CN103943869B - A kind of preparation method of graphite-coated paper loaded NiAu film electrode material - Google Patents
A kind of preparation method of graphite-coated paper loaded NiAu film electrode material Download PDFInfo
- Publication number
- CN103943869B CN103943869B CN201410105310.XA CN201410105310A CN103943869B CN 103943869 B CN103943869 B CN 103943869B CN 201410105310 A CN201410105310 A CN 201410105310A CN 103943869 B CN103943869 B CN 103943869B
- Authority
- CN
- China
- Prior art keywords
- graphite
- paper
- niau
- film electrode
- coated paper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 29
- 239000010439 graphite Substances 0.000 title claims abstract description 27
- 229910002804 graphite Inorganic materials 0.000 title claims abstract description 27
- 239000007772 electrode material Substances 0.000 title claims abstract description 6
- 238000002360 preparation method Methods 0.000 title claims abstract description 6
- 239000010408 film Substances 0.000 claims abstract description 12
- 239000004927 clay Substances 0.000 claims abstract description 9
- 239000010409 thin film Substances 0.000 claims abstract description 8
- 238000004070 electrodeposition Methods 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 4
- 239000000446 fuel Substances 0.000 abstract description 14
- 229910000033 sodium borohydride Inorganic materials 0.000 abstract description 12
- 239000012279 sodium borohydride Substances 0.000 abstract description 12
- 239000003054 catalyst Substances 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 5
- 230000003197 catalytic effect Effects 0.000 abstract description 4
- 239000002659 electrodeposit Substances 0.000 abstract description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 13
- 239000000243 solution Substances 0.000 description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000006056 electrooxidation reaction Methods 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 229910021607 Silver chloride Inorganic materials 0.000 description 4
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 150000003385 sodium Chemical class 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9075—Catalytic material supported on carriers, e.g. powder carriers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inert Electrodes (AREA)
Abstract
本发明提供的是一种石墨涂覆纸负载NiAu薄膜电极材料的制备方法。用粘土做固化剂,将粘土与石墨均匀混合后涂覆于普通纸张表面;将5~5.5g?NH4Cl及1~1.5g?NiCl2溶于50mL水中制成电沉积液;在电沉积液中将涂有石墨的纸在1.0V电压下保持20~30min,以活化涂覆的石墨,然后在-1.0V下电沉积Ni160~180min,得到纸-石墨-Ni薄膜电极;将纸-石墨-Ni薄膜电极在1mmol·L-1的HAuClO4溶液中静置2~4分钟,得到纸-石墨-NiAu薄膜电极。本发明用石墨涂覆纸,将Ni电沉积于导电的涂覆石墨的纸的表面,再以Au置换部分Ni制备铅笔涂覆纸负载NiAu催化剂,提高直接硼氢化物燃料电池阳极催化性能的方法。解决了硼氢化钠燃料电池阳极活性差的问题。The invention provides a preparation method of graphite-coated paper loaded NiAu film electrode material. Use clay as curing agent, mix clay and graphite evenly and apply on the surface of ordinary paper; add 5-5.5g? NH 4 Cl and 1~1.5g? Dissolve NiCl 2 in 50mL water to make an electrodeposition solution; in the electrodeposition solution, keep the graphite-coated paper at a voltage of 1.0V for 20-30min to activate the coated graphite, and then electrodeposit Ni160~ at -1.0V 180min to obtain a paper-graphite-Ni thin film electrode; put the paper-graphite-Ni thin film electrode in 1mmol·L -1 HAuClO 4 solution for 2 to 4 minutes to obtain a paper-graphite-NiAu thin film electrode. The invention uses graphite-coated paper, deposits Ni on the surface of conductive graphite-coated paper, and then replaces part of Ni with Au to prepare a pencil-coated paper-loaded NiAu catalyst to improve the catalytic performance of the anode of a direct borohydride fuel cell. . The problem of poor anode activity of the sodium borohydride fuel cell is solved.
Description
技术领域technical field
本发明涉及的是一种薄膜电极材料的制备方法,具体地说是一种以石墨涂覆纸负载NiAu催化硼氢化物电氧化性能的方法。The invention relates to a method for preparing a thin film electrode material, in particular to a method for loading NiAu with graphite-coated paper to catalyze the electro-oxidation performance of borohydride.
背景技术Background technique
直接硼氢化钠燃料电池(DBFC)是以溶于碱性电解质溶液中的NaBH4直接作为燃料的燃料电池。硼氢化钠是含氢量很高(固体为11wt.%,饱和硼氢化钠溶液为7.4wt.%)的储氢材料。硼氢化钠比压缩氢和液化氢有较大体积的储氢能力。NaBH4比甲醇的氧化动力学快,能量密度和电池电压也优于甲醇。NaBH4不易燃、毒性低、无污染、不产生CO2,仅具有弱腐蚀性,所以装置简单、体积小、储运方便,可免除爆炸的危险性,安全性能较为优越。硼氢化钠可用溶液或固体形式保存,在碱性溶液中可稳定存在数月。催化剂和反应产物可以循环使用,NaBH4水解的唯一副产物NaBO2对环境无毒害作用,并且还可以作为合成NaBH4的原材料,从而实现资源的循环利用。DBFC可在环境温度下工作,电池因而容易启动。从工程学角度考虑,NaBH4溶液能充当热交换介质来冷却电池而无须额外的冷却板;水的电渗拖曳可用做阴极反应物,而无须像氢气和空气那样需要润湿;这些特性对于燃料电池的设计是有益的。A direct sodium borohydride fuel cell (DBFC) is a fuel cell in which NaBH 4 dissolved in an alkaline electrolyte solution is directly used as fuel. Sodium borohydride is a hydrogen storage material with a high hydrogen content (11wt.% for solids and 7.4wt.% for saturated sodium borohydride solutions). Sodium borohydride has a larger volume of hydrogen storage capacity than compressed hydrogen and liquefied hydrogen. NaBH 4 has faster oxidation kinetics than methanol, and its energy density and cell voltage are also superior to methanol. NaBH 4 is non-flammable, low in toxicity, non-polluting, does not produce CO 2 , and is only weakly corrosive, so it has a simple device, small size, convenient storage and transportation, can avoid the risk of explosion, and has superior safety performance. Sodium borohydride can be stored in solution or solid form, and can exist stably in alkaline solution for several months. The catalyst and reaction products can be recycled, and NaBO 2 , the only by-product of the hydrolysis of NaBH 4 , is non-toxic to the environment, and can also be used as a raw material for the synthesis of NaBH 4 , thereby realizing the recycling of resources. DBFC can work at ambient temperature, so the battery is easy to start. From an engineering point of view, NaBH 4 solution can act as a heat exchange medium to cool the battery without additional cooling plates; the electroosmotic drag of water can be used as a cathode reactant without the need for wetting like hydrogen and air; these properties are important for fuel The design of the battery is beneficial.
理论上NaBH4的直接电氧化可为8e-反应,参见(1)式:Theoretically, the direct electrooxidation of NaBH 4 can be 8e - reaction, see formula (1):
BH4 -+8OH-→BO2 -+4H2O+8e-(1)BH 4 - +8OH - →BO 2 - +4H 2 O+8e - (1)
DBFC理论上NaBH4可以使用非铂催化剂,NaBH4电氧化催化剂主要分为两大类,一类是Pt、Pd、Au、Ir等贵金属,其中Pt的电催化活性最高,但也易于发生NaBH4的水解反应,参见(2)式:In theory, DBFC can use non-platinum catalysts for NaBH 4 . NaBH 4 electrooxidation catalysts are mainly divided into two categories . The hydrolysis reaction, see (2) formula:
NaBH4+2H2O→4H2+NaBO2(2)NaBH 4 +2H 2 O→4H 2 +NaBO 2 (2)
可参阅KuiCheng;DianxueCao;FanYang;DongmingZhang;PengYan;JinlingYin;guilingwang.Pddopedthree-dimensionalporousNifilmsupportedonNifoamanditshighperformancetowardsNaBH4electrooxidation.JournalofPowerSources,2013,242:141-147,以及CaoDianxue,GaoYinyi,WangGuiling,MiaoRongrong,LiuYao.AdirectNaBH4–H2O2fuelcellusingNifoamsupportedAunanoparticlesaselectrodes.InternationalJournalofHydrogenEnergy,2010,35:807–813.。可参阅KuiCheng;DianxueCao;FanYang;DongmingZhang;PengYan;JinlingYin;guilingwang.Pddopedthree-dimensionalporousNifilmsupportedonNifoamanditshighperformancetowardsNaBH 4 electrooxidation.JournalofPowerSources,2013,242:141-147,以及CaoDianxue,GaoYinyi,WangGuiling,MiaoRongrong,LiuYao.AdirectNaBH 4 –H 2 O 2 fuelcellusingNifoamsupportedAunanoparticlesaselectrodes.InternationalJournalofHydrogenEnergy, 2010,35:807–813.
发明内容Contents of the invention
本发明的目的在于提供一种能提高直接硼氢化物燃料电池阳极催化性能,解决硼氢化钠燃料电池阳极活性差的问题的石墨涂覆纸负载NiAu薄膜电极材料的制备方法。The purpose of the present invention is to provide a method for preparing a graphite-coated paper-loaded NiAu film electrode material that can improve the catalytic performance of the anode of a direct borohydride fuel cell and solve the problem of poor anode activity of a sodium borohydride fuel cell.
本发明的目的是这样实现的:The purpose of the present invention is achieved like this:
本发明的目的是这样实现的:The purpose of the present invention is achieved like this:
(1)用粘土做固化剂,将粘土与石墨均匀混合后涂覆于普通纸张表面;(1) Use clay as a curing agent, mix the clay and graphite evenly and apply it on the surface of ordinary paper;
(2)将5~5.5gNH4Cl及1~1.5gNiCl2溶于50mL水中制成电沉积液;(2) Dissolve 5-5.5g NH 4 Cl and 1-1.5g NiCl 2 in 50mL water to make electrodeposition solution;
(3)在电沉积液中将涂有石墨的纸在1.0V电压下保持20~30min,以活化涂覆的石墨,然后在-1.0V下电沉积Ni160~180min,得到纸-石墨-Ni薄膜电极;(3) In the electrodeposition solution, keep the graphite-coated paper at 1.0V for 20-30min to activate the coated graphite, and then electrodeposit Ni at -1.0V for 160-180min to obtain a paper-graphite-Ni film electrode;
(4)最后将纸-石墨-Ni薄膜电极在1mmolL-1的HAuClO4溶液中静置2~4分钟,得到纸-石墨-NiAu薄膜电极,即石墨涂覆纸负载NiAu催化剂。(4) Finally, put the paper-graphite-Ni film electrode in 1mmolL -1 HAuClO4 solution for 2-4 minutes to obtain the paper-graphite-NiAu film electrode, that is, graphite-coated paper-supported NiAu catalyst.
本发明用石墨涂覆纸,将Ni电沉积于导电的涂覆石墨的纸的表面,再以Au置换部分Ni制备铅笔涂覆纸负载NiAu催化剂,提高直接硼氢化物燃料电池阳极催化性能的方法。克服了集流体价格高,以及硼氢化钠分解等缺点,解决了硼氢化钠燃料电池阳极活性差的问题。The invention uses graphite-coated paper, deposits Ni on the surface of conductive graphite-coated paper, and then replaces part of Ni with Au to prepare a pencil-coated paper-loaded NiAu catalyst to improve the catalytic performance of the anode of a direct borohydride fuel cell. . The disadvantages of high current collector price and decomposition of sodium borohydride are overcome, and the problem of poor anode activity of sodium borohydride fuel cell is solved.
本发明的实质是采用硼氢化钠燃料电池等的电池结构,以石墨涂覆纸负载NiAu为催化剂,构成燃料电池的阳极。The essence of the present invention is to adopt a battery structure such as a sodium borohydride fuel cell, and use graphite-coated paper to support NiAu as a catalyst to form the anode of the fuel cell.
本发明的优点在于利用石墨涂覆纸负载NiAu催化剂作为硼氢化钠直接电氧化的催化剂,解决了硼氢化物燃料阳极放电电流小和易于水解等问题。本电极材料制备中不使用粘结剂,更重要的是在电场作用下石墨与粘土能与Ni和Au形成纸-石墨-粘土-NiAu的交联化合物,不仅导电性好,而且电催化活性高。纸负载NiAu催化剂不但石墨、粘土、Ni的储量极其丰富易得,价格低廉,大大降低了电极制备成本,而且其催化活性高,性能稳定,制备过程容易,适合工业化生产,具有工业应用前景与市场价值。The invention has the advantage of using the NiAu catalyst supported by graphite-coated paper as the catalyst for the direct electrooxidation of sodium borohydride, which solves the problems of small discharge current of the borohydride fuel anode and easy hydrolysis. No binder is used in the preparation of this electrode material. More importantly, graphite and clay can form a paper-graphite-clay-NiAu cross-linked compound with Ni and Au under the action of an electric field, which not only has good conductivity, but also has high electrocatalytic activity. . The paper-loaded NiAu catalyst is not only extremely rich in graphite, clay, and Ni reserves, but also low in price, which greatly reduces the cost of electrode preparation, and has high catalytic activity, stable performance, easy preparation process, suitable for industrial production, and has industrial application prospects and markets. value.
具体实施方式Detailed ways
为了更好地说明本发明工艺的效果,下面以具体实例加以说明。In order to better illustrate the effect of the process of the present invention, specific examples are used below to illustrate.
(1)取普通纸一张,用粘土做固化剂与石墨均匀混合后涂覆于纸表面,取1×1cm-2作为研究电极;(2)将5gNH4Cl及1gNiCl2溶于50mL水中,用于恒电位法电沉积Ni。(3)将涂有石墨的纸在1.0V电压下保持20~30min,以活化涂覆的石墨,然后在-1.0V下电沉积Ni160~180min,得到纸-石墨-Ni薄膜电极。(4)最后将纸-石墨-Ni薄膜电极在1mmolL-1的HAuClO4溶液中静置2~4分钟,得到纸-石墨-NiAu薄膜电极,即石墨涂覆纸负载NiAu催化剂。(1) Take a piece of ordinary paper, use clay as curing agent and graphite to evenly mix and coat the surface of the paper, take 1×1cm -2 as the research electrode; (2) Dissolve 5gNH 4 Cl and 1gNiCl 2 in 50mL water, It is used for Ni electrodeposition by constant potential method. (3) Keep the graphite-coated paper at a voltage of 1.0V for 20-30min to activate the coated graphite, and then electrodeposit Ni at -1.0V for 160-180min to obtain a paper-graphite-Ni film electrode. (4) Finally, put the paper-graphite-Ni film electrode in 1mmolL -1 HAuClO4 solution for 2-4 minutes to obtain the paper-graphite-NiAu film electrode, that is, graphite-coated paper-supported NiAu catalyst.
对纸-石墨-NiAu薄膜电极进行如下性能测试:The paper-graphite-NiAu thin film electrode was tested as follows:
1、以纸-石墨-NiAu薄膜为工作电极,碳棒为对电极,以Ag/AgCl为参比电极,在1mol/L的NaOH和0.10mol/L的NaBH4的溶液中,-0.4Vvs.Ag/AgCl的电压下,计时电流密度达120mA/cm2。1. With paper-graphite-NiAu film as working electrode, carbon rod as counter electrode, and Ag/AgCl as reference electrode, in a solution of 1mol/L NaOH and 0.10mol/L NaBH 4 , -0.4Vvs. Under the voltage of Ag/AgCl, the chronocurrent density reaches 120mA/cm 2 .
2、以纸-石墨-NiAu薄膜为工作电极,碳棒为对电极,以Ag/AgCl为参比电极,在2M的NaOH和0.50M的NaBH4的溶液中,-0.4Vvs.Ag/AgCl的电压下,计时电流密度达350mA/cm2。2. With paper-graphite-NiAu film as working electrode, carbon rod as counter electrode, and Ag/AgCl as reference electrode, in a solution of 2M NaOH and 0.50M NaBH 4 , -0.4Vvs.Ag/AgCl Under voltage, the chronocurrent density reaches 350mA/cm 2 .
3、利用纸-石墨-NiAu薄膜催化NaBH4电氧化为阳极,3mol/L的KOH为阳极电解质溶液,1mol/L的硼氢化钠为燃料;以泡沫镍上负载的纳米Pd催化H2O2直接电还原为阴极,以3mol/L的KOH和0.6mol/L-1H2O2作为阴极电解液;Nafin-115质子交换摸作为隔膜;电池的最大功率密度为245mW/cm-2。3. Use paper-graphite-NiAu film to catalyze the electrooxidation of NaBH 4 as the anode, 3mol/L KOH as the anode electrolyte solution, and 1mol/L sodium borohydride as the fuel; use nano-Pd loaded on foamed nickel to catalyze H 2 O 2 Direct electroreduction is used as the cathode, with 3mol/L KOH and 0.6mol/L -1 H 2 O 2 as the catholyte; Nafin-115 proton exchange membrane as the diaphragm; the maximum power density of the battery is 245mW/cm -2 .
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410105310.XA CN103943869B (en) | 2014-03-21 | 2014-03-21 | A kind of preparation method of graphite-coated paper loaded NiAu film electrode material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410105310.XA CN103943869B (en) | 2014-03-21 | 2014-03-21 | A kind of preparation method of graphite-coated paper loaded NiAu film electrode material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103943869A CN103943869A (en) | 2014-07-23 |
CN103943869B true CN103943869B (en) | 2015-12-09 |
Family
ID=51191438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410105310.XA Active CN103943869B (en) | 2014-03-21 | 2014-03-21 | A kind of preparation method of graphite-coated paper loaded NiAu film electrode material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103943869B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109994744B (en) * | 2019-01-31 | 2021-09-07 | 重庆大学 | A nickel-cobalt binary catalyst for promoting direct oxidation of sodium borohydride |
CN113036164B (en) * | 2019-12-24 | 2022-05-27 | 大连大学 | Preparation method and application of composite electrode based on mesoporous carbon foam |
CN113054206B (en) * | 2019-12-27 | 2022-06-07 | 大连大学 | A kind of preparation method and application of NiNPs/AuNPs/GN/AgNWs/paper plastic electrode |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102088089A (en) * | 2010-12-27 | 2011-06-08 | 浙江大学 | Preparation method of combined electrode of fuel cell and test device thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011067627A2 (en) * | 2009-12-05 | 2011-06-09 | Vishnu Jayaprakash | A novel cow dung based microbial fuel cell |
-
2014
- 2014-03-21 CN CN201410105310.XA patent/CN103943869B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102088089A (en) * | 2010-12-27 | 2011-06-08 | 浙江大学 | Preparation method of combined electrode of fuel cell and test device thereof |
Non-Patent Citations (1)
Title |
---|
"Paper-basedsolid-statesupercapacitors";Bin Yao et al;《Nano Energy》;20130923;第2卷;第1071-1078页 * |
Also Published As
Publication number | Publication date |
---|---|
CN103943869A (en) | 2014-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109252180B (en) | A kind of ternary MOF nanosheet array material, preparation method and application thereof | |
Zhang et al. | Novel Ni foam based nickel oxalate derived porous NiO nanostructures as highly efficient electrodes for the electrooxidation of methanol/ethanol and urea | |
CN111686736B (en) | Preparation method of NiFe-LDH/NF three-dimensional self-supporting electrolytic water oxygen evolution catalyst containing high-activity high-valence iron | |
CN105688958A (en) | Polyhedron cobalt phosphide/graphite carbon hybrid material and preparing method and application thereof | |
CN108722452A (en) | A kind of difunctional metal phosphide catalyst, preparation method and its application | |
CN104971760B (en) | Preparation method of macroporous carbon-oxygen reduction catalyst containing sulfur, nitrogen and transition metal elements | |
CN108447703A (en) | A nickel-iron double metal hydroxide@ceria heterostructure nanosheet material, its preparation method and its application | |
CN109954503A (en) | A kind of nickel selenide and ternary nickel-iron selenide composite electrocatalyst and preparation method and application | |
CN107376945B (en) | A kind of iron-based catalyst, its preparation method and its application in high-efficiency electrocatalytic water splitting | |
CN109576730B (en) | Preparation method and application of an iron-modified cobalt tetroxide nanosheet array electrode | |
CN106807378A (en) | A kind of hexagon nickel cobalt oxide oxygen-separating catalyst and its preparation method and application | |
Ye et al. | Reduced graphene oxide supporting hollow bimetallic phosphide nanoparticle hybrids for electrocatalytic oxygen evolution | |
CN109921040A (en) | A Ni, Fe doped carbon-based electrocatalyst and its preparation and application | |
CN108212157A (en) | Metal boride water-splitting catalyst, preparation method and its application in terms of electro-catalysis water-splitting | |
CN111101151A (en) | Preparation and application of molybdenum-doped cobalt selenide foam nickel composite electrode for water electrolysis | |
CN103943869B (en) | A kind of preparation method of graphite-coated paper loaded NiAu film electrode material | |
Wang et al. | Constructing partially amorphous borate doped iron-nickel nitrate hydroxide nanoarrays by rapid microwave activation for oxygen evolution | |
Li et al. | The properties of ethylamine dehydrogenation and electrolysis using platinum catalyst for efficient, ambient hydrogen production | |
CN105435771B (en) | A kind of preparation method of tinbase composite catalyst and the cathode material containing the catalyst | |
CN110479239A (en) | One kind is with a thickness of 1.5nm bismuth nano-wire and its preparation method and application | |
CN103400997A (en) | Preparation method of carbon-modified and nickel-loaded sponge as anode material of hydroboron fuel cell | |
CN103730669A (en) | Membrane-free direct hydrazine fuel cell and manufacturing method thereof | |
CN106910898B (en) | Preparation method of carbon-modified foam carbon-supported Ni catalyst for catalyzing H2O2 electrooxidation | |
CN108889330A (en) | A kind of nitrogen-doped carbon cladding efficient liberation of hydrogen catalyst of ruthenium and preparation method thereof | |
Yang et al. | Molten salt assisted to synthesize molybdenum–ruthenium boride for hydrogen generation in wide pH range |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220607 Address after: 158200 floor 5, national graphite product quality supervision and inspection center, No. 88, Kangxin Road, Jiguan District, Jixi City, Heilongjiang Province Patentee after: Heilongjiang hachang carbon material technology Co.,Ltd. Address before: 150001 Intellectual Property Office, Harbin Engineering University science and technology office, 145 Nantong Avenue, Nangang District, Harbin, Heilongjiang Patentee before: HARBIN ENGINEERING University |
|
TR01 | Transfer of patent right |