CN103955014A - Manufacturing method of micro-lens arrays - Google Patents
Manufacturing method of micro-lens arrays Download PDFInfo
- Publication number
- CN103955014A CN103955014A CN201410215140.0A CN201410215140A CN103955014A CN 103955014 A CN103955014 A CN 103955014A CN 201410215140 A CN201410215140 A CN 201410215140A CN 103955014 A CN103955014 A CN 103955014A
- Authority
- CN
- China
- Prior art keywords
- array
- microlens array
- substrate
- micro
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Abstract
本发明涉及一种微透镜阵列的制作方法,包括:(1)设计生成所需微透镜阵列模型,并根据所需微透镜阵列的参数设置相应激光功率、激光束斑大小、激光停留时间;(2)提供一洁净基板并采用激光打点的方法在基板上制作微凹形阵列;(3)将硅橡胶预聚物均匀涂覆在微凹形阵列表面,固化分离后制备硅橡胶微透镜阵列;(4)将硅橡胶微透镜阵列转移到其他材料上,制备不同材料微透镜阵列;(5)对微透镜阵列进行后续抛光处理。利用该方法可制备高精度、大面积微透镜阵列,且制作成本低。
The invention relates to a manufacturing method of a microlens array, including: (1) designing and generating a required microlens array model, and setting corresponding laser power, laser beam spot size, and laser dwell time according to the parameters of the required microlens array; ( 2) Provide a clean substrate and make a micro-concave array on the substrate by laser dotting; (3) Coat the silicone rubber prepolymer evenly on the surface of the micro-concave array, and prepare a silicone rubber micro-lens array after curing and separation; (4) Transfer the silicone rubber microlens array to other materials to prepare microlens arrays of different materials; (5) Perform subsequent polishing on the microlens array. The method can be used to prepare high-precision and large-area microlens arrays, and the manufacturing cost is low.
Description
技术领域 technical field
本发明涉及微纳米加工制造技术领域,尤其涉及一种微透镜阵列的制作方法。 The invention relates to the technical field of micro-nano processing and manufacturing, in particular to a method for manufacturing a micro-lens array.
背景技术 Background technique
微透镜阵列指由一系列直径在几微米到几毫米之间的微型透镜按一定的方式排列而成的阵列,可以实现光束的聚焦、发射、偏折、分割、复合、开关、耦合、接收等功能,是微光学系统的重要器件之一,被广泛应用于裸眼立体显示、光束整形、光纤耦合等领域。目前,微透镜阵列的制作方法主要有:(1)通过机械方法制备出金属模具,再采用倒模的方法制备出微透镜阵列。这种方法制备的微透镜阵列精度高,并且可制备大面积微透镜阵列,但缺点是对不同参数的微透镜阵列,需要重新开模,且开模价格昂贵,周期长,导致该方法制备的微透镜阵列成本较高。(2)采用光刻胶热熔技术制备基于光刻胶材料的微透镜阵列,这种方法工艺过程复杂,所制备的微透镜阵列参数难以控制。另一方面,激光加工具有加工精度高、灵活、快速等优点,随着激光技术的发展,激光加工已被广泛应用于打点、打标、切割等领域,激光打点技术更是成为制备液晶显示器导光板上的导光网点比较常用的方法,且具有加工尺寸大、速度快、成本低等诸多优点。 Microlens array refers to an array formed by a series of microlenses with a diameter between several microns and several millimeters arranged in a certain way, which can realize the focusing, emission, deflection, division, recombination, switching, coupling, receiving, etc. of light beams. It is one of the important components of the micro-optical system and is widely used in naked-eye stereoscopic display, beam shaping, fiber coupling and other fields. At present, the manufacturing methods of the microlens array mainly include: (1) A metal mold is prepared by a mechanical method, and then the microlens array is prepared by an inverted mold method. The microlens array prepared by this method has high precision and can prepare a large-area microlens array, but the disadvantage is that for microlens arrays with different parameters, it needs to be molded again, and the mold opening is expensive and the cycle is long, which leads to the failure of this method. Microlens arrays are expensive. (2) Microlens arrays based on photoresist materials are prepared by using photoresist hot-melt technology. The process of this method is complicated, and the parameters of the prepared microlens arrays are difficult to control. On the other hand, laser processing has the advantages of high processing precision, flexibility, and speed. With the development of laser technology, laser processing has been widely used in dotting, marking, cutting and other fields. The light guide dots on the light board are more commonly used, and have many advantages such as large processing size, fast speed, and low cost.
针对现有微透镜阵列制备方法的不足以及激光加工技术的优点,本发明采用激光加工制备微凹形阵列模具,并采用软印刷转移技术制备不同材料的微透镜阵列,提出一种高精度、大面积、低成本的微透镜阵列制作方法。 In view of the shortcomings of the existing microlens array preparation methods and the advantages of laser processing technology, the present invention adopts laser processing to prepare micro-concave array molds, and uses soft printing transfer technology to prepare microlens arrays of different materials, and proposes a high-precision, large-scale Area, low-cost microlens array fabrication method.
发明内容 Contents of the invention
本发明的目的在于针对传统微透镜阵列制备方法工艺复杂,制作成本高的缺点和激光加工具有加工尺寸大、速度快、成本低等诸多优点,提供一种微透镜阵列的制作方法。 The object of the present invention is to provide a method for manufacturing a microlens array in view of the disadvantages of traditional microlens array preparation methods, such as complex process and high manufacturing cost, and laser processing has many advantages such as large processing size, fast speed, and low cost.
为实现上述目的,本发明的技术方案是:一种微透镜阵列的制作方法,包含以下步骤, To achieve the above object, the technical solution of the present invention is: a method for manufacturing a microlens array, comprising the following steps,
S1:设计生成所需微透镜阵列模型,并根据所需微透镜阵列的参数设置相应激光功率、激光束斑大小和激光停留时间; S1: Design and generate the required microlens array model, and set the corresponding laser power, laser beam spot size and laser dwell time according to the parameters of the required microlens array;
S2:提供一洁净基板并采用激光打点的方法在基板上制作微凹形阵列; S2: Provide a clean substrate and make a dimple array on the substrate by laser dotting;
S3:将硅橡胶预聚物均匀涂覆在微凹形阵列表面,固化分离后制备硅橡胶微凸透镜阵列,并进行抛光处理。 S3: Coating the silicone rubber prepolymer evenly on the surface of the micro-concave array, preparing a silicone rubber micro-convex lens array after curing and separating, and performing polishing treatment.
在本发明实施例中,所述步骤S3中将所述硅橡胶微凸透镜阵列转移到一基材上,制备该基材的微凸透镜阵列。 In the embodiment of the present invention, in the step S3, the silicone rubber micro-convex lens array is transferred to a substrate to prepare the micro-convex lens array of the substrate.
在本发明实施例中,所述将所述硅橡胶微凸透镜阵列转移到一基材上,制备该基材的微凸透镜阵列,其具体过程为: In the embodiment of the present invention, the silicone rubber micro-convex lens array is transferred to a substrate to prepare the micro-convex lens array of the substrate, and the specific process is as follows:
S41:通过所述步骤S3制备的硅橡胶微凸透镜阵列,制备硅橡胶微凹形阵列; S41: Prepare a silicone rubber micro-concave array through the silicone rubber micro-convex lens array prepared in the step S3;
S42:将基材均匀涂覆在一平面基板上,将硅橡胶微凹形阵列平整放置于基材表面,固化分离后制备该基材的微凸透镜阵列。 S42: Coating the substrate evenly on a flat substrate, placing the silicon rubber micro-concave array on the surface of the substrate, and preparing a micro-convex lens array of the substrate after curing and separation.
在本发明实施例中,所述基材采用的材料为可通过紫外固化或热固化的透明有机聚合物材料,包括NOA81、UV胶、PMMA、PC、PVP。 In the embodiment of the present invention, the material used for the substrate is a transparent organic polymer material that can be cured by ultraviolet or heat, including NOA81, UV glue, PMMA, PC, and PVP.
在本发明实施例中,所述基板采用的材料为有机聚合物、金属、半导体、氧化物或大理石。 In the embodiment of the present invention, the material used for the substrate is organic polymer, metal, semiconductor, oxide or marble.
在本发明实施例中,所述微凸透镜阵列的透镜分布根据需要可由设计软件任意调整。 In the embodiment of the present invention, the lens distribution of the micro-convex lens array can be adjusted arbitrarily by design software as required.
在本发明实施例中,所述微透镜阵列的透镜孔径和透镜曲率半径主要由激光束斑大小、激光功率和激光停留时间决定,其中激光束斑大小为1微米到5毫米,激光功率为1瓦到10千瓦,激光停留时间为5微秒到5分钟。 In the embodiment of the present invention, the lens aperture and lens curvature radius of the microlens array are mainly determined by the laser beam spot size, laser power and laser dwell time, wherein the laser beam spot size is 1 micron to 5 mm, and the laser power is 1 Watts to 10 kilowatts with a laser dwell time of 5 microseconds to 5 minutes.
在本发明实施例中,所述方法中采用的激光波长在760纳米至1毫米的红外波段,频率范围在10赫兹到10兆赫兹。 In the embodiment of the present invention, the wavelength of the laser used in the method is in the infrared band from 760 nm to 1 mm, and the frequency range is from 10 Hz to 10 MHz.
在本发明实施例中,所述步骤S4的后续抛光处理为机械打磨和化学抛光处理,以获得平整光滑的透镜表面。 In the embodiment of the present invention, the subsequent polishing treatment in step S4 is mechanical polishing and chemical polishing treatment, so as to obtain a flat and smooth lens surface.
在本发明实施例中,所述微透镜阵列的透镜尺寸为10微米至10毫米,微透镜阵列尺寸为1寸到100寸。 In an embodiment of the present invention, the lens size of the microlens array is 10 micrometers to 10 millimeters, and the size of the microlens array is 1 inch to 100 inches.
相较于现有技术,本发明具有以下有益效果:结合激光加工技术具有加工尺寸大、速度快、成本低等特点,提供一种高精度、大面积、低成本的微透镜阵列制作方法。 Compared with the prior art, the present invention has the following beneficial effects: Combining the characteristics of large processing size, high speed and low cost with laser processing technology, it provides a high-precision, large-area, and low-cost microlens array manufacturing method.
附图说明 Description of drawings
图1为本发明一种微透镜阵列的制作方法的流程示意图。 FIG. 1 is a schematic flow chart of a manufacturing method of a microlens array in the present invention.
图2为本发明实施例步骤(一)中所设计的一种微透镜阵列示意图。 FIG. 2 is a schematic diagram of a microlens array designed in step (1) of the embodiment of the present invention.
图3为本发明实施例步骤(二)中采用激光加工所制得的PMMA微凹形阵列截面示意图。 3 is a schematic cross-sectional view of the PMMA micro-concave array produced by laser processing in step (2) of the embodiment of the present invention.
图4为本发明实施例步骤(三)中制得的硅橡胶PDMS微透镜阵列截面示意图。 Fig. 4 is a schematic cross-sectional view of the silicone rubber PDMS microlens array prepared in step (3) of the embodiment of the present invention.
图5为本发明实施例步骤(四)中制得的硅橡胶PDMS微凹形阵列截面示意图。 Fig. 5 is a schematic cross-sectional view of the silicone rubber PDMS micro-concave array prepared in step (4) of the embodiment of the present invention.
图6为本发明实施例步骤(五)中制得的NOA81微透镜阵列截面示意图。 Fig. 6 is a schematic cross-sectional view of the NOA81 microlens array prepared in step (5) of the embodiment of the present invention.
附图中,主要元件标记说明如下: In the accompanying drawings, the main components are marked as follows:
01—PMMA基板;02—微透镜模型;03—PMMA微凹形阵列;04—PDMS微透镜阵列;05—PDMS微凹形阵列;06—NOA81微透镜阵列;07—玻璃基板。 01—PMMA substrate; 02—microlens model; 03—PMMA microconcave array; 04—PDMS microlens array; 05—PDMS microconcave array; 06—NOA81 microlens array; 07—glass substrate.
具体实施方式 Detailed ways
下面结合附图,对本发明的技术方案进行具体说明。 The technical solution of the present invention will be specifically described below in conjunction with the accompanying drawings.
一种微透镜阵列的制作方法,包含以下步骤, A method for manufacturing a microlens array, comprising the following steps,
S1:设计生成所需微透镜阵列模型,并根据所需微透镜阵列的参数设置相应激光功率、激光束斑大小和激光停留时间; S1: Design and generate the required microlens array model, and set the corresponding laser power, laser beam spot size and laser dwell time according to the parameters of the required microlens array;
S2:提供一洁净基板并采用激光打点的方法在基板上制作微凹形阵列; S2: Provide a clean substrate and make a dimple array on the substrate by laser dotting;
S3:将硅橡胶预聚物均匀涂覆在微凹形阵列表面,固化分离后制备硅橡胶微凸透镜阵列,并进行抛光处理。 S3: Coating the silicone rubber prepolymer evenly on the surface of the micro-concave array, preparing a silicone rubber micro-convex lens array after curing and separating, and performing polishing treatment.
所述步骤S3中将所述硅橡胶微凸透镜阵列转移到一基材上,制备该基材的微凸透镜阵列。 In the step S3, the silicone rubber micro-convex lens array is transferred to a substrate to prepare the micro-convex lens array of the substrate.
所述将所述硅橡胶微凸透镜阵列转移到一基材上,制备该基材的微凸透镜阵列,其具体过程为: The described silicone rubber micro-convex lens array is transferred to a substrate to prepare the micro-convex lens array of the substrate. The specific process is:
S41:通过所述步骤S3制备的硅橡胶微凸透镜阵列,制备硅橡胶微凹形阵列; S41: Prepare a silicone rubber micro-concave array through the silicone rubber micro-convex lens array prepared in the step S3;
S42:将基材均匀涂覆在一平面基板上,将硅橡胶微凹形阵列平整放置于基材表面,固化分离后制备该基材的微凸透镜阵列;所述基材材料为可通过紫外固化或热固化的透明有机聚合物材料,包括NOA81、UV胶、PMMA、PC、PVP。 S42: Evenly coat the substrate on a flat substrate, place the silicone rubber micro-concave array flatly on the surface of the substrate, and prepare the micro-convex lens array of the substrate after curing and separation; the substrate material can be cured by ultraviolet light Or heat-cured transparent organic polymer materials, including NOA81, UV glue, PMMA, PC, PVP.
所述基板采用的材料为有机聚合物、金属、半导体、氧化物或大理石。 The material used for the substrate is organic polymer, metal, semiconductor, oxide or marble.
所述微透镜阵列的透镜分布根据需要可由设计软件任意调整。 The lens distribution of the microlens array can be adjusted arbitrarily by design software as required.
所述微透镜阵列的透镜孔径和透镜曲率半径主要由激光束斑大小、激光功率和激光停留时间决定,其中激光束斑大小为1微米到5毫米,激光功率为1瓦到10千瓦,激光停留时间为5微秒到5分钟。 The lens aperture and lens curvature radius of the microlens array are mainly determined by the laser beam spot size, laser power and laser dwell time, wherein the laser beam spot size is 1 micron to 5 mm, the laser power is 1 watt to 10 kilowatts, and the laser stay The time is from 5 microseconds to 5 minutes.
所述方法中采用的激光波长在760纳米至1毫米的红外波段,频率范围在10赫兹到10兆赫兹。 The wavelength of the laser used in the method is in the infrared band from 760 nanometers to 1 millimeter, and the frequency range is from 10 Hz to 10 MHz.
所述步骤S4的后续抛光处理为机械打磨和化学抛光处理,以获得平整光滑的透镜表面。 The subsequent polishing treatment in step S4 is mechanical polishing and chemical polishing treatment, so as to obtain a flat and smooth lens surface.
所述微透镜阵列的透镜尺寸为10微米至10毫米,微透镜阵列尺寸为1寸到100寸。 The lens size of the microlens array is 10 microns to 10 millimeters, and the size of the microlens array is 1 inch to 100 inches.
在图中,为了表示清楚放大了层和区域的厚度,但作为示意图不应该被认为严格反映了几何尺寸的比例关系。参考图是本发明的理想化实施例的示意图,本发明所示的实施例不应该被认为仅限于图中所示的区域的特定形状,而是包括所得到的形状(比如制造引起的偏差)。在本实施例中均以矩形表示,图中的表示是示意性的,但这不应该被认为限制本发明的范围。 In the drawings, the thicknesses of layers and regions are exaggerated for clarity, but as schematic diagrams, they should not be considered to strictly reflect the proportional relationship of geometric dimensions. The referenced figures are schematic illustrations of idealized embodiments of the present invention, and the illustrated embodiments of the present invention should not be considered limited to the particular shapes of the regions shown in the figures, but include resulting shapes (such as manufacturing-induced deviations) . All are represented by rectangles in this embodiment, and the representation in the figure is schematic, but this should not be considered as limiting the scope of the present invention.
为了让一般技术人员更好的理解本发明,优选的,本发明具体实施例中基板选用亚克力(PMMA)基板,用于复制微凹形阵列的硅橡胶材料选用聚二甲基硅氧烷(PDMS)且其单体和交联剂的比列选用10:1,最终制备60cm×60cm尺寸的基于UV固化材料(美国Norland公司的NOA81UV胶)的微透镜阵列。下面通过实施例介绍本发明一种微透镜阵列的制作方法。 In order to allow those skilled in the art to better understand the present invention, preferably, in the specific embodiment of the present invention, the substrate is selected from acrylic (PMMA) substrate, and the silicone rubber material used to replicate the micro-concave array is selected from polydimethylsiloxane (PDMS). ) and the ratio of its monomer and crosslinking agent is 10:1, and finally a 60cm×60cm microlens array based on UV curing material (NOA81UV glue from Norland, USA) is prepared. A method for fabricating a microlens array of the present invention will be described below through an embodiment.
实施例。Example.
如图1所示,本实施例具体方案包括以下步骤。 As shown in FIG. 1 , the specific scheme of this embodiment includes the following steps.
(一)设计生成所需微透镜阵列模型,并根据所需微透镜阵列的参数设置相应激光功率、激光束斑大小、激光停留时间。 (1) Design and generate the required microlens array model, and set the corresponding laser power, laser beam spot size, and laser dwell time according to the required microlens array parameters.
本实施例所设计的微透镜阵列模型示意图如图2所示,每个微透镜模型02形状为圆形,大小一致,在纵横两方向上相切排列;微透镜模型02的孔径为1mm,曲面半径为18.01mm。采用大族粤铭激光科技股份有限公司生产的MC150-DLG型激光打点机进行激光加工,所用激光波长为10.64μm。 The schematic diagram of the microlens array model designed in this embodiment is shown in Figure 2. Each microlens model 02 is circular in shape, consistent in size, and arranged tangentially in the vertical and horizontal directions; the aperture of the microlens model 02 is 1mm, and the curved surface The radius is 18.01mm. The MC150-DLG laser dotting machine produced by Han's Yueming Laser Technology Co., Ltd. was used for laser processing, and the laser wavelength used was 10.64 μm.
首先,利用激光打点机内置的网点设计软件画出所设计的微透镜阵列模型,然后设置激光频率为50KHZ,激光功率为100W,通过调激光聚焦调节,调整激光束斑大小略小于所制备微透镜孔径,本实施例将激光束斑大小设置为0.8mm;最后,设置激光停留在每一点的时间为0.5毫秒。 First, draw the designed microlens array model using the dot design software built into the laser dotting machine, then set the laser frequency to 50KHZ, and the laser power to 100W. Adjust the laser beam spot size to be slightly smaller than the prepared microlens by adjusting the laser focus. Aperture, in this embodiment, the laser beam spot size is set to 0.8 mm; finally, the laser stay time at each point is set to 0.5 milliseconds.
(二)提供一洁净基板并采用激光打点的方法在基板上制作微凹形阵列。 (2) A clean substrate is provided and a dimple array is made on the substrate by laser dotting.
选取一表面平整光滑的PMMA基板01,基板厚度为3mm,置于清洗液Win-10的水溶液中(体积比为Win-10 : DI水= 3 : 97),利用频率为32KHz的超声机清洗15min,喷淋2min后,再置于清洗液Win-41的水溶液中(体积比为Win-41 : DI水= 5 : 95),利用频率为40KHz的超声机清洗10min,经循环自来水喷淋漂洗2min后,再利用频率为28KHz的超声机在DI纯净水中清洗10min,经氮气枪吹干后置于50℃洁净烘箱中保温30min以上。 Select a PMMA substrate 01 with a flat and smooth surface, the thickness of the substrate is 3mm, place it in the aqueous solution of cleaning solution Win-10 (volume ratio is Win-10 : DI water = 3 : 97), and use an ultrasonic machine with a frequency of 32KHz to clean it for 15 minutes After spraying for 2 minutes, put it in the aqueous solution of cleaning solution Win-41 (volume ratio is Win-41 : DI water = 5 : 95), use an ultrasonic machine with a frequency of 40KHz to clean for 10 minutes, and then spray and rinse with circulating tap water for 2 minutes Finally, use an ultrasonic machine with a frequency of 28KHz to clean it in DI pure water for 10 minutes, dry it with a nitrogen gun, and then place it in a clean oven at 50°C for more than 30 minutes.
将该洁净PMMA基板01送入激光打点机进行激光加工,加工完成并冷却后取出,用氮气枪吹走表面残留细屑,获得如图3所示的PMMA微凹形阵列03。 The clean PMMA substrate 01 was sent to a laser dotting machine for laser processing. After the processing was completed and cooled, it was taken out, and the remaining fines on the surface were blown away with a nitrogen gun to obtain a PMMA micro-concave array 03 as shown in Figure 3.
(三)将硅橡胶预聚物均匀涂覆在微凹形阵列表面,固化分离后制备硅橡胶微透镜阵列。 (3) Coating the silicone rubber prepolymer evenly on the surface of the micro-concave array, curing and separating to prepare the silicone rubber microlens array.
取所述步骤(二)中制备的PMMA微凹形阵列03基板密封置于装有三甲基氯硅烷分子(TMCS)的容器里,放置约5分钟后取出,此时该PMMA微凹形阵列03基板表面自组装一层TMCS,用于防粘。按所述硅橡胶所需比例制备单体和交联剂的混合物,即按单体和交联剂10:1的比列配置聚二甲基硅氧烷(PDMS)混合物,搅拌至均匀混合。将上述自组装一层TMCS的PMMA微凹形阵列03基板水平放置于一容器中,倒入聚二甲基硅氧烷(PDMS)混合物,静置约30分钟至起泡全部消除,将该容器放入80℃烘箱两小时以上,待PDMS完全固化后取出,将PDMS与该PMMA微凹形阵列03基板分离,切割PDMS形成如图4所示的PDMS微透镜阵列04。 Take the PMMA micro-concave array 03 substrate prepared in the step (2) and seal it in a container containing trimethylchlorosilane molecules (TMCS), and take it out after about 5 minutes. At this time, the PMMA micro-concave array 03 A layer of TMCS is self-assembled on the surface of the substrate for anti-sticking. Prepare a mixture of monomer and crosslinking agent according to the required ratio of the silicone rubber, that is, configure a polydimethylsiloxane (PDMS) mixture in a ratio of 10:1 between the monomer and the crosslinking agent, and stir until uniformly mixed. Place the PMMA micro-concave array 03 substrate with a self-assembled layer of TMCS horizontally in a container, pour the polydimethylsiloxane (PDMS) mixture, and let it stand for about 30 minutes until all the bubbles are eliminated. Put it in an oven at 80°C for more than two hours, take it out after the PDMS is completely cured, separate the PDMS from the PMMA micro-concave array 03 substrate, and cut the PDMS to form the PDMS microlens array 04 as shown in Figure 4.
(四)制备PDMS微凹形阵列。 (4) Preparation of PDMS micro-concave arrays.
为了将PDMS微透镜阵列04转移成其他材料的微透镜阵列,需要制备PDMS微凹形阵列05。 In order to transfer the PDMS microlens array 04 into a microlens array of other materials, it is necessary to prepare a PDMS micro-concave array 05 .
取所述步骤(三)中制备的PDMS微透镜阵列04基板,设置有微透镜阵列的一面朝上,用氧等离子体对其表面进行处理后,密封置于装有三甲基氯硅烷分子(TMCS)的容器里,放置约5分钟后取出,此时该PDMS微透镜阵列04基板表面自组装一层TMCS,用于防粘。按单体和交联剂10:1的比列配置聚二甲基硅氧烷(PDMS)混合物,搅拌至均匀混合。将上述自组装一层TMCS的PDMS微透镜阵列04基板,设置有微透镜阵列的一面朝上,水平放置于一容器中,倒入聚二甲基硅氧烷(PDMS)混合物,静置约30分钟至起泡全部消除,将该容器放入80℃烘箱两小时以上,待PDMS完全固化后取出,将PDMS微凹形阵列05与PDMS微透镜阵列04分离,切割形成如图5所示的PDMS微凹形阵列05。 Take the PDMS microlens array 04 substrate prepared in the step (3), set the side of the microlens array facing up, and after treating its surface with oxygen plasma, place it in a sealed place with trimethylchlorosilane molecules ( TMCS) container, put it for about 5 minutes and take it out, at this time, the surface of the PDMS microlens array 04 substrate self-assembles a layer of TMCS for anti-sticking. Configure the polydimethylsiloxane (PDMS) mixture according to the ratio of monomer and crosslinking agent 10:1, and stir until uniformly mixed. Put the PDMS microlens array 04 substrate with one layer of TMCS self-assembled, with the side of the microlens array facing up, place it horizontally in a container, pour polydimethylsiloxane (PDMS) mixture, and let it stand for about After 30 minutes until the bubbles are completely eliminated, put the container in an oven at 80°C for more than two hours, take it out after the PDMS is completely cured, separate the PDMS micro-concave array 05 from the PDMS micro-lens array 04, and cut to form a shape as shown in Figure 5. PDMS Dimple Array 05.
(五)将硅橡胶微透镜阵列转移到其他材料上,制备不同材料微透镜阵列; (5) Transfer the silicone rubber microlens array to other materials to prepare microlens arrays of different materials;
选取一玻璃基板07,基板厚度为3mm,置于清洗液Win-10的水溶液中(体积比为Win-10 : DI水= 3 : 97),利用频率为32KHz的超声机清洗15min,喷淋2min后,再置于清洗液Win-41的水溶液中(体积比为Win-41 : DI水= 5 : 95),利用频率为40KHz的超声机清洗10min,经循环自来水喷淋漂洗2min后,再利用频率为28KHz的超声机在DI纯净水中清洗10min,经氮气枪吹干后置于50℃洁净烘箱中保温30min以上。 Select a glass substrate 07 with a substrate thickness of 3mm, place it in the aqueous solution of cleaning solution Win-10 (volume ratio is Win-10 : DI water = 3 : 97), use an ultrasonic machine with a frequency of 32KHz to clean for 15 minutes, and spray for 2 minutes Finally, put it in the aqueous solution of cleaning solution Win-41 (volume ratio is Win-41 : DI water = 5 : 95), use an ultrasonic machine with a frequency of 40KHz to clean for 10 minutes, spray and rinse with circulating tap water for 2 minutes, and then reuse The ultrasonic machine with a frequency of 28KHz was cleaned in DI pure water for 10 minutes, dried with a nitrogen gun, and then placed in a clean oven at 50°C for more than 30 minutes.
将PDMS微凹形阵列05置于真空环境中进行抽气,抽走PDMS中的气体,形成负压。然后将NOA81均匀涂覆在洁净玻璃表面,接着讲形成负压的PDMS微凹形阵列05,设置有微凹形阵列的一面朝NOA81,水平放置于玻璃表面。NOA81在具有负压的情况下降很容易被吸入到PDMS微凹形阵列05中。 Place the PDMS micro-concave array 05 in a vacuum environment for pumping, and pump out the gas in the PDMS to form a negative pressure. Then apply NOA81 evenly on the clean glass surface, and then form a negative pressure PDMS micro-concave array 05, and place the side with the micro-concave array facing NOA81, and place it horizontally on the glass surface. NOA81 is easily sucked into the PDMS dimple array 05 when dropped under negative pressure.
将放置有NOA81和PDMS微凹形阵列05的玻璃基板暴露于365nm紫外光下照射2分钟以上,使得NOA81固化,将PDMS微凹形阵列05与之分离,形成如图6所示的NOA81 微透镜阵列06。 Expose the glass substrate with NOA81 and PDMS micro-concave array 05 to 365nm ultraviolet light for more than 2 minutes, so that NOA81 is cured, and the PDMS micro-concave array 05 is separated from it to form the NOA81 microlens as shown in Figure 6 Array 06.
(六)对微透镜阵列进行后续抛光处理。 (6) Subsequent polishing of the microlens array.
将制得的NOA81 微透镜阵列06经过机械和化学抛光后,最终形成表面光滑的NOA81 微透镜阵列。 After the prepared NOA81 microlens array 06 is mechanically and chemically polished, a NOA81 microlens array with a smooth surface is finally formed.
上列较佳实施例,对本发明的目的、技术方案和优点进行了进一步详细说明,所应理解的是,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。 The above-listed preferred embodiments have further described the purpose, technical solutions and advantages of the present invention in detail. It should be understood that the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Within the spirit and principles of the present invention, any modifications, equivalent replacements, improvements, etc., shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410215140.0A CN103955014B (en) | 2014-05-21 | 2014-05-21 | A kind of method for making of microlens array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410215140.0A CN103955014B (en) | 2014-05-21 | 2014-05-21 | A kind of method for making of microlens array |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103955014A true CN103955014A (en) | 2014-07-30 |
CN103955014B CN103955014B (en) | 2015-08-12 |
Family
ID=51332308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410215140.0A Active CN103955014B (en) | 2014-05-21 | 2014-05-21 | A kind of method for making of microlens array |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103955014B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105158916A (en) * | 2015-10-16 | 2015-12-16 | 宁波维真显示科技有限公司 | Packaging method of hand-held naked-eye 3D display terminal |
CN105974504A (en) * | 2016-07-04 | 2016-09-28 | 陈其炜 | Naked eye 3D display device of attractive point grating on LED screen, liquid crystal screen or rear projection screen |
CN108227051A (en) * | 2018-01-09 | 2018-06-29 | 西安交通大学 | A kind of millimicro receives the manufacturing method of tertiary structure fly's-eye lens |
CN109164516A (en) * | 2018-09-07 | 2019-01-08 | 湖北兴龙包装材料有限责任公司 | The manufacture craft of micro-lens array |
CN110756986A (en) * | 2019-10-21 | 2020-02-07 | 华南理工大学 | A method and apparatus for preparing microlens array by laser-induced forward transfer |
KR20200120824A (en) * | 2019-04-12 | 2020-10-22 | 경북대학교 산학협력단 | Manufacturing method of microlens array and microlens array manufacturing system |
CN114799497A (en) * | 2021-01-29 | 2022-07-29 | 武汉楚能电子有限公司 | Method and device for dividing micrometer laser beam into nanometer laser beam array and application |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006045029A (en) * | 2004-08-06 | 2006-02-16 | Toshiba Ceramics Co Ltd | Microlens array, manufacturing method thereof, and manufacturing method of glassy carbon mold |
CN101339364A (en) * | 2008-08-13 | 2009-01-07 | 中国科学院上海光学精密机械研究所 | Method for manufacturing microlens array by soft mold embossing |
CN103163575A (en) * | 2013-03-21 | 2013-06-19 | 广州中国科学院先进技术研究所 | Color microlens array and preparation method for same |
-
2014
- 2014-05-21 CN CN201410215140.0A patent/CN103955014B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006045029A (en) * | 2004-08-06 | 2006-02-16 | Toshiba Ceramics Co Ltd | Microlens array, manufacturing method thereof, and manufacturing method of glassy carbon mold |
CN101339364A (en) * | 2008-08-13 | 2009-01-07 | 中国科学院上海光学精密机械研究所 | Method for manufacturing microlens array by soft mold embossing |
CN103163575A (en) * | 2013-03-21 | 2013-06-19 | 广州中国科学院先进技术研究所 | Color microlens array and preparation method for same |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105158916A (en) * | 2015-10-16 | 2015-12-16 | 宁波维真显示科技有限公司 | Packaging method of hand-held naked-eye 3D display terminal |
CN105158916B (en) * | 2015-10-16 | 2018-03-27 | 宁波维真显示科技股份有限公司 | The method for packing of hand-held bore hole 3D display terminal |
CN105974504A (en) * | 2016-07-04 | 2016-09-28 | 陈其炜 | Naked eye 3D display device of attractive point grating on LED screen, liquid crystal screen or rear projection screen |
CN108227051A (en) * | 2018-01-09 | 2018-06-29 | 西安交通大学 | A kind of millimicro receives the manufacturing method of tertiary structure fly's-eye lens |
CN108227051B (en) * | 2018-01-09 | 2019-04-23 | 西安交通大学 | A kind of manufacturing method of nanometer tertiary structure fly eye lens |
CN109164516A (en) * | 2018-09-07 | 2019-01-08 | 湖北兴龙包装材料有限责任公司 | The manufacture craft of micro-lens array |
KR20200120824A (en) * | 2019-04-12 | 2020-10-22 | 경북대학교 산학협력단 | Manufacturing method of microlens array and microlens array manufacturing system |
KR102265037B1 (en) * | 2019-04-12 | 2021-06-17 | 경북대학교 산학협력단 | Manufacturing method of microlens array and microlens array manufacturing system |
CN110756986A (en) * | 2019-10-21 | 2020-02-07 | 华南理工大学 | A method and apparatus for preparing microlens array by laser-induced forward transfer |
CN114799497A (en) * | 2021-01-29 | 2022-07-29 | 武汉楚能电子有限公司 | Method and device for dividing micrometer laser beam into nanometer laser beam array and application |
Also Published As
Publication number | Publication date |
---|---|
CN103955014B (en) | 2015-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103955014B (en) | A kind of method for making of microlens array | |
CN103353627B (en) | Manufacturing method of micro lens array mold | |
CN102967890B (en) | Simple preparation method and application of polydimethylsiloxane (PDMS) polymer microlens array | |
CN103913784A (en) | Method for preparing polymer micro lens array | |
CN103852972B (en) | Micron impressing and the induced with laser manufacturing process of a kind of bifocus microlens array | |
CN105334553B (en) | Magnetic control fabricating method of microlens array based on PDMS magnetic nano-particle laminated films | |
JP2007245702A (en) | Method for manufacturing template and processed base material having transfer fine pattern | |
CN102901997A (en) | Preparation method of curved compound eye | |
CN103149607B (en) | A kind of fabricating method of microlens array be shaped based on template electric induction | |
JP2007320071A (en) | Manufacturing method of template and treated base material having transfer fine pattern | |
CN110554448A (en) | Artificial compound eye with adjustable large eye curvature, preparation method and application | |
CN102508324A (en) | Method and device for processing low-cost large Fresnel lens array | |
CN104475177A (en) | Method for preparing simple high-bonding-strength polymer microflow chip | |
CN103852816B (en) | A kind of high-NA curved microlens array preparation method | |
CN104199130A (en) | Producing method of PDMS (Polydimethylsiloxane) lens | |
CN114527525B (en) | A method for making artificial compound eyes | |
CN104708800A (en) | Soft imprinting method for manufacturing micro-nano structure in cycloalkene polymer micro-fluidic chip | |
CN103197362B (en) | Electric field induction rheology forming method of paraboloid-like microlens array | |
CN110261940A (en) | A kind of preparation method of fly lens | |
CN113608286A (en) | Micro-fluidic technology-based micro-lens array manufacturing method | |
CN102096125A (en) | Manufacturing method and device of light-focusing Fresnel lens | |
CN102253437A (en) | Preparation method of micro-lens array | |
CN105549129B (en) | It is a kind of to improve the method that large area microlens array uniformly shapes | |
CN101571604A (en) | Method for producing double-sided lenses | |
CN110187599B (en) | Micro-lens mask and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |