CN103952684A - Led外延层生长方法及led外延层 - Google Patents
Led外延层生长方法及led外延层 Download PDFInfo
- Publication number
- CN103952684A CN103952684A CN201410165324.0A CN201410165324A CN103952684A CN 103952684 A CN103952684 A CN 103952684A CN 201410165324 A CN201410165324 A CN 201410165324A CN 103952684 A CN103952684 A CN 103952684A
- Authority
- CN
- China
- Prior art keywords
- layer
- gan layer
- growth
- thickness
- gan
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 239000002994 raw material Substances 0.000 claims abstract description 17
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 10
- 230000004913 activation Effects 0.000 claims abstract description 6
- 239000000758 substrate Substances 0.000 claims description 11
- 229910002704 AlGaN Inorganic materials 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 abstract description 3
- 238000002347 injection Methods 0.000 abstract description 2
- 239000007924 injection Substances 0.000 abstract description 2
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 93
- 239000011777 magnesium Substances 0.000 description 46
- 239000000203 mixture Substances 0.000 description 13
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 9
- 239000002019 doping agent Substances 0.000 description 6
- 229910052594 sapphire Inorganic materials 0.000 description 6
- 239000010980 sapphire Substances 0.000 description 6
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 6
- 239000012159 carrier gas Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000013256 coordination polymer Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Led Devices (AREA)
Abstract
本发明提供了一种提高P层Mg激活效率的LED外延层生长方法及制得的LED外延层,生长方法中的生长P型GaN层步骤为:在温度930-950℃,压力200-600mbar的反应室内,重复间隔性地通入A、B两组原料,直至P型GaN层的厚度为100-300nm;A组原料为NH3、TMGa和Cp2Mg源,生成5-20nmnm的GaN:Mg层;B组原料为NH3、TMGa、Cp2Mg和SiH4,生成5-10nm的掺Mg和Si的GaN层。本发明通过调整P型GaN层生长方式,将高温P型GaN层设计为GaN:Mg和GaN:Mg/Si层超晶格,改善空穴迁移率,降低驱动电压,提高空穴对发光层的注入,增加器件的发光效率。
Description
技术领域
本发明涉及LED外延设计技术领域,特别地,涉及一种提高P层MG激活效率的LED外延层生长方法及制得的LED外延层。
背景技术
以GaN为基础的发光二极管(LED)作为一种高效、环保、绿色新型固态照明光源,具有低电压、低功耗、体积小、重量轻、寿命长、高可靠性灯优点,正在迅速被广泛地应用于交通信号灯、手机背光源、户外全彩显示屏、城市景观照明、汽车内外灯、隧道灯等。
因此,LED的各方面性能提升都被业界重点关注。
目前,国内MOCVD生长LED外延层其中涉及到P型GaN层的生长,采用Mg做掺杂剂,Mg在GaN内的电离率非常低,行业公认的数据是:Mg的电离率仅有Mg掺杂浓度的1%。提高Mg电离率的方法一般是加重Mg掺杂浓度,随着Mg的掺杂加重,P型GaN的晶体质量变差,空穴的迁移率降低,阻值增加,器件的驱动电压随之增加,器件的能耗随之增加;而行业公认的提升器件的品质方向是驱动电压低,光输出高为目标,限制了Mg掺杂浓度的上限。
发明内容
本发明目的在于提供一种提高P层MG激活效率的LED外延层生长方法及制得的LED外延层,以解决Mg电离浓度过低的技术问题。
为实现上述目的,本发明提供了一种LED外延层生长方法,依次包括处理衬底、生长低温缓冲GaN层、生长非掺杂GaN层、生长掺Si的GaN层、生长有缘层MQW、生长P型AlGaN层、生长P型GaN层步骤,
所述生长P型GaN层步骤为:
在温度为950-1100℃,反应腔压力在200-600mbar的反应室内,重复间隔性地通入A、B两组原料,直至P型GaN层的厚度为100-300nm;
其中,A组原料为50000-60000sccm的NH3、20-40sccm的TMGa源、1500-2500sccm的Cp2Mg源,生成厚度为5-20nm的GaN层;B组原料为50000-60000sccm的NH3、20-40sccm的TMGa、1500-2500sccm的Cp2Mg源、5-15sccm的SiH4,生成厚度为5-10nm的掺Mg和Si的GaN层,Mg的掺杂浓度为1E+19-1E+20atom/cm3,Si的掺杂浓度1E+17-1E+18atom/cm3。
优选的,先通入A组原料,再通入B组原料。
优选的,先通入B组原料,再通入A组原料。
优选的,所述生长P型GaN层步骤中,掺杂Si浓度低于掺杂Mg浓度的1-2个数量级。
优选的,所述生长有缘层MQW步骤为:
在温度700-750℃,压力300-400mbar的反应室内,通入1500-1700sccm的TMIn和20-30sccm的TMGa生长掺杂In的厚度为3-4nm的InxGa(1-x)N层,其中x=0.15-0.25;
温度为800-850℃,生长厚度为10-15nm的GaN层,InxGa(1-x)N/GaN层的周期数为10-15;In的掺杂浓度为1E20-3E20atom/cm3。
本发明还公开了根据上述的LED外延层生长方法制得的LED外延层,包括厚度为100-300nm的P型GaN层,所述P型GaN层包括若干个双层单元,每个双层单元包括:
掺Mg的GaN层:厚度为5-20nm;
掺Mg和Si的GaN层:厚度为5-10nm。
优选的,在所述双层单元中,所述掺Mg的GaN层在所述掺Mg和Si的GaN层之上,或者,所述掺Mg的GaN层在所述掺Mg和Si的GaN层之下。
优选的,在非掺杂GaN层和有缘层MQW之间,包括掺Si的GaN层,厚度为2-4um。
本发明具有以下有益效果:
本发明通过对P型GaN层生长方式的调整,将原本恒定掺杂的高温P型掺Mg的GaN层设计为GaN:Mg和GaN:Mg/Si组合成的超晶格材料,并将超晶格内含的GaN材料的厚度设计为1-5nm。在P层里适当的增加n型掺杂剂Si,适当的激活Mg的电离,增加空穴浓度,一方面Si的掺杂可以提高P层的晶体质量,提高空穴的迁移率,降低驱动电压,一方面增加空穴浓度,提高空穴对发光层的注入,增加器件的发光效率,使得器件的总体光效提到提升。
除了上面所描述的目的、特征和优点之外,本发明还有其它的目的、特征和优点。下面将参照图,对本发明作进一步详细的说明。
附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明对比实施例的结构示意图;
图2是本发明实施例的结构示意图;
图3是样品1与样品2的亮度对比图;
图4是样品1与样品2的电压对比图;
其中,1、衬底,2、低温缓冲GaN层,3、非掺杂GaN层,4、掺Si的GaN层,5、MQW有缘层,6、P型AlGaN层,7、P型GaN层,8、掺Mg的GaN层,9、掺Mg和Si的GaN层。
具体实施方式
以下结合附图对本发明的实施例进行详细说明,但是本发明可以根据权利要求限定和覆盖的多种不同方式实施。
以下分别说明采用以现有传统方法制备样品1的对比实施例一,和采用本发明生长方法制备样品2的实施例一,再将两种方法得到样品1和样品2进行性能检测比较。
对比实施例一、
参见图1,本发明运用MOCVD来生长高亮度GaN基LED外延片。采用高纯H2或高纯N2或高纯H2和高纯N2的混合气体作为载气,高纯NH3作为N源,金属有机源三甲基镓(TMGa)作为镓源,三甲基铟(TMIn)作为铟源,N型掺杂剂为硅烷(SiH4),三甲基铝(TMAl)作为铝源,P型掺杂剂为二茂镁(CP2Mg),衬底为(0001)面蓝宝石,反应压力在100mbar到800mbar之间。
1、在1000-1200℃,反应腔压力维持在100-200mbar的氢气气氛下高温处理蓝宝石衬底5-10分钟;
2、降温至540℃下,反应腔压力维持在400-600mbar,在蓝宝石衬底上生长厚度为20-50nm的低温缓冲层GaN;
3、升高温度到1000-1200℃下,反应腔压力维持在400-600mbar,持续生长2-3μm的非掺杂GaN;
4、然后反应室压力控制在150-600mbar,持续生长掺杂Si的N型GaN,Si掺杂浓度5E+18-1E+19atom/cm3,总厚度控制在3-4μm;
5、周期性生长有缘层MQW,反应腔压力维持在300-400mbar,低温730-750℃生长掺杂In的2.5-3.5nm的InxGa(1-x)N(x=0.15-0.25)层,In的掺杂浓度为1E+20-3E+20atom/cm3,高温800-850℃生长10-14nmGaN层,InxGa(1-x)N/GaN周期数为10-15;
6、再升高温度到900-950℃,反应腔压力维持在200-600mbar,持续生长30-50nm的P型AlGaN层,Al掺杂浓度1E+20-3E+20atom/cm3,Mg掺杂浓度1E+19-2E+19atom/cm3;
7、再升高温度到950-1100℃,反应腔压力维持在100-300mbar,持续生长100-300nm的掺镁的P型GaN层,Mg掺杂浓度1E+19-1E+20atom/cm3;
8、最后将反应室压力控制在400-600mbar,降温至650-680℃,保温10-20min,接着炉内冷却。
实施例一、
参见图2,本发明运用AixtronMOCVD来生长高亮度GaN基LED外延片。采用高纯H2或高纯N2或高纯H2和高纯N2的混合气体作为载气,高纯NH3作为N源,金属有机源三甲基镓(TMGa)作为镓源,三甲基铟(TMIn)作为铟源,N型掺杂剂为硅烷(SiH4),三甲基铝(TMAl)作为铝源,P型掺杂剂为二茂镁(CP2Mg),衬底为(0001)面蓝宝石,反应压力在100mbar到800mbar之间。
一种提高P层MG激活效率的LED外延层生长方法,依次包括处理衬底、生长低温缓冲GaN层、生长非掺杂GaN层、生长掺Si的GaN层、生长有缘层MQW、生长P型AlGaN层、生长P型GaN层步骤,其操作方式为:
1、在1000-1200℃,反应腔压力维持在100-200mbar的氢气气氛下高温处理蓝宝石衬底5-10分钟;
2、降温至540℃下,反应腔压力维持在400-600mbar,在蓝宝石衬底上生长厚度为20-50nm的低温缓冲层GaN;
3、升高温度到1000-1200℃下,反应腔压力维持在400-600mbar,持续生长2-3μm的非掺杂GaN;
4、然后反应室压力控制在150-600mbar,持续生长掺杂Si的N型GaN,Si掺杂浓度5E+18-1E+19atom/cm3,总厚度控制在3-4μm;
5、周期性生长有缘层MQW,反应腔压力维持在300-400mbar,通入1500-1700sccm的TMIn和20-30sccm的TMGa,低温730-750℃生长掺杂In的2.5-3.5nm的InxGa(1-x)N(x=0.15-0.25)层,In掺杂浓度1E+20-3E+20atom/cm3,高温800-840℃生长10-14nm的GaN层,InxGa(1-x)N/GaN周期数为10-15;
6、再升高温度到900-950℃,反应腔压力维持在200-600mbar,持续生长30-50nm的P型AlGaN层,Al掺杂浓度1E+20-3E+20atom/cm3,Mg掺杂浓度1E+19-2E+19atom/cm3;
7、再升高温度到950-1100℃,反应腔压力维持在200-600mbar,(1)通入50000-60000sccm的NH3、20-40sccmTMGa源、1500-2500sccm的Cp2Mg源以及载气生长5-20nm的GaN:Mg;(2)接着通入50000-60000sccm的NH3、20-40sccm的TMGa、1500-2500sccm的Cp2Mg源、5-15sccm的SiH4以及载气生长5-10nm的GaN:Mg/Si层,Mg的掺杂浓度1E+19-1E+20atom/cm3;接着以(1)、(2)为基础交替时长,高温P层控制在100-300nm;
其中,(1)(2)步骤的先后顺序可以调换。也即是,所述掺Mg的GaN层在所述掺Mg和Si的GaN层之上,或者,所述掺Mg的GaN层在所述掺Mg和Si的GaN层之下。
8、最后降温至700-800℃,保温20-30min,接着炉内冷却。
然后,采用对比实施例一描述的方法制备样品1,采用实施例一描述的方法制备样品2;样品1和样品2不同点在于高温P层的生长参数不同,生长其它外延层生长条件完全一样。生长条件请参考表1。
表1生长参数的对比
样品1和样品2在相同的前工艺条件下镀ITO层200nm,相同的条件下镀Cr/Pt/Au电极约170nm,相同的条件下镀保护层SiO2约50nm,然后在相同的条件下将样品研磨切割成762μm*762μm(30mi*30mil)的芯片颗粒,然后样品1和样品2在相同位置各自挑选150颗晶粒,在相同的封装工艺下,封装成白光LED。然后采用积分球在驱动电流350mA条件下测试样品1和样品2的光电性能。
将积分球获得的数据进行分析对比,对比结果请参考附图三和附图四,从图三数据得出样品2较样品1光输出高出约5%,图四数据得出样品2驱动电压下降约0.10v。
参见图2,本发明还提供了一种根据上述LED外延层生长方法制得的LED外延层,依次包括衬底1、低温缓冲GaN层2、非掺杂GaN层3、掺Si的GaN层4、MQW有缘层5、P型AlGaN层6和P型GaN层7,其中,所述P型GaN层7的厚度为100-300nm,所述P型GaN层7包括若干个双层单元,每个双层单元包括:
掺Mg的GaN层8:厚度为5-20nm;
掺Mg和Si的GaN层9:厚度为5-10nm。
可以理解的是,双层单元中的层次顺序可以根据实际情况调整,所述掺Mg的GaN层8在所述掺Mg和Si的GaN层9之上,或者,所述掺Mg的GaN层8在所述掺Mg和Si的GaN层9之下。
在非掺杂GaN层3和MQW有缘层5之间的掺Si的GaN层4,厚度为2-4um。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (8)
1.一种LED外延层生长方法,依次包括处理衬底、生长低温缓冲GaN层、生长非掺杂GaN层、生长掺Si的GaN层、生长有缘层MQW、生长P型AlGaN层、生长P型GaN层步骤,其特征在于,
所述生长P型GaN层步骤为:
在温度为950-1100℃,反应腔压力在200-600mbar的反应室内,重复间隔性地通入A、B两组原料,直至P型GaN层的厚度为100-300nm;
其中,A组原料为50000-60000sccm的NH3、20-40sccm的TMGa源、1500-2500sccm的Cp2Mg源,生成厚度为5-20nm的GaN层;B组原料为50000-60000sccm的NH3、20-40sccm的TMGa、1500-2500sccm的Cp2Mg源、5-15sccm的SiH4,生成厚度为5-10nm的掺Mg和Si的GaN层,Mg的掺杂浓度为1E+19-1E+20atom/cm3,Si的掺杂浓度1E+17-1E+18atom/cm3。
2.根据权利要求1所述的一种LED外延层生长方法,其特征在于,先通入A组原料,再通入B组原料。
3.根据权利要求1所述的一种LED外延层生长方法,其特征在于,先通入B组原料,再通入A组原料。
4.根据权利要求1所述的一种提高P层MG激活效率的LED外延层生长方法,其特征在于,
所述生长P型GaN层步骤中,掺杂Si浓度低于掺杂Mg浓度的1-2个数量级。
5.根据权利要求1所述的一种LED外延层生长方法,其特征在于,所述生长有缘层MQW步骤为:
在温度700-750℃,压力300-400mbar的反应室内,通入1500-1700sccm的TMIn和20-30sccm的TMGa生长掺杂In的厚度为3-4nm的InxGa(1-x)N层,其中x=0.15-0.25;
温度为800-850℃,生长厚度为10-15nm的GaN层,InxGa(1-x)N/GaN层的周期数为10-15;In的掺杂浓度为1E20-3E20atom/cm3。
6.根据权利要求1-5任一项所述的LED外延层生长方法制得的LED外延层,其特征在于,包括厚度为100-300nm的P型GaN层,所述P型GaN层包括若干个双层单元,每个双层单元包括:
掺Mg的GaN层:厚度为5-20nm;
掺Mg和Si的GaN层:厚度为5-10nm。
7.根据权利要求6所述的LED外延层,其特征在于,在所述双层单元中,所述掺Mg的GaN层在所述掺Mg和Si的GaN层之上,或者,所述掺Mg的GaN层在所述掺Mg和Si的GaN层之下。
8.根据权利要求6所述的LED外延层,其特征在于,在非掺杂GaN层和有缘层MQW之间,包括掺Si的GaN层,厚度为2-4um。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410165324.0A CN103952684B (zh) | 2014-04-23 | 2014-04-23 | Led外延层生长方法及led外延层 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410165324.0A CN103952684B (zh) | 2014-04-23 | 2014-04-23 | Led外延层生长方法及led外延层 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103952684A true CN103952684A (zh) | 2014-07-30 |
CN103952684B CN103952684B (zh) | 2016-04-20 |
Family
ID=51330027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410165324.0A Active CN103952684B (zh) | 2014-04-23 | 2014-04-23 | Led外延层生长方法及led外延层 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103952684B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105261678A (zh) * | 2015-11-03 | 2016-01-20 | 湘能华磊光电股份有限公司 | 一种提高led内量子效率的外延生长方法 |
CN106328494A (zh) * | 2016-09-20 | 2017-01-11 | 湘能华磊光电股份有限公司 | 提高光效的led外延生长方法 |
CN111769181A (zh) * | 2020-07-10 | 2020-10-13 | 湘能华磊光电股份有限公司 | 一种适用于小间距显示屏的led外延生长方法 |
CN111769180A (zh) * | 2020-07-10 | 2020-10-13 | 湘能华磊光电股份有限公司 | 适用于小间距显示屏的led外延生长方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5891790A (en) * | 1997-06-17 | 1999-04-06 | The Regents Of The University Of California | Method for the growth of P-type gallium nitride and its alloys |
US20050098095A1 (en) * | 2002-12-27 | 2005-05-12 | General Electric Company | Gallium nitride crystals and wafers and method of making |
US20100147835A1 (en) * | 2008-05-09 | 2010-06-17 | Mulpuri Rao V | Doped Gallium Nitride Annealing |
CN103346219A (zh) * | 2013-07-12 | 2013-10-09 | 湘能华磊光电股份有限公司 | 复式多量子阱发光层结构的生长方法及led 外延结构 |
CN103413877A (zh) * | 2013-08-16 | 2013-11-27 | 湘能华磊光电股份有限公司 | 外延结构量子阱应力释放层的生长方法及其外延结构 |
CN103413880A (zh) * | 2013-08-30 | 2013-11-27 | 湘能华磊光电股份有限公司 | 提高led抗静电能力的外延生长方法及其外延结构 |
-
2014
- 2014-04-23 CN CN201410165324.0A patent/CN103952684B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5891790A (en) * | 1997-06-17 | 1999-04-06 | The Regents Of The University Of California | Method for the growth of P-type gallium nitride and its alloys |
US20050098095A1 (en) * | 2002-12-27 | 2005-05-12 | General Electric Company | Gallium nitride crystals and wafers and method of making |
US20100147835A1 (en) * | 2008-05-09 | 2010-06-17 | Mulpuri Rao V | Doped Gallium Nitride Annealing |
CN103346219A (zh) * | 2013-07-12 | 2013-10-09 | 湘能华磊光电股份有限公司 | 复式多量子阱发光层结构的生长方法及led 外延结构 |
CN103413877A (zh) * | 2013-08-16 | 2013-11-27 | 湘能华磊光电股份有限公司 | 外延结构量子阱应力释放层的生长方法及其外延结构 |
CN103413880A (zh) * | 2013-08-30 | 2013-11-27 | 湘能华磊光电股份有限公司 | 提高led抗静电能力的外延生长方法及其外延结构 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105261678A (zh) * | 2015-11-03 | 2016-01-20 | 湘能华磊光电股份有限公司 | 一种提高led内量子效率的外延生长方法 |
CN105261678B (zh) * | 2015-11-03 | 2018-06-15 | 湘能华磊光电股份有限公司 | 一种提高led内量子效率的外延生长方法 |
CN106328494A (zh) * | 2016-09-20 | 2017-01-11 | 湘能华磊光电股份有限公司 | 提高光效的led外延生长方法 |
CN111769181A (zh) * | 2020-07-10 | 2020-10-13 | 湘能华磊光电股份有限公司 | 一种适用于小间距显示屏的led外延生长方法 |
CN111769180A (zh) * | 2020-07-10 | 2020-10-13 | 湘能华磊光电股份有限公司 | 适用于小间距显示屏的led外延生长方法 |
CN111769181B (zh) * | 2020-07-10 | 2021-04-13 | 湘能华磊光电股份有限公司 | 一种适用于小间距显示屏的led外延生长方法 |
CN111769180B (zh) * | 2020-07-10 | 2021-04-13 | 湘能华磊光电股份有限公司 | 适用于小间距显示屏的led外延生长方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103952684B (zh) | 2016-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111223764A (zh) | 一种提高辐射复合效率的led外延生长方法 | |
CN103474539B (zh) | 含有超晶格层的led结构外延生长方法及其结构 | |
CN102427103B (zh) | 氮化镓基ⅲ-ⅴ族化合物半导体led外延片及其生长方法以及包括其的led显示装置 | |
CN103413879B (zh) | Led外延的生长方法以及通过此方法获得的led芯片 | |
CN103560190A (zh) | 阻挡电子泄漏和缺陷延伸的外延生长方法及其结构 | |
CN103107255A (zh) | 一种led外延片生长方法 | |
CN103474538A (zh) | Led外延片、其制作方法及包含其的led芯片 | |
CN106531855A (zh) | 一种led外延结构及其生长方法 | |
CN103952684B (zh) | Led外延层生长方法及led外延层 | |
CN103346219B (zh) | 复式多量子阱发光层结构的生长方法及led外延结构 | |
CN106384764A (zh) | 一种led外延结构及其生长方法 | |
CN106684218B (zh) | 一种提升发光效率的led外延生长方法 | |
CN107359227B (zh) | 一种发光二极管及其制造方法 | |
CN106328780B (zh) | 基于AlN模板的发光二极管衬底外延生长的方法 | |
CN103413871B (zh) | Led外延的生长方法以及通过此方法获得的led芯片 | |
CN103594570B (zh) | 含有超晶格势垒层的led结构外延生长方法及其结构 | |
CN105869994B (zh) | 一种超晶格层的生长方法及含此结构的led外延结构 | |
CN106374021A (zh) | 基于蓝宝石图形化衬底的led外延生长方法 | |
CN103337451B (zh) | 外延结构的电子阻挡层生长方法及其相应的外延结构 | |
CN112687770B (zh) | Led外延生长方法 | |
CN103413872B (zh) | Led外延的生长方法以及通过此方法获得的led芯片 | |
CN117410402A (zh) | 一种发光二极管外延片及其制备方法、Micro-LED芯片 | |
CN102418145B (zh) | 在图形衬底上生长 GaN 基LED 外延片的方法 | |
CN105845788A (zh) | 一种led电流扩展层外延生长方法 | |
CN102201516B (zh) | InGaN纳米柱阵列有源区LED及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |