CN103928609B - Three-dimensional phase change memory device and manufacturing method thereof - Google Patents
Three-dimensional phase change memory device and manufacturing method thereof Download PDFInfo
- Publication number
- CN103928609B CN103928609B CN201310287374.1A CN201310287374A CN103928609B CN 103928609 B CN103928609 B CN 103928609B CN 201310287374 A CN201310287374 A CN 201310287374A CN 103928609 B CN103928609 B CN 103928609B
- Authority
- CN
- China
- Prior art keywords
- conductive
- phase change
- memory
- array
- memory cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000008859 change Effects 0.000 title claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 239000000463 material Substances 0.000 claims abstract description 50
- 239000004020 conductor Substances 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 23
- 238000000151 deposition Methods 0.000 claims description 8
- 238000005253 cladding Methods 0.000 claims description 5
- 239000011810 insulating material Substances 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 124
- 239000012782 phase change material Substances 0.000 description 37
- 238000003860 storage Methods 0.000 description 15
- 230000008569 process Effects 0.000 description 12
- 230000008018 melting Effects 0.000 description 11
- 238000002844 melting Methods 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 239000011229 interlayer Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 5
- 229910052732 germanium Inorganic materials 0.000 description 5
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000005669 field effect Effects 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- 239000003989 dielectric material Substances 0.000 description 3
- 238000011017 operating method Methods 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 229910021332 silicide Inorganic materials 0.000 description 3
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 150000004770 chalcogenides Chemical class 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 239000003870 refractory metal Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000000277 atomic layer chemical vapour deposition Methods 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Semiconductor Memories (AREA)
Abstract
Description
技术领域technical field
本发明是有关于一种高密度的存储器元件,且特别是有关于一种以存储单元的多平面排列成三维阵列的存储器装置及其制造方法。The present invention relates to a high-density memory element, and in particular to a memory device in which memory cells are arranged in a three-dimensional array in multiple planes and a manufacturing method thereof.
背景技术Background technique
随着集成电路的尺寸逐渐缩小至一临界值,设计者已开始寻找叠层存储单元的多平面技术,以达到每位具有更高的储存容量以及更低的成本。在某些技术中,多个导电平面可通过一导电柱(conductive pillars)阵列彼此相交。个别存储单元是通过对应的导电柱与导电平面而选定。然而,此技术在阵列中的每一存储单元都须配置一整流器或二极管,因而造成了工艺的困难度且增加成本。可参考美国专利公开号2010-0270593-A1,名称为“Integrated Circuit 3d Memory Array And Manufacturing Method”的文献。As the size of integrated circuits gradually shrinks to a critical value, designers have begun to look for multi-plane technology of stacked memory cells to achieve higher storage capacity per bit and lower cost. In some techniques, multiple conductive planes may intersect each other through an array of conductive pillars. Individual memory cells are selected by corresponding conductive pillars and conductive planes. However, in this technology, a rectifier or a diode must be configured for each memory cell in the array, thus causing process difficulty and increasing cost. Reference may be made to the document titled "Integrated Circuit 3d Memory Array And Manufacturing Method" in US Patent Publication No. 2010-0270593-A1.
因此,本发明是提供一种三维集成电路存储器装置及其制造方法,该三维集成电路存储器装置是具有低制造成本,且包括可靠、容积小的存储器元件。Therefore, the present invention provides a three-dimensional integrated circuit memory device and a method of manufacturing the same, which has low manufacturing cost and includes reliable, small-volume memory elements.
发明内容Contents of the invention
本发明是有关于一种存储器装置,包括一第一导体、一第二导体以及一存储单元。存储单元包括相变化存储材料位于一接口中,接口介于第一导体与第二导体之间,其中只由相变化存储材料的一非晶相的不同的非零厚度,代表储存于存储单元中的数据,没有任何储存于该多个存储单元中的数据值是对应于该相变化存储材料的一结晶相。The invention relates to a memory device, which includes a first conductor, a second conductor and a storage unit. The memory cell includes a phase change memory material in an interface between the first conductor and the second conductor, wherein only the non-zero thickness of an amorphous phase of the phase change memory material is representative of storage in the memory cell For data, none of the data values stored in the plurality of memory cells corresponds to a crystalline phase of the phase change memory material.
根据本发明,提出一种存储器装置,包括一存取阵列、多个导电层、一导电柱阵列以及多个存储单元。导电层通过多个绝缘层彼此分离且与存取阵列分离。导电柱阵列延伸通过导电层,在该导电柱阵列中的导电柱对应接触于该存取阵列中的存取装置。存储单元的一电流路径中具有相变化 存储材料,电流路径介于这些对应的导电柱与对应的导电层之间,在所有存储单元中的相变化存储材料储存数据值,且相变化存储材料在该电流路径中,于一非晶相中具有不同的厚度。According to the present invention, a memory device is provided, which includes an access array, multiple conductive layers, a conductive column array, and multiple memory cells. The conductive layers are separated from each other and from the access array by a plurality of insulating layers. The conductive pillar array extends through the conductive layer, and the conductive pillars in the conductive pillar array correspond to contact with the access devices in the access array. A current path of the memory cell has a phase-change memory material, and the current path is between the corresponding conductive pillars and the corresponding conductive layers. The phase-change memory material in all memory cells stores data values, and the phase-change memory material is in the In the current path, there are different thicknesses in an amorphous phase.
根据本发明,提出一种存储器装置的操作方法,存储器装置包括多个相变化存储单元,操作方法包括以下步骤。接收一数据以编程一选定的相变化存储单元,数据具有储存至选定的存储单元的多个数据值的其中之一,数据值是以在相变化存储单元中建立的多个电阻范围所代表,电阻范围是使用通过存储单元中的电流路径的非晶相存储材料的对应厚度所达成。提供一编程脉冲通过选定的相变化存储单元,编程脉冲用以编程存储单元中的数据,存储单元具有多个数据值,数据值是以多个电阻的非重叠范围所代表,电阻的非重叠范围包括一电阻范围,在存储单元中,电阻范围是以通过接口区域的相变化存储材料的不同的非晶相厚度来建立。According to the present invention, an operating method of a memory device is proposed, the memory device includes a plurality of phase-change memory cells, and the operating method includes the following steps. receiving data to program a selected phase change memory cell, the data having one of a plurality of data values stored in the selected memory cell, the data value being determined by a plurality of resistance ranges established in the phase change memory cell Representatively, the resistance range is achieved using the corresponding thickness of the amorphous phase memory material through the current path in the memory cell. Provide a programming pulse through the selected phase-change memory cell, the programming pulse is used to program the data in the memory cell, the memory cell has multiple data values, the data value is represented by the non-overlapping range of multiple resistances, and the non-overlapping range of the resistance The range includes a range of resistances established in the memory cell by different amorphous phase thicknesses of the phase change memory material across the interface region.
为了对本发明的上述及其他方面有更佳的了解,下文特举实施例,并配合所附图式,作详细说明如下:In order to have a better understanding of the above and other aspects of the present invention, the following specific examples, together with the accompanying drawings, are described in detail as follows:
附图说明Description of drawings
图1绘示本发明实施例的多阶存储单元结构的剖视图。FIG. 1 is a cross-sectional view of a multi-level memory cell structure according to an embodiment of the present invention.
图2绘示依据本发明实施例的多阶存储单元结构的导电柱与存储器材料层的顶面视图。FIG. 2 illustrates a top view of conductive pillars and memory material layers of a multi-level memory cell structure according to an embodiment of the present invention.
图3绘示如图1的结构的图解示意图。FIG. 3 is a schematic diagram illustrating the structure of FIG. 1 .
图4绘示如图3的三维存储器阵列中具有四个导电柱的部分示意图。FIG. 4 is a partial schematic diagram of four conductive pillars in the three-dimensional memory array as in FIG. 3 .
图5A至图5D绘示如图1的多阶结构的个别存储单元中的非晶相容积,用以代表存储器结构中的数据值。FIGS. 5A to 5D illustrate the volume of the amorphous phase in individual memory cells of the multi-level structure shown in FIG. 1 to represent data values in the memory structure.
图6A至图6D绘示在有源区域的温度对时间关系图,此关系图大致对应于脉冲形状,且用于自较低的容积转换至较高的容积。6A-6D show graphs of temperature versus time in the active region that roughly correspond to the pulse shape and are used for switching from a lower volume to a higher volume.
图7A至图7C绘示在有源区域的温度对时间关系图,此关系图大致对应于脉冲形状,且用于自较高的容积转换至较低的容积。7A-7C are graphs of temperature versus time in the active region that roughly correspond to the pulse shape and are used for switching from a higher volume to a lower volume.
图8绘示代表可用以编程存储单元的一控制逻辑序列的流程图,包括基于存储单元的初始状态与目标状态选择一脉冲形状。8 is a flow diagram representing a control logic sequence that may be used to program a memory cell, including selecting a pulse shape based on the initial state and target state of the memory cell.
图9绘示具有编程存储单元的水平叠层存储器结构的剖面图,相变化 材料设置于垂直导电柱的衬垫。9 is a cross-sectional view of a horizontal stack memory structure with programmed memory cells, with phase change material disposed on the liners of the vertical conductive pillars.
图10绘示具有编程存储单元的水平叠层存储器结构的剖面图,其中水平导体包括相变化材料。10 is a cross-sectional view of a horizontal stack memory structure with programmed memory cells, where the horizontal conductors include phase change material.
图11至图14绘示本发明实施例的三维存储器结构的制造程序的各阶段。11 to 14 illustrate various stages of the manufacturing process of the three-dimensional memory structure according to the embodiment of the present invention.
图15绘示本发明实施例的三维存储器结构的制造程序的一阶段。FIG. 15 illustrates a stage of the manufacturing process of the three-dimensional memory structure according to the embodiment of the present invention.
图16A至图16B绘示制造三维存储器结构的部分流程图。16A-16B are partial flowcharts for fabricating a three-dimensional memory structure.
图17绘示依据本发明实施例的集成电路的简易方块图。FIG. 17 shows a simplified block diagram of an integrated circuit according to an embodiment of the present invention.
【符号说明】【Symbol Description】
10:半导体本体10: Semiconductor body
11、42、62、63、1110:位线11, 42, 62, 63, 1110: bit line
12:浅沟道隔离结构12: Shallow trench isolation structure
13:漏极13: drain
14:通道14: channel
15:源极15: Source
16、18、21、22、24-1~24-n、604、634、636、820、822、824、826、828:绝缘层16, 18, 21, 22, 24-1~24-n, 604, 634, 636, 820, 822, 824, 826, 828: insulating layer
17、43、60、61、1106:字线17, 43, 60, 61, 1106: word line
19:硅化层19: Silicide layer
20:接触垫20: Contact pad
23-1~23-n、602-1~602-8、632-1~632-8、708、710、712、714、808、810、812、814、850:导电层23-1~23-n, 602-1~602-8, 632-1~632-8, 708, 710, 712, 714, 808, 810, 812, 814, 850: conductive layer
25、734、735:柱心25, 734, 735: column center
27、606、732、733:衬垫27, 606, 732, 733: Liners
29、702、802:介电层29, 702, 802: dielectric layer
30:区域30: area
40、68、69、70、71、600、630、855:导电柱40, 68, 69, 70, 71, 600, 630, 855: conductive pillar
41、64、65、66、67、601、651、700:存取装置41, 64, 65, 66, 67, 601, 651, 700: access device
44-1~44-n、72-1~72-n、73-1~73-n、74-1~74-n、75-1~75-n:存储元件44-1~44-n, 72-1~72-n, 73-1~73-n, 74-1~74-n, 75-1~75-n: storage elements
45-1~45-n:导电平面45-1~45-n: conductive plane
46:面译码器46: Face Decoder
47:接地面:47: Ground plane:
100:存储单元存取层100: storage unit access layer
300、610、612、614、616、618、620、622、624、640、642、644、646、648、650、652、654、860、862、864、866:存储单元300, 610, 612, 614, 616, 618, 620, 622, 624, 640, 642, 644, 646, 648, 650, 652, 654, 860, 862, 864, 866: storage unit
302:相变化存储元件302: phase change memory element
304、306:加热电极304, 306: heating electrodes
312、314:表面312, 314: surface
308-1~308-4、605、607、609、611、613、615、617、619、635、637、639、641、643、645、647、649、852:非晶相容积308-1~308-4, 605, 607, 609, 611, 613, 615, 617, 619, 635, 637, 639, 641, 643, 645, 647, 649, 852: amorphous phase volume
400、410:前缘400, 410: leading edge
402、412、577:峰值402, 412, 577: Peak
404、414:后缘404, 414: trailing edge
550:第一部分550: Part One
552:第二部分552: Part Two
574:阶段574: Phase
580、582、584、900~911:流程步骤580, 582, 584, 900~911: process steps
608、658:层译码器608, 658: layer decoder
704、706、806:插塞704, 706, 806: plug
720、722、724、726、740:绝缘器720, 722, 724, 726, 740: Insulators
730、731:通孔730, 731: through hole
800:存取阵列800: access array
851:补片851: Patch
1100:集成电路1100: integrated circuit
1102:三维存储器阵列1102: Three-dimensional memory array
1104:列译码器1104: column decoder
1108:行译码器1108: row decoder
1112:层译码器1112: layer decoder
1114:线段1114: line segment
1116、1120:总线1116, 1120: bus
1118:页面缓冲器1118: Page buffer
1122:数据输入线1122: Data input line
1124:其它电路1124: Other circuits
1126:数据输出线1126: data output line
具体实施方式detailed description
以下是以实施例,同时搭配图式图1~图17,对本发明做更详细的描述。The following is a more detailed description of the present invention based on the embodiments, together with the drawings shown in FIGS. 1 to 17 .
图1绘示本发明实施例的多阶存储单元结构的剖视图。在本实施例中,存储单元形成于一包括存取阵列的集成电路基板上。存取阵列包括存取装置,且在一柱状阵列中被设置为连接于个别的导电柱(导电柱例如包括柱心(pillar core)25与衬垫(liner)27)。在本实施例中,存取装置为一包括存储单元存取层100的集成电路基板的一部分。FIG. 1 is a cross-sectional view of a multi-level memory cell structure according to an embodiment of the present invention. In this embodiment, the memory cells are formed on an integrated circuit substrate including an access array. The access array includes access devices arranged in a pillar array to connect to individual conductive pillars (conductive pillars include, for example, a pillar core 25 and a liner 27 ). In this embodiment, the access device is a part of an integrated circuit substrate including the memory cell access layer 100 .
本实施例的存取阵列包括一具有浅沟道隔离结构12的半导体本体10,浅沟道隔离结构12是被图案化为线状并形成于表面。在浅沟道隔离结构12之间,沉积并注入离子以形成埋入式扩散位线11,埋入式扩散位线11延伸于垂直进入或射出图式的平面的方向。柱心25的存取装置是由垂直场效晶体管(field-effect transistor,FET)所组成,场效晶体管具有一漏极13、一通道14以及一源极15,且被栅极介电层29所围绕。绝缘层16位于半导体本体10之上。字线17穿过阵列且围绕垂直场效晶体管的通道14。在本实施例中,绝缘层18位于字线17之上。硅化层19形成于源极15的顶部。在本实施例中,接触垫20(例如像是钨的耐热金属层)是被图案化并形成于硅化层19之上。在本实施例中的绝缘层21及22位于接触垫20之上。在图中所绘示从接触垫20至半导体本体10(例如是块状硅)为一包括存储单元存取层100的集成电路基板的一部分。The access array of this embodiment includes a semiconductor body 10 having a shallow trench isolation structure 12 , and the shallow trench isolation structure 12 is patterned into lines and formed on the surface. Between the shallow trench isolation structures 12, ions are deposited and implanted to form buried diffused bit lines 11, which extend in a direction perpendicular to the plane of entry or exit of the drawing. The access device of the core 25 is composed of a vertical field-effect transistor (field-effect transistor, FET). The field-effect transistor has a drain 13, a channel 14 and a source 15, and is covered by a gate dielectric layer 29. surrounded by. An insulating layer 16 is situated above the semiconductor body 10 . A word line 17 runs through the array and surrounds the channel 14 of the vertical field effect transistor. In this embodiment, the insulating layer 18 is located on the word line 17 . A silicide layer 19 is formed on top of the source electrode 15 . In this embodiment, contact pads 20 (eg, a heat-resistant metal layer such as tungsten) are patterned and formed on the silicide layer 19 . The insulating layers 21 and 22 in this embodiment are located on the contact pad 20 . Shown in the figure is a part of an integrated circuit substrate including a memory cell access layer 100 from the contact pad 20 to the semiconductor body 10 (eg bulk silicon).
多个导电层23-1至23-n位于接触垫20与绝缘层22之上。绝缘层24-1至24-(n-1)使导电层23-1至23-n彼此分离。绝缘层24-n覆盖导电层23-n的顶部。在另一实施例中,存取阵列可例如是利用薄膜晶体管技术,形成于多个导电层之上或介于多个导电层之间。A plurality of conductive layers 23 - 1 to 23 - n are located on the contact pads 20 and the insulating layer 22 . The insulating layers 24-1 to 24-(n-1) separate the conductive layers 23-1 to 23-n from each other. An insulating layer 24-n covers the top of the conductive layer 23-n. In another embodiment, the access array may be formed on or between multiple conductive layers, for example using thin film transistor technology.
包括柱心25与衬垫27的导电柱并延伸穿过多个导电层23-1至23-n 与绝缘层24-1至24-(n-1)。导电柱包括相变化材料(phase change material)的一柱心25与一衬垫27。柱心25可包括金属、非金属或低电阻相变化材料,非金属例如是氮化钛(Titanium Nitride,TiN)。当柱心25包括相变化材料时,衬垫27可包括相同的相变化材料(在本实施例中,柱心25与衬垫27可为单一本体),相同的相变化材料例如是由添加物、掺杂物或其他相变化材料所形成。A conductive pillar including a pillar core 25 and a pad 27 extends through a plurality of conductive layers 23 - 1 to 23 - n and insulating layers 24 - 1 to 24 -(n−1). The conductive pillar includes a pillar core 25 and a pad 27 of phase change material. The core 25 may include metal, non-metal or low-resistance phase change material, such as non-metal such as titanium nitride (Titanium Nitride, TiN). When the core 25 includes a phase change material, the liner 27 can include the same phase change material (in this embodiment, the core 25 and the liner 27 can be a single body), and the same phase change material is made of, for example, an additive. , dopants or other phase change materials.
环形接口区域,例如是区域30,形成于导电层23-1至23-n与柱状衬垫27的交会处。衬垫27的相变化材料设置于接口区域中,且作为导电柱上的叠层存储单元的一存储元件。个别存储单元的存储元件在对应的导电层与导电柱之间提供电流路径,且用以储存数据值,数据值是由存储单元中,相变化存储材料的不同非晶向(amorphous phase)厚度所建立。A ring-shaped interface region, such as region 30 , is formed at the intersection of conductive layers 23 - 1 to 23 - n and columnar pad 27 . The phase change material of liner 27 is disposed in the interface region and acts as a memory element of the stacked memory cell on the conductive pillar. The memory elements of individual memory cells provide current paths between the corresponding conductive layers and conductive pillars, and are used to store data values. The data values are determined by the different amorphous phase thicknesses of the phase-change memory materials in the memory cells. Establish.
形成衬垫27的相变化材料具有相对高电阻的非晶相以及相对(于非晶向)低电阻的结晶相。在一实施例中,衬垫27包括例如是多锗(germanium-rich,GexSbyTez)的相变化材料,在初镀(as-deposited)结品相中具有相对高的电阻。通过此特性,在从形成于只具有结晶相材料的存储单元状态转换为所有存储单元皆包括一非晶相容量的工作状态时,限制漏电流(leakage current),促使存储器阵列初始化,使得在操作装置的期间,通过提供存储单元复位脉冲(reset pulses),提供层内(inter-layer)漏电流保护。The phase change material forming liner 27 has a relatively high-resistance amorphous phase and a relatively low-resistance (compared to the amorphous) crystalline phase. In one embodiment, the liner 27 includes a phase change material such as germanium-rich (GexSbyTez), which has relatively high resistance in the as-deposited junction phase. Through this feature, when the state of memory cells formed with only crystalline phase material is switched to the working state in which all memory cells include an amorphous phase capacity, the leakage current is limited, and the memory array is initialized, so that the memory array can be initialized during operation. During the device, inter-layer leakage current protection is provided by providing memory cell reset pulses.
多个导电层23-1至23-n用以作为接口区域中相变化存储元件的加热电极(heaterelectrode),加热电极可被定义为具有相对高电阻的导体或小接触面积或两者兼具的电极,导体例如是氮化钛,用以达到改变相变化材料的电阻状态的温度与电流密度。在另一实施结构中,导电层23-1至23-n可具有相变化材料,且存储导电柱可作为加热电极。A plurality of conductive layers 23-1 to 23-n are used as heater electrodes of the phase change memory element in the interface area, and the heater electrodes can be defined as conductors with relatively high resistance or small contact areas or both Electrodes, conductors such as titanium nitride, are used to achieve the temperature and current density that change the resistive state of the phase change material. In another implementation structure, the conductive layers 23-1 to 23-n may have phase change materials, and the storage conductive pillars may serve as heating electrodes.
在本结构的接口区域中,不具有额外的存取装置,例如是二极管。此外,操作所有存储单元使其在有源区域可维持一非晶相材料的最小容积,将相变化存储材料以不同的非晶相厚度来通过电流路径,使得存储单元即便在一最低电阻状态中仍可具有一相对高的电阻,用以代表一数据值。存储单元相对高的电阻在存取至其他存储单元的期间用以阻挡漏电流,且存储单元在所有状态中对应于一数据值。此结构形成所有非晶相三维相变化 存储单元的一基础阵列单元,可于每个存储单元中存取一或多个位,每一数据值对应于通过存储单元的电流路径的非晶相容积的不同厚度。若对应的导电层与导电柱之间的电流路径内只具有结晶相材料,则代表此结构中无数据值。In the interface area of the present structure there are no additional access means, eg diodes. In addition, operating all memory cells such that a minimum volume of amorphous phase material can be maintained in the active area, the phase change memory material is passed through the current path with different thicknesses of the amorphous phase, allowing the memory cell to be in a lowest resistance state It can still have a relatively high resistance to represent a data value. The relatively high resistance of a memory cell acts to block leakage current during accesses to other memory cells, and the memory cell corresponds to a data value in all states. This structure forms a basic array cell for all amorphous three-dimensional phase change memory cells, one or more bits can be accessed in each memory cell, each data value corresponds to the amorphous phase volume of the current path through the memory cell of different thicknesses. If there is only crystalline phase material in the current path between the corresponding conductive layer and the conductive pillar, it means that there is no data value in this structure.
为了存取一存储单元,是译码在存取层中的一字线与一位线,以及一导电层。不同的编程/擦除脉冲提供至选定的存储单元,选定的存储单元通过存取层与导电层内的晶体管。通过感测电阻范围,决定在选定的存储单元中的非晶相容积的尺寸,相关信息可见于Papandreou,et al.Drift-Resilient Cell-State Metric for Multilevel PhaseChange Memory,IEEE,IEDM,5-7Dec.2011,p.3.5.1-3.5.4中。To access a memory cell, a word line and a bit line in the access layer, and a conductive layer are decoded. Different program/erase pulses are provided to selected memory cells passing through transistors in the access layer and the conductive layer. By sensing the resistance range, the size of the amorphous phase volume in the selected memory cell is determined. Related information can be found in Papandreou, et al. Drift-Resilient Cell-State Metric for Multilevel PhaseChange Memory, IEEE, IEDM, 5-7Dec .2011, p.3.5.1-3.5.4.
图2绘示如图1中的存取装置的相变化材料的柱心25与衬垫27的顶面视图,图中省略导电层。相变化材料的衬垫27为环状且围绕柱心25。在存取层中的位线11绘示于一第一方向,在存取层中的字线17绘示于一垂直方向。位于柱状衬垫27与导电材料(未绘示)各层之间的环形接口定义了接口区域,接口区域包括可编程存储元件。FIG. 2 shows a top view of the core 25 and pad 27 of the phase change material of the access device as in FIG. 1 , and the conductive layer is omitted in the figure. The liner 27 of phase change material is annular and surrounds the core 25 . The bit lines 11 in the access layer are shown in a first direction, and the word lines 17 in the access layer are shown in a vertical direction. The annular interface between the columnar liner 27 and the layers of conductive material (not shown) defines an interface region that includes programmable memory elements.
图3绘示如图1的结构的图解示意图。导电柱40耦接于一存取晶体管41,存取晶体管是以位线42与字线43选取。多数存储元件44-1至44-n连接于导电柱40。FIG. 3 is a schematic diagram illustrating the structure of FIG. 1 . The conductive pillar 40 is coupled to an access transistor 41 , and the access transistor is selected by the bit line 42 and the word line 43 . Most of the memory elements 44 - 1 to 44 - n are connected to the conductive pillar 40 .
存储器元件44-1至44-n中的每一元件耦接于对应的导电平面45-1至45-n,在此的导电平面是由导电层材料所提供。一面译码器46耦接于此些导电平面,且被配置用以连接一选定的平面至一参考电位,参考电位例如是接地面47。耦接于位线(例如是42)的感测放大器被配置用以感测电阻的范围,此电阻范围为选定的存储单元电阻降低的程度,用以代表数据值。Each of the memory elements 44-1 to 44-n is coupled to a corresponding conductive plane 45-1 to 45-n, where the conductive plane is provided by the conductive layer material. A side decoder 46 is coupled to the conductive planes and is configured to connect a selected plane to a reference potential, such as the ground plane 47 . The sense amplifier coupled to the bit line (eg, 42 ) is configured to sense the range of resistance that the selected memory cell reduces to represent the data value.
图4绘示三维存储器阵列中具有如图3的2×2部分导电柱阵列的示意图。存取阵列包括字线60、61与位线62、63。存取装置64、65、66、67位于位线与字线的交叉点。每一存取装置耦接于一对应的导电柱68、69、70、71。每一导电柱包括“n”平面深的存储元件叠层。因此,导电柱68耦接于存储元件72-1至72-n。导电柱69耦接于存储元件73-1至73-n。导电柱70耦接于存储元件74-1至74-n。导电柱71耦接于存储元件75-1 至75-n。图4中并未绘示导电层避免过于杂乱。图4所绘示的2×2阵列可延伸为具有任意数量的平面的数千条字线与数千条位线所形成的阵列。在实施例中,平面的数量n可为2的指数例如4、8、16、32、64、128等,以便进行二进制译码。FIG. 4 is a schematic diagram of a 2×2 partial conductive column array as shown in FIG. 3 in a three-dimensional memory array. The access array includes word lines 60,61 and bit lines 62,63. Access devices 64, 65, 66, 67 are located at the intersections of bit lines and word lines. Each access device is coupled to a corresponding conductive post 68 , 69 , 70 , 71 . Each conductive pillar includes an "n" plane deep stack of storage elements. Therefore, the conductive pillar 68 is coupled to the storage elements 72-1 to 72-n. The conductive pillar 69 is coupled to the memory elements 73-1 to 73-n. The conductive pillar 70 is coupled to the memory elements 74-1 to 74-n. The conductive pillar 71 is coupled to the memory elements 75-1 to 75-n. The conductive layer is not shown in FIG. 4 to avoid excessive clutter. The 2×2 array shown in FIG. 4 can be extended to an array formed by thousands of word lines and thousands of bit lines with any number of planes. In an embodiment, the number n of planes may be an exponent of 2, such as 4, 8, 16, 32, 64, 128, etc., for binary coding.
图5A至图5D绘示存储单元中的非晶相容积,在此用以代表存储器结构中的数据值。各种非晶相容积具有不同厚度的非晶相材料通过存储单元的电流路径,使得存储单元的电阻落在对应于特定数据值的一设定电阻范围之间。在这些图中,绘示的存储单元300包括一相变化存储元件302,相变化存储元件302设置于一第一加热电极304与一第二加热电极306之间。类似于图1,第一加热电极304与第二加热电极306对应于多个导电层与导电柱其中之一。第一加热电极304接触相变化存储元件于表面312,可为导电层与导电柱之间的环形接口。第二加热电极306接触相变化存储元件于表面314,表面314可为导电柱的表面,且可大于表面312用以集中电流于表面312。5A to 5D illustrate the volume of the amorphous phase in the memory cell, which is used to represent the data value in the memory structure. Various amorphous phase volumes have different thicknesses of amorphous phase material through the current path of the memory cell, so that the resistance of the memory cell falls within a predetermined resistance range corresponding to a specific data value. In these figures, the illustrated memory cell 300 includes a phase change memory element 302 disposed between a first heating electrode 304 and a second heating electrode 306 . Similar to FIG. 1 , the first heating electrode 304 and the second heating electrode 306 correspond to one of the plurality of conductive layers and conductive pillars. The first heating electrode 304 is in contact with the phase change memory element on the surface 312 , which may be an annular interface between the conductive layer and the conductive pillar. The second heating electrode 306 is in contact with the phase change memory element on the surface 314 , the surface 314 can be the surface of the conductive pillar, and can be larger than the surface 312 to concentrate the current on the surface 312 .
在图5A中,相变化存储元件302包括一相变化存储材料位于电流路径中,电流路径介于第一与第二加热电极304与306之间,其中一部分为非晶相容积308-1,使得存储单元落于一对应于数据值“00”的第一电阻范围之间。在图5B中,非晶相容积308-2大于非晶相容积308-1,使得存储单元落于一对应于数据值“01”的第二电阻范围之间,第二电阻范围大于第一电阻范围。在图5C中,非晶相容积308-3大于非晶相容积308-2,使得存储单元落于一对应于数据值“10”的第三电阻范围之间,第三电阻范围大于第二电阻范围。在图5D中,非晶相容积308-4大于非晶相容积308-3,使得存储单元落于一对应于数据值“11”的第四电阻范围之间,第四电阻范围大于第三电阻范围。当然,存储单元可配置为每一存储单元只储存一位,或每一存储单元储存任意数量的数据。In FIG. 5A, the phase change memory element 302 includes a phase change memory material located in the current path between the first and second heating electrodes 304 and 306, a portion of which is the amorphous phase volume 308-1, so that The memory cells fall between a first resistance range corresponding to the data value "00". In FIG. 5B, the amorphous phase volume 308-2 is greater than the amorphous phase volume 308-1 such that the memory cell falls between a second resistance range corresponding to the data value "01", the second resistance range being greater than the first resistance scope. In FIG. 5C, the amorphous phase volume 308-3 is greater than the amorphous phase volume 308-2, so that the memory cell falls between a third resistance range corresponding to the data value "10", the third resistance range being greater than the second resistance scope. In FIG. 5D, the amorphous phase volume 308-4 is greater than the amorphous phase volume 308-3, so that the memory cell falls between a fourth resistance range corresponding to the data value "11", the fourth resistance range being greater than the third resistance scope. Of course, the memory cells can be configured such that each memory cell only stores one bit, or each memory cell stores any amount of data.
在此,具有三维阵列的存储器装置包括用以编程数据的电路,此电路配置以提供编程脉冲至一选定的存储单元,选定的存储单元具有一脉冲形状,脉冲形状取决于提供编程脉冲前的存储单元的电阻范围(例如初始的非晶相厚度),与编程脉冲后的存储单元的目标电阻范围(例如终止的非晶相厚度)。此电路包括用以决定选定的存储单元的电阻范围的逻辑,例 如是一预编程读取序列(pre-program read sequence)与一形成电路脉冲,用以产生一编程脉冲,此编程脉冲具有一脉冲形状,脉冲形状决定于选定的存储单元的电阻(determined resistance)范围与目标电阻(target resistance)的范围。Here, a memory device having a three-dimensional array includes circuitry for programming data, the circuitry being configured to provide a programming pulse to a selected memory cell, the selected memory cell having a pulse shape that depends on the The resistance range of the memory cell (such as the initial amorphous phase thickness), and the target resistance range of the memory cell after the programming pulse (such as the terminated amorphous phase thickness). The circuit includes logic to determine the resistance range of the selected memory cell, such as a pre-program read sequence and a forming circuit pulse to generate a programming pulse having a Pulse shape. The pulse shape is determined by the range of the determined resistance of the selected memory cell and the range of the target resistance.
图6A至图6D绘示温度对时间关系图,此关系图在有源区域大致对应于脉冲形状,且由控制逻辑所选定,用以建立在此所述的存储单元结构中,各种不同尺寸的非晶相厚度。图6A代表一脉冲形状,具有一相对陡峭的前缘(leading edge)400,前缘400被增加至一峰值402,接着于后缘(trailing edge)404迅速落下。峰值402在相变化材料中明确地到达一超过熔化温度(melting temperature)Tm的温度,且维持一相当短的时间。此脉冲是设计用以初始化存储单元,使存储单元自一可由结晶相材料所控制的初始状态,转换至一非晶相容积所建立的一第一电阻范围的状态,第一电阻范围可对应于一数据值例如是“00”。举例来说,当如图5A所绘示的存储器元件离开一相对大数量的结晶材料时,由于超过熔化温度的时间相当短且陡峭的后缘404造成图型迅速落下,使得非晶相容积足以覆盖水平导体与相变化材料之间的接触区域。Figures 6A-6D show graphs of temperature versus time that roughly correspond to pulse shapes in the active region and are selected by the control logic to build in the memory cell structures described herein, for various size of the amorphous phase thickness. FIG. 6A represents a pulse shape with a relatively steep leading edge 400 that increases to a peak 402 and then falls off rapidly at a trailing edge 404 . The peak 402 clearly reaches a temperature above the melting temperature Tm in the phase change material and remains there for a relatively short time. This pulse is designed to initialize the memory cell from an initial state controlled by the crystalline phase material to a state of a first resistance range established by an amorphous phase volume, the first resistance range corresponding to A data value is, for example, "00". For example, when the memory element as shown in FIG. 5A leaves a relatively large amount of crystalline material, the pattern drops rapidly due to the relatively short time above the melting temperature and the steep trailing edge 404, so that the volume of the amorphous phase is sufficient. Cover the contact area between the horizontal conductor and the phase change material.
图6B代表一脉冲形状,如同图6A相同的基础结构,具有一相对陡峭的前缘410,前缘410被增加至一峰值412,接着于后缘414迅速落下。峰值412被设计为在相变化材料中到达一超过熔化温度Tm的温度,且维持一中等的时间。此脉冲被设计为一存储单元自一较低的电阻范围,转换至非晶相容积所建立的一第二电阻范围的状态,第二电阻范围可对应于数据值例如是“01”。图6B所绘示的脉冲造成一例如是图5B所绘示的非晶相容积,大于图6A的脉冲造成的非晶相容积。FIG. 6B represents a pulse shape, the same basic structure as FIG. 6A , with a relatively steep leading edge 410 that increases to a peak 412 and then falls off rapidly at a trailing edge 414 . The peak 412 is designed to reach a temperature above the melting temperature Tm in the phase change material for a moderate amount of time. This pulse is designed to switch a memory cell from a lower resistance range to a second resistance range established by the amorphous phase volume. The second resistance range may correspond to a data value such as "01". The pulses depicted in FIG. 6B result in an amorphous phase volume such as that depicted in FIG. 5B , which is greater than the volume of the amorphous phase caused by the pulses in FIG. 6A .
图6C代表一脉冲形状,如同图6A、图6B相同的基础结构,具有一相对陡峭的前缘,前缘被增加至一峰值,接着于后缘迅速落下。峰值被设计为在相变化材料中到达一超过熔化温度Tm的温度,且维持一第二长的中等时间。此脉冲被设计为一存储单元自一较低的电阻范围,转换至非晶相容积所建立的一第三电阻范围的状态,第三电阻范围可对应于数据值例如是“10”。图6C所绘示的脉冲造成一例如是图5C所绘示的非晶相容积,大于图6B的脉冲造成的非晶相容积。Figure 6C represents a pulse shape with the same basic structure as Figures 6A and 6B, with a relatively steep leading edge that increases to a peak and then falls off rapidly at the trailing edge. The peak is designed to reach a temperature above the melting temperature Tm in the phase change material for a second longest intermediate time. This pulse is designed to switch a memory cell from a lower resistance range to a state of a third resistance range established by the amorphous phase volume, which may correspond to a data value such as "10". The pulse shown in FIG. 6C results in an amorphous phase volume such as that shown in FIG. 5C that is greater than the volume of the amorphous phase caused by the pulse in FIG. 6B .
图6D代表一脉冲形状,如同图6A、图6B与图6C相同的基础结构,具有一相对陡峭的前缘,前缘被增加至一峰值,接着于后缘迅速落下。峰值被设计为在相变化材料中到达一超过熔化温度Tm的温度,且维持在此些脉冲中一最长的时间。此脉冲被设计为一存储单元自一较低的电阻范围,转换至非晶相容积所建立的一第四电阻范围的状态,第四电阻范围可对应于数据值例如是“11”。图6D所绘示的脉冲造成一例如是图5D所绘示的非晶相容积,大于图6C的脉冲造成的非晶相容积。Figure 6D represents a pulse shape with the same basic structure as Figures 6A, 6B and 6C, with a relatively steep leading edge that increases to a peak and then falls off rapidly at the trailing edge. The peak is designed to reach a temperature above the melting temperature Tm in the phase change material and to maintain it for the longest time among the pulses. This pulse is designed to switch a memory cell from a lower resistance range to a state of a fourth resistance range established by the amorphous phase volume. The fourth resistance range may correspond to a data value such as "11". The pulse shown in FIG. 6D results in an amorphous phase volume such as that shown in FIG. 5D that is greater than the volume of the amorphous phase caused by the pulse in FIG. 6C .
图7A至图7C适用于在存储单元中增加非晶相容积的尺寸。为了降低非晶相容积的尺寸,需要一种不同的脉冲形状。图7A绘示以温度对时间关系图的形式呈现的一脉冲形状,可形成自一高电阻状态转换至一较小的非晶相容积的电阻状态,高电阻状态例如是对应于数据值“01”的电阻状态,非晶相容积的电阻状态是基于一对应于数据值“00”的电阻状态。脉冲包括一第一部分550以及一第二部分552,在第一部分550中,相变化容积的温度被增加至超过一结晶转换温度(crystallization transition temperature)TC,在第二部分552中,相变化容积的温度被急剧增加至超过一熔化温度的峰值577。在脉冲的第一部分期间所提供的能量,是用于在准备脉冲的第二部分时,再结晶(re-crystallize)非晶相容积,脉冲的第二部分是用于设定脉冲的目标非晶相容积。阶段574超过熔化温度Tm至峰值,且阶段574所提供的能量是大致对应于非晶相容积。7A to 7C are suitable for increasing the size of the volume of the amorphous phase in the memory cell. To reduce the size of the amorphous phase volume, a different pulse shape is required. FIG. 7A shows a pulse shape in the form of a temperature versus time graph, which can form a transition from a high resistance state to a resistance state with a smaller amorphous phase volume. The high resistance state, for example, corresponds to the data value "01 The resistance state of ", the resistance state of the amorphous phase volume is based on a resistance state corresponding to the data value "00". The pulse includes a first portion 550 in which the temperature of the phase change volume is increased above a crystallization transition temperature TC and a second portion 552 in which the temperature of the phase change volume The temperature is sharply increased to a peak 577 above a melting temperature. The energy supplied during the first part of the pulse is used to re-crystallize the amorphous phase volume in preparation for the second part of the pulse, which is used to set the target amorphous phase of the pulse phase volume. Stage 574 exceeds the melting temperature Tm to a peak, and the energy provided by stage 574 is approximately corresponding to the volume of the amorphous phase.
图7B绘示一脉冲形状,此脉冲形状可用于自一较高电阻状态转换至一非晶相容积的较低的电阻状态,高电阻状态例如是对应于数据值“10”的电阻状态,非晶相容积的电阻状态对应于数据值“01”。在本实施例中,图7B的脉冲形状是与图7A为相同的基础配置。在一实施例中,其不同之处在于超过熔化温度所提供的能量。在另一实施例中,其不同之处在于初始结晶状态的长度,以及超过熔化温度所提供的能量。FIG. 7B shows a pulse shape that can be used to switch from a higher resistance state to a lower resistance state of an amorphous phase volume. The high resistance state is, for example, the resistance state corresponding to the data value "10". The resistance state of the crystal phase volume corresponds to the data value "01". In this embodiment, the pulse shape of FIG. 7B is the same basic configuration as that of FIG. 7A. In one embodiment, the difference is the energy provided above the melting temperature. In another embodiment, the difference is the length of the initial crystalline state, and the energy provided beyond the melting temperature.
图7C绘示另一脉冲形状,此脉冲形状可用于自一较高电阻状态转换至一非晶相容积的较低的电阻状态,高电阻状态例如是对应于数据值“11”的电阻状态,非晶相容积的电阻状态对应于数据值“10”。同样地,在本实施例中,图7C的脉冲形状是与图7A、图7B为相同的基础配置。在一实施例中,其不同之处在于超过熔化温度所提供的能量。在另一实施例中, 其不同之处在于初始结晶状态的长度,以及超过熔化温度所提供的能量。FIG. 7C shows another pulse shape that can be used to switch from a higher resistance state to a lower resistance state of an amorphous phase volume. The high resistance state is, for example, the resistance state corresponding to the data value "11", The resistance state of the amorphous phase volume corresponds to the data value "10". Likewise, in this embodiment, the pulse shape in FIG. 7C is the same basic configuration as those in FIGS. 7A and 7B . In one embodiment, the difference is the energy provided above the melting temperature. In another embodiment, the difference is the length of the initial crystalline state, and the energy provided beyond the melting temperature.
因此,本发明实施例的存储器装置的编程可包括控制逻辑,控制逻辑基于存储单元的初始状态与目标状态选择一脉冲形状。Thus, programming of memory devices according to embodiments of the present invention may include control logic that selects a pulse shape based on the initial and target states of the memory cells.
图8绘示代表可用以编程存储单元的一控制逻辑序列的流程图,此流程包括基于存储单元的初始状态与目标状态选择一脉冲形状。在此所述包括三维存储器结构的存储器装置可接收编程指令,以在一目标存储单元,或存储单元的一目标字符或页面中建立一特定数据值(580)。装置的控制器接着执行一预编程读取操作(pre-program readoperation),以决定目标存储单元的初始电阻状态(582)。控制器接着基于初始电阻状态与目标数据值提供编程脉冲(584),编程脉冲可自图6A至图6D与图7A至图7C选择合适的脉冲形状。8 is a flow diagram representing a control logic sequence that may be used to program a memory cell, including selecting a pulse shape based on an initial state and a target state of the memory cell. A memory device including a three-dimensional memory structure described herein may receive programming instructions to establish a specific data value in a target memory cell, or a target word or page of memory cells (580). The device controller then performs a pre-program read operation to determine the initial resistance state of the target memory cell (582). The controller then provides a programming pulse (584) based on the initial resistance state and the target data value, the programming pulse having an appropriate pulse shape selected from FIGS. 6A-6D and 7A-7C.
图9绘示叠层存储器结构的剖面图,叠层存储器结构具有被编程的存储单元,存储单元具有不同尺寸的非晶相厚度。不同尺寸的非晶相厚度使得存储单元落于不同的电阻范围之间,此些不同的电阻范围对应于储存的数据值。叠层存储器结构包括导电柱600,导电柱600具有多个导电层602-1至602-8以及多数绝缘层(例如:604),绝缘层分离多个导电层。每一存储单元的可编程元件是位于存储材料的衬垫606的部分存储材料中,存储材料位于导电柱600与对应的导电层的交叉点中。在多个导电层中的每一导电层耦接于一层译码器608。FIG. 9 is a cross-sectional view of a stacked memory structure with programmed memory cells having amorphous phase thicknesses of different sizes. The different sizes of the amorphous phase thicknesses cause the memory cells to fall between different resistance ranges corresponding to the stored data values. The stacked memory structure includes a conductive pillar 600 having a plurality of conductive layers 602-1 to 602-8 and a plurality of insulating layers (eg 604) separating the plurality of conductive layers. The programmable element of each memory cell is located in a portion of the memory material of the liner 606 of memory material located in the intersection of the conductive pillar 600 and the corresponding conductive layer. Each conductive layer in the plurality of conductive layers is coupled to a layer of decoder 608 .
叠层存储器结构包括八个存储单元,在本实施例中为:610、612、614、616、618、620、622与624。存储单元形成于衬垫606中,衬垫606位于对应的导电层602-1至602-8与导电柱600之间。存取层中的一存取装置601是用以选择所绘的导电柱。同样地,一层译码器608是用以选择一平面导电层。The stacked memory structure includes eight memory cells, 610 , 612 , 614 , 616 , 618 , 620 , 622 and 624 in this embodiment. The memory cells are formed in liners 606 located between the corresponding conductive layers 602 - 1 to 602 - 8 and the conductive pillars 600 . An access device 601 in the access layer is used to select the drawn conductive pillars. Likewise, a layer decoder 608 is used to select a planar conductive layer.
每一存储单元610、612、614、616、618、620、622与624在接口中皆具有一相变化材料的环形非晶相容积605、607、609、611、613、615、617与619,界面是形成于围绕在对应导电层602-1至602-8的衬垫606的外围。每一存储单元的电阻是部分依据非晶相容积的尺寸。在本实施例中,存储单元610、614、618与622具有一电阻落于一第一电阻范围之间,第一电阻范围可对应于数据值“0”,是由较小尺寸的非晶相容积605、609、 613与617所代表。存储单元612、616、620与624具有一电阻落于一第二电阻范围之间,第二电阻范围可对应于数据值“1”,是由较大尺寸的非晶相容积607、611、615与619所代表。Each memory cell 610, 612, 614, 616, 618, 620, 622, and 624 has an annular amorphous phase volume 605, 607, 609, 611, 613, 615, 617, and 619 of phase change material in the interface, The interface is formed on the periphery of the pads 606 surrounding the corresponding conductive layers 602-1 to 602-8. The resistance of each memory cell depends in part on the size of the amorphous phase volume. In this embodiment, the memory cells 610, 614, 618, and 622 have a resistance falling between a first resistance range, and the first resistance range may correspond to the data value "0", which is formed by the smaller-sized amorphous phase. Volumes 605, 609, 613 and 617 are represented. The memory cells 612, 616, 620, and 624 have a resistance falling between a second resistance range, which may correspond to the data value "1", and is formed by the larger-sized amorphous phase volumes 607, 611, 615 with 619 stands.
图10绘示另一形态的叠层存储器结构的剖面图,其中导电层包括相变化材料且具有被编程的存储单元,使得导电层中具有不同尺寸的非晶相厚度。不同尺寸的非晶相厚度使得存储单元落于不同的电阻范围之间,此些不同的电阻范围对应于储存的数据值。叠层存储器结构包括一导电柱630。导电柱630延伸穿过一顶绝缘层636、多个导电层632-1至632-8与多数绝缘层(例如:634),绝缘层分离多个导电层。每一存储单元的可编程元件位于对应导电层中的部分存储材料。在多个导电层中的每一导电层耦接于一层译码器658。10 is a cross-sectional view of another form of stacked memory structure, wherein the conductive layer includes a phase change material and has programmed memory cells, so that the conductive layer has different sizes of amorphous phase thickness. The different sizes of the amorphous phase thicknesses cause the memory cells to fall between different resistance ranges corresponding to the stored data values. The stacked memory structure includes a conductive pillar 630 . The conductive pillar 630 extends through a top insulating layer 636, a plurality of conductive layers 632-1 to 632-8, and a plurality of insulating layers (eg, 634) separating the plurality of conductive layers. The programmable element of each memory cell is located in a portion of the memory material in the corresponding conductive layer. Each conductive layer in the plurality of conductive layers is coupled to a layer of decoder 658 .
叠层存储器结构包括八个存储单元,在本实施例中为:640、642、644、646、648、650、652与654。存储单元形成于对应的导电层632-1至632-8与导电柱630的界面。存取层中的一存取装置651是用以选择所绘的导电柱。The stacked memory structure includes eight memory cells, 640 , 642 , 644 , 646 , 648 , 650 , 652 and 654 in this embodiment. The memory cells are formed at the interfaces of the corresponding conductive layers 632 - 1 to 632 - 8 and the conductive pillars 630 . An access device 651 in the access layer is used to select the drawn conductive pillars.
每一存储单元640、642、644、646、648、650、652与654在接口中皆具有一相变化材料的环形非晶相容积635、637、639、641、643、645、647与649,界面是形成于围绕在对应导电层632-1至632-8的衬垫的内部周围。每一存储单元的电阻是部分依据非晶相容积的尺寸。在本实施例中,存储单元640、644、648与652具有一电阻落于一第一电阻范围之间,第一电阻范围可对应于数据值“0”,是由较小尺寸的非晶相容积635、639、643与647所代表。存储单元642、646、650与654具有一电阻落于一第二电阻范围之间,第二电阻范围可对应于数据值“1”,是由较大尺寸的非晶相容积637、641、645与649所代表。Each memory cell 640, 642, 644, 646, 648, 650, 652, and 654 has an annular amorphous phase volume 635, 637, 639, 641, 643, 645, 647, and 649 of phase change material in the interface, The interface is formed around the interior of the pads surrounding the corresponding conductive layers 632-1 to 632-8. The resistance of each memory cell depends in part on the size of the amorphous phase volume. In this embodiment, the memory cells 640, 644, 648, and 652 have a resistance falling between a first resistance range, and the first resistance range may correspond to the data value "0", which is formed by the smaller-sized amorphous phase. Volumes 635, 639, 643 and 647 are represented. The memory cells 642, 646, 650, and 654 have a resistance falling between a second resistance range, which may correspond to the data value "1", and is formed by the larger-sized amorphous phase volumes 637, 641, 645 with 649 reps.
图11至图14绘示本发明实施例的三维存储器结构的制造程序的各阶段。制造程序包括形成一存取阵列700于一基板上,此阶段可使用CMOS技术完成,举例来说,如图11所绘示的标准水平晶体管或垂直晶体管。在图11所绘示的实施例中,制造程序包括形成一层内介电层702于存取阵列上,并形成接触插塞(contact plugs)704、706穿过层内介电层702。接触插塞704、706的顶面暴露于层内介电层702的顶面。在层内介电层 702之上,交错形成绝缘材料(绝缘器720、722、724、726)与导电材料(708、710、712、714)。一顶盖介电层728形成于导电材料的最顶层之上。介电材料可包括氮化硅、氧化硅或其他合适的绝缘材料,此些材料是用于形成存储器或通过结合介电材料而形成。用于形成导电层708、710、712、714的导电材料包括一导电“加热”(heater)材料,例如是氮化钛(titanium nitride)、氮化铝钛(titanium aluminum nitride)、氮化钽(tantalum nitride)等。在其他实施例中,导电层可包括耐火金属(refractory metal),例如是钨(tungsten)。在其他实施例中,导电层可包括导体,例如具有低电阻的铜或铝。导电层是以一披覆沉积(blanket deposition)程序进行沉积,可依据所选择的材料,将平面导体与绝缘层交错形成于接触插塞704、706的顶面上。当然,在存储器的施行中,可具有数千或数万计的接触插塞所形成的阵列在导电层的叠层下。11 to 14 illustrate various stages of the manufacturing process of the three-dimensional memory structure according to the embodiment of the present invention. The fabrication process includes forming an access array 700 on a substrate. This stage can be accomplished using CMOS technology, for example, standard horizontal transistors or vertical transistors as shown in FIG. 11 . In the embodiment shown in FIG. 11 , the fabrication process includes forming an ILD layer 702 on the access array, and forming contact plugs 704 , 706 through the ILD layer 702 . The top surfaces of the contact plugs 704 , 706 are exposed to the top surface of the ILD layer 702 . Over the interlevel dielectric layer 702, insulating material (isolators 720, 722, 724, 726) and conductive material (708, 710, 712, 714) are alternately formed. A capping dielectric layer 728 is formed over the topmost layer of conductive material. The dielectric material may include silicon nitride, silicon oxide, or other suitable insulating materials used to form memory or formed by combining dielectric materials. The conductive material used to form the conductive layers 708, 710, 712, 714 includes a conductive "heater" material such as titanium nitride, titanium aluminum nitride, tantalum nitride ( tantalum nitride) and so on. In other embodiments, the conductive layer may include a refractory metal, such as tungsten. In other embodiments, the conductive layer may comprise a conductor such as copper or aluminum with low electrical resistance. The conductive layer is deposited by a blanket deposition process, and planar conductors and insulating layers are alternately formed on the top surfaces of the contact plugs 704 and 706 according to the selected material. Of course, in a memory implementation, there may be an array of thousands or tens of thousands of contact plugs under the stack of conductive layers.
图12绘示在制造程序中,曝露接触插塞704、706的阶段,此阶段是于蚀刻通孔730、731穿过导电层叠层之后。通孔730、731可为圆形或其他形状例如是矩形等,是取决于用以形成通孔的制造技术。在一实施例中,通孔730、731的侧壁实质上为垂直。FIG. 12 illustrates the stage in the fabrication process where contact plugs 704, 706 are exposed, after etching vias 730, 731 through the conductive layer stack. The vias 730, 731 may be circular or other shapes such as rectangles etc., depending on the fabrication technique used to form the vias. In one embodiment, the sidewalls of the through holes 730 and 731 are substantially vertical.
如图13所示,制造程序的下一阶段为形成衬垫732、733于通孔之间,包括在导电层的接口间选定一相变化材料作为存储单元的存储元件。在一实施例中,相变化材料可包括一相对高的电阻做为结晶相,例如沉积像是充满锗的材料GexSbyTez。当沉积高电阻材料后,是作为将所有存储单元初始化的一初始步骤,使得存储单元包括至少一非晶相材料的小容积,用以控制如上讨论的层内漏电流。As shown in FIG. 13, the next stage of the manufacturing process is to form liners 732, 733 between the vias, including selecting a phase change material at the interface between the conductive layers as the memory element of the memory cell. In one embodiment, the phase change material may include a relatively high resistance as a crystalline phase, such as depositing a material such as Ge x Sby Tez filled with germanium. After depositing the high resistance material, it is an initial step to initialize all memory cells so that the memory cells include at least one small volume of amorphous phase material to control intralayer leakage as discussed above.
图14绘示制造程序在将通孔的剩余区域填充导电材料的柱心734、735之后的阶段,导电材料例如是一结晶相相变化材料。在一工艺中,衬垫732、733可以充满锗的材料GexSbyTez进行沉积。接着,在形成具有足够厚度的衬垫后,沉积方式可改变为一具有较少锗的GexSbyTez材料。在另一实施例中,如上所讨论导电柱的柱心734、735可包括不同类型的导电材料。FIG. 14 shows a stage of the manufacturing process after filling the remaining area of the via hole with studs 734, 735 of conductive material, such as a crystalline phase change material. In one process, the liners 732, 733 may be deposited as a germanium -filled material GexSbyTez . Then, after forming a liner with sufficient thickness, the deposition method can be changed to a GexSbyTez material with less germanium . In another embodiment, the cores 734, 735 of the conductive posts may comprise different types of conductive materials as discussed above.
如图14所示,在形成导电柱之后,可平面化导电材料且可形成顶盖绝缘器740于叠层上。As shown in FIG. 14, after forming the conductive pillars, the conductive material may be planarized and a cap insulator 740 may be formed on the stack.
图15绘示本发明另一实施例的三维存储器结构。在此结构中,存储器装置包括一存取阵列800,存取阵列800具有一层内介电层802以及一导电插塞806,层内介电层802位于存取阵列800上,导电插塞806延伸通过层内介电层802。绝缘层820、822、824、826、828与导电层808、810、812、814是以一披覆形式沉积并交错叠层。然而,在本实施例中的披覆导电层是被图案化,用以在形成导电柱的通孔处提供相变化材料补片(patch)。在本实施例中,存储单元包括一相变化材料补片851,相变化材料补片851围绕导电柱855。平衡的导电层850包括导体兼容相变化材料,例如是氮化钛、金属或其他兼容导电材料。非晶相容积852形成于相变化材料的补片851与导电柱855的接口的内部周围。FIG. 15 illustrates a three-dimensional memory structure according to another embodiment of the present invention. In this structure, the memory device includes an access array 800, the access array 800 has an inner dielectric layer 802 and a conductive plug 806, the inner dielectric layer 802 is located on the access array 800, the conductive plug 806 extending through the interlayer dielectric layer 802 . The insulating layers 820 , 822 , 824 , 826 , 828 and the conductive layers 808 , 810 , 812 , 814 are deposited in a cladding form and stacked alternately. However, in this embodiment the overlying conductive layer is patterned to provide patches of phase change material at the vias forming the conductive pillars. In this embodiment, the memory cell includes a phase change material patch 851 surrounding the conductive pillar 855 . The balanced conductive layer 850 includes a conductor compatible phase change material, such as titanium nitride, metal, or other compatible conductive material. Amorphous phase volume 852 is formed around the interior of the interface of patch 851 of phase change material and conductive pillar 855 .
图15所绘示的实施例包括四个存储单元860、862、864、866。每一存储单元具有一非晶相容积对应于数据值。在本实施例中,存储单元860、864与866具有一较小的非晶相容积对应于一较低的电阻范围,存储单元862具有一较大的非晶相容积对应于一较高的电阻范围。在实施例中,相变化材料的整个补片可被设定于非晶相中,用以建立一电阻范围的最高值代表一数据值。The embodiment shown in FIG. 15 includes four storage units 860 , 862 , 864 , 866 . Each memory cell has an amorphous volume corresponding to a data value. In this embodiment, memory cells 860, 864 and 866 have a smaller amorphous volume corresponding to a lower resistance range, and memory cell 862 has a larger amorphous volume corresponding to a higher resistance scope. In an embodiment, an entire patch of phase change material may be set in the amorphous phase to establish a resistance range where the highest value represents a data value.
图16A至图16B包括用以制造如图11至图14所绘示的结构的制造方法的流程图。根据本发明,第一步骤900包括形成存储单元存取层,包括位线、字线、存取装置以及接触垫。在此阶段,也形成集成电路基板上的周围电路(peripheral circuitry)。在此阶段后,在存储器装置的存储区域内的存储单元存取层的顶面具有一接触垫阵列,包括如图11所示的接触插塞704、706。在此阶段中,可应用标准CMOS制造技术,包括所有必要的图案化与蚀刻程序,用以形成周围电路与存取装置。在存储单元存取层中的接触垫与内连接电路应使用耐火金属(例如是钨)所制成,使得包含于沉积大量叠层层的热预算(thermal budget)将不会干扰下层内连接电路(underlying interconnects)。FIGS. 16A-16B include a flowchart of a fabrication method for fabricating the structure as depicted in FIGS. 11-14 . According to the present invention, a first step 900 includes forming a memory cell access layer, including bit lines, word lines, access devices, and contact pads. At this stage, peripheral circuitry on the integrated circuit substrate is also formed. After this stage, the top surface of the memory cell access layer in the memory region of the memory device has an array of contact pads, including contact plugs 704, 706 as shown in FIG. 11 . At this stage, standard CMOS fabrication techniques can be applied, including all necessary patterning and etching processes, to form surrounding circuitry and access devices. The contact pads and interconnection circuitry in the memory cell access layer should be made of a refractory metal such as tungsten so that the thermal budget involved in depositing a large number of stacked layers will not interfere with the underlying interconnection circuitry (underlying interconnects).
接着,沉积层内介电层(例如702)于存储单元存取层(901)。层内介电层可为二氧化硅、氮氧化硅、氮化硅或其他层内介电材料。下一步,将导电层与绝缘层交错地披覆沉积。披覆沉积提供多个导电层(例如708、710、712、714)作为电极平面。导电层依据所选的形态可为相对高度掺 杂n型多晶硅(n+polysilicon)、加热材料、金属、相变化材料或其他导电材料。一般导电层的厚度可为50纳米。绝缘层使导电层之间彼此绝缘。在一实施例中,绝缘层的厚度可为50纳米。在其他实施例中,对于期望或需要的特定的施行方式,可具有更厚或更薄的导电材料与绝缘材料。接着,实施一光刻图案化工艺,并打开存储柱介层窗(via)(903),存储柱介层窗穿过对应存储单元存取层上的接触垫的多数导电平面。可施行一反应离子蚀刻工艺(reactive ion etching process),用来形成深且高比例的穿孔穿过二氧化硅与导电层,以提供导电柱介层窗。Next, an interlayer dielectric layer (eg 702) is deposited on the memory cell access layer (901). The interlayer dielectric layer can be silicon dioxide, silicon oxynitride, silicon nitride or other interlayer dielectric materials. In the next step, the conductive layer and the insulating layer are deposited alternately. Drape deposition provides multiple conductive layers (eg 708, 710, 712, 714) as electrode planes. The conductive layer can be relatively highly doped n-type polysilicon (n+ polysilicon), heating material, metal, phase change material or other conductive material depending on the selected morphology. Generally, the thickness of the conductive layer can be 50 nanometers. The insulating layer insulates the conductive layers from each other. In one embodiment, the insulating layer may have a thickness of 50 nanometers. In other embodiments, there may be thicker or thinner conductive and insulating materials as desired or needed for a particular implementation. Next, a photolithography patterning process is performed, and the storage column via (903) is opened, and the storage column via passes through most of the conductive planes corresponding to the contact pads on the access layer of the memory unit. A reactive ion etching process may be performed to form deep and high proportion vias through the silicon dioxide and conductive layers to provide conductive pillar vias.
在打开介层窗后,沉积相变化材料的一衬垫于存储柱介层窗的侧壁(904)。相变化材料可使用原子层沉积(atomic layer deposition)或化学气相沉积技术(chemicalvapor deposition)进行沉积。合适的材料包括硫属化物(chalcogenide),例如是充满锗材料GexSbyTez的硫属化物。一般相变化材料层的厚度可为5至50纳米,也可更多或更少。After opening the via, a liner of phase change material is deposited on the sidewall of the memory pillar via (904). Phase change materials can be deposited using atomic layer deposition or chemical vapor deposition techniques. Suitable materials include chalcogenides, such as chalcogenides filled with germanium material GexSbyTez . Generally, the thickness of the phase change material layer can be 5 to 50 nanometers, or more or less.
相变化材料的决定层(resulting layer)可利用非等向蚀刻(anisotropicallyetched),以打开导电柱介层窗的底部,曝露下方的接触垫。在下一步骤中,将中央电极材料沉积于导电柱介层窗。The resulting layer of phase change material can be anisotropically etched to open the bottom of the conductive pillar via and expose the underlying contact pad. In the next step, the central electrode material is deposited on the conductive pillar via.
继续至图16B,在沉积中央电极材料后,以一化学机械抛光方法(chemicalmechanical polishing process)或其他平面化工艺蚀刻出决定结构(906)。Continuing to FIG. 16B, after depositing the central electrode material, the defining structures are etched by a chemical mechanical polishing process or other planarization process (906).
接着,沉积层内绝缘层于此结构上(907)。Next, an interlayer insulating layer is deposited on the structure (907).
在形成多个导电层后,使用缩减蚀刻工艺(taper etch process)定义接触区域于导电层的周缘(908)。在图案化导电层的周缘后,沉积一绝缘填充(insulating fill)并平面化于此结构上。接着,打开介层窗穿过绝缘填充至导电层的周缘的接触图案。After forming the plurality of conductive layers, a taper etch process is used to define contact areas on the perimeter of the conductive layers (908). After patterning the perimeter of the conductive layer, an insulating fill is deposited and planarized over the structure. Next, the vias are opened through the insulating fill to the contact pattern at the periphery of the conductive layer.
在本实施例中使用偏压安排状态机1128为一控制器,以控制偏压安排供电电压1130,例如依据先前所述的编程技术提供编程电压,用以编程存储单元。在本领域中,控制器可以特殊用途逻辑电路(special-purpose logic circuitry)执行。在另一实施例中,控制器包括一通用处理器,可以相同的集成电路,执行一计算机程序以控制装置的操作。在又一实施例中,混合特殊用途逻辑电路与通用处理器可用于处理器的执行。控制器被安装 以在具有数据值的存储单元中编程数值,是以多数电阻的非重叠范围(non-overlappingrange)代表数据值,多数电阻的非重叠范围包括一电阻范围,是由在存储单元中通过电流路径的相变化存储材料的个别非晶相厚度所建立。利用方块1130中的电压供应与逻辑电路,控制器被配置以提供一编程脉冲至一选定的存储单元,此存储单元具有一脉冲形状,是依据提供编程脉冲前的存储单元电阻范围,与编程脉冲后存储单元的目标电阻范围所决定。控制器的逻辑可包括一序列逻辑,用以决定选定的存储单元的电阻范围与一脉冲形成电路,用以产生具有如图6A至图6D与图7A至图7C的脉冲形状的编程脉冲,此编程脉冲是用以响应选定的存储单元的电阻(determined resistance)范围与目标电阻范围。In this embodiment, the bias arrangement state machine 1128 is used as a controller to control the bias arrangement supply voltage 1130 , for example, to provide a programming voltage according to the previously described programming technique for programming memory cells. In the art, controllers may be implemented as special-purpose logic circuitry. In another embodiment, the controller includes a general purpose processor that executes a computer program on the same integrated circuit to control the operation of the device. In yet another embodiment, mixed special purpose logic circuits and general purpose processors may be used for processor implementation. The controller is configured to program a value in a memory cell having a data value represented by a non-overlapping range of a plurality of resistors, the non-overlapping range of a plurality of resistors including a resistance range formed by the memory cell The phase change through the current path is established by the thickness of the individual amorphous phases of the memory material. Using the voltage supply and logic circuitry in block 1130, the controller is configured to provide a programming pulse to a selected memory cell having a pulse shape based on the range of memory cell resistance prior to providing the programming pulse, and the programmed Determined by the target resistance range of the memory cell after the pulse. The logic of the controller may include a sequence logic for determining the resistance range of the selected memory cell and a pulse forming circuit for generating programming pulses having pulse shapes as shown in FIGS. 6A-6D and 7A-7C, The programming pulse is in response to the determined resistance range and the target resistance range of the selected memory cell.
使用钨或其他接触材料填满介层窗,并提供金属化工艺(metallizationprocess)以在接触图案至导电层与装置上的平面译码电路之间提供内连接(interconnection)(910)。最后,执行后段(back end of line,BEOL)工艺,以完成集成电路(911)。The vias are filled with tungsten or other contact material and a metallization process is provided to provide interconnection between the contact pattern to the conductive layer and the planar decoding circuitry on the device (910). Finally, a back end of line (BEOL) process is performed to complete the integrated circuit (911).
图17绘示依据本发明实施例的集成电路的简易方块图。集成电路1100包括一三维存储器阵列1102,三维存储器阵列1102具有各种电阻范围的编程的存储单元,此些电阻范围大于或等于临界高电阻范围(threshold high resistance range)。一列译码器1104耦接于多数字线1106,且沿着存储器阵列1102的列排列。一行译码器1108耦接于多数位线1110,且沿着存储器阵列1102的行排列,用以读取数据至阵列1102中的存储单元,或从阵列1102中的存储单元编程数据。一层译码器1112在存储器阵列1104的线段1114上耦接于多数电极平面。以总线1116提供地址至行译码器1108、列译码器1104与层译码器1112。在本实施例中,一页面缓冲器1118透过数据总线1120耦接于行译码器1108。数据透过数据输入线1122,从集成电路上的输入/输出端口或其他数据源的内部或外部传送至集成电路的页面缓冲器1118。在所绘示的实施例中,其它电路1124被包含于集成电路中,例如是一通用处理器(general purpose processor)、特殊用途应用电路(special purpose applicationcircuitry)或一提供芯片系统功能(system-on-a-chip functionality)的模块的混合。数据透过数据输出线1126自页面缓冲器1118传送至集成电路上的输入/输出端口,或传送至其他连 接于集成电路的数据终端的内部或外部。FIG. 17 shows a simplified block diagram of an integrated circuit according to an embodiment of the present invention. Integrated circuit 1100 includes a three-dimensional memory array 1102 having programmed memory cells of various resistance ranges greater than or equal to a threshold high resistance range. A column decoder 1104 is coupled to a plurality of word lines 1106 and arranged along a column of the memory array 1102 . A row decoder 1108 is coupled to the plurality of bit lines 1110 and arranged along a row of the memory array 1102 for reading data to or programming data from the memory cells in the array 1102 . A layer of decoders 1112 is coupled to most electrode planes on line segment 1114 of memory array 1104 . Addresses are provided to row decoder 1108 , column decoder 1104 and layer decoder 1112 via bus 1116 . In this embodiment, a page buffer 1118 is coupled to the row decoder 1108 through a data bus 1120 . Data is transferred to the page buffer 1118 of the integrated circuit via data input lines 1122 from internal or external input/output ports or other data sources on the integrated circuit. In the illustrated embodiment, other circuits 1124 are included in integrated circuits, such as a general purpose processor, special purpose application circuitry, or a system-on-chip -a-chip functionality) a mix of modules. Data is transmitted from the page buffer 1118 to the I/O port on the integrated circuit through the data output line 1126, or transmitted to other internal or external data terminals connected to the integrated circuit.
在此描述一全非晶相、每存储单元具有多位、相变化的存储单元配置于三维存储器结构。一字线与一位线包含于一存取阵列中,并连接于一存储导电柱,字线与位线是用以译码一晶体管或其他存取装置。存储导电柱延伸通过平面导体,且具有相变化存储单元位于平面导体与导电柱交叉的接口中。A fully amorphous, multi-bit per memory cell, phase-change memory cell configuration in a three-dimensional memory structure is described herein. A word line and a bit line are included in an access array and connected to a storage conductive column. The word line and the bit line are used for decoding a transistor or other access devices. The storage conductive column extends through the planar conductor, and has a phase change memory cell located in an interface where the planar conductor crosses the conductive column.
存储导电柱的侧壁被多层叠层导电层所接触并围绕于周围。包括电流路径的存储单元形成于对应的导电柱与导电层之间的每一交叉点中。The sidewalls of the storage conductive columns are contacted and surrounded by the multi-layered conductive layer. A memory cell including a current path is formed in each intersection between the corresponding conductive pillar and the conductive layer.
为了隔绝每一层之间的漏电流,只有在相变化材料中通过电流路径的具有不同厚度的非晶相容积,被用于储存数据。In order to isolate the leakage current between each layer, only the amorphous phase volume with different thicknesses passing through the current path in the phase change material is used to store data.
在本发明中,一编程程序可用于编程所有的非晶相状态。在此所述的存储单元结构、制造方法以及操作方法适用于高密度三维存储器阵列。然而,此技术也可应用于单层阵列以及较小的相变化存储单元组。In the present invention, a programming procedure can be used to program all amorphous phase states. The memory cell structures, manufacturing methods, and operating methods described herein are applicable to high-density three-dimensional memory arrays. However, this technique can also be applied to single layer arrays as well as smaller groups of phase change memory cells.
综上所述,虽然本发明已以实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视随附的权利要求范围所界定的为准。To sum up, although the present invention has been disclosed by the above embodiments, it is not intended to limit the present invention. Those skilled in the art of the present invention can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be defined by the appended claims.
Claims (8)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361751954P | 2013-01-14 | 2013-01-14 | |
US61/751,954 | 2013-01-14 | ||
US13/865,636 | 2013-04-18 | ||
US13/865,636 US8964442B2 (en) | 2013-01-14 | 2013-04-18 | Integrated circuit 3D phase change memory array and manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103928609A CN103928609A (en) | 2014-07-16 |
CN103928609B true CN103928609B (en) | 2016-12-28 |
Family
ID=51146757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310287374.1A Active CN103928609B (en) | 2013-01-14 | 2013-07-10 | Three-dimensional phase change memory device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103928609B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106601743B (en) * | 2015-10-14 | 2019-05-07 | 旺宏电子股份有限公司 | memory element |
CN117320449A (en) * | 2023-10-09 | 2023-12-29 | 成都皮兆永存科技有限公司 | High-voltage blocking device, three-dimensional memory and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101604728A (en) * | 2008-06-13 | 2009-12-16 | 财团法人工业技术研究院 | Phase change memory device and manufacturing method thereof |
CN101872788A (en) * | 2009-04-27 | 2010-10-27 | 旺宏电子股份有限公司 | Integrated circuit 3D memory array and method of manufacturing the same |
CN101958146A (en) * | 2009-07-15 | 2011-01-26 | 旺宏电子股份有限公司 | A memory device and method of operating the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8178386B2 (en) * | 2007-09-14 | 2012-05-15 | Macronix International Co., Ltd. | Phase change memory cell array with self-converged bottom electrode and method for manufacturing |
JP2011199215A (en) * | 2010-03-24 | 2011-10-06 | Hitachi Ltd | Semiconductor memory device |
-
2013
- 2013-07-10 CN CN201310287374.1A patent/CN103928609B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101604728A (en) * | 2008-06-13 | 2009-12-16 | 财团法人工业技术研究院 | Phase change memory device and manufacturing method thereof |
CN101872788A (en) * | 2009-04-27 | 2010-10-27 | 旺宏电子股份有限公司 | Integrated circuit 3D memory array and method of manufacturing the same |
CN101958146A (en) * | 2009-07-15 | 2011-01-26 | 旺宏电子股份有限公司 | A memory device and method of operating the same |
Also Published As
Publication number | Publication date |
---|---|
CN103928609A (en) | 2014-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI499104B (en) | Integrated circuit 3d phase change memory array and manufacturing method | |
TWI786644B (en) | High-density memory device with planar thin film transistor (tft) selector and methods for making the same | |
CN101872778B (en) | Integrated circuit 3D phase change memory array and manufacturing method | |
US11024800B2 (en) | Film scheme to improve peeling in chalcogenide based PCRAM | |
US9450023B1 (en) | Vertical bit line non-volatile memory with recessed word lines | |
US7566646B2 (en) | Three dimensional programmable device and method for fabricating the same | |
TWI472026B (en) | Method for forming memory element in series with miim diode | |
US9076962B2 (en) | Nonvolative memory | |
US9196356B2 (en) | Stackable non-volatile memory | |
CN101872788A (en) | Integrated circuit 3D memory array and method of manufacturing the same | |
CN111052376B (en) | Three-dimensional memory array | |
US9660188B2 (en) | Phase change memory structure to reduce leakage from the heating element to the surrounding material | |
US20190214558A1 (en) | Dedicated contacts for controlled electroforming of memory cells in resistive random-access memory array | |
US9218875B2 (en) | Resistive non-volatile memory | |
US8981330B2 (en) | Thermally-confined spacer PCM cells | |
US10333065B2 (en) | Resistive memory device | |
CN115394799A (en) | Semiconductor device, memory cell and forming method thereof | |
US8895402B2 (en) | Fin-type memory | |
CN103928609B (en) | Three-dimensional phase change memory device and manufacturing method thereof | |
US8791010B1 (en) | Silver interconnects for stacked non-volatile memory device and method | |
US20230157187A1 (en) | Resistive memory device with enhanced local electric field and methods of forming the same | |
TWI846408B (en) | Memory selector and forming method thereof | |
US10886333B2 (en) | Memory structure including gate controlled three-terminal metal oxide components | |
WO2021092942A1 (en) | Memory unit and manufacturing method therefor | |
CN117378051A (en) | A 3D stackable bidirectional access device for memory arrays |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |