CN103933903B - The method of preparation hollow-core construction nano-organosilicon microsphere - Google Patents
The method of preparation hollow-core construction nano-organosilicon microsphere Download PDFInfo
- Publication number
- CN103933903B CN103933903B CN201410127819.4A CN201410127819A CN103933903B CN 103933903 B CN103933903 B CN 103933903B CN 201410127819 A CN201410127819 A CN 201410127819A CN 103933903 B CN103933903 B CN 103933903B
- Authority
- CN
- China
- Prior art keywords
- coupling agent
- silane coupling
- hollow
- microspheres
- organosilicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Manufacturing Of Micro-Capsules (AREA)
- Silicon Compounds (AREA)
Abstract
Description
技术领域technical field
本发明属于材料领域,具体而言,本发明涉及一种制备空心结构纳米有机硅微球的方法。The invention belongs to the field of materials, in particular, the invention relates to a method for preparing hollow-structured nano-organosilicon microspheres.
背景技术Background technique
近年来,空心球型纳米结构材料因为其特殊的结构和形貌受到了人们的广泛关注,而对这种空心微球的研究已经在不同尺寸、形貌、结构与表面性质等方面有了显著的成果。空心球具有低密度、高比表面积、低的膨胀系数的特性,因此它们在催化剂、折射表面涂层、可再充电池、锂电池以及药物运输和缓释等方面有很大的应用潜力。例如由功能聚合物制备的胶束、囊泡、水凝胶等,以及SiO2、Fe3O4、Au等无机纳米粒子。介孔二氧化硅纳米粒子由于良好的生物相容性,良好的单分散性,大的比表面积,表面羟基可修饰性以及天然的药物缓释性近年来成为了药物智能载体的研究热点。中空的硅纳米粒子具有更高的药物携带量,因此具有更大的优势。如需负载DNA、RNA等大分子则需要硅粒子表面具有更大的孔道,因此,研制中空及大孔径高负载率的硅球具有极其重要的意义。In recent years, hollow spherical nanostructured materials have attracted widespread attention because of their special structure and morphology, and the research on this kind of hollow microspheres has achieved remarkable results in terms of different sizes, shapes, structures, and surface properties. the results. Hollow spheres have the characteristics of low density, high specific surface area, and low expansion coefficient, so they have great application potential in catalysts, refractive surface coatings, rechargeable batteries, lithium batteries, and drug delivery and sustained release. For example, micelles, vesicles, hydrogels, etc. prepared from functional polymers, and inorganic nanoparticles such as SiO 2 , Fe 3 O 4 , Au, etc. Due to good biocompatibility, good monodispersity, large specific surface area, modifiable surface hydroxyl groups and natural slow-release properties of drugs, mesoporous silica nanoparticles have become a research hotspot in drug smart carriers in recent years. Hollow silicon nanoparticles have a higher drug-carrying capacity and thus have a greater advantage. To load macromolecules such as DNA and RNA, silicon particles need to have larger pores on the surface. Therefore, it is of great significance to develop hollow silicon spheres with large pore diameters and high loading rates.
空心硅球的主要制备方法有硬模板法、软模板法、喷雾法、无模板法等方法。硬模板法主要通过各种方法,控制前驱体在单分散的聚苯乙烯及碳球等核心的表面沉积或反应形成外壳,然后再通过煅烧或者溶解的方法除去内核,得到空心结构,其大小由模板的尺寸决定。如基于硬模板法的层层包覆技术,利用的是不同材料间的静电作用,得到的胶体粒子被层层包覆,通过包覆的次数可以对壳层厚度加以控制。目前这种方法应用广泛。chen等人用原子转移自由基的方法对模板进行改性,引入功能基团,功能基团和单体在界面处聚合形成壳材,合成了SiO2空心微球。软模板法应用广泛,即可使用微乳液滴作为模板,通过在液滴的表面进行壳材的生长而形成微胶囊的结构,然后先使用溶解的方法利用相应的有机溶剂对壳内的液滴进行溶解,再使用高温烧结的手段把多余的表面活性剂和有机溶剂除去,即可获得相应的空心微球。同时由于采用溶解的方法除去囊芯而导致了球壳表面产生了介孔。Barbe等人,在乳状液中合成了SiO2空心微球,所用的微反应器就是液滴。以CTAB作模板,通过调节溶液浓度和pH值,在微溶液中就能使用TEOS制备出纳米级的SiO2空心微球。气泡也可以用作软模板。首先,气泡形成,纳米粒子附着在气泡的气/液界面上,进而在气泡的周围集聚,形成密实的外壳。声化学合成空心结构最常用的就是气泡软模板,气泡来自声波漩涡的碰撞,借助超声设施,可以在含有正硅酸乙酯和表面活性剂的水溶液中合成SiO2空心球,亚微米级,而且壳上具有介孔。The main preparation methods of hollow silicon spheres include hard template method, soft template method, spray method, no template method and other methods. The hard template method mainly uses various methods to control the deposition or reaction of precursors on the surface of monodisperse polystyrene and carbon spheres to form a shell, and then remove the core by calcination or dissolution to obtain a hollow structure, the size of which is determined by The size of the template is determined. For example, the layer-by-layer coating technology based on the hard template method uses the electrostatic interaction between different materials, and the obtained colloidal particles are coated layer by layer, and the thickness of the shell layer can be controlled by the number of times of coating. This method is currently widely used. Chen et al modified the template with the method of atom transfer free radicals, introduced functional groups, functional groups and monomers polymerized at the interface to form shell materials, and synthesized SiO 2 hollow microspheres. The soft template method is widely used, that is, microemulsion droplets can be used as templates to form a microcapsule structure by growing shell materials on the surface of the droplets, and then the liquid droplets in the shells can be treated with the corresponding organic solvent by the dissolution method. Dissolving, and then using high-temperature sintering to remove excess surfactants and organic solvents, the corresponding hollow microspheres can be obtained. At the same time, because the capsule core is removed by dissolving, mesopores are formed on the surface of the spherical shell. Barbe et al. synthesized SiO 2 hollow microspheres in the emulsion, and the microreactor used was the droplet. Using CTAB as a template, by adjusting the concentration and pH value of the solution, TEOS can be used to prepare nano-sized SiO 2 hollow microspheres in a microsolution. Bubbles can also be used as soft templates. First, bubbles are formed, and nanoparticles attach to the gas/liquid interface of the bubbles, and then gather around the bubbles to form a dense shell. The most commonly used sonochemical synthesis of hollow structures is the bubble soft template. The bubbles come from the collision of the sonic vortex. With the help of ultrasonic facilities, SiO 2 hollow spheres can be synthesized in an aqueous solution containing tetraethyl orthosilicate and surfactants, submicron, and The shell has mesopores.
以上介绍的方法,无论通过软模板还是硬模板,都需要进行模板的制备,然后用煅烧法和溶解法将模板去除。模板制备的过程不可避免地会浪费一些材料,而去掉模板时对空心结构总有破坏。这就在一定程度上阻碍了空心球的进一步应用。而且,有些模板的制备方法还必须经过极其繁琐的步骤。正因为如此,科研界一直在探索无需模板的制备方法。无模板法的基础,就是“Ostwald ripening”的机理,机理的过程完全自发,也就是由于能量的积累,小颗粒累积成大颗粒。Lou等人实现了一步免模板法,成功合成出了多晶的SnO2空心结构,反应的时候,在乙醇-水的混合溶液中,添加锡酸钾(K2SnO3·3H2O)作前驱体。在反应初始的阶段,锡酸钾发生水解,形成了无定型的固态微粒,随着反应的进行,与周围溶液相接触的表层纳米粒子首先结晶,因此,在固态微粒的内部,形成了一种向表面结晶大颗粒扩散溶解的趋势,也就提供了由内向外的、自发的“Ostwald ripening”驱动力。溶解发端于表面或者中心附近的固体粒子,利用纳米粒子渐进成熟的性质,产生了空心的微球或者是核壳结构粒子。The method described above, no matter through the soft template or the hard template, needs to prepare the template, and then remove the template by calcination and dissolution. The template preparation process inevitably wastes some material, and there is always damage to the hollow structure when the template is removed. This hinders the further application of hollow spheres to a certain extent. Moreover, some template preparation methods must go through extremely cumbersome steps. Because of this, the research community has been exploring template-free preparation methods. The basis of the template-free method is the mechanism of "Ostwald ripening". The process of the mechanism is completely spontaneous, that is, due to the accumulation of energy, small particles accumulate into large particles. Lou et al. implemented a one-step template-free method and successfully synthesized a polycrystalline SnO 2 hollow structure. During the reaction, potassium stannate (K 2 SnO 3 3H 2 O) was added to the mixed solution of ethanol-water as Precursor. In the initial stage of the reaction, potassium stannate was hydrolyzed to form amorphous solid particles. As the reaction progressed, the surface nanoparticles in contact with the surrounding solution first crystallized, therefore, inside the solid particles, a The tendency to diffuse and dissolve large crystallized particles on the surface provides a driving force for spontaneous "Ostwald ripening" from the inside out. The dissolution of solid particles originating from the surface or near the center takes advantage of the gradual maturation of nanoparticles to produce hollow microspheres or core-shell particles.
尽管无模板法的理论支撑还不完善,但是已经有很多科研工作者用此法合成了种类繁多的氧化物空心微球。Although the theoretical support of the template-free method is not perfect, many researchers have used this method to synthesize a wide variety of oxide hollow microspheres.
综上所述,在空心硅球制备的研究中,往往是在一定的模板表面生长,然后通过溶解、烧结等等方法去掉囊芯的物质,从而得到空心微球。而对于两层以上的多层中空微球,往往需要更为复杂的方法,刻蚀或者不断体积收缩产生。在这种过程中,不但制备工艺复杂,难以避免的会对壳材造成不同程度的破坏。To sum up, in the research on the preparation of hollow silicon spheres, it is often grown on the surface of a certain template, and then the substance of the capsule core is removed by dissolution, sintering, etc., so as to obtain hollow microspheres. For multilayer hollow microspheres with more than two layers, more complex methods are often required, such as etching or continuous volume shrinkage. In this process, not only the preparation process is complicated, but also the shell material will inevitably be damaged to varying degrees.
因此,制备空心结构纳米有机硅微球的方法还有待进一步研究。Therefore, the method for preparing nano-organosilicon microspheres with hollow structures needs further study.
发明内容Contents of the invention
本发明旨在至少在一定程度上解决上述技术问题之一。为此,本发明的一个目的在于提出一种制备空心结构纳米有机硅微球的方法,该方法可以保持空心结构纳米有机硅微球表面形貌的完整。The present invention aims to solve one of the above-mentioned technical problems at least to a certain extent. Therefore, an object of the present invention is to provide a method for preparing hollow-structure nano-organosilicon microspheres, which can maintain the integrity of the surface morphology of hollow-structure nano-organosilicon microspheres.
在本发明的一个方面,本发明提出了一种制备空心结构纳米有机硅微球的方法,该方法包括:In one aspect of the present invention, the present invention proposes a method for preparing hollow structure nano-organosilicon microspheres, the method comprising:
(1)将硅烷偶联剂与水进行混合,以便得到硅烷偶联剂分散液;(1) Mix the silane coupling agent with water to obtain a silane coupling agent dispersion;
(2)向步骤(1)得到的所述硅烷偶联剂分散液中加入氨水,以便得到单分散有机硅实心球;以及(2) adding ammonia water to the silane coupling agent dispersion obtained in step (1), so as to obtain monodisperse silicone solid spheres; and
(3)将步骤(2)得到的所述有机硅实心球进行水热处理,以便获得所述空心结构纳米有机硅微球。(3) Hydrothermally treating the silicone solid spheres obtained in step (2), so as to obtain the hollow nano-structure silicone microspheres.
根据本发明实施例的制备空心结构纳米有机硅微球的方法以硅烷偶联剂为原料,在制备过程中通过使用水热法,可以不加模板剂即可一次形成多层空心微球,从而避免了溶蚀模板的材料浪费和繁琐工艺,同时体系中可以不用添加乳化剂,因此避免了乳化剂后续处理的残留问题,另外硅微球的结构可以通过调整实验条件进行调控,并且所得到的空心结构纳米有机硅微球可以满足多种用途的需要。The method for preparing nano-organosilicon microspheres with a hollow structure according to an embodiment of the present invention uses a silane coupling agent as a raw material. During the preparation process, by using a hydrothermal method, a multilayer hollow microsphere can be formed at one time without adding a template, thereby It avoids the material waste and cumbersome process of eroding the template, and at the same time, there is no need to add an emulsifier in the system, so the residual problem of the emulsifier in the subsequent treatment is avoided. In addition, the structure of the silicon microsphere can be adjusted by adjusting the experimental conditions, and the obtained hollow Structural nano-organosilicon microspheres can meet the needs of various purposes.
另外,根据本发明上述实施例的制备空心结构纳米有机硅微球的方法还可以具有如下附加的技术特征:In addition, the method for preparing hollow-structure nano-organosilicon microspheres according to the above-mentioned embodiments of the present invention may also have the following additional technical features:
在本发明的一些实施例中,步骤(1)中,所述硅烷偶联剂为选自正硅酸乙酯、硅烷偶联剂A151、硅烷偶联剂KH550、硅烷偶联剂KH580、硅烷偶联剂KH792和硅烷偶联剂KH602中的至少一种。由此,可以有效制备空心结构纳米有机硅微球。In some embodiments of the present invention, in step (1), the silane coupling agent is selected from tetraethyl orthosilicate, silane coupling agent A151, silane coupling agent KH550, silane coupling agent KH580, silane coupling agent At least one of coupling agent KH792 and silane coupling agent KH602. Thereby, nano-organosilicon microspheres with hollow structures can be efficiently prepared.
在本发明的一些实施例中,步骤(1)中,基于所述硅烷偶联剂分散液的总重量,所述硅烷偶联剂的含量为1~65质量%。由此,可以进一步有效制备空心结构纳米有机硅微球。In some embodiments of the present invention, in step (1), based on the total weight of the silane coupling agent dispersion, the content of the silane coupling agent is 1-65% by mass. Thereby, the nano-organosilicon microspheres with hollow structure can be further effectively prepared.
在本发明的一些实施例中,步骤(1)中,随着搅拌,将所述硅烷偶联剂与水混合,其中,所述搅拌的速率为200~8000转/分钟。由此,使得硅烷偶联剂均匀分散在水中。In some embodiments of the present invention, in step (1), the silane coupling agent is mixed with water with stirring, wherein the stirring speed is 200-8000 rpm. Thus, the silane coupling agent is uniformly dispersed in water.
在本发明的一些实施例中,步骤(1)中,在将硅烷偶联剂与水进行混合之前,预先将乳化剂分散在水中。In some embodiments of the present invention, in step (1), before mixing the silane coupling agent with water, the emulsifier is pre-dispersed in water.
在本发明的一些实施例中,所述乳化剂为选自聚乙烯吡咯烷酮、嵌段聚醚、聚乙烯醇、十二烷基硫酸钠、十二烷基苯磺酸钠、司盘60和吐温60中的至少一种。In some embodiments of the present invention, the emulsifier is selected from polyvinylpyrrolidone, block polyether, polyvinyl alcohol, sodium lauryl sulfate, sodium dodecylbenzenesulfonate, Span 60, and emulsifier At least one of temperature 60.
在本发明的一些实施例中,基于所述硅烷偶联剂分散液的总重量,所述乳化剂的含量为4质量%以下。In some embodiments of the present invention, based on the total weight of the silane coupling agent dispersion, the content of the emulsifier is 4% by mass or less.
在本发明的一些实施例中,步骤(2)中,所述氨水的浓度为0.1~5质量%。由此,可以进一步有效制备空心结构纳米有机硅微球。In some embodiments of the present invention, in step (2), the concentration of the ammonia water is 0.1-5% by mass. Thereby, the nano-organosilicon microspheres with hollow structure can be further effectively prepared.
在本发明的一些实施例中,步骤(2)中,向所述硅烷偶联剂分散液中滴加氨水,其中,所述氨水的滴加速度为0.5~5毫升/分钟,滴加总量为0.5~20毫升。由此,可以进一步有效制备空心结构纳米有机硅微球。In some embodiments of the present invention, in step (2), ammonia water is added dropwise to the silane coupling agent dispersion liquid, wherein, the drip rate of the ammonia water is 0.5-5 ml/min, and the total amount of dripping is 0.5-20ml. Thereby, the nano-organosilicon microspheres with hollow structure can be further effectively prepared.
在本发明的一些实施例中,步骤(3)中,所述水热处理是在120~200摄氏度的温度下进行12~24小时。由此,可以进一步有效制备空心结构纳米有机硅微球。In some embodiments of the present invention, in step (3), the hydrothermal treatment is performed at a temperature of 120-200 degrees Celsius for 12-24 hours. Thereby, the nano-organosilicon microspheres with hollow structure can be further effectively prepared.
在本发明的一些实施例中,所述空心结构纳米有机硅微球的粒径为0.02~100微米。由此,可以满足多种用途的需要。In some embodiments of the present invention, the particle size of the hollow-structure nano-organosilicon microspheres is 0.02-100 microns. Thus, the needs of various uses can be met.
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention.
附图说明Description of drawings
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and comprehensible from the description of the embodiments in conjunction with the following drawings, wherein:
图1是根据本发明一个实施例的制备空心结构纳米有机硅微球的方法流程示意图;Fig. 1 is a schematic flow chart of a method for preparing hollow-structure nano-organosilicon microspheres according to an embodiment of the present invention;
图2是根据本发明再一个实施例的制备空心结构纳米有机硅微球的方法流程示意图;Fig. 2 is a schematic flow chart of a method for preparing hollow nano-organosilicon microspheres according to yet another embodiment of the present invention;
图3是根据本发明一个实施例的制备空心结构纳米有机硅微球的方法制备得到的空心结构纳米有机硅微球的电镜图;Fig. 3 is the electron micrograph of the hollow structure nano-organosilicon microsphere prepared by the method for preparing the hollow-structure nano-organosilicon microsphere according to an embodiment of the present invention;
图4是根据本发明再一个实施例的制备空心结构纳米有机硅微球的方法制备得到的空心结构纳米有机硅微球的电镜图;Fig. 4 is the electron micrograph of the hollow structure nano-organosilicon microsphere prepared according to the method for preparing the hollow-structure nano-organosilicon microsphere according to another embodiment of the present invention;
图5是根据本发明又一个实施例的制备空心结构纳米有机硅微球的方法制备得到的空心结构纳米有机硅微球的电镜图;Fig. 5 is the electron micrograph of the hollow structure nano-organosilicon microsphere prepared according to the method for preparing the hollow-structure nano-organosilicon microsphere according to another embodiment of the present invention;
图6是根据本发明又一个实施例的制备空心结构纳米有机硅微球的方法制备得到的空心结构纳米有机硅微球的电镜图;6 is an electron micrograph of a hollow nano-organosilicon microsphere prepared by a method for preparing a hollow-structure nano-organosilicon microsphere according to another embodiment of the present invention;
图7是根据本发明又一个实施例的制备空心结构纳米有机硅微球的方法制备得到的空心结构纳米有机硅微球的电镜图。Fig. 7 is an electron micrograph of hollow nano-organosilicon microspheres prepared by the method for preparing hollow-structure nano-organosilicon microspheres according to another embodiment of the present invention.
具体实施方式detailed description
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are shown in the drawings, wherein the same or similar reference numerals designate the same or similar elements or elements having the same or similar functions throughout. The embodiments described below by referring to the figures are exemplary and are intended to explain the present invention and should not be construed as limiting the present invention.
在本发明的一个方面,本发明提出了一种制备空心结构纳米有机硅微球的方法。下面参考图1-2对本发明实施例的制备空心结构纳米有机硅微球的方法进行详细描述。根据本发明的实施例,该方法包括:In one aspect of the present invention, the present invention proposes a method for preparing nano-organosilicon microspheres with hollow structures. The method for preparing hollow-structure nano-organosilicon microspheres according to the embodiment of the present invention will be described in detail below with reference to FIGS. 1-2 . According to an embodiment of the invention, the method includes:
S100:制备硅烷偶联剂分散液S100: Preparation of silane coupling agent dispersion
根据本发明的实施例,将硅烷偶联剂与水混合,从而可以制备得到硅烷偶联剂分散液。根据本发明的实施例,硅烷偶联剂的具体类型并不受特别限制,根据本发明的具体实施例,硅烷偶联剂可以为选自正硅酸乙酯、硅烷偶联剂A151、硅烷偶联剂KH550、硅烷偶联剂KH580、硅烷偶联剂KH792和硅烷偶联剂KH602中的至少一种。需要解释的是,硅烷偶联剂A151为乙烯基三乙氧基硅烷,硅烷偶联剂KH550为3-氨丙基三乙氧基硅烷,硅烷偶联剂KH580为γ-巯丙基三甲氧基硅烷,硅烷偶联剂KH792为N-(β一氨乙基)-γ-氨丙基三甲(乙)氧基硅烷,硅烷偶联剂KH602为N-β-(氨乙基)-γ-氨丙基甲基二甲氧基硅烷。根据本发明的实施例,硅烷偶联剂的用量并不受特别限制,根据本发明的具体实施例,基于硅烷偶联剂分散液的总重量,硅烷偶联剂的含量可以为1~65质量%。发明人发现,若硅烷偶联剂的含量过高使得整个粘度过大,导致粒径分布宽,从而使得所得空心硅微球的粒径分布不均匀。根据本发明的实施例,将硅烷偶联剂与水混合是伴随着搅拌进行的,根据本发明的具体实施例,搅拌速率并不受特别限制,根据本发明的具体示例,搅拌速率可以为200~8000转/分钟。由此,可以使得硅烷偶联剂均匀分散在水相中。According to an embodiment of the present invention, the silane coupling agent is mixed with water to prepare a silane coupling agent dispersion. According to an embodiment of the present invention, the specific type of silane coupling agent is not particularly limited. According to a specific embodiment of the present invention, the silane coupling agent can be selected from tetraethyl orthosilicate, silane coupling agent A151, silane coupling agent At least one of coupling agent KH550, silane coupling agent KH580, silane coupling agent KH792 and silane coupling agent KH602. It should be explained that the silane coupling agent A151 is vinyltriethoxysilane, the silane coupling agent KH550 is 3-aminopropyltriethoxysilane, and the silane coupling agent KH580 is γ-mercaptopropyltrimethoxy Silane, silane coupling agent KH792 is N-(β-aminoethyl)-γ-aminopropyltrimethyl(ethyl)oxysilane, silane coupling agent KH602 is N-β-(aminoethyl)-γ-ammonia Propylmethyldimethoxysilane. According to an embodiment of the present invention, the amount of the silane coupling agent is not particularly limited. According to a specific embodiment of the present invention, based on the total weight of the silane coupling agent dispersion, the content of the silane coupling agent can be 1 to 65% by mass %. The inventors have found that if the content of the silane coupling agent is too high, the overall viscosity will be too high, resulting in a wide particle size distribution, which will result in an uneven particle size distribution of the obtained hollow silicon microspheres. According to an embodiment of the present invention, mixing the silane coupling agent with water is accompanied by stirring. According to a specific embodiment of the present invention, the stirring rate is not particularly limited. According to a specific example of the present invention, the stirring rate can be 200 ~8000 rpm. Thereby, the silane coupling agent can be uniformly dispersed in the water phase.
S200:制备单分散有机硅实心球S200: Preparation of monodisperse silicone solid spheres
根据本发明的实施例,向上述所得到的硅烷偶联剂分散液中加入氨水,从而可以得到单分散有机硅实心球。根据本发明的实施例,加入氨水的浓度并不受特别限制,根据本发明的具体实施例,氨水的浓度可以为0.1~5质量%。根据本发明的实施例,氨水的滴加方式并不受特别限制,根据本发明的具体实施例,氨水的滴加速度可以为0.5~5毫升/分钟,滴加总量可以为0.5~20毫升。具体地,氨水可以作为催化剂促进单分散有机硅实心球的形成。According to an embodiment of the present invention, ammonia water is added to the silane coupling agent dispersion liquid obtained above, so as to obtain monodisperse silicone solid spheres. According to the embodiment of the present invention, the concentration of the ammonia water added is not particularly limited, and according to a specific embodiment of the present invention, the concentration of the ammonia water may be 0.1-5% by mass. According to the embodiments of the present invention, the way of adding ammonia water is not particularly limited. According to specific embodiments of the present invention, the dripping rate of ammonia water can be 0.5-5 ml/min, and the total amount of dripping can be 0.5-20 ml. Specifically, ammonia water can be used as a catalyst to promote the formation of monodisperse silicone solid spheres.
S300:制备空心硅微球S300: Preparation of hollow silica microspheres
根据本发明的实施例,将所得到的有机硅实心球进行水热处理,从而可以得到空心结构纳米有机硅微球。根据本发明的实施例,水热处理的条件不受特别限制,根据本发明的具体实施例,水热处理可以在120~200摄氏度的温度下进行12~24小时。根据本发明的实施例,所得到的空心结构纳米有机硅微球的粒径并不受特别限制,根据本发明的具体实施例,空心结构纳米有机硅微球的粒径可以为0.02~100毫米。由此,所得到有机硅微球可以满足多种用途的需要。具体的,水热法是在密闭体系中,以水溶液为溶剂,在一定的温度(100-1000℃)下,以及水自身产生的压强下(1-100MPa),处于亚临界、临界、超临界的状态中,通过利用溶液中的物质化学反应合成新的化合物的过程。由于水热法的反应过程是处在非理想平衡状态,因此往往使其具有较为简易的操作性和可调性,能够在使化学反应在相对温和的条件下,更易于得到普通反应无法获得的实验结果,因此能获得介稳结构、凝聚态的新产物。例如,这种原理被用来研究TiO2的形成过程,将不同浓度的TiF4置于反应釜内,微粒的内核中的小颗粒,其表面能会比外层的更高,因此促使小颗粒从内部不断外逸,形成空心结构。According to an embodiment of the present invention, the obtained organic silicon solid spheres are subjected to hydrothermal treatment, so that nano-organic silicon microspheres with hollow structures can be obtained. According to the embodiments of the present invention, the conditions of the hydrothermal treatment are not particularly limited. According to specific embodiments of the present invention, the hydrothermal treatment may be performed at a temperature of 120-200 degrees Celsius for 12-24 hours. According to the embodiment of the present invention, the particle size of the obtained hollow nano-organosilicon microspheres is not particularly limited. According to a specific embodiment of the present invention, the particle size of the hollow-structure nano-organosilicon microspheres can be 0.02-100 mm . Thus, the obtained organosilicon microspheres can meet the needs of various purposes. Specifically, the hydrothermal method is in a closed system, using an aqueous solution as a solvent, at a certain temperature (100-1000 ° C), and under the pressure (1-100 MPa) generated by the water itself, in subcritical, critical, supercritical In the state, the process of synthesizing new compounds by using the chemical reaction of the substances in the solution. Since the reaction process of the hydrothermal method is in a state of non-ideal equilibrium, it often has relatively simple operability and adjustability, and it is easier to obtain chemical reactions that cannot be obtained by ordinary reactions under relatively mild conditions. Therefore, new products with metastable structures and condensed states can be obtained. For example, this principle is used to study the formation process of TiO 2. TiF 4 with different concentrations is placed in the reactor. The small particles in the inner core of the particle will have a higher surface energy than the outer layer, thus promoting the formation of small particles. Continuously escaping from the inside, forming a hollow structure.
根据本发明实施例的制备空心结构纳米有机硅微球的方法以硅烷偶联剂为原料,在制备过程中通过使用水热法,可以不加模板剂即可一次形成多层空心微球,从而避免了溶蚀模板的材料浪费和繁琐工艺,同时体系中可以不用添加乳化剂,因此避免了乳化剂后续处理的残留问题,另外硅微球的结构可以通过调整实验条件进行调控,并且所得到的空心结构纳米有机硅微球可以满足多种用途的需要。The method for preparing nano-organosilicon microspheres with a hollow structure according to an embodiment of the present invention uses a silane coupling agent as a raw material. During the preparation process, by using a hydrothermal method, a multilayer hollow microsphere can be formed at one time without adding a template, thereby It avoids the material waste and cumbersome process of eroding the template, and at the same time, there is no need to add an emulsifier in the system, so the residual problem of the emulsifier in the subsequent treatment is avoided. In addition, the structure of the silicon microsphere can be adjusted by adjusting the experimental conditions, and the obtained hollow Structural nano-organosilicon microspheres can meet the needs of various purposes.
参考图2,根据本发明实施例的制备空心结构纳米有机硅微球的方法进一步包括:Referring to Fig. 2, the method for preparing hollow nano-organosilicon microspheres according to an embodiment of the present invention further includes:
S400:预先将乳化剂分散在水中S400: pre-dispersed emulsifier in water
根据本发明的实施例,在将硅烷偶联剂与水混合之前,预先将乳化剂分散在水中。根据本发明的实施例,乳化剂的具体类型并不受特别限制,根据本发明的具体实施例,乳化剂可以为选自聚乙烯吡咯烷酮、嵌段聚醚、聚乙烯醇、十二烷基硫酸钠、十二烷基苯磺酸钠、司盘60和吐温60中的至少一种。根据本发明的实施例,硅烷偶联剂的用量并不受特别限制,基于硅烷偶联剂分散液的总重量,乳化剂的含量可以为4质量%以下。具体地,由于乳化剂的乳化作用,能够更均匀的分散单体液滴,从而可以得到粒径更小的单分散硅球,并且可以通过调节乳化剂的量来调节粒径大小。According to an embodiment of the present invention, before mixing the silane coupling agent with water, the emulsifier is dispersed in water in advance. According to embodiments of the present invention, the specific type of emulsifier is not particularly limited. According to specific embodiments of the present invention, the emulsifier can be selected from polyvinylpyrrolidone, block polyether, polyvinyl alcohol, lauryl sulfate At least one of sodium, sodium dodecylbenzenesulfonate, Span 60 and Tween 60. According to the embodiment of the present invention, the amount of the silane coupling agent is not particularly limited, and based on the total weight of the silane coupling agent dispersion, the content of the emulsifier may be 4% by mass or less. Specifically, due to the emulsification effect of the emulsifier, the monomer droplets can be more uniformly dispersed, so that monodisperse silicon spheres with smaller particle sizes can be obtained, and the particle size can be adjusted by adjusting the amount of the emulsifier.
下面参考具体实施例,对本发明进行描述,需要说明的是,这些实施例仅仅是描述性的,而不以任何方式限制本发明。The present invention will be described below with reference to specific embodiments. It should be noted that these embodiments are only illustrative and do not limit the present invention in any way.
实施例1Example 1
1)制备硅烷偶联剂分散液:将5g硅烷偶联剂A151与300ml去离子水混合,用匀浆机搅拌,设定搅拌速度为200r/min,使硅烷偶联剂A151均匀分散在水相中并水解2小时,得到硅烷偶联剂分散液;1) Preparation of silane coupling agent dispersion: mix 5g of silane coupling agent A151 with 300ml of deionized water, stir with a homogenizer, set the stirring speed at 200r/min, so that silane coupling agent A151 is evenly dispersed in the water phase neutralized and hydrolyzed for 2 hours to obtain a silane coupling agent dispersion;
2)制备单分散有机硅实心球:向所得到的的分散液中加入氨水,其中,氨水的浓度为0.1wt%,氨水的滴加速度为0.5ml/min,滴加总量为0.5ml,然后反应20min后,即可形成单分散的有机硅实心球;2) Preparation of monodisperse silicone solid spheres: add ammonia water to the obtained dispersion liquid, wherein the concentration of ammonia water is 0.1wt%, the dropping rate of ammonia water is 0.5ml/min, and the total amount of dropping is 0.5ml, and then After 20 minutes of reaction, monodisperse silicone solid balls can be formed;
3)制备空心硅微球:将所得到的有机硅实心球分散液转移到水热反应釜中,在180℃温度下反应12小时后,自然冷却,即得到空心结构纳米有机硅微球(如图3)。3) Preparation of hollow silicon microspheres: Transfer the obtained silicone solid sphere dispersion into a hydrothermal reaction kettle, react at 180°C for 12 hours, and cool naturally to obtain hollow nano-structure silicone microspheres (such as image 3).
实施例2Example 2
1)制备硅烷偶联剂分散液:将10g硅烷偶联剂A151与300ml去离子水混合,并用匀浆机搅拌,设定搅拌速度为400r/min,使硅烷偶联剂A151均匀分散在水相中并水解2小时,得到硅烷偶联剂分散液;1) Preparation of silane coupling agent dispersion: mix 10g of silane coupling agent A151 with 300ml of deionized water, and stir with a homogenizer, set the stirring speed to 400r/min, so that the silane coupling agent A151 is evenly dispersed in the water phase neutralized and hydrolyzed for 2 hours to obtain a silane coupling agent dispersion;
2)制备单分散有机硅实心球:向所得到的的分散液中加入氨水,其中,氨水的浓度为0.5wt%,氨水的滴加速度为0.8ml/min,滴加总量为1.5ml,然后反应20min后,即可形成单分散的有机硅实心球;2) Preparation of monodisperse silicone solid spheres: add ammonia water to the obtained dispersion liquid, wherein the concentration of ammonia water is 0.5wt%, the dropping rate of ammonia water is 0.8ml/min, and the total amount of dropping is 1.5ml, and then After 20 minutes of reaction, monodisperse silicone solid balls can be formed;
3)制备空心硅微球:将所得到的有机硅实心球分散液转移到水热反应釜中,在190℃温度下反应12小时后,自然冷却,即得到空心结构纳米有机硅微球(如图4)。3) Preparation of hollow silicon microspheres: transfer the obtained silicone solid sphere dispersion into a hydrothermal reaction kettle, react at 190°C for 12 hours, and cool naturally to obtain hollow nano-structure silicone microspheres (such as Figure 4).
实施例3Example 3
1)制备硅烷偶联剂分散液:将15g硅烷偶联剂A151与300ml去离子水混合,并用匀浆机搅拌,设定搅拌速度为1000r/min,使硅烷偶联剂A151均匀分散在水相中并水解2小时,得到硅烷偶联剂分散液;1) Preparation of silane coupling agent dispersion: mix 15g of silane coupling agent A151 with 300ml of deionized water, and stir with a homogenizer, set the stirring speed at 1000r/min, so that the silane coupling agent A151 is evenly dispersed in the water phase neutralized and hydrolyzed for 2 hours to obtain a silane coupling agent dispersion;
2)制备单分散有机硅实心球:向所得到的的分散液中加入氨水,其中,氨水的浓度为0.15wt%,氨水的滴加速度为1.5ml/min,滴加总量为2.5ml,然后反应20min后,即可形成单分散的有机硅实心球;2) Preparation of monodisperse silicone solid spheres: add ammonia water to the obtained dispersion liquid, wherein the concentration of ammonia water is 0.15wt%, the dropping rate of ammonia water is 1.5ml/min, and the total amount of dropping is 2.5ml, and then After 20 minutes of reaction, monodisperse silicone solid balls can be formed;
3)制备空心硅微球:将所得到的有机硅实心球分散液转移到水热反应釜中,在190℃温度下反应24小时后,自然冷却,即得到空心结构纳米有机硅微球(如图5)。3) Preparation of hollow silicon microspheres: Transfer the obtained silicone solid sphere dispersion into a hydrothermal reaction kettle, react at 190°C for 24 hours, and cool naturally to obtain hollow nano-organic silicon microspheres (such as Figure 5).
实施例4Example 4
1)制备硅烷偶联剂分散液:将20g硅烷偶联剂A151与300ml去离子水混合,并用匀浆机搅拌,设定搅拌速度为1200r/min,使硅烷偶联剂A151均匀分散在水相中并水解2小时,得到硅烷偶联剂分散液;1) Preparation of silane coupling agent dispersion: mix 20g of silane coupling agent A151 with 300ml of deionized water, and stir with a homogenizer, set the stirring speed at 1200r/min, so that silane coupling agent A151 is evenly dispersed in the water phase neutralized and hydrolyzed for 2 hours to obtain a silane coupling agent dispersion;
2)制备单分散有机硅实心球:向所得到的的分散液中加入氨水,其中,氨水的浓度为0.25wt%,氨水的滴加速度为1.75ml/min,滴加总量为7.0ml,然后反应20min后,即可形成单分散的有机硅实心球;2) Preparation of monodisperse silicone solid spheres: add ammonia water to the obtained dispersion liquid, wherein the concentration of ammonia water is 0.25wt%, the dropping rate of ammonia water is 1.75ml/min, and the total amount of dropping is 7.0ml, then After 20 minutes of reaction, monodisperse silicone solid balls can be formed;
3)制备空心硅微球:将所得到的有机硅实心球分散液转移到水热反应釜中,在200℃温度下反应15小时后,自然冷却,即得到空心结构纳米有机硅微球(如图6)。3) Preparation of hollow silicon microspheres: Transfer the obtained silicone solid sphere dispersion to a hydrothermal reaction kettle, react at 200°C for 15 hours, and cool naturally to obtain hollow nano-structure silicone microspheres (such as Figure 6).
实施例5Example 5
1)制备硅烷偶联剂分散液:将20g硅烷偶联剂A151与300ml去离子水混合,并用匀浆机搅拌,设定搅拌速度为1500r/min,使硅烷偶联剂A151均匀分散在水相中并水解2小时,得到硅烷偶联剂分散液;1) Preparation of silane coupling agent dispersion: mix 20g of silane coupling agent A151 with 300ml of deionized water, and stir with a homogenizer, set the stirring speed at 1500r/min, so that silane coupling agent A151 is evenly dispersed in the water phase neutralized and hydrolyzed for 2 hours to obtain a silane coupling agent dispersion;
2)制备单分散有机硅实心球:向所得到的的分散液中加入氨水,其中,氨水的浓度为0.15wt%,氨水的滴加速度为2.5ml/min,滴加总量为9.5ml,然后反应20min后,即可形成单分散的有机硅实心球;2) Preparation of monodisperse silicone solid spheres: add ammonia water to the obtained dispersion liquid, wherein the concentration of ammonia water is 0.15wt%, the dropping rate of ammonia water is 2.5ml/min, and the total amount of dropping is 9.5ml, and then After 20 minutes of reaction, monodisperse silicone solid balls can be formed;
3)制备空心硅微球:将所得到的有机硅实心球分散液转移到水热反应釜中,在220℃温度下反应16小时后,自然冷却,即得到空心结构纳米有机硅微球(如图7)。3) Preparation of hollow silicon microspheres: Transfer the obtained silicone solid sphere dispersion into a hydrothermal reaction kettle, react at 220°C for 16 hours, and cool naturally to obtain hollow nano-organic silicon microspheres (such as Figure 7).
实施例6Example 6
1)制备硅烷偶联剂分散液:预先将0.5wt%的聚乙烯吡咯烷铜溶于300ml去离子水中,然后加入5g的硅烷偶联剂KH550,并用匀浆机搅拌,设定搅拌速度为500r/min,使硅烷偶联剂KH550均匀分散在水相中并水解2小时,得到硅烷偶联剂分散液;1) Preparation of silane coupling agent dispersion: Dissolve 0.5wt% polyvinylpyrrolidine copper in 300ml deionized water in advance, then add 5g of silane coupling agent KH550, and stir with a homogenizer, set the stirring speed to 500r /min, the silane coupling agent KH550 was evenly dispersed in the water phase and hydrolyzed for 2 hours to obtain the silane coupling agent dispersion;
2)制备单分散有机硅实心球:向所得到的的分散液中加入氨水,其中,氨水的浓度为0.05wt%,氨水的滴加速度为0.5ml/min,滴加总量为10.0ml,然后反应20min后,即可形成单分散的有机硅实心球;2) Preparation of monodisperse silicone solid spheres: add ammonia water to the obtained dispersion liquid, wherein the concentration of ammonia water is 0.05wt%, the dropping rate of ammonia water is 0.5ml/min, and the total amount of dropping is 10.0ml, and then After 20 minutes of reaction, monodisperse silicone solid balls can be formed;
3)制备空心硅微球:将所得到的有机硅实心球分散液转移到水热反应釜中,在200℃温度下反应12小时后,自然冷却,即得到空心结构纳米有机硅微球。3) Preparation of hollow silicon microspheres: Transfer the obtained silicone solid sphere dispersion into a hydrothermal reaction kettle, react at 200°C for 12 hours, and cool naturally to obtain hollow nano-structure silicone microspheres.
实施例7Example 7
1)制备硅烷偶联剂分散液:预先将0.5wt%的十二烷基硫酸钠溶于300ml去离子水中,然后加入10g的硅烷偶联剂KH580,并用匀浆机搅拌,设定搅拌速度为800r/min,使硅烷偶联剂KH580均匀分散在水相中并水解2小时,得到硅烷偶联剂分散液;1) Preparation of silane coupling agent dispersion: Dissolve 0.5wt% sodium lauryl sulfate in 300ml deionized water in advance, then add 10g of silane coupling agent KH580, and stir with a homogenizer, set the stirring speed to 800r/min, the silane coupling agent KH580 is uniformly dispersed in the water phase and hydrolyzed for 2 hours to obtain the silane coupling agent dispersion;
2)制备单分散有机硅实心球:向所得到的的分散液中加入氨水,其中,氨水的浓度为0.5wt%,氨水的滴加速度为1.5ml/min,滴加总量为12.5ml,然后反应20min后,即可形成单分散的有机硅实心球;2) Preparation of monodisperse silicone solid spheres: add ammonia water to the obtained dispersion liquid, wherein the concentration of ammonia water is 0.5wt%, the dropping rate of ammonia water is 1.5ml/min, and the total amount of dropping is 12.5ml, and then After 20 minutes of reaction, monodisperse silicone solid balls can be formed;
3)制备空心硅微球:将所得到的有机硅实心球分散液转移到水热反应釜中,在200℃温度下反应24小时后,自然冷却,即得到空心结构纳米有机硅微球。3) Preparation of hollow silicon microspheres: Transfer the obtained silicone solid sphere dispersion into a hydrothermal reaction kettle, react at 200°C for 24 hours, and cool naturally to obtain hollow nano-structure silicone microspheres.
实施例8Example 8
1)制备硅烷偶联剂分散液:预先将1wt%的十二烷基硫酸钠溶于300ml去离子水中,然后加入5g的硅烷偶联剂KH792,并用匀浆机搅拌,设定搅拌速度为800r/min,使硅烷偶联剂KH792均匀分散在水相中并水解2小时,得到硅烷偶联剂分散液;1) Preparation of silane coupling agent dispersion: Dissolve 1wt% sodium lauryl sulfate in 300ml deionized water in advance, then add 5g of silane coupling agent KH792, and stir with a homogenizer, set the stirring speed to 800r /min, the silane coupling agent KH792 was uniformly dispersed in the water phase and hydrolyzed for 2 hours to obtain the silane coupling agent dispersion;
2)制备单分散有机硅实心球:向所得到的的分散液中加入氨水,其中,氨水的浓度为0.15wt%,氨水的滴加速度为0.8ml/min,滴加总量为15.5ml,然后反应20min后,即可形成单分散的有机硅实心球;2) Preparation of monodisperse silicone solid spheres: add ammonia water to the obtained dispersion liquid, wherein the concentration of ammonia water is 0.15wt%, the dropping rate of ammonia water is 0.8ml/min, and the total amount of dropping is 15.5ml, and then After 20 minutes of reaction, monodisperse silicone solid balls can be formed;
3)制备空心硅微球:将所得到的有机硅实心球分散液转移到水热反应釜中,在220℃温度下反应24小时后,自然冷却,即得到空心结构纳米有机硅微球。3) Preparation of hollow silicon microspheres: Transfer the obtained silicone solid sphere dispersion into a hydrothermal reaction kettle, react at 220°C for 24 hours, and cool naturally to obtain hollow nano-structure silicone microspheres.
实施例9Example 9
1)制备硅烷偶联剂分散液:预先将1.5wt%的十二烷基苯磺酸钠溶于300ml去离子水中,然后加入5g的硅烷偶联剂KH792,并用匀浆机搅拌,设定搅拌速度为1000r/min,使硅烷偶联剂KH792均匀分散在水相中并水解2小时,得到硅烷偶联剂分散液;1) Preparation of silane coupling agent dispersion: Dissolve 1.5wt% sodium dodecylbenzenesulfonate in 300ml deionized water in advance, then add 5g of silane coupling agent KH792, and stir with a homogenizer, set stirring The speed is 1000r/min, so that the silane coupling agent KH792 is uniformly dispersed in the water phase and hydrolyzed for 2 hours to obtain the silane coupling agent dispersion;
2)制备单分散有机硅实心球:向所得到的的分散液中加入氨水,其中,氨水的浓度为0.35wt%,氨水的滴加速度为2.5ml/min,滴加总量为18.5ml,然后反应20min后,即可形成单分散的有机硅实心球;2) Preparation of monodisperse silicone solid spheres: add ammonia water to the obtained dispersion liquid, wherein the concentration of ammonia water is 0.35wt%, the dropping rate of ammonia water is 2.5ml/min, and the total amount of dropping is 18.5ml, and then After 20 minutes of reaction, monodisperse silicone solid balls can be formed;
3)制备空心硅微球:将所得到的有机硅实心球分散液转移到水热反应釜中,在220℃温度下反应24小时后,自然冷却,即得到空心结构纳米有机硅微球。3) Preparation of hollow silicon microspheres: Transfer the obtained silicone solid sphere dispersion into a hydrothermal reaction kettle, react at 220°C for 24 hours, and cool naturally to obtain hollow nano-structure silicone microspheres.
实施例10Example 10
1)制备硅烷偶联剂分散液:预先将2wt%的十二烷基苯磺酸钠溶于300ml去离子水中,然后加入5g的硅烷偶联剂KH602,并用匀浆机搅拌,设定搅拌速度为1500r/min,使硅烷偶联剂KH602均匀分散在水相中并水解2小时,得到硅烷偶联剂分散液;1) Preparation of silane coupling agent dispersion: Dissolve 2wt% sodium dodecylbenzenesulfonate in 300ml deionized water in advance, then add 5g of silane coupling agent KH602, and stir with a homogenizer, set the stirring speed 1500r/min, the silane coupling agent KH602 is uniformly dispersed in the water phase and hydrolyzed for 2 hours to obtain the silane coupling agent dispersion;
2)制备单分散有机硅实心球:向所得到的的分散液中加入氨水,其中,氨水的浓度为0.45wt%,氨水的滴加速度为2.5ml/min,滴加总量为19.0ml,然后反应20min后,即可形成单分散的有机硅实心球;2) Preparation of monodisperse silicone solid spheres: add ammonia water to the obtained dispersion liquid, wherein the concentration of ammonia water is 0.45wt%, the dropping rate of ammonia water is 2.5ml/min, and the total amount of dropping is 19.0ml, and then After 20 minutes of reaction, monodisperse silicone solid balls can be formed;
3)制备空心硅微球:将所得到的有机硅实心球分散液转移到水热反应釜中,在230℃温度下反应16小时后,自然冷却,即得到空心结构纳米有机硅微球。3) Preparation of hollow silicon microspheres: transfer the obtained silicone solid sphere dispersion into a hydrothermal reaction kettle, react at 230°C for 16 hours, and cool naturally to obtain hollow nano-structure silicone microspheres.
实施例11Example 11
1)制备硅烷偶联剂分散液:预先将3wt%的十二烷基苯磺酸钠溶于300ml去离子水中,然后加入5g的硅烷偶联剂KH580,并用匀浆机搅拌,设定搅拌速度为1800r/min,使硅烷偶联剂KH580均匀分散在水相中并水解2小时,得到硅烷偶联剂分散液;1) Preparation of silane coupling agent dispersion: Dissolve 3wt% sodium dodecylbenzenesulfonate in 300ml deionized water in advance, then add 5g of silane coupling agent KH580, and stir with a homogenizer, set the stirring speed The silane coupling agent KH580 is uniformly dispersed in the water phase and hydrolyzed for 2 hours to obtain a silane coupling agent dispersion at 1800r/min;
2)制备单分散有机硅实心球:向所得到的的分散液中加入氨水,其中,氨水的浓度为0.45wt%,氨水的滴加速度为2.5ml/min,滴加总量为20.0ml,然后反应20min后,即可形成单分散的有机硅实心球;2) Preparation of monodisperse silicone solid spheres: add ammonia water to the obtained dispersion liquid, wherein the concentration of ammonia water is 0.45wt%, the dropping rate of ammonia water is 2.5ml/min, and the total amount of dropping is 20.0ml, and then After 20 minutes of reaction, monodisperse silicone solid balls can be formed;
3)制备空心硅微球:将所得到的有机硅实心球分散液转移到水热反应釜中,在220℃温度下反应16小时后,自然冷却,即得到空心结构纳米有机硅微球。3) Preparation of hollow silicon microspheres: Transfer the obtained silicone solid sphere dispersion into a hydrothermal reaction kettle, react at 220°C for 16 hours, and cool naturally to obtain hollow nano-structure silicone microspheres.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, descriptions referring to the terms "one embodiment", "some embodiments", "example", "specific examples", or "some examples" mean that specific features described in connection with the embodiment or example , structure, material or characteristic is included in at least one embodiment or example of the present invention. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it can be understood that the above embodiments are exemplary and cannot be construed as limitations to the present invention. Variations, modifications, substitutions, and modifications to the above-described embodiments are possible within the scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410127819.4A CN103933903B (en) | 2014-03-31 | 2014-03-31 | The method of preparation hollow-core construction nano-organosilicon microsphere |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410127819.4A CN103933903B (en) | 2014-03-31 | 2014-03-31 | The method of preparation hollow-core construction nano-organosilicon microsphere |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103933903A CN103933903A (en) | 2014-07-23 |
CN103933903B true CN103933903B (en) | 2017-01-04 |
Family
ID=51181936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410127819.4A Active CN103933903B (en) | 2014-03-31 | 2014-03-31 | The method of preparation hollow-core construction nano-organosilicon microsphere |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103933903B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104556072B (en) * | 2015-01-12 | 2016-06-08 | 太原理工大学 | A method for preparing monodisperse nano-silica by in-situ modification |
CN106000246B (en) * | 2016-05-18 | 2018-10-02 | 中国科学院上海光学精密机械研究所 | The asymmetric mesoporous organosilicon hollow Nano particle of pattern and its synthetic method |
CN107946562B (en) * | 2017-11-13 | 2020-04-10 | 中航锂电(洛阳)有限公司 | Graphene/silicon composite material, preparation method thereof and lithium ion battery |
CN111298711B (en) * | 2020-03-11 | 2021-09-24 | 湘潭大学 | A pH-responsive mesoporous Janus nanosheet emulsifier and its preparation method and use |
CN115895139B (en) * | 2022-10-27 | 2023-11-03 | 联塑市政管道(河北)有限公司 | High-toughness high-fluidity PVC composite material and preparation method and application thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0091555B1 (en) * | 1982-04-08 | 1986-11-26 | PQ Corporation | Hollow microspheres with organosilicon-silicate surfaces |
US4876039A (en) * | 1986-11-04 | 1989-10-24 | Dow Corning Corporation | Process for preparing silicone microparticles cured by a Michael addition reaction |
CN1840563A (en) * | 2005-04-01 | 2006-10-04 | 华东理工大学 | Preparation method of polyalkylsiloxane microspheres in the presence of surfactant |
CN101676023A (en) * | 2008-09-17 | 2010-03-24 | 中国科学院化学研究所 | Method for preparing poly-organic silsesquioxane microsphere |
CN102140250A (en) * | 2010-12-31 | 2011-08-03 | 长兴化学材料(珠海)有限公司 | Hollow organosilane microsphere with rough surface structure and preparation method thereof |
CN102430373A (en) * | 2011-09-06 | 2012-05-02 | 哈尔滨工业大学 | A kind of preparation method of organosilicon hollow microsphere |
CN103252202A (en) * | 2012-02-21 | 2013-08-21 | 中国科学院化学研究所 | Single-pore hollow-structured organosilicon microspheres and preparation method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2656318B1 (en) * | 1989-12-27 | 1994-02-04 | Rhone Poulenc Chimie | MAGNETISABLE CORE-SHELL MICROSPHERES BASED ON CROSSLINKED ORGANOPOLYSILOXANE, THEIR PREPARATION PROCESS AND THEIR APPLICATION IN BIOLOGY. |
WO2008044462A1 (en) * | 2006-10-05 | 2008-04-17 | Kaneka Corporation | Method for production of hollow silicone microparticle, and hollow silicone microparticle produced by the method |
-
2014
- 2014-03-31 CN CN201410127819.4A patent/CN103933903B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0091555B1 (en) * | 1982-04-08 | 1986-11-26 | PQ Corporation | Hollow microspheres with organosilicon-silicate surfaces |
US4876039A (en) * | 1986-11-04 | 1989-10-24 | Dow Corning Corporation | Process for preparing silicone microparticles cured by a Michael addition reaction |
CN1840563A (en) * | 2005-04-01 | 2006-10-04 | 华东理工大学 | Preparation method of polyalkylsiloxane microspheres in the presence of surfactant |
CN101676023A (en) * | 2008-09-17 | 2010-03-24 | 中国科学院化学研究所 | Method for preparing poly-organic silsesquioxane microsphere |
CN102140250A (en) * | 2010-12-31 | 2011-08-03 | 长兴化学材料(珠海)有限公司 | Hollow organosilane microsphere with rough surface structure and preparation method thereof |
CN102430373A (en) * | 2011-09-06 | 2012-05-02 | 哈尔滨工业大学 | A kind of preparation method of organosilicon hollow microsphere |
CN103252202A (en) * | 2012-02-21 | 2013-08-21 | 中国科学院化学研究所 | Single-pore hollow-structured organosilicon microspheres and preparation method thereof |
Non-Patent Citations (4)
Title |
---|
Application of tailored silica microspheres in coatings:synthesis, characterization, thermal and hydrophobic properties;Meng Wang,et al.;《Journal of Materials Chemistry A》;20130726;第1卷(第37期);第11465-11472页 * |
Simple preparation of monodisperse hollow silica particles without using templates;Hoe Jin Hah,et al.;《Chemical Communications》;20030613(第14期);第1712-1713页 * |
单分散二氧化硅球形颗粒的制备与形成机理;赵丽,等;《化学学报》;20030420;第61卷(第4期);第562-566页 * |
超细聚甲基硅氧烷微球的制备;魏鹏,等;《功能高分子学报》;20051230;第18卷(第4期);第682-686页 * |
Also Published As
Publication number | Publication date |
---|---|
CN103933903A (en) | 2014-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103933903B (en) | The method of preparation hollow-core construction nano-organosilicon microsphere | |
Caruso et al. | Production of hollow microspheres from nanostructured composite particles | |
Lou et al. | Hollow micro‐/nanostructures: synthesis and applications | |
CN106044788A (en) | Nanometer material with controllable particle sizes and silicon dioxide hollow spheres and method for preparing nanometer material | |
Šoltys et al. | Evaluation of scale-up strategies for the batch synthesis of dense and hollow mesoporous silica microspheres | |
CN103394314A (en) | Preparation method of microcapsules of polyurethane coated with essential oil | |
Ma et al. | Solution-phase synthesis of inorganic hollow structures by templating strategies | |
JP2005263550A (en) | Highly dispersed silica nano hollow particles and method for producing the same | |
CN102160985A (en) | Magnetic silicon dioxide microspheres with nuclear shell and surface anisotropic double functional groups and preparation method thereof | |
CN103432970A (en) | Method for preparing organic-inorganic composite microcapsule through complex coacervation | |
CN101259399A (en) | One-step method for preparing inorganic nano-microcapsules | |
Hu et al. | Preparation of hollow alumina nanospheres via surfactant-assisted flame spray pyrolysis | |
JP2013133250A (en) | Nano hollow particle made of silica shell, and manufacturing method therefor | |
Nemec et al. | A versatile interfacial coassembly method for fabrication of tunable silica shells with radially aligned dual mesopores on diverse magnetic core nanoparticles | |
JP2013133250A5 (en) | ||
CN104151841B (en) | A kind of multilayer hollow casein base submicron composite micro-capsule and preparation method thereof | |
Fuji et al. | Synthesis and applications of hollow particles | |
CN103359746B (en) | Double-layer hollow silica nanosphere and preparation method thereof | |
CN103896284B (en) | A kind of monodisperse silica nano particle and preparation method thereof | |
Li et al. | Silica nanocapsules with unusual shapes accessed by simultaneous growth of the template and silica nanostructure | |
JP6256930B2 (en) | Method for producing nano hollow particles comprising silica shell | |
CN105727949B (en) | One step of one kind prepares noble metal/SiO2The method of nano-complex particle | |
CN104028182A (en) | Preparation method of zinc oxide ternary compound nano material with yolk-eggshell structure | |
Yang et al. | Facile fabrication of lilium pollen-like organosilica particles | |
Du et al. | One-step synthesis of hydrophobic multicompartment organosilica microspheres with highly interconnected macro-mesopores for the stabilization of liquid marbles with excellent catalysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |