CN103938246A - Electrochemical method for preparing strontium-doped hydroxyapatite ridge rodlike structure coating on titanium surface - Google Patents
Electrochemical method for preparing strontium-doped hydroxyapatite ridge rodlike structure coating on titanium surface Download PDFInfo
- Publication number
- CN103938246A CN103938246A CN201410169473.4A CN201410169473A CN103938246A CN 103938246 A CN103938246 A CN 103938246A CN 201410169473 A CN201410169473 A CN 201410169473A CN 103938246 A CN103938246 A CN 103938246A
- Authority
- CN
- China
- Prior art keywords
- molar concentration
- electrolyte
- coating
- strontium
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 title claims abstract description 33
- 229910052588 hydroxylapatite Inorganic materials 0.000 title claims abstract description 32
- 238000000576 coating method Methods 0.000 title claims abstract description 30
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 28
- 239000011248 coating agent Substances 0.000 title claims abstract description 28
- 239000010936 titanium Substances 0.000 title claims abstract description 28
- 229910052719 titanium Inorganic materials 0.000 title claims abstract description 28
- 238000002848 electrochemical method Methods 0.000 title claims abstract description 8
- 239000003792 electrolyte Substances 0.000 claims abstract description 42
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 11
- 238000002360 preparation method Methods 0.000 claims abstract description 7
- 229910052751 metal Inorganic materials 0.000 claims description 24
- 239000002184 metal Substances 0.000 claims description 24
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 16
- 101100496858 Mus musculus Colec12 gene Proteins 0.000 claims description 10
- 238000004070 electrodeposition Methods 0.000 claims description 10
- 239000011780 sodium chloride Substances 0.000 claims description 8
- 230000008021 deposition Effects 0.000 abstract 2
- 239000000758 substrate Substances 0.000 abstract 2
- 238000004090 dissolution Methods 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 abstract 1
- 229910052712 strontium Inorganic materials 0.000 abstract 1
- 229910001427 strontium ion Inorganic materials 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 9
- 239000000463 material Substances 0.000 description 6
- 230000035755 proliferation Effects 0.000 description 6
- 210000000988 bone and bone Anatomy 0.000 description 5
- 210000002449 bone cell Anatomy 0.000 description 5
- 230000004069 differentiation Effects 0.000 description 5
- 229910052586 apatite Inorganic materials 0.000 description 4
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 4
- 238000013508 migration Methods 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 239000001509 sodium citrate Substances 0.000 description 3
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 3
- 230000007480 spreading Effects 0.000 description 3
- 238000003892 spreading Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- 239000002639 bone cement Substances 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 238000012876 topography Methods 0.000 description 2
- 208000006386 Bone Resorption Diseases 0.000 description 1
- -1 Mg 2+ Chemical class 0.000 description 1
- 150000001450 anions Chemical group 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000024279 bone resorption Effects 0.000 description 1
- 150000001768 cations Chemical group 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000002316 cosmetic surgery Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 238000010883 osseointegration Methods 0.000 description 1
- 230000011164 ossification Effects 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Landscapes
- Materials For Medical Uses (AREA)
Abstract
本发明公开了一种金属纯钛表面制备掺锶羟基磷灰石带脊棒状结构涂层的电化学法。配制含Ca、Sr和P三种元素的高、低两种浓度的电解液;使用恒温加热设备将上述两种电解液加热至一定温度并保温;以铂片为阳极,金属纯钛为阴极基体,沉积时两电极浸没在电解液中;先后在两种浓度的电解液中沉积一定时间,最终获得掺锶羟基磷灰石带脊棒状结构组成的涂层;沉积完成后将基体取出清洗干燥。本发明制备出掺锶羟基磷灰石带脊棒状结构涂层,增大了涂层的比表面积,使其具有更好的润湿性;同时锶离子的掺杂改变了涂层的溶解特性,为改性羟基磷灰石生物涂层的制备和应用开辟了新的方向。
The invention discloses an electrochemical method for preparing a strontium-doped hydroxyapatite coating with a ridged rod-like structure on the surface of metallic pure titanium. Prepare electrolytes with high and low concentrations containing three elements of Ca, Sr and P; use constant temperature heating equipment to heat the above two electrolytes to a certain temperature and keep them warm; use platinum as the anode and pure titanium as the cathode substrate , the two electrodes are immersed in the electrolyte during deposition; they are deposited in two concentrations of electrolyte for a certain period of time, and finally a coating composed of strontium-doped hydroxyapatite with ridged rod structure is obtained; after the deposition is completed, the substrate is taken out, cleaned and dried. The invention prepares strontium-doped hydroxyapatite coating with ridged rod structure, which increases the specific surface area of the coating and makes it have better wettability; at the same time, the doping of strontium ions changes the dissolution characteristics of the coating, It opens up a new direction for the preparation and application of modified hydroxyapatite biological coatings.
Description
技术领域 technical field
本发明涉及一种在金属钛表面掺锶羟基磷灰石带脊棒状结构涂层的电化学法,属于生物医用材料领域。 The invention relates to an electrochemical method for coating strontium-doped hydroxyapatite with a ridged rod structure on the surface of metal titanium, belonging to the field of biomedical materials.
背景技术 Background technique
羟基磷灰(HA)作为一种具有代表性的生物活性材料被广泛应用于整形外科手术中。其与人体自然骨等硬组织中的无机成分在化学组成和晶体结构上相似,因此能通过在与人体组织相接触的界面上自发地形成类似骨结构的磷灰石而实现骨整合。实际人体自然骨的磷灰石成分中存在Mg2+,Sr2+ 和CO3 2-等阴阳替代离子,因此其性质与合成HA的有所不同。近年来许多研究都尝试用Sr2+取代合成HA中的Ca2+,合成出掺锶的HA(SrHA)。生物体内和体外的实验研究也证实了Sr能刺激骨形成和抑制骨吸收。研究表明,含5wt.%SrHA的骨水泥的机械强度约为含HA的骨水泥的两倍。此外SrHA能促进成骨细胞的附着和增殖,相较于纯HA有着更高的细胞相容性。因此掺锶羟基磷灰石的应用将大大改善磷灰石材料的生物相容性。 As a representative bioactive material, hydroxyapatite (HA) is widely used in plastic surgery. It is similar in chemical composition and crystal structure to the inorganic components in human natural bone and other hard tissues, so it can realize osseointegration by spontaneously forming bone-like apatite on the interface in contact with human tissue. There are anion and cation substitution ions such as Mg 2+ , Sr 2+ and CO 3 2- in the apatite composition of natural human bone, so its properties are different from those of synthetic HA. In recent years, many studies have attempted to replace Ca 2+ in synthetic HA with Sr 2+ to synthesize strontium-doped HA (SrHA). Experimental studies in vivo and in vitro also confirmed that Sr can stimulate bone formation and inhibit bone resorption. Studies have shown that the mechanical strength of bone cement containing 5wt.% SrHA is about twice that of bone cement containing HA. In addition, SrHA can promote the attachment and proliferation of osteoblasts, and has higher cytocompatibility than pure HA. Therefore, the application of strontium-doped hydroxyapatite will greatly improve the biocompatibility of apatite materials.
生物材料表面微观形态如:表面粗糙度、表面多孔结构孔洞大小及分布、组成单元的尺寸和取向等影响材料表面性能,从而影响细胞的粘附、铺展、迁移、增殖、分化和功能表达等。CurtisASG等很早就报道过细胞对它们所处环境的表面形貌有所反应,此后不断有研究报道不同类型的细胞对材料表面微米或纳米结构有着不同的强烈反应。研究表明:材料表面的形貌有一定特殊的细胞效应,如影响细胞铺展形态等,从而影响细胞的功能;细胞在不同粗糙度的表面的粘附行为也有很大不同。此外,生物材料表面的亲疏水性不同也会对细胞的附着固定以及后期细胞代谢物如蛋白质、DNA等的粘附具有重要影响。 The microscopic morphology of the surface of biomaterials, such as surface roughness, the size and distribution of pores in the surface porous structure, the size and orientation of the constituent units, etc., affect the surface properties of the material, thereby affecting the adhesion, spreading, migration, proliferation, differentiation and functional expression of cells. CurtisASG et al. have long reported that cells respond to the surface topography of their environment. Since then, studies have reported that different types of cells have different strong responses to the micro- or nano-structures on the surface of materials. Studies have shown that the topography of the surface of the material has certain special cell effects, such as affecting the shape of cell spreading, thereby affecting the function of cells; the adhesion behavior of cells on surfaces with different roughness is also very different. In addition, the difference in hydrophilicity and hydrophobicity of the surface of biomaterials will also have an important impact on the attachment and fixation of cells and the adhesion of later cell metabolites such as proteins and DNA.
目前通过电化学法在钛表面沉积获得的涂层均由棒状HA组成,其组成和结构与人体自然骨的磷灰石在成分和分级结构上还有一定差距。因此,制备掺锶羟基磷灰石带脊棒状结构涂层,既可以使涂层在组成上更接近自然骨,植入后Sr2+的缓释为细胞增殖分化等提供更接近体内的化学环境,又可以获得特殊的带脊棒状结构增大涂层比表面积,改善其润湿性和粗糙度,为细胞的粘附、迁移等提供更有利的条件。 At present, the coatings deposited on the surface of titanium by electrochemical methods are all composed of rod-shaped HA, and their composition and structure are still different from those of human natural bone apatite in terms of composition and hierarchical structure. Therefore, the preparation of strontium-doped hydroxyapatite coating with ridged rod structure can make the coating closer to natural bone in composition, and the slow release of Sr 2+ after implantation can provide a chemical environment closer to the body for cell proliferation and differentiation. , and a special ridged rod-like structure can be obtained to increase the specific surface area of the coating, improve its wettability and roughness, and provide more favorable conditions for cell adhesion and migration.
发明内容 Contents of the invention
本发明的目的是克服现有电化学法制备HA涂层在成分和结构上单一的不足,提供一种在金属钛表面制备掺锶羟基磷灰石带脊棒状结构涂层的电化学法。 The purpose of the present invention is to overcome the shortcomings of single composition and structure of HA coating prepared by the existing electrochemical method, and provide an electrochemical method for preparing strontium-doped hydroxyapatite with ridged rod-shaped coating on the surface of metal titanium.
在金属钛表面制备掺锶羟基磷灰石带脊棒状结构涂层的电化学法的步骤如下: The steps of the electrochemical method for preparing strontium-doped hydroxyapatite with ridged rod-like structure coating on the surface of metal titanium are as follows:
1)配制含CaCl2摩尔浓度为0.54~1.08mmol·L-1,SrCl2摩尔浓度为0.06~0.12mmol·L-1,NH4H2PO4摩尔浓度为0.36~0.72 mmol·L-1和NaCl摩尔浓度为0.1 mol·L-1的低浓度电解液,PO4 3-与(Ca2++Sr2+)的摩尔浓度比为0.6:1,将电解液加热至85℃后恒温;以铂作为阳极,金属钛作为阴极的电极,连入直流电源,控制电压为-3.0V,电极浸没在低浓度电解液中进行60min电化学沉积; 1) Prepare a solution containing 0.54~1.08mmol·L -1 molar concentration of CaCl 2 , 0.06~0.12mmol·L -1 molar concentration of SrCl 2 , 0.36~0.72 mmol·L -1 molar concentration of NH 4 H 2 PO 4 and Low-concentration electrolyte with a NaCl molar concentration of 0.1 mol·L -1 , the molar concentration ratio of PO 4 3- to (Ca 2+ +Sr 2+ ) is 0.6:1, the electrolyte is heated to 85°C and then kept at a constant temperature; Platinum is used as the anode, metal titanium is used as the electrode of the cathode, connected to a DC power supply, the control voltage is -3.0V, and the electrode is immersed in a low-concentration electrolyte for 60 minutes of electrochemical deposition;
2)取出步骤1) 完成沉积的作为阴极的金属钛,冲洗去除表面的电解液残留,置于空气中自然干燥后待用; 2) Take out step 1) to complete the deposited metal titanium as the cathode, wash and remove the electrolyte residue on the surface, and place it in the air to dry naturally before use;
3)配制含CaCl2摩尔浓度为2.16~8.64mmol·L-1,SrCl2摩尔浓度为0.24~0.96mmol·L-1,NH4H2PO4摩尔浓度为1.44~5.76 mmol·L-1,柠檬酸钠摩尔浓度为2.4~9.6 mmol·L-1和NaCl摩尔浓度为0.1 mol·L-1的高浓度电解液,PO4 3-与(Ca2++Sr2+)的摩尔浓度比为0.6:1,Cit3-与(Ca2++Sr2+)的摩尔浓度比为1:1,将高浓度电解液加热至65℃后恒温;以铂作为阳极,步骤1) 完成沉积的金属钛作为阴极的电极,连入直流电源,控制电压为-3.0V,电极浸没在高浓度电解液中进行30min电化学沉积; 3) Preparation containing CaCl 2 molar concentration of 2.16~8.64mmol·L -1 , SrCl 2 molar concentration of 0.24~0.96mmol·L -1 , NH 4 H 2 PO 4 molar concentration of 1.44~5.76 mmol·L -1 , The molar concentration ratio of PO 4 3- to (Ca 2+ + Sr 2+ ) is 0.6:1, the molar concentration ratio of Cit 3- to (Ca 2+ +Sr 2+ ) is 1:1, the high-concentration electrolyte is heated to 65°C and then kept at constant temperature; platinum is used as the anode, step 1) completes the deposited metal Titanium is used as the cathode electrode, connected to a DC power supply, the control voltage is -3.0V, and the electrode is immersed in a high-concentration electrolyte for 30 minutes of electrochemical deposition;
4)取出步骤3) 完成沉积的金属钛,冲洗去除表面的电解液残留,置于空气中自然干燥,得到掺锶羟基磷灰石带脊棒状结构涂层。 4) Take out the deposited metal titanium in step 3), rinse to remove the electrolyte residue on the surface, and dry it naturally in the air to obtain a strontium-doped hydroxyapatite coating with a ridged rod-like structure.
本发明与现有技术相比具有的有益效果是: The beneficial effect that the present invention has compared with prior art is:
1)该涂层由特殊的掺锶羟基磷灰石带脊棒状结构所组成,较单纯的棒状羟基磷灰石涂层大大提高了比表面积,有效增加了骨细胞与涂层的粘附、迁移、增殖和分化的面积; 1) The coating is composed of a special strontium-doped hydroxyapatite with ridged rod structure, which greatly increases the specific surface area compared with the simple rod-shaped hydroxyapatite coating, and effectively increases the adhesion and migration of bone cells and the coating , area of proliferation and differentiation;
2)制备的涂层由掺锶羟基磷灰石构成,组成上较合成的纯羟基磷灰石更接近于自然骨的成分,对骨细胞的增殖和分化等产生有益影响,更有利于细胞功能的表达; 2) The prepared coating is composed of strontium-doped hydroxyapatite, which is closer to the composition of natural bone than the synthetic pure hydroxyapatite, which has a beneficial effect on the proliferation and differentiation of bone cells, and is more conducive to cell function expression;
3)该涂层的带脊棒状显微结构提供了比表面积,前期脊状结构溶解,Sr2+大量释放有助于骨细胞增殖,后期脊状结构减少,Sr2+释放速度趋缓,调节骨细胞的分化; 3) The ridged rod-like microstructure of the coating provides a specific surface area. In the early stage, the ridged structure is dissolved, and a large amount of Sr 2+ is released to help the proliferation of bone cells. In the later stage, the ridged structure is reduced, and the release rate of Sr 2+ is slowed down. differentiation of bone cells;
4)掺锶羟基磷灰石带脊棒状结构组成的涂层亲水性良好,润湿性也有所改善,有利于与骨细胞的迅速粘附、铺展和后续的增殖、分化。 4) The coating composed of strontium-doped hydroxyapatite with ridged rod-like structure has good hydrophilicity and improved wettability, which is conducive to the rapid adhesion and spreading of bone cells and subsequent proliferation and differentiation.
附图说明 Description of drawings
图1是实施例1所制备出的掺锶羟基磷灰石带脊棒状结构涂层的扫描电镜照片; Fig. 1 is the scanning electron micrograph of the strontium-doped hydroxyapatite band-ridge rod structure coating prepared in embodiment 1;
图2是实施例2所制备出的掺锶羟基磷灰石带脊棒状结构涂层的扫描电镜照片; Fig. 2 is the scanning electron micrograph of the strontium-doped hydroxyapatite band-ridge rod structure coating prepared in embodiment 2;
图3是实施例3所制备出的掺锶羟基磷灰石带脊棒状结构涂层的扫描电镜照片。 FIG. 3 is a scanning electron micrograph of the strontium-doped hydroxyapatite coating with ridged rod structure prepared in Example 3. FIG.
具体实施方式 Detailed ways
实施例1 Example 1
1)配制含CaCl2摩尔浓度为0.54mmol·L-1,SrCl2摩尔浓度为0.06mmol·L-1,NH4H2PO4摩尔浓度为0.36 mmol·L-1和NaCl摩尔浓度为0.1 mol·L-1的低浓度电解液,PO4 3-与(Ca2++Sr2+)的摩尔浓度比为0.6:1,将电解液加热至85℃后恒温;以铂作为阳极,金属钛作为阴极的电极,连入直流电源,控制电压为-3.0V,电极浸没在低浓度电解液中进行60min电化学沉积; 1) Preparation containing CaCl 2 molar concentration of 0.54mmol·L -1 , SrCl 2 molar concentration of 0.06mmol·L -1 , NH 4 H 2 PO 4 molar concentration of 0.36 mmol·L -1 and NaCl molar concentration of 0.1 mol ·L -1 low-concentration electrolyte, the molar concentration ratio of PO 4 3- and (Ca 2+ +Sr 2+ ) is 0.6:1, the electrolyte is heated to 85°C and then kept at constant temperature; platinum is used as the anode, metal titanium The electrode as the cathode is connected to a DC power supply, the control voltage is -3.0V, and the electrode is immersed in a low-concentration electrolyte for 60 minutes of electrochemical deposition;
2)取出步骤1) 完成沉积的作为阴极的金属钛,冲洗去除表面的电解液残留,置于空气中自然干燥后待用; 2) Take out step 1) to complete the deposited metal titanium as the cathode, wash and remove the electrolyte residue on the surface, and place it in the air to dry naturally before use;
3)配制含CaCl2摩尔浓度为2.16mmol·L-1,SrCl2摩尔浓度为0.24mmol·L-1,NH4H2PO4摩尔浓度为1.44mmol·L-1,柠檬酸钠摩尔浓度为2.4 mmol·L-1和NaCl摩尔浓度为0.1 mol·L-1的高浓度电解液,PO4 3-与(Ca2++Sr2+)的摩尔浓度比为0.6:1,Cit3-与(Ca2++Sr2+)的摩尔浓度比为1:1,将高浓度电解液加热至65℃后恒温;以铂作为阳极,步骤1) 完成沉积的金属钛作为阴极的电极,连入直流电源,控制电压为-3.0V,电极浸没在高浓度电解液中进行30min电化学沉积; 3) The molar concentration of CaCl 2 is 2.16mmol·L -1 , the molar concentration of SrCl 2 is 0.24mmol·L -1 , the molar concentration of NH 4 H 2 PO 4 is 1.44mmol·L -1 , and the molar concentration of sodium citrate is 2.4 mmol·L -1 and NaCl molar concentration of 0.1 mol·L -1 high-concentration electrolyte, the molar concentration ratio of PO 4 3- and (Ca 2+ +Sr 2+ ) is 0.6:1, Cit 3- and The molar concentration ratio of (Ca 2+ +Sr 2+ ) is 1:1, the high-concentration electrolyte is heated to 65°C and then kept at a constant temperature; platinum is used as the anode, step 1) the deposited metal titanium is used as the cathode electrode, and connected to DC power supply, the control voltage is -3.0V, and the electrode is immersed in a high-concentration electrolyte for 30 minutes of electrochemical deposition;
4)取出步骤3) 完成沉积的金属钛,冲洗去除表面的电解液残留,置于空气中自然干燥,得到掺锶羟基磷灰石带脊棒状结构涂层。 4) Take out the deposited metal titanium in step 3), rinse to remove the electrolyte residue on the surface, and dry it naturally in the air to obtain a strontium-doped hydroxyapatite coating with a ridged rod-like structure.
实施例2 Example 2
1)配制含CaCl2摩尔浓度为0.81mmol·L-1,SrCl2摩尔浓度为0.09mmol·L-1,NH4H2PO4摩尔浓度为0.54mmol·L-1和NaCl摩尔浓度为0.1 mol·L-1的低浓度电解液,PO4 3-与(Ca2++Sr2+)的摩尔浓度比为0.6:1,将电解液加热至85℃后恒温;以铂作为阳极,金属钛作为阴极的电极,连入直流电源,控制电压为-3.0V,电极浸没在低浓度电解液中进行60min电化学沉积; 1) Preparation containing 0.81mmol·L -1 molar concentration of CaCl 2 , 0.09mmol·L -1 molar concentration of SrCl 2 , 0.54mmol·L -1 molar concentration of NH 4 H 2 PO 4 and 0.1 mol molar concentration of NaCl ·L -1 low-concentration electrolyte, the molar concentration ratio of PO 4 3- and (Ca 2+ +Sr 2+ ) is 0.6:1, the electrolyte is heated to 85°C and then kept at constant temperature; platinum is used as the anode, metal titanium The electrode as the cathode is connected to a DC power supply, the control voltage is -3.0V, and the electrode is immersed in a low-concentration electrolyte for 60 minutes of electrochemical deposition;
2)取出步骤1) 完成沉积的作为阴极的金属钛,冲洗去除表面的电解液残留,置于空气中自然干燥后待用; 2) Take out step 1) to complete the deposited metal titanium as the cathode, wash and remove the electrolyte residue on the surface, and place it in the air to dry naturally before use;
3)配制含CaCl2摩尔浓度为4.32mmol·L-1,SrCl2摩尔浓度为0.48mmol·L-1,NH4H2PO4摩尔浓度为2.88 mmol·L-1,柠檬酸钠摩尔浓度为4.8 mmol·L-1和NaCl摩尔浓度为0.1 mol·L-1的高浓度电解液,PO4 3-与(Ca2++Sr2+)的摩尔浓度比为0.6:1,Cit3-与(Ca2++Sr2+)的摩尔浓度比为1:1,将高浓度电解液加热至65℃后恒温;以铂作为阳极,步骤1) 完成沉积的金属钛作为阴极的电极,连入直流电源,控制电压为-3.0V,电极浸没在高浓度电解液中进行30min电化学沉积; 3) The molar concentration of CaCl 2 is 4.32mmol·L -1 , the molar concentration of SrCl 2 is 0.48mmol·L -1 , the molar concentration of NH 4 H 2 PO 4 is 2.88 mmol·L -1 , and the molar concentration of sodium citrate is High-concentration electrolyte with 4.8 mmol·L -1 and NaCl molar concentration of 0.1 mol·L -1 , the molar concentration ratio of PO 4 3- to (Ca 2+ +Sr 2+ ) is 0.6:1, Cit 3- and The molar concentration ratio of (Ca 2+ +Sr 2+ ) is 1:1, the high-concentration electrolyte is heated to 65°C and then kept at a constant temperature; platinum is used as the anode, step 1) the deposited metal titanium is used as the cathode electrode, and connected to DC power supply, the control voltage is -3.0V, and the electrode is immersed in a high-concentration electrolyte for 30 minutes of electrochemical deposition;
4)取出步骤3) 完成沉积的金属钛,冲洗去除表面的电解液残留,置于空气中自然干燥,得到掺锶羟基磷灰石带脊棒状结构涂层。 4) Take out the deposited metal titanium in step 3), rinse to remove the electrolyte residue on the surface, and dry it naturally in the air to obtain a strontium-doped hydroxyapatite coating with a ridged rod-like structure.
实施例3 Example 3
1)配制含CaCl2摩尔浓度为1.08mmol·L-1,SrCl2摩尔浓度为0.12mmol·L-1,NH4H2PO4摩尔浓度为0.72 mmol·L-1和NaCl摩尔浓度为0.1 mol·L-1的低浓度电解液,PO4 3-与(Ca2++Sr2+)的摩尔浓度比为0.6:1,将电解液加热至85℃后恒温;以铂作为阳极,金属钛作为阴极的电极,连入直流电源,控制电压为-3.0V,电极浸没在低浓度电解液中进行60min电化学沉积; 1) Preparation containing CaCl 2 molar concentration of 1.08mmol·L -1 , SrCl 2 molar concentration of 0.12mmol·L -1 , NH 4 H 2 PO 4 molar concentration of 0.72 mmol·L -1 and NaCl molar concentration of 0.1 mol ·L -1 low-concentration electrolyte, the molar concentration ratio of PO 4 3- and (Ca 2+ +Sr 2+ ) is 0.6:1, the electrolyte is heated to 85°C and then kept at constant temperature; platinum is used as the anode, metal titanium The electrode as the cathode is connected to a DC power supply, the control voltage is -3.0V, and the electrode is immersed in a low-concentration electrolyte for 60 minutes of electrochemical deposition;
2)取出步骤1) 完成沉积的作为阴极的金属钛,冲洗去除表面的电解液残留,置于空气中自然干燥后待用; 2) Take out step 1) to complete the deposited metal titanium as the cathode, wash and remove the electrolyte residue on the surface, and place it in the air to dry naturally before use;
3)配制含CaCl2摩尔浓度为8.64mmol·L-1,SrCl2摩尔浓度为0.96mmol·L-1,NH4H2PO4摩尔浓度为5.76 mmol·L-1,柠檬酸钠摩尔浓度为9.6 mmol·L-1和NaCl摩尔浓度为0.1 mol·L-1的高浓度电解液,PO4 3-与(Ca2++Sr2+)的摩尔浓度比为0.6:1,Cit3-与(Ca2++Sr2+)的摩尔浓度比为1:1,将高浓度电解液加热至65℃后恒温;以铂作为阳极,步骤1) 完成沉积的金属钛作为阴极的电极,连入直流电源,控制电压为-3.0V,电极浸没在高浓度电解液中进行30min电化学沉积; 3) The molar concentration of CaCl 2 is 8.64mmol·L -1 , the molar concentration of SrCl 2 is 0.96mmol·L -1 , the molar concentration of NH 4 H 2 PO 4 is 5.76 mmol·L -1 , and the molar concentration of sodium citrate is High-concentration electrolyte with 9.6 mmol·L -1 and NaCl molar concentration of 0.1 mol·L -1 , the molar concentration ratio of PO 4 3- to (Ca 2+ +Sr 2+ ) is 0.6:1, Cit 3- and The molar concentration ratio of (Ca 2+ +Sr 2+ ) is 1:1, the high-concentration electrolyte is heated to 65°C and then kept at a constant temperature; platinum is used as the anode, step 1) the deposited metal titanium is used as the cathode electrode, and connected to DC power supply, the control voltage is -3.0V, and the electrode is immersed in a high-concentration electrolyte for 30 minutes of electrochemical deposition;
4)取出步骤3) 完成沉积的金属钛,冲洗去除表面的电解液残留,置于空气中自然干燥,得到掺锶羟基磷灰石带脊棒状结构涂层。 4) Take out the deposited metal titanium in step 3), rinse to remove the electrolyte residue on the surface, and dry it naturally in the air to obtain a strontium-doped hydroxyapatite coating with a ridged rod-like structure.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410169473.4A CN103938246A (en) | 2014-04-25 | 2014-04-25 | Electrochemical method for preparing strontium-doped hydroxyapatite ridge rodlike structure coating on titanium surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410169473.4A CN103938246A (en) | 2014-04-25 | 2014-04-25 | Electrochemical method for preparing strontium-doped hydroxyapatite ridge rodlike structure coating on titanium surface |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103938246A true CN103938246A (en) | 2014-07-23 |
Family
ID=51186107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410169473.4A Pending CN103938246A (en) | 2014-04-25 | 2014-04-25 | Electrochemical method for preparing strontium-doped hydroxyapatite ridge rodlike structure coating on titanium surface |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103938246A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105862095A (en) * | 2016-06-02 | 2016-08-17 | 中南大学 | Bioactive coating and preparation method thereof |
JP2017057104A (en) * | 2015-09-15 | 2017-03-23 | 株式会社豊田中央研究所 | Hydroxyapatite and method for producing the same, and cell culture substrate and cell culture method using the same |
CN110656365A (en) * | 2019-11-12 | 2020-01-07 | 厦门大学 | A kind of preparation method of nanometer ordered structure strontium doped calcium phosphorus compound film layer |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999053971A1 (en) * | 1998-04-17 | 1999-10-28 | University College London | Bone implant |
WO2003039609A1 (en) * | 2001-11-03 | 2003-05-15 | Accentus Plc | Deposition of coatings on substrates |
US20110089041A1 (en) * | 2009-10-19 | 2011-04-21 | Biomet Manufacturing Corp. | Methods of depositing discrete hydroxyapatite regions on medical implants |
CN101603195B (en) * | 2009-06-22 | 2011-09-07 | 浙江大学 | Electrochemical method for preparing strontium-doped hydroxyapatite coating layer on surface of metallic titanium |
CN102286764A (en) * | 2011-07-01 | 2011-12-21 | 浙江大学 | Method for preparing periodical absorbable Hyaluronic Acid/acyl carrier protein (HA/ACP) composite coating on titanium implant surface |
CN102899698A (en) * | 2012-09-29 | 2013-01-30 | 浙江大学 | Electrochemical method for preparing hydroxyapatite dendritic micro nano composite coating on surface of metallic titanium |
-
2014
- 2014-04-25 CN CN201410169473.4A patent/CN103938246A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999053971A1 (en) * | 1998-04-17 | 1999-10-28 | University College London | Bone implant |
WO2003039609A1 (en) * | 2001-11-03 | 2003-05-15 | Accentus Plc | Deposition of coatings on substrates |
CN101603195B (en) * | 2009-06-22 | 2011-09-07 | 浙江大学 | Electrochemical method for preparing strontium-doped hydroxyapatite coating layer on surface of metallic titanium |
US20110089041A1 (en) * | 2009-10-19 | 2011-04-21 | Biomet Manufacturing Corp. | Methods of depositing discrete hydroxyapatite regions on medical implants |
CN102286764A (en) * | 2011-07-01 | 2011-12-21 | 浙江大学 | Method for preparing periodical absorbable Hyaluronic Acid/acyl carrier protein (HA/ACP) composite coating on titanium implant surface |
CN102899698A (en) * | 2012-09-29 | 2013-01-30 | 浙江大学 | Electrochemical method for preparing hydroxyapatite dendritic micro nano composite coating on surface of metallic titanium |
Non-Patent Citations (2)
Title |
---|
杜博: "两步电化学沉积方法在金属钛表面沉积荆棘状微纳结构羟基磷灰石涂层", 《浙江大学硕士学位论文》, 15 October 2013 (2013-10-15) * |
杜博等: "荆棘状羟基磷灰石棒的电化学法制备及性能表征", 《无机化学学报》, vol. 29, no. 5, 31 May 2013 (2013-05-31) * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017057104A (en) * | 2015-09-15 | 2017-03-23 | 株式会社豊田中央研究所 | Hydroxyapatite and method for producing the same, and cell culture substrate and cell culture method using the same |
CN105862095A (en) * | 2016-06-02 | 2016-08-17 | 中南大学 | Bioactive coating and preparation method thereof |
CN110656365A (en) * | 2019-11-12 | 2020-01-07 | 厦门大学 | A kind of preparation method of nanometer ordered structure strontium doped calcium phosphorus compound film layer |
CN110656365B (en) * | 2019-11-12 | 2021-05-14 | 厦门大学 | Preparation method of strontium-doped calcium-phosphorus compound film with nano-ordered structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105671612B (en) | Porous metal implants and preparation method with differential arc oxidation coating | |
CN102743789B (en) | Artificial tooth root with micro-nano hierarchical topologic surface structure and preparation method of artificial tooth root | |
CN103736148B (en) | The method preparing titanium implant and the titanium implant obtained | |
CN106474546B (en) | A conductive polypyrrole/polydopamine nanofiber and its preparation method and application | |
CN101570874B (en) | The Method of Forming TiO2/HA/CaCO3 Gradient Film Layer in Situ | |
CN101156963A (en) | Method for preparing osteoid bioactive coating medical material by electrochemical method | |
CN102090982B (en) | An artificial tooth root or joint material and its preparation method by micro-arc oxidation | |
CN103361702A (en) | Method for surface modification of dental implant | |
CN105274603B (en) | Composite modified coating of magnesium or Mg alloy surface carbon nanotubes and preparation method thereof | |
CN107130279B (en) | A kind of preparation method of HA nanotube bioactive coating | |
CN101560685B (en) | A method for preparing bioactive coating on the surface of titanium alloy | |
CN108505097B (en) | A preparation method of 3D printing titanium/titanium dioxide nanotube/hydroxyapatite composite medical material | |
CN101603195B (en) | Electrochemical method for preparing strontium-doped hydroxyapatite coating layer on surface of metallic titanium | |
CN105420789A (en) | Hydrophobic composite biological activity coating on surface of pure-magnesium or magnesium alloy and preparation method of hydrophobic composite biological activity coating | |
CN105177670A (en) | Method for growing nanotubes on surface of titanium-based material of three-dimensional porous structure in in-situ manner | |
CN102049064B (en) | A kind of silicon doping porous nanometer titanium oxide and preparation method thereof | |
CN103611188A (en) | Preparation method of tissue suitable type composite material dental implant | |
CN110338921B (en) | Dental implant and preparation method thereof | |
CN105536062A (en) | Method for preparing silicon-doped hydroxyapatite nanofiber bioactive coating | |
CN101380487B (en) | Method for Preparing Hydroxyapatite/Zirconium Oxide Composite Coating by Pulse Electrochemical Deposition | |
CN102747405A (en) | Preparation method of composite ceramic coating for improving bioactivity of medical magnesium alloy | |
CN100423794C (en) | Active biological piezoelectric ceramic coating and method for preparing the coating on the surface of titanium substrate | |
CN102094227A (en) | Electrochemical method for preparing chitosan/silk fibroin composite coating on surface of titanium implant | |
CN101949046B (en) | Preparation method of carbonate hydroxyapatite/carbon nano tube composite coating material | |
CN103938246A (en) | Electrochemical method for preparing strontium-doped hydroxyapatite ridge rodlike structure coating on titanium surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140723 |