGTGGGTCTGGAACAGATTTTTCTCTCACCATTAGCAACCTGGACCAAGAAGATATTGCCACTTACTTTTGCCAACAGGGTAGTACGCTTCCGTACACGTTCGGGGGGGGGACCAAGCTGGAAATAAAACGGGATATCCAGATGACACAGACTACATCCTCCCTGTCTGCCTCTCTGGGAGACAGAGTCACCATCAGTTGCAGGGCAAGTCAGGACATTTCCAATTATTTAAACTGGTATCAACAGAAACCAGATGGAACTGTTAAACTCCTGATCTACTACACATCAAGATTACACTCAGGAGTCCCATCAAGGTTCAGTGGCAGTGGGTCTGGAACAGATTTTTCTCTCACCATTAGCAACCTGGACCAAGAAGATATTGCCACTTACTTTTGCCAACAGGGTAGTACGCTTCCGTACACGTTCGGGGGGGGGACCAAGCTGGAAATAAAACGG

SEQIDNO:3(1H8VH)SEQ ID NO: 3 (1H8V H )

QIQLVQSGPELKKPGETVKISCKASGYTFTYYGMNWVKQAPGKGLKWMGWINTYTGEPTYGDDFKGRFAFSLETSASAASLQINNLKNEDTATYFCARTGRATSFDYWGQGTTLKVSSQIQLVQSGPELKKPGETVKISCKASGYTFTYYGMNWVKQAPGKGLKWMGWINTYTGEPTYGDDFKGRFAFSLETSASASASLQINNLKNEDTATYFCARTGRATSFDYWGQGTTLKVSS

SEQIDNO:4(1H8VH)SEQ ID NO: 4 (1H8V H )

CAGATCCAGTTGGTGCAGTCTGGACCTGAGCTGAAGAAGCCTGGAGAGACAGTCAAGATCTCCTGCAAGGCTTCTGGGTATACCTTCACATATTATGGAATGAACTGGGTGAAGCAGGCTCCAGGAAAGGGTTTAAAGTGGATGGGCTGGATAAACACCTACACTGGAGAGCCAACATATGGTGATGACTTCAAGGGACGGTTTGCCTTCTCTTTGGAAACCTCTGCCAGCGCTGCCTCTTTGCAGATCAACAACCTCAAAAATGAGGACACGGCTACATATTTCTGTGCAAGAACAGGTCGGGCTACGTCCTTTGACTACTGGGGCCAAGGCACCACTCTCAAAGTCTCCTCACAGATCCAGTTGGTGCAGTCTGGACCTGAGCTGAAGAAGCCTGGAGAGACAGTCAAGATCTCCTGCAAGGCTTCTGGGTATACCTTCACATATTATGGAATGAACTGGGTGAAGCAGGCTCCAGGAAAGGGTTTAAAGTGGATGGGCTGGATAAACACCTACACTGGAGAGCCAACATATGGTGATGACTTCAAGGGACGGTTTGCCTTCTCTTTGGAAACCTCTGCCAGCGCTGCCTCTTTGCAGATCAACAACCTCAAAAATGAGGACACGGCTACATATTTCTGTGCAAGAACAGGTCGGGCTACGTCCTTTGACTACTGGGGCCAAGGCACCACTCTCAAAGTCTCCTCA

然后在轻链可变区下游引物末端及重链可变区上游末端加入(Gly3Ser)3短肽编码DNA序列,然后通过OverlapPCR将重链和轻链可变区的核酸序列通过接头(Gly3Ser)3短肽编码DNA连接。具体实施方法如下:Then add (Gly 3 Ser) 3 short peptide coding DNA sequences at the primer end of the downstream of the light chain variable region and the upstream end of the heavy chain variable region, and then pass the nucleic acid sequences of the heavy chain and the light chain variable region through the linker (Gly ) by OverlapPCR. 3Ser ) 3 short peptide encoding DNA linkage. The specific implementation method is as follows:

通过5’-1H8vL/3’-1H8vL引物扩增1H8vL片段,将1H8vL下游加入接头(Gly3Ser)3短肽编码DNA。The 1H8vL fragment was amplified by 5'-1H8vL/3'-1H8vL primers, and the linker (Gly 3 Ser) 3 short peptide encoding DNA was added downstream of 1H8vL.

通过5’-1H8vH/3’-1H8vH引物扩增1H8vH,上游加入(Gly3Ser)3短肽编码DNA。1H8vH was amplified by 5'-1H8vH/3'-1H8vH primers, and (Gly 3 Ser) 3 short peptide coding DNA was added upstream.

上述两段PCR产物胶回收。然后将胶回收产物各取20ng按下述方法进行PCR反应。The above two stages of PCR product gel recovery. Then, 20 ng of the products recovered from the gel were taken for PCR reaction according to the following method.

反应体系:reaction system:

反应条件:退火温度50℃,进行10个循环Reaction conditions: annealing temperature 50°C, 10 cycles

反应完成后,取5μL作为模板,5’-1H8vL/3’-1H8vH为引物进行PCR反应28个循环。反应产物即为1H8scFv,胶回收纯化。After the reaction was completed, 5 μL was taken as a template and 5'-1H8vL/3'-1H8vH as primers for 28 cycles of PCR reaction. The reaction product is 1H8scFv, which is recovered and purified by gel.

引物序列如下:The primer sequences are as follows:

5’-1H8vL:GATATCCAGATGACACAGAC(SEQIDNO:15)5'-1H8vL: GATATCCAGATGACACAGAC (SEQ ID NO: 15)

3’-1H8vL:3'-1H8vL:

CTGCGATCCGCCACCGCCAGAGCCACCTCCGCCTGAACCGCCTCCACCCCGTTTTATTTCCAGCTTG(SEQIDNO:16)CTGCGATCCGCCACCGCCAGAGCCACCTCCGCCTGAACCGCTCTCCACCCCGTTTTATTTTCCAGCTTG (SEQ ID NO: 16)

5’-1H8vH:5'-1H8vH:

GGTGGAGGCGGTTCAGGCGGAGGTGGCTCTGGCGGTGGCGGATCGCAGATCCAGTTGGTGCAGTCTG(SEQIDNO:17)GGTGGAGGCGGTTCAGGCGGAGGTGGCTCTGGCGGTGGCGGATCGCAGATCCAGTTGGTGCAGTCTG (SEQ ID NO: 17)

3’-1H8vH:TGAGGAGACTTTGAGAGTGG(SEQIDNO:18)3'-1H8vH: TGAGGAGACTTTGAGAGTGG (SEQ ID NO: 18)

1H8scFv(SEQIDNO:19)1H8scFv (SEQ ID NO: 19)

GSTLPYTFGGGTKLEIKRGGGGSGGGGSGGGGSQIQLVQSGPELKKPGETVKISCKASGYTFTYYGMNWVKQAPGKGLKWMGWINTYTGEPTYGDDFKGRFAFSLETSASAASLQINNLKNEDTATYFCARTGRATSFDYWGQGTTLKVSSGSTLPYTFGGGTKLEIKRGGGGSGGGGSGGGGSQIQLVQSGPELKKPGETVKISCKASGYTFTYYGMNWVKQAPGKGLKWMGWINTYTGEPTYGDDFKGRFAFSLETSASAASLQINNLKNEDTATYFCARTGRATSFDYWGQGTTLKVSS

1H8scFv(SEQIDNO:20)1H8scFv (SEQ ID NO: 20)

GATATCCAGATGACACAGACTACATCCTCCCTGTCTGCCTCTCTGGGAGACAGAGTCACCATCAGTTGCAGGGCAAGTCAGGACATTTCCAATTATTTAAACTGGTATCAACAGAAACCAGATGGAACTGTTAAACTCCTGATCTACTACACATCAAGATTACACTCAGGAGTCCCATCAAGGTTCAGTGGCAGTGGGTCTGGAACAGATTTTTCTCTCACCATTAGCAACCTGGACCAAGAAGATATTGCCACTTACTTTTGCCAACAGGGTAGTACGCTTCCGTACACGTTCGGGGGGGGGACCAAGCTGGAAATAAAACGGGGTGGAGGCGGTTCAGGCGGAGGTGGCTCTGGCGGTGGCGGATCGCAGATCCAGTTGGTGCAGTCTGGACCTGAGCTGAAGAAGCCTGGAGAGACAGTCAAGATCTCCTGCAAGGCTTCTGGGTATACCTTCACATATTATGGAATGAACTGGGTGAAGCAGGCTCCAGGAAAGGGTTTAAAGTGGATGGGCTGGATAAACACCTACACTGGAGAGCCAACATATGGTGATGACTTCAAGGGACGGTTTGCCTTCTCTTTGGAAACCTCTGCCAGCGCTGCCTCTTTGCAGATCAACAACCTCAAAAATGAGGACACGGCTACATATTTCTGTGCAAGAACAGGTCGGGCTACGTCCTTTGACTACTGGGGCCAAGGCACCACTCTCAAAGTCTCCTCAGATATCCAGATGACACAGACTACATCCTCCCTGTCTGCCTCTCTGGGAGACAGAGTCACCATCAGTTGCAGGGCAAGTCAGGACATTTCCAATTATTTAAACTGGTATCAACAGAAACCAGATGGAACTGTTAAACTCCTGATCTACTACACATCAAGATTACACTCAGGAGTCCCATCAAGGTTCAGTGGCAGTGGGTCTGGAACAGATTTTTCTCTCACCATTAGCAACCTGGACCAAGAAGATATTGCCACTTACTTTTGCCAACAGGGTAGTACGCTTCCGTACACGTTCGGGGGGGGGACCAAGCTGGAAATAAAACGGGGTGGAGGCGGTTCAGGCGGAGGTGGCTCTGGCGGTGGCGGATCGCAGATCCAGTTGGTGCAGTCTGGACCTGAGCTGAAGAAGCCTGGAGAGACAGTCAAGATCTCCTGCAAGGCTTCTGGGTATACCTTCACATATTATGGAATGAACTGGGTGAAGCAGGCTCCAGGAAAGGGTTTAAAGTGGATGGGCTGGATAAACACCTACACTGGAGAGCCAACATATGGTGATGACTTCAAGGGACGGTTTGCCTTCTCTTTGGAAACCTCTGCCAGCGCTGCCTCTTTGCAGATCAACAACCTCAAAAATGAGGACACGGCTACATATTTCTGTGCAAGAACAGGTCGGGCTACGTCCTTTGACTACTGGGGCCAAGGCACCACTCTCAAAGTCTCCTCA

2.2CD3单链抗体核酸序列的制备2.2 Preparation of CD3 single-chain antibody nucleic acid sequence

VLCD3和VHCD3基因片段分别根据专利文献US7112324B1公布的SEQIDNO:9的第857-1585位核苷酸序列获得,其中该编码CD3单链抗体片段的核苷酸序列通过在VLCD3和VHCD3核苷酸片段之间引入编码氨基酸序列VE(GGS)4GG接头的核苷酸序列构成。The V LCD3 and V HCD3 gene fragments are respectively obtained according to the 857-1585th nucleotide sequence of SEQ ID NO: 9 published in the patent document US7112324B1, wherein the nucleotide sequence encoding the CD3 single-chain antibody fragment is obtained by the VLCD3 and VHCD3 nucleotides A nucleotide sequence encoding the amino acid sequence VE(GGS) 4 GG linker is introduced between the fragments.

SEQIDNO:21(CD3scFv)SEQ ID NO: 21 (CD3scFv)

DIKLQQSGAELARPGASVKMSCKTSGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSSVEGGSGGSGGSGGSGGVDDIQLTQSPAIMSASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKRWIYDTSKVASGVPYRFSGSGSGTSYSLTISSMEAEDAATYYCQQWSSNPLTFGAGTKLELKDIKLQQSGAELARPGASVKMSCKTSGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSSVEGGSGGSGGSGGSGGVDDIQLTQSPAIMSASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKRWIYDTSKVASGVPYRFSGSGSGTSYSLTISSMEAEDAATYYCQQWSSNPLTFGAGTKLELK

SEQIDNO:22(CD3scFv)SEQ ID NO: 22 (CD3scFv)

GATATCAAACTGCAGCAGTCAGGGGCTGAACTGGCAAGACCTGGGGCCTCAGTGAAGATGTCCTGCAAGACTTCTGGCTACACCTTTACTAGGTACACGATGCACTGGGTAAAACAGAGGCCTGGACAGGGTCTGGAATGGATTGGATACATTAATCCTAGCCGTGGTTATACTAATTACAATCAGAAGTTCAAGGACAAGGCCACATTGACTACAGACAAATCCTCCAGCACAGCCTACATGCAACTGAGCAGCCTGACATCTGAGGACTCTGCAGTCTATTACTGTGCAAGATATTATGATGATCATTACTGCCTTGACTACTGGGGCCAAGGCACCACTCTCACAGTCTCCTCAGTCGAAGGTGGAAGTGGAGGTTCTGGTGGAAGTGGAGGTTCAGGTGGAGTCGACGACATTCAGCTGACCCAGTCTCCAGCAATCATGTCTGCATCTCCAGGGGAGAAGGTCACCATGACCTGCAGAGCCAGTTCAAGTGTAAGTTACATGAACTGGTACCAGCAGAAGTCAGGCACCTCCCCCAAAAGATGGATTTATGACACATCCAAAGTGGCTTCTGGAGTCCCTTATCGCTTCAGTGGCAGTGGGTCTGGGACCTCATACTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATTACTGCCAACAGTGGAGTAGTAACCCGCTCACGTTCGGTGCTGGGACCAAGCTGGAGCTGAAA.GATATCAAACTGCAGCAGTCAGGGGCTGAACTGGCAAGACCTGGGGCCTCAGTGAAGATGTCCTGCAAGACTTCTGGCTACACCTTTACTAGGTACACGATGCACTGGGTAAAACAGAGGCCTGGACAGGGTCTGGAATGGATTGGATACATTAATCCTAGCCGTGGTTATACTAATTACAATCAGAAGTTCAAGGACAAGGCCACATTGACTACAGACAAATCCTCCAGCACAGCCTACATGCAACTGAGCAGCCTGACATCTGAGGACTCTGCAGTCTATTACTGTGCAAGATATTATGATGATCATTACTGCCTTGACTACTGGGGCCAAGGCACCACTCTCACAGTCTCCTCAGTCGAAGGTGGAAGTGGAGGTTCTGGTGGAAGTGGAGGTTCAGGTGGAGTCGACGACATTCAGCTGACCCAGTCTCCAGCAATCATGTCTGCATCTCCAGGGGAGAAGGTCACCATGACCTGCAGAGCCAGTTCAAGTGTAAGTTACATGAACTGGTACCAGCAGAAGTCAGGCACCTCCCCCAAAAGATGGATTTATGACACATCCAAAGTGGCTTCTGGAGTCCCTTATCGCTTCAGTGGCAGTGGGTCTGGGACCTCATACTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATTACTGCCAACAGTGGAGTAGTAACCCGCTCACGTTCGGTGCTGGGACCAAGCTGGAGCTGAAA.

2.31H8/CD3双特异性抗体编码序列核酸的构建2.3 Construction of 1H8/CD3 bispecific antibody coding sequence nucleic acid

通过PCR方法将抗上述步骤制备所得EpCAM单链抗体和抗CD3scFv用编码接头Gly3Ser短肽的DNA连接,制备抗EpCAM/CD3双特异性抗体开放阅读框序列。The anti-EpCAM single-chain antibody prepared in the above steps and the anti-CD3 scFv were connected by the PCR method with the DNA encoding the linker Gly 3 Ser short peptide to prepare the open reading frame sequence of the anti-EpCAM/CD3 bispecific antibody.

2.4表达载体的构建2.4 Construction of expression vector

通过5’-81/3’-1H8scFV引物扩增1H8scFv片段,将1H8scFv上游加入信号肽,下游加入Gly4Ser接头连接肽。通过5’-CD3/3’-CD3-Histag引物扩增CD3单链抗体,上游加入Gly4Ser接头连接肽,下游引入6×Histag编码序列。上述两段PCR产物胶回收。然后将胶回收产物各取20ng按下述方法进行PCR反应。The 1H8scFv fragment was amplified by 5'-81/3'-1H8scFv primers, the 1H8scFv was added with a signal peptide upstream, and a Gly 4 Ser linker linker peptide was added downstream. The CD3 single-chain antibody was amplified by 5'-CD3/3'-CD3-Histag primers, the Gly 4 Ser linker was added upstream, and the 6×Histag coding sequence was introduced downstream. The above two stages of PCR product gel recovery. Then, 20 ng of the products recovered from the gel were taken for PCR reaction according to the following method.

反应体系:reaction system:

反应条件:退火温度50℃,进行10个循环Reaction conditions: annealing temperature 50°C, 10 cycles

反应完成后,取5μL作为模板,5’-81/3’-CD3-Histag为引物进行PCR反应28个循环。反应产物胶回收纯化,该反应产物为1H8/CD3双特异性抗体的核酸序列为SEQIDNO:6,其编码的氨基酸序列为SEQIDNO:5。其中反应产物由于5’-81引物引入NheI酶切位点,由于3’-CD3-Histag引物引入含有NotI酶切位点。After the reaction was completed, 5 μL was used as a template, and 5'-81/3'-CD3-Histag was used as a primer for 28 cycles of PCR reaction. The reaction product was recovered and purified by gel. The nucleic acid sequence of the reaction product is 1H8/CD3 bispecific antibody is SEQ ID NO: 6, and the amino acid sequence encoded by it is SEQ ID NO: 5. Wherein the reaction product introduces the NheI restriction site due to the 5'-81 primer, and contains the NotI restriction site due to the introduction of the 3'-CD3-Histag primer.

应用NheI和NdeI酶切,T4连接酶连接,转化Top10感受态大肠杆菌。挑取阳性克隆测序鉴定。(NheI,NdeI,T4酶购于NEB公司,反应体系及条件参考说明书)Digested with NheI and NdeI, ligated with T4 ligase, and transformed into Top10 competent Escherichia coli. Pick positive clones for sequencing identification. (NheI, NdeI, and T4 enzymes were purchased from NEB Company, and the reaction system and conditions refer to the instruction manual)

引物序列如下:The primer sequences are as follows:

5’-81:5'-81:

TAGCTAGCCACCATGGTGTCCACAGCTCAGTTCCTTGCATTCTTGTTGCTTTGGTTTCCAGGTGCAAGATGTGATATCCAGATGACACAGAC(SEQIDNO:23)TAGCTAGCCACCATGGTGTCCACAGCTCAGTTCCTTGCATTCTTGTTGCTTTGGTTTCCAGGTGCAAGATGTGATATCCAGATGACACAGAC (SEQ ID NO: 23)

3’-1H8scFV:3'-1H8scFV:

CTGACTGCTGCAGTTTGATATCGGATCCACCACCTCCTGAGGAGACTTTG(SEQIDNO:24)CTGACTGCTGCAGTTTGATATCGGATCCACCACTCCTGAGGAGACTTTG (SEQ ID NO: 24)

5’-CD3:5'-CD3:

CAAAGTCTCCTCAGGAGGTGGTGGATCCGATATCAAACTGCAGCAGTCAG(SEQIDNO:25)CAAAGTCTCTCTCAGGAGGTGGTGGATCCGATATCAAACTGCAGCAGTCAG (SEQ ID NO: 25)

3’-CD3-Histag:3'-CD3-Histag:

TATGCGGCCGCCTAATGATGATGGTGATGATGTTTCAGCTCCAGCTTGGTCC(SEQIDNO:26)TATGCGGCCGCCTAATGATGATGGTGATGATGTTTCAGTCCAGCTTGGTCC (SEQ ID NO: 26)

1H8/CD3双特异性抗体氨基酸序列Amino acid sequence of 1H8/CD3 bispecific antibody

DIQMTQTTSSLSASLGDRVTISCRASQDISNYLNWYQQKPDGTVKLLIYYTSRLHSGVPSRFSGSGSGTDFSLTISNLDQEDIATYFCQQGSTLPYTFGGGTKLEIKRGGGGSGGGGSGGGGSQIQLVQSGPELKKPGETVKISCKASGYTFTYYGMNWVKQAPGKGLKWMGWINTYTGEPTYGDDFKGRFAFSLETSASAASLQINNLKNEDTATYFCARTGRATSFDYWGQGTTLKVSSGGGGSDIKLQQSGAELARPGASVKMSCKTSGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSSVEGGSGGSGGSGGSGGVDDIQLTQSPAIMSASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKRWIYDTSKVASGVPYRFSGSGSGTSYSLTISSMEAEDAATYYCQQWSSNPLTFGAGTKLELKHHHHHH(SEQIDNO:5)DIQMTQTTSSLSASLGDRVTISCRASQDISNYLNWYQQKPDGTVKLLIYYTSRLHSGVPSRFSGSGSGTDFSLTISNLDQEDIATYFCQQGSTLPYTFGGGTKLEIKRGGGGSGGGGSGGGGSQIQLVQSGPELKKPGETVKISCKASGYTFTYYGMNWVKQAPGKGLKWMGWINTYTGEPTYGDDFKGRFAFSLETSASAASLQINNLKNEDTATYFCARTGRATSFDYWGQGTTLKVSSGGGGSDIKLQQSGAELARPGASVKMSCKTSGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSSVEGGSGGSGGSGGSGGVDDIQLTQSPAIMSASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKRWIYDTSKVASGVPYRFSGSGSGTSYSLTISSMEAEDAATYYCQQWSSNPLTFGAGTKLELKHHHHHH(SEQIDNO:5)

1H8/CD3双特异性抗体核酸序列1H8/CD3 bispecific antibody nucleic acid sequence

GATATCCAGATGACACAGACTACATCCTCCCTGTCTGCCTCTCTGGGAGACAGAGTCACCATCAGTTGCAGGGCAAGTCAGGACATTTCCAATTATTTAAACTGGTATCAACAGAAACCAGATGGAACTGTTAAACTCCTGATCTACTACACATCAAGATTACACTCAGGAGTCCCATCAAGGTTCAGTGGCAGTGGGTCTGGAACAGATTTTTCTCTCACCATTAGCAACCTGGACCAAGAAGATATTGCCACTTACTTTTGCCAACAGGGTAGTACGCTTCCGTACACGTTCGGGGGGGGGACCAAGCTGGAAATAAAACGGGGTGGAGGCGGTTCAGGCGGAGGTGGCTCTGGCGGTGGCGGATCGCAGATCCAGTTGGTGCAGTCTGGACCTGAGCTGAAGAAGCCTGGAGAGACAGTCAAGATCTCCTGCAAGGCTTCTGGGTATACCTTCACATATTATGGAATGAACTGGGTGAAGCAGGCTCCAGGAAAGGGTTTAAAGTGGATGGGCTGGATAAACACCTACACTGGAGAGCCAACATATGGTGATGACTTCAAGGGACGGTTTGCCTTCTCTTTGGAAACCTCTGCCAGCGCTGCCTCTTTGCAGATCAACAACCTCAAAAATGAGGACACGGCTACATATTTCTGTGCAAGAACAGGTCGGGCTACGTCCTTTGACTACTGGGGCCAAGGCACCACTCTCAAAGTCTCCTCAGGAGGTGGTGGATCCGATATCAAACTGCAGCAGTCAGGGGCTGAACTGGCAAGACCTGGGGCCTCAGTGAAGATGTCCTGCAAGACTTCTGGCTACACCTTTACTAGGTACACGATGCACTGGGTAAAACAGAGGCCTGGACAGGGTCTGGAATGGATTGGATACATTAATCCTAGCCGTGGTTATACTAATTACAATCAGAAGTTCAAGGACAAGGCCACATTGACTACAGACAAATCCTCCAGCACAGCCTACATGCAACTGAGCAGCCTGACATCTGAGGACTCTGCAGTCTATTACTGTGCAAGATATTATGATGATCATTACTGCCTTGACTACTGGGGCCAAGGCACCACTCTCACAGTCTCCTCAGTCGAAGGTGGAAGTGGAGGTTCTGGTGGAAGTGGAGGTTCAGGTGGAGTCGACGACATTCAGCTGACCCAGTCTCCAGCAATCATGTCTGCATCTCCAGGGGAGAAGGTCACCATGACCTGCAGAGCCAGTTCAAGTGTAAGTTACATGAACTGGTACCAGCAGAAGTCAGGCACCTCCCCCAAAAGATGGATTTATGACACATCCAAAGTGGCTTCTGGAGTCCCTTATCGCTTCAGTGGCAGTGGGTCTGGGACCTCATACTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATTACTGCCAACAGTGGAGTAGTAACCCGCTCACGTTCGGTGCTGGGACCAAGCTGGAGCTGAAACATCATCACCATCATCAT(SEQIDNO:6)GATATCCAGATGACACAGACTACATCCTCCCTGTCTGCCTCTCTGGGAGACAGAGTCACCATCAGTTGCAGGGCAAGTCAGGACATTTCCAATTATTTAAACTGGTATCAACAGAAACCAGATGGAACTGTTAAACTCCTGATCTACTACACATCAAGATTACACTCAGGAGTCCCATCAAGGTTCAGTGGCAGTGGGTCTGGAACAGATTTTTCTCTCACCATTAGCAACCTGGACCAAGAAGATATTGCCACTTACTTTTGCCAACAGGGTAGTACGCTTCCGTACACGTTCGGGGGGGGGACCAAGCTGGAAATAAAACGGGGTGGAGGCGGTTCAGGCGGAGGTGGCTCTGGCGGTGGCGGATCGCAGATCCAGTTGGTGCAGTCTGGACCTGAGCTGAAGAAGCCTGGAGAGACAGTCAAGATCTCCTGCAAGGCTTCTGGGTATACCTTCACATATTATGGAATGAACTGGGTGAAGCAGGCTCCAGGAAAGGGTTTAAAGTGGATGGGCTGGATAAACACCTACACTGGAGAGCCAACATATGGTGATGACTTCAAGGGACGGTTTGCCTTCTCTTTGGAAACCTCTGCCAGCGCTGCCTCTTTGCAGATCAACAACCTCAAAAATGAGGACACGGCTACATATTTCTGTGCAAGAACAGGTCGGGCTACGTCCTTTGACTACTGGGGCCAAGGCACCACTCTCAAAGTCTCCTCAGGAGGTGGTGGATCCGATATCAAACTGCAGCAGTCAGGGGCTGAACTGGCAAGACCTGGGGCCTCAGTGAAGATGTCCTGCAAGACTTCTGGCTACACCTTTACTAGGTACACGATGCACTGGGTAAAACAGAGGCCTGGACAGGGTCTGGAATGGATTGGATACATTAATCCTAGCCGTGGTTATACTAATTACAATCAGAAGTTCAAGGACAAGGCCACATTGACTACAGACAAATCCTCCAGCACAGCCTACATGCAACTGAGCAGCCTGACAT CTGAGGACTCTGCAGTCTATTACTGTGCAAGATATTATGATGATCATTACTGCCTTGACTACTGGGGCCAAGGCACCACTCTCACAGTCTCCTCAGTCGAAGGTGGAAGTGGAGGTTCTGGTGGAAGTGGAGGTTCAGGTGGAGTCGACGACATTCAGCTGACCCAGTCTCCAGCAATCATGTCTGCATCTCCAGGGGAGAAGGTCACCATGACCTGCAGAGCCAGTTCAAGTGTAAGTTACATGAACTGGTACCAGCAGAAGTCAGGCACCTCCCCCAAAAGATGGATTTATGACACATCCAAAGTGGCTTCTGGAGTCCCTTATCGCTTCAGTGGCAGTGGGTCTGGGACCTCATACTCTCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATTACTGCCAACAGTGGAGTAGTAACCCGCTCACGTTCGGTGCTGGGACCAAGCTGGAGCTGAAACATCATCACCATCATCAT(SEQIDNO:6)

2.5稳定的转化宿主细胞的筛选2.5 Screening of stable transformed host cells

将包含编码双特异性抗体1H8/CD3的核酸序列的pIH质粒pIH-1H8/CD3用Pvui(购于NEB公司)酶按照说明进行酶切过夜。酶切产物加入反应体系70%的异丙醇冰上沉淀30分钟,于4℃,12000g离心10分钟,弃上清;70%冰乙醇洗涤2次,于室温下干燥10分钟,加入灭菌超纯水溶解,分光光度仪定量,随后置于-80℃冷冻过夜。The pIH plasmid pIH-1H8/CD3 containing the nucleic acid sequence encoding the bispecific antibody 1H8/CD3 was digested overnight with Pvui (purchased from NEB Company) enzyme according to the instructions. Add 70% isopropanol to the reaction system to precipitate on ice for 30 minutes, centrifuge at 12,000 g for 10 minutes at 4°C, discard the supernatant; wash twice with 70% ice ethanol, dry at room temperature for 10 minutes, add sterilized supernatant Dissolve in pure water, quantify with a spectrophotometer, and then freeze at -80°C overnight.

取线性化质粒转化CHO-DG44细胞(具体按照Invitrogen公司说明书步骤进行,货号A10999-01)。转染48小时后,细胞计数,以每孔500个细胞种植于96孔板中,共种植10块板。14天后,重组EpCAM蛋白以每孔30ng包被于ELISA板中,于4℃包被过夜,第二天早上,弃去ELISA板中液体,以PBS配制的5%牛奶于37℃封闭2小时,弃去板内液体,0.5%PBST洗涤3次,扣干板内液体。随后吸取50μL转化有pIH-1H8/CD3质粒的CHO-DG44细胞培养上清作为一抗,加入封闭后的ELISA板中,于37℃孵育2小时,弃去板内液体,0.5%PBST洗涤3次,扣干板内液体。以1∶1000(PBS)稀释鼠抗6×His抗体(购于生工生物工程(上海)有限公司),作为二抗,加入各孔,每孔50μL,于37℃孵育2小时,弃去板内液体,0.5%PBST洗涤3次,扣干板内液体。以1∶1000(PBS)稀释FITC标记的羊抗鼠抗体(购于上海康成生物工程有限公司),作为三抗,加入各孔,每孔50μL,于37℃孵育2小时,弃去板内液体,0.5%PBST洗涤3次,扣干板内液体,加入含有H2O2的ABTS(2,2’-连氮基-双-(3-乙基苯并二氢噻唑啉-6-磺酸))100μL(ABTS工作液配制:称14.7g柠檬酸三钠,溶解于dH2O.PH调至4.0,称0.22gABTS,混匀,定容至1L,避光4°保存)(26mLABTS中加入31μLH2O2),于450nm波长检测吸光值。根据结果,挑选抗体表达量高的单克隆进行培养。The linearized plasmid was used to transform CHO-DG44 cells (according to the instructions of Invitrogen Company, Cat. No. A10999-01). After 48 hours of transfection, the cells were counted, and 500 cells per well were planted in a 96-well plate, and a total of 10 plates were planted. After 14 days, the recombinant EpCAM protein was coated on the ELISA plate at 30 ng per well, and coated overnight at 4°C. In the next morning, the liquid in the ELISA plate was discarded and blocked with 5% milk prepared in PBS at 37°C for 2 hours. Discard the liquid in the plate, wash 3 times with 0.5% PBST, and dry the liquid in the plate. Then pipette 50 μL of CHO-DG44 cell culture supernatant transformed with pIH-1H8/CD3 plasmid as the primary antibody, add it to the blocked ELISA plate, incubate at 37°C for 2 hours, discard the liquid in the plate, and wash 3 times with 0.5% PBST , Buckle the liquid in the dry plate. Dilute the mouse anti-6×His antibody (purchased from Sangon Bioengineering (Shanghai) Co., Ltd.) at 1:1000 (PBS) as a secondary antibody, add 50 μL to each well, incubate at 37°C for 2 hours, discard the plate The liquid in the plate was washed 3 times with 0.5% PBST, and the liquid in the plate was dried. Dilute FITC-labeled goat anti-mouse antibody (purchased from Shanghai Kangcheng Bioengineering Co., Ltd.) at 1:1000 (PBS) as the third antibody, add 50 μL to each well, incubate at 37°C for 2 hours, discard the liquid in the plate , washed 3 times with 0.5% PBST, dried the liquid in the plate, added ABTS (2,2'-azino-bis-(3-ethylbenzodihydrothiazoline-6-sulfonic acid) containing H 2 O 2 )) 100μL (Preparation of ABTS working solution: Weigh 14.7g trisodium citrate, dissolve in dH 2 O. Adjust the pH to 4.0, weigh 0.22g ABTS, mix well, dilute to 1L, and store at 4° away from light) (add 26mL ABTS 31 μL H 2 O 2 ), and detect the absorbance at a wavelength of 450 nm. According to the results, single clones with high antibody expression were selected for culture.

2.61H8/CD3双特异性抗体的表达和纯化2.6 Expression and purification of 1H8/CD3 bispecific antibody

CHO-DG44细胞培养条件按照Invitrogen公司推荐方法进行培养(货号A10999-01)。收集细胞培养上清,于4℃,9000转离心30分钟后,用0.45微米滤膜(购自Millex公司,型号:SLHV033RB)过滤除去固体杂质。用金属亲和层析柱NiSepharoseTM6FastFlow(购自GEHealthcareBio-ScienceAB公司)进行双体异性抗体的纯化,洗脱条件为用含有20mM,50mM,100mM,250mM,500mM咪唑浓度的磷酸盐缓冲液(pH8.0,Na2HPO450Mm,NaCl300mM)顺序进行洗脱,各咪唑浓度组洗脱体积为金属亲和层析柱NiSepharoseTM6FastFlow体积的5倍。洗脱产物SDA-PAGE胶电泳,借助小分子量标记物确定洗脱产物的大小。然后进行考马斯亮蓝染胶,脱色液脱色,鉴定被特异性洗脱下的洗脱产物(具体过程严格按照:分子克隆:实验手册(NewYork:ColdSpringHarborlaboratoryPress,1989)中所述的条件)的洗脱液,特异性洗脱产物于1×冰PBS中透析,透析体积1∶1000。透析完成后使用CentrifugalFilterUnits(购于Amicon公司,货号:UFC801096)对抗体进行浓缩。The CHO-DG44 cell culture conditions were cultivated according to the method recommended by Invitrogen (Product No. A10999-01). The cell culture supernatant was collected, centrifuged at 9000 rpm at 4°C for 30 minutes, and then filtered with a 0.45 micron filter membrane (purchased from Millex, model: SLHV033RB) to remove solid impurities. Metal-affinity chromatography column NiSepharose TM 6FastFlow (purchased from GE Healthcare Bio-Science AB company) was used to carry out the purification of diabody heterosexual antibody, and the elution condition was to contain 20mM, 50mM, 100mM, 250mM, phosphate buffer (pH 8 .0, Na 2 HPO 4 50Mm, NaCl 300mM) for elution in sequence, and the elution volume of each imidazole concentration group was 5 times the volume of the metal affinity chromatography column NiSepharose TM 6FastFlow. The eluted product was subjected to SDA-PAGE gel electrophoresis, and the size of the eluted product was determined by means of small molecular weight markers. Carry out Coomassie Brilliant Blue staining gel then, decolorization solution decolorization, identify the elution product (specific process strictly according to: Molecular cloning: the condition described in the experimental handbook (NewYork: Cold Spring Harbor laboratory Press, 1989)) that is specifically eluted solution, and the specific eluted product was dialyzed in 1× ice PBS, the dialyzed volume was 1:1000. After the dialysis, the antibody was concentrated using CentrifugalFilterUnits (purchased from Amicon, product number: UFC801096).

实施例3双特异性抗体的结合能力检测Example 3 Detection of Binding Ability of Bispecific Antibody

3.11H8/CD3双特异性抗体的FACS分析3.11H8/CD3 bispecific antibody FACS analysis

A.材料:A.Material:

1)细胞:1) cells:

B.步骤b. steps

对上表的各细胞系分别进行类似的如下操作:Carry out similar operations as follows for each cell line in the above table:

取对数生长期的如表1所列各细胞接种到6cm平皿中,于37℃,5%CO2培养箱中培养,细胞长满平皿的90%时用于流式细胞检测。Take the cells listed in Table 1 in the logarithmic growth phase and inoculate them into 6cm plates, cultivate them in a 5% CO2 incubator at 37°C, and use them for flow cytometry when the cells cover 90% of the plates.

1)使用10mM的EDTA消化细胞,5000rpm×5min分别离心收集平皿中每孔细胞于数个2mLEppendorf管中。用含有1%NCS(新生牛血清)的1×磷酸盐缓冲液(PBS)洗涤细胞2次,离心后丢弃上清。1) Use 10mM EDTA to digest the cells, and centrifuge at 5000rpm×5min to collect the cells in each well of the plate into several 2mL Eppendorf tubes. The cells were washed twice with 1× phosphate buffered saline (PBS) containing 1% NCS (Neonatal Calf Serum), and the supernatant was discarded after centrifugation.

2)一个试验组管内加入终浓度10μg/mL的100μL1×PBS中的本发明双特异性抗体1H8/CD3作为一抗,一个对照组管内加入相同体积的PBS至细胞沉淀中重悬细胞,冰浴孵育细胞45min。然后离心,弃上清,用含有1%NCS的PBS洗涤细胞2次,离心,丢弃上清。2) Add the bispecific antibody 1H8/CD3 of the present invention in 100 μL 1×PBS with a final concentration of 10 μg/mL in a tube of a test group as the primary antibody, add the same volume of PBS in a tube of a control group to resuspend the cells in the cell pellet, and place on ice Incubate the cells for 45min. Then centrifuge, discard the supernatant, wash the cells twice with PBS containing 1% NCS, centrifuge, discard the supernatant.

3)加入100μL的1∶50稀释的鼠源抗6×His抗体(生工生物工程(上海)有限公司)作为二抗重悬细胞,冰浴孵育细胞45min,离心,弃上清,用含有1%NCS的PBS洗涤细胞2次,离心,丢弃上清。3) Add 100 μL of 1:50 diluted mouse-derived anti-6×His antibody (Sangon Bioengineering (Shanghai) Co., Ltd.) as the secondary antibody to resuspend the cells, incubate the cells in ice bath for 45 min, centrifuge, discard the supernatant, and wash with 1 Wash the cells 2 times in PBS with % NCS, centrifuge and discard the supernatant.

4)加入100μL1∶50稀释的羊抗鼠FITC标记抗体(上海康成生物工程有限公司)作为三抗重悬细胞,冰浴孵育细胞45min,离心,弃上清,用含有1%NCS的PBS洗涤细胞2次,离心,丢弃上清。4) Add 100 μL 1:50 diluted goat anti-mouse FITC-labeled antibody (Shanghai Kangcheng Bioengineering Co., Ltd.) as the third antibody to resuspend the cells, incubate the cells in ice bath for 45 min, centrifuge, discard the supernatant, and wash the cells with PBS containing 1% NCS 2 times, centrifuge and discard the supernatant.

5)用400μL的PBS重悬各管细胞沉淀,然后分别转移至流式细胞管中通过流式细胞仪监测与细胞结合的抗体产生的细胞表面的荧光强度。5) The cell pellets in each tube were resuspended with 400 μL of PBS, and then transferred to flow cytometry tubes respectively, and the fluorescence intensity of the cell surface produced by the antibody bound to the cells was monitored by flow cytometry.

6)应用流式细胞仪数据分析软件WinMDI2.9分析数据。每个样品至少采用流式细胞分析仪分析10,000个细胞。6) The flow cytometer data analysis software WinMDI2.9 was used to analyze the data. At least 10,000 cells per sample were analyzed by flow cytometry.

C.结果C. Results

如图3所示,PBMC细胞显示明显高于PBS对照的荧光强度谱,表明实验的本发明1H8/CD3双特异性抗体可以与CD3阳性的PBMC细胞特异性结合。As shown in Figure 3, PBMC cells showed a fluorescence intensity spectrum significantly higher than that of the PBS control, indicating that the experimental 1H8/CD3 bispecific antibody of the present invention can specifically bind to CD3-positive PBMC cells.

如图4所示,EpCAM阳性细胞SMMC-7721和Huh-7显示明显高于PBS对照对照的荧光强度谱,其中SMMC-7721的荧光强度峰值约为PBS对照的4-5倍,Huh-7的荧光强度峰值约为PBS对照的10倍。又如图4所示,EpCAM阴性细胞PLC/PRF/5和SK-Hep-1显示与PBS对照几乎重合的荧光强度谱和荧光强度峰值。As shown in Figure 4, EpCAM-positive cells SMMC-7721 and Huh-7 showed significantly higher fluorescence intensity spectra than the PBS control, in which the peak fluorescence intensity of SMMC-7721 was about 4-5 times that of the PBS control, and that of Huh-7 The peak fluorescence intensity was about 10 times that of the PBS control. Also as shown in Fig. 4, the EpCAM-negative cells PLC/PRF/5 and SK-Hep-1 showed a fluorescence intensity spectrum and a fluorescence intensity peak that almost coincided with those of the PBS control.

图4的结果表明,本发明的双特异性抗体1H8/CD3能特异性地结合EpCAM阳性细胞而不结合EpCAM阴性细胞。The results in Figure 4 show that the bispecific antibody 1H8/CD3 of the present invention can specifically bind to EpCAM positive cells but not to EpCAM negative cells.

综合以上图3和图4,本发明的双特异性抗体1H8/CD3同时具有特异性结合CD3阳性的PBMC细胞和EpCAM阳性的肿瘤细胞的能力。Based on the above figures 3 and 4, the bispecific antibody 1H8/CD3 of the present invention has the ability to specifically bind to CD3-positive PBMC cells and EpCAM-positive tumor cells.

实施例.4抗EpCAM双特异性抗体的体外细胞毒性分析Example 4 In vitro cytotoxicity analysis of anti-EpCAM bispecific antibody

步骤:step:

外周血单核细胞(PBMC)用Ficoll(来自Biochrom)密度梯度离心方法,按照标准步骤从健康人供主的血液中分离。离心后,用浓度为0.1M的磷酸盐缓冲液(PBS)洗涤细胞然后重悬于RPMI1640完全培养基(Gibco),将细胞浓度调整到7×105/mL。PBMC用作细胞毒性实验中的效应细胞。不同的肿瘤细胞作为靶细胞,包括EpCAM阳性的人肝癌细胞系Hep3B(肝癌细胞系,ATCC:HB-8064TM),前文已述的Huh-7和EpCAM阴性的SK-Hep-1。Peripheral blood mononuclear cells (PBMC) were isolated from blood of healthy human donors using Ficoll (from Biochrom) density gradient centrifugation method following standard procedures. After centrifugation, the cells were washed with 0.1M phosphate buffered saline (PBS) and then resuspended in RPMI1640 complete medium (Gibco) to adjust the cell concentration to 7×10 5 /mL. PBMCs were used as effector cells in cytotoxicity experiments. Different tumor cells were used as target cells, including the EpCAM-positive human liver cancer cell line Hep3B (liver cancer cell line, ATCC: HB-8064 TM ), the aforementioned Huh-7 and the EpCAM-negative SK-Hep-1.

用RPMI1640完全培养基将靶细胞浓度调整到7×104/mL。同样体积的靶细胞和效应细胞混合,使效应细胞:靶细胞(E∶T)比值为10∶1。Adjust the target cell concentration to 7×10 4 /mL with RPMI1640 complete medium. Equal volumes of target cells and effector cells were mixed so that the effector:target (E:T) ratio was 10:1.

将混合后的细胞悬液以75μL/孔的体积加到96孔板中。然后各孔分别添加25μL从30ng/mL到0.03ng/mL的十倍系列梯度稀释的1H8/CD3单链双功能抗体。The mixed cell suspension was added to a 96-well plate at a volume of 75 μL/well. Then, 25 μL of 1H8/CD3 single-chain bifunctional antibody serially diluted ten-fold from 30 ng/mL to 0.03 ng/mL was added to each well.

在37℃,5%CO2的培养箱中孵育48小时后,根据生产商的操作说明,用非放射性细胞毒性检测试剂盒(Non-RadioactiveCytotoxicityAssaykit,来自Promega)检测抗体的细胞毒作用。After incubation for 48 hours at 37°C in a 5% CO2 incubator, according to the manufacturer's instructions, use The non-radioactive cytotoxicity assay kit (Non-Radioactive Cytotoxicity Assaykit, from Promega) detects the cytotoxicity of the antibody.

非放射性细胞毒性检测是基于比色法的检测方法,可替代51Cr释放法。检测定量地测量乳酸脱氢酶(LDH)。LDH是一种稳定的胞质酶,在细胞裂解时会释放出来,其释放方式与51Cr在放射性分析中的释放方式基本相同。释放出的LDH培养基上清中,可通过30分钟偶联的酶反应来检测,在酶反应中LDH可使一种四唑盐(INT)转化为红色的甲臜(formazan)。生成的红色产物的量与裂解的细胞数成正比。 The non-radioactive cytotoxicity assay is a colorimetric-based assay that can replace the 51 Cr release method. The assay quantitatively measures lactate dehydrogenase (LDH). LDH is a stable cytosolic enzyme that is released upon cell lysis in much the same way as 51 Cr is released in radioactive assays. The released LDH medium supernatant can be detected by a 30-minute coupled enzyme reaction in which LDH converts a tetrazolium salt (INT) into red formazan. The amount of red product produced is directly proportional to the number of cells lysed.

肿瘤细胞的杀伤率(即,细胞毒性%)是根据非放射性细胞毒性检测G1780产品使用说明书提供的下列公式计算的:The tumor cell killing rate (i.e., % cytotoxicity) was determined according to The non-radioactive cytotoxicity assay G1780 product manual provides the following formula for calculation:

其中:in:

“实验”指的是加入抗体/效应细胞/靶细胞的实验孔所产生的LDH释放值,"Experiment" refers to the LDH release value produced by the experimental wells added with antibody/effector cells/target cells,

“效应细胞自发”指的是只含有效应细胞的对照孔自发产生的LDH释放。本发明中是指效应细胞的对照孔"Spontaneous effector cell" refers to spontaneous LDH release from control wells containing only effector cells. In the present invention, it refers to the control well of effector cells

“靶细胞自发”是指只含有靶细胞的对照孔在靶细胞不受其他因素处理时产生的LDH释放。"Target cell spontaneous" refers to LDH release from control wells containing only target cells when the target cells were not treated with other factors.

“靶细胞最大”是用0.8%TritonX-100处理后靶细胞使其完全裂解对对照孔所产生的LDH释放,"Target cell maximum" is the LDH release produced by the target cells after treatment with 0.8% TritonX-100 to completely lyse the control wells,

“靶细胞最大-靶细胞自发”代表着靶细胞受外界处理后完全裂解所产生的LDH释放。"Target cell maximum - target cell spontaneous" represents the release of LDH produced by the complete lysis of target cells after external treatment.

3.3实验结果:3.3 Experimental results:

双特异性抗体1H8/CD3在不同浓度下对各肿瘤的细胞毒性结果如下。The results of cytotoxicity of bispecific antibody 1H8/CD3 on various tumors at different concentrations are as follows.

从上表和图5和6所示结果可知,双特异性抗体1H8/CD3对EpCAM阳性肿瘤细胞Hep3B在较低剂量组,如0.3ng/ml组,即以达到约30%,而在较高剂量组,如30ng/ml组,则高达86%。相似的,双特异性抗体1H8/CD3对EpCAM阳性肿瘤细胞Huh-7在较低剂量组,如0.3ng/ml组,即以达到约71%,而在较高剂量组,如30ng/ml组,则高达102%。这表明本发明的重组双特异性抗体1H8/CD3对EpCAM阳性肿瘤细胞显示特异性的杀伤作用。与之相对的,本发明的双特异性抗体1H8/CD3对EpCAM阴性肿瘤细胞SK-Hep-1则几乎没有杀伤作用,除了在极高剂量(100ng/ml)的情况下之外显示约14.1%的细胞杀伤毒性以外。这可能是因为大剂量CD3抗体对T细胞有活化作用,导致对肿瘤的非特异杀伤。From the above table and the results shown in Figures 5 and 6, it can be seen that the bispecific antibody 1H8/CD3 can reach about 30% in the lower dose group, such as the 0.3ng/ml group, on the EpCAM positive tumor cell Hep3B, and in the higher dose group. Dose group, such as 30ng/ml group, is as high as 86%. Similarly, the effect of the bispecific antibody 1H8/CD3 on EpCAM-positive tumor cells Huh-7 reached about 71% in the lower dose group, such as the 0.3ng/ml group, while in the higher dose group, such as the 30ng/ml group , it is as high as 102%. This shows that the recombinant bispecific antibody 1H8/CD3 of the present invention has a specific killing effect on EpCAM positive tumor cells. In contrast, the bispecific antibody 1H8/CD3 of the present invention has almost no killing effect on the EpCAM negative tumor cell SK-Hep-1, except in the case of a very high dose (100ng/ml), showing about 14.1% cell killing toxicity. This may be due to the activation of T cells by large doses of CD3 antibodies, leading to non-specific killing of tumors.

实施例.5Example 5

双功能抗体的荷瘤小鼠体内抗肿瘤活性In vivo antitumor activity of bifunctional antibody in tumor-bearing mice

6-10周龄的免疫缺陷的NOD/SCID小鼠(由复旦大学上海医学院动物实验中心提供)用于构建人EpCAM相关肿瘤的异种移植模型,其遗传学特征是缺乏T细胞,B细胞,NK细胞以及巨噬细胞功能。Immunodeficient NOD/SCID mice aged 6-10 weeks (provided by the Animal Experiment Center of Shanghai Medical College, Fudan University) were used to construct xenograft models of human EpCAM-related tumors, whose genetic characteristics are lack of T cells, B cells, NK cell and macrophage function.

两个治疗组(每组6只)小鼠右侧皮下接种混合细胞悬液,该悬液由细胞浓度为2×106的Huh-7或4×106Hep3B肿瘤细胞与细胞浓度为1×106的未刺激的PBMC按照1∶1(细胞数之比)混合的制成。在接种1小时后,每组的小鼠被分别尾静脉内给药0.25mg/kg/d和0.5mg/kg/d的1H8/CD3,该给药重复连续10天。Two treatment groups (6 mice in each group) were inoculated subcutaneously on the right side with a mixed cell suspension consisting of 2×10 6 Huh-7 or 4×10 6 Hep3B tumor cells and a cell concentration of 1× 10 6 unstimulated PBMCs were prepared by mixing 1:1 (the ratio of cell numbers). One hour after the inoculation, the mice of each group were administered 0.25 mg/kg/d and 0.5 mg/kg/d of 1H8/CD3 through the tail vein, respectively, and the administration was repeated for 10 consecutive days.

对照组包括(1)对照组1,该组接种的肿瘤细胞未与等体积PBMC混合,作为评估PBMC对肿瘤生长影响的背景对照,和(2)对照组2,该组接种肿瘤细胞和PBMC混合悬液后,只给药不含抗体的PBS的组,以评估PBMC效应细胞诱导的非特异性杀伤效果。对照组的给药方式和给药时间与治疗组平行。对照组每组包括6只小鼠。Control groups included (1) Control 1, which was inoculated with tumor cells not mixed with an equal volume of PBMCs, as a background control for assessing the effect of PBMCs on tumor growth, and (2) Control 2, which was inoculated with tumor cells mixed with PBMCs After the suspension, only PBS without antibody was administered to the group to evaluate the non-specific killing effect induced by PBMC effector cells. The administration method and administration time of the control group were parallel to those of the treatment group. The control group consisted of 6 mice per group.

用卡尺测量各组小鼠体内肿瘤的大小,肿瘤体积是根据下列公式计算:The size of the tumor in each group of mice was measured with a caliper, and the tumor volume was calculated according to the following formula:

如图9和10分别所示,用不同浓度的本发明的双特异性抗体1H8/CD3进行治疗两组小鼠,其体内肿瘤体积均明显小于本实验中对照组1和对照组2的小鼠体内的肿瘤体积。As shown in Figures 9 and 10, two groups of mice were treated with different concentrations of the bispecific antibody 1H8/CD3 of the present invention, and the tumor volumes in their bodies were significantly smaller than those of mice in the control group 1 and control group 2 in this experiment Tumor volume in vivo.

具体而言,如图9所示在例如肿瘤细胞接种后第27天,Huh-7PBS组即对照组1和Huh-7PBMCPBS组即对照组2小鼠的肿瘤体积均在2000mm3以上,而两个不同剂量的本发明双特异性抗体的治疗组小鼠的肿瘤体积均显著小于2000mm3,其中0.25mg/kg剂量组小鼠肿瘤平均体积低至约463mm3,而0.5mg/kg剂量组小鼠没有肿瘤长出。如图10所示在肿瘤接种后第26天开始至第42天,对照组小鼠的肿瘤体积急剧增大,从小于100mm3迅速增长至分别为约700mm3和约2000mm3,而实验的两个剂量组不管是0.25mg/kg剂量组还是0.5mg/kg剂量组小鼠都没有肿瘤生长出来。Specifically, as shown in Figure 9, for example, on the 27th day after tumor cell inoculation, the tumor volumes of the Huh-7PBS group, that is, the control group 1 and the Huh-7PBMCPBS group, that is, the control group 2 mice were all above 2000 mm 3 , while the two The tumor volumes of the mice treated with different doses of the bispecific antibody of the present invention were significantly less than 2000mm 3 , and the average tumor volume of the mice in the 0.25mg/kg dose group was as low as about 463mm 3 , while the mice in the 0.5mg/kg dose group No tumor grew. As shown in Figure 10, from the 26th day to the 42nd day after tumor inoculation, the tumor volume of the mice in the control group increased rapidly, from less than 100 mm 3 to about 700 mm 3 and about 2000 mm 3 respectively, while the two experimental mice There was no tumor growth in the mice in the dose group no matter whether it was the 0.25 mg/kg dose group or the 0.5 mg/kg dose group.

图9和10显示出本发明的双特异性抗体1H8/CD3对Huh-7荷瘤小鼠和对Hep-3B荷瘤小鼠的显著的特异性肿瘤杀伤治疗效果。Figures 9 and 10 show that the bispecific antibody 1H8/CD3 of the present invention has significant specific tumor-killing therapeutic effects on Huh-7 tumor-bearing mice and Hep-3B tumor-bearing mice.

所有本说明书中列出的出版物的内容都包含在本说明书中。此外,本领域技术人员可以理解,在不背离权利要求书中所述的技术范围和实质内容的情况下,对本发明进行多种不同的修饰和改变是可能的。本发明还包括上述这些修饰和改变。The contents of all publications listed in this specification are incorporated herein. In addition, those skilled in the art can understand that various modifications and changes are possible in the present invention without departing from the technical scope and spirit described in the claims. The present invention also includes the above-mentioned modifications and changes.

参考文献:references:

1.BaeuerlePA,GiresO.EpCAM(CD326)findingitsroleincancer.BrJCancer2007;96:417-423.1. Baeuerle PA, Gires O. EpCAM (CD326) finding its role in cancer. BrJ Cancer 2007; 96: 417-423.

2.WentP,VaseiM,BubendorfL,TerraccianoL,TornilloL,RiedeU,KononenJ.etal.Frequenthigh-levelexpressionoftheimmunotherapeutictargetEp-CAMincolon,stomach,prostateandlungcancers.BrJCancer2006;94:128-135.2. WentP, VaseiM, BubendorfL, TerraccianoL, TornilloL, RiedeU, KononenJ. et al. Frequent high-level expression of the immunotherapeutic targetEp-CA Mincolon, stomach, prostate and lung cancers.

3.VisvaderJE,LindemanGJ.Cancerstemcellsinsolidtumours:accumulatingevidenceandunresolvedquestions.NatRevCancer2008;8:755-768.3. Visvader JE, Lindeman GJ. Cancer stem cells in solid tumors: accumulating evidence and unresolved questions. Nat Rev Cancer 2008; 8: 755-768.

4.GiresO,KleinCA,BaeuerlePA.OntheabundanceofEpCAMoncancerstemcells.NatRevCancer2009;9:143;authorreply143.4.GiresO, KleinCA, BaeuerlePA. OntheabundanceofEpCAMoncancerstemcells.NatRevCancer2009;9:143;authorreply143.

5.MunzM,BaeuerlePA,GiresO.TheemergingroleofEpCAMincancerandstemcellsignaling.CancerRes2009;69:5627-5629.5. MunzM, BaeuerlePA, GiresO.

6.SchmelzerE,ReidLM.EpCAMexpressioninnormal,non-pathologicaltissues.FrontBiosci2008;13:3096-3100.6. SchmelzerE, ReidLM. EpCAM expressioninnormal, non-pathologicaltissues. FrontBiosci2008; 13: 3096-3100.

7.McLaughlinPM,HarmsenMC,DokterWH,KroesenBJ,vanderMolenH,BrinkerMG,HollemaH,etal.Theepithelialglycoprotein2(EGP-2)promoter-drivenepithelial-specificexpressionofEGP-2intransgenicmice:anewmodeltostudycarcinoma-directedimmunotherapy.CancerRes2001;61:4105-4111.7. McLaughlinPM, HarmsenMC, DokterWH, KroesenBJ, van derMolenH, BrinkerMG, HollemaH, et al. Theepithelialglycoprotein2 (EGP-2) promoter-drivenepithelial-specificexpressionofEGP-2intransgenicmice: anewmodeltostudycarcinoma-directedimmunotherapy.CancerRes2: 501-401-401;

8.WuPC,LaiVC,FangJW,GerberMA,LaiCL,LauJY.Hepatocellularcarcinomaexpressingbothhepatocellularandbiliarymarkersalsoexpressescytokeratin14,amarkerofbipotentialprogenitorcells.JHepatol1999;31:965-966.8. WuPC, LaiVC, FangJW, GerberMA, LaiCL, LauJY.

9.RoskamsT.Liverstemcellsandtheirimplicationinhepatocellularandcholangiocarcinoma.Oncogene2006;25:3818-3822.9. Roskams T. Liverstem cells and their implication in hepatocellular and cholangiocarcinoma. Oncogene 2006; 25: 3818-3822.

10.YamashitaT,JiJ,BudhuA,ForguesM,YangW,WangHY,JiaH,etal.EpCAM-positivehepatocellularcarcinomacellsaretumor-initiatingcellswithstem/progenitorcellfeatures.Gastroenterology2009;136:1012-1024.10. YamashitaT, JiJ, BudhuA, ForguesM, YangW, WangHY, JiaH, et al.

11.DalerbaP,DyllaSJ,ParkIK,LiuR,WangX,ChoRW,HoeyT,etal.Phenotypiccharacterizationofhumancolorectalcancerstemcells.ProcNatlAcadSciUSA2007;104:10158-10163.11. DalerbaP, DyllaSJ, ParkIK, LiuR, WangX, ChoRW, HoeyT, etal.

12.MarschnerN,RuttingerD,ZugmaierG,NemereG,LehmannJ,ObristP,BaeuerlePA,etal.PhaseIIstudyofthehumananti-epithelialcelladhesionmoleculeantibodyadecatumumabinprostatecancerpatientswithincreasingserumlevelsofprostate-specificantigenafterradicalprostatectomy.UrolInt2010;85:386-395.12. MarschnerN, RuttingerD, ZugmaierG, NemereG, LehmannJ, ObristP, BaeuerlePA, et al.

13.StrohleinMA,LordickF,RuttingerD,GrutznerKU,SchemanskiOC,JagerM,LindhoferH,etal.Immunotherapyofperitonealcarcinomatosiswiththeantibodycatumaxomabincolon,gastric,orpancreaticcancer:anopen-label,multicenter,phaseI/IItrial.Onkologie2011;34:101-108.13. StrohleinMA, LordickF, RuttingerD, GrutznerKU, SchemanskiOC, JagerM, LindhoferH, et al. Immunotherapy of peritoneal carcinomatosis with the antibody catumaxoma bincolon, gastric, orpancreatic cancer: anopen-label, multicenter, phase I/IItrial. Onkologie 2011: 2011;

14.BurgesA,WimbergerP,KumperC,GorbounovaV,SommerH,SchmalfeldtB,PfistererJ,etal.Effectivereliefofmalignantascitesinpatientswithadvancedovariancancerbyatrifunctionalanti-EpCAMxanti-CD3antibody:aphaseI/IIstudy.ClinCancerRes2007;13:3899-3905.14. BurgesA, WimbergerP, KumperC, GorbounovaV, SommerH, SchmalfeldtB, PfistererJ, et al.

15.CioffiM,DoradoJ,BaeuerlePA,HeeschenC.EpCAM/CD3-BispecificT-cellengagingantibodyMT110eliminatesprimaryhumanpancreaticcancerstemcells.ClinCancerRes2012;18:465-474.15. CioffiM, DoradoJ, BaeuerlePA, HeeschenC.EpCAM/CD3-BispecificT-cellengagingantibodyMT110eliminatesprimaryhumanpancreaticcancerstemcells.ClinCancerRes2012;18:465-474.

16.HerrmannI,BaeuerlePA,FriedrichM,MurrA,FiluschS,RuttingerD,MajdoubMW,etal.Highlyefficienteliminationofcolorectaltumor-initiatingcellsbyanEpCAM/CD3-bispecificantibodyengaginghumanTcells.PLoSOne2010;5:el3474.16. HerrmannI, BaeuerlePA, FriedrichM, MurrA, FiluschS, RuttingerD, MajdoubMW, et al. Highly efficient elimination of colorectal tumor-initiating cellsbyanEpCAM/CD3-bispecificantibodyengaginghumanTcells.

17.BrischweinK,SchlerethB,GullerB,SteigerC,WolfA,LutterbueseR,OffnerS,etal.MT110:anovelbispecificsingle-chainantibodyconstructwithhighefficacyineradicatingestablishedtumors.MolImmunol2006;43:1129-1143.17. BrischweinK, SchlerethB, GullerB, SteigerC, WolfA, LutterbueseR, OffnerS, et al.

18.SchlerethB,FichtnerI,LorenczewskiG,KleindienstP,BrischweinK,daSilvaA,KuferP,etal.Eradicationoftumorsfromahumancoloncancercelllineandfromovariancancermetastasesinimmunodeficientmicebyasingle-chainEp-CAM-/CD3-bispecificantibodyconstruct.CancerRes2005;65:2882-2889.18. SchlerethB, FichtnerI, LorenczewskiG, KleindienstP, BrischweinK, daSilvaA, KuferP, et al.

Claims (12)

1. the bi-specific antibody suppressing hepatoma carcinoma cell, it comprises (1) and combines first functional domain of EpCAM, (2) second functional domain of CD3 is combined, and (3) connect the joint of described first and second functional domains, described first functional domain comprises a variable region of light chain and a variable region of heavy chain, described variable region of light chain comprises following three complementary determining region: SEQIDNO:7, SEQIDNO:8, SEQIDNO:9;Described variable region of heavy chain comprises following three complementary determining region: SEQIDNO:10, SEQIDNO:11, SEQIDNO:12;
Further, described first functional domain is single-chain antibody, its comprise aminoacid sequence as described in SEQIDNO:1 variable region of light chain and as described in SEQIDNO:3 the variable region of heavy chain of aminoacid sequence.
2. the bi-specific antibody of claim 1, its aminoacid sequence is as described in SEQIDNO:5.
3. the bi-specific antibody of one of claim 1-2, it is also connected with label.
4. the nucleic acid of the bi-specific antibody of one of coding the claims.
5. the nucleic acid of claim 4, its comprise (1) coding the aminoacid sequence shown in SEQIDNO:1 nucleic acid sequence SEQ ID NO: 2, and (2) coding the aminoacid sequence shown in SEQIDNO:3 nucleic acid sequence SEQ ID NO: 4.
6. the nucleic acid of claim 4, its nucleotide sequence is as shown in SEQIDNO:6.
7. contain the carrier of the nucleic acid of one of claim 4-6.
8. the carrier of claim 7, it is expression vector.
9. the carrier of claim 7 or 8, it also comprises the regulation sequence being effectively connected to described nucleic acid.
10. comprise the host cell of the carrier of one of claim 7-9.
The application in the medicine of tumor is treated, prevented or alleviate to the bi-specific antibody of one of 11. claim 1-3 in preparation;Wherein said tumor is hepatocarcinoma.
12. 1 kinds of pharmaceutical compositions, the bi-specific antibody of one of its claim 1-3 comprising safe and effective amount and pharmaceutically acceptable carrier.
CN201310025302.XA 2013-01-24 2013-01-24 Anti-epithelial cell adhesion molecule and the bi-specific antibody of T cell antigen Expired - Fee Related CN103965359B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310025302.XA CN103965359B (en) 2013-01-24 2013-01-24 Anti-epithelial cell adhesion molecule and the bi-specific antibody of T cell antigen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310025302.XA CN103965359B (en) 2013-01-24 2013-01-24 Anti-epithelial cell adhesion molecule and the bi-specific antibody of T cell antigen

Publications (2)

Publication Number Publication Date
CN103965359A CN103965359A (en) 2014-08-06
CN103965359B true CN103965359B (en) 2016-08-03

Family

ID=51235402

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310025302.XA Expired - Fee Related CN103965359B (en) 2013-01-24 2013-01-24 Anti-epithelial cell adhesion molecule and the bi-specific antibody of T cell antigen

Country Status (1)

Country Link
CN (1) CN103965359B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104592391B (en) * 2015-01-21 2020-08-21 武汉友芝友生物制药有限公司 Construction and application of bispecific antibody EpCAM multiplied by CD3
EP3607053A4 (en) * 2017-03-29 2021-04-07 Taipei Medical University Antigen-specific t cells and uses thereof
CN115109164A (en) * 2022-06-07 2022-09-27 博际生物医药科技(杭州)有限公司 Bispecific antibodies targeting EPCAM and CD3

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1299410A (en) * 1998-04-21 2001-06-13 麦克美特(显微医学)生物医学研究有限公司 CD 19XCD2 specific polypeptides and uses thereof
CN1812999A (en) * 2003-05-31 2006-08-02 麦克罗梅特股份公司 Pharmaceutical composition comprising a bispecific antibody specific for EpCAM

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1299410A (en) * 1998-04-21 2001-06-13 麦克美特(显微医学)生物医学研究有限公司 CD 19XCD2 specific polypeptides and uses thereof
CN1812999A (en) * 2003-05-31 2006-08-02 麦克罗梅特股份公司 Pharmaceutical composition comprising a bispecific antibody specific for EpCAM

Also Published As

Publication number Publication date
CN103965359A (en) 2014-08-06

Similar Documents

Publication Publication Date Title
US20230357405A1 (en) Single domain antibodies to programmed cell death protein 1 (pd-1)
JP7510246B2 (en) Anti-glypican 3 antibodies and uses thereof
US11952421B2 (en) Bispecific antibodies against CD3EPSILON and ROR1
US11155626B2 (en) Anti-human PD-L1 humanized monoclonal antibody and application thereof
CN104558177B (en) Monoclonal antibody for antagonizing and inhibiting programmed death receptor PD-1and ligand combination thereof, and coding sequence and application thereof
US20240350651A1 (en) Therapeutic molecules that bind to lag3 and pd1
US20170306044A1 (en) Bispecific antibodies against cd3epsilon and ror1 for use in the treatment of ovarian cancer
JP2022515487A (en) Claudin 18.2 coupling part and its utilization
CN103833852A (en) Bispecific antibody aiming at phosphatidylinositols protein polysaccharide-3 and T cell antigen
US20180105595A1 (en) Time and space adjustable system for inhibiting pathological target cells
EP3928790A1 (en) Cd3 antigen binding fragment and application thereof
US11021538B2 (en) Bispecific coupled antibody, preparation method and application thereof
CN109796532B (en) Binding unit targeting fibroblast activation protein α and its application
CN111995685B (en) Bispecific antibody targeting HER2 and PD-1 and application thereof
CN115461372A (en) Bispecific antibody targeting human claudin and human PDL1 protein and application thereof
CN114599390A (en) Antibody-interleukin fusion proteins and methods of use
EP4299593A1 (en) Cldn18.2 antigen-binding protein and use thereof
CN103965359B (en) Anti-epithelial cell adhesion molecule and the bi-specific antibody of T cell antigen
WO2015172341A1 (en) Bispecific antibody for glypican-3 and t cell antigen
AU2022330225A1 (en) Bispecific antibody and use thereof
WO2023011654A1 (en) Anti-pd-1 nanobody and application thereof
CA3226700A1 (en) Agents encoding cldn6 and cds binding elements for treating cldn6-positive cancers
KR20230154235A (en) Antibodies against NKp46 and their applications
EP4458855A1 (en) Development of novel pdl1 single-domain antibody
WO2024093147A1 (en) Antibody specifically binding to v5 exon of cd44, and use thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160803

Termination date: 20220124