CN103923428A - Starch-based porous hydrogel and preparation method thereof - Google Patents
Starch-based porous hydrogel and preparation method thereof Download PDFInfo
- Publication number
- CN103923428A CN103923428A CN201410166127.0A CN201410166127A CN103923428A CN 103923428 A CN103923428 A CN 103923428A CN 201410166127 A CN201410166127 A CN 201410166127A CN 103923428 A CN103923428 A CN 103923428A
- Authority
- CN
- China
- Prior art keywords
- starch
- hydrogel
- solution
- mixed solution
- water mixed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920002472 Starch Polymers 0.000 title claims abstract description 143
- 239000008107 starch Substances 0.000 title claims abstract description 143
- 235000019698 starch Nutrition 0.000 title claims abstract description 143
- 239000000017 hydrogel Substances 0.000 title claims abstract description 122
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 239000011259 mixed solution Substances 0.000 claims abstract description 43
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 41
- 239000002904 solvent Substances 0.000 claims abstract description 29
- 239000003431 cross linking reagent Substances 0.000 claims abstract description 24
- 239000000178 monomer Substances 0.000 claims abstract description 24
- 238000001035 drying Methods 0.000 claims abstract description 13
- 238000006243 chemical reaction Methods 0.000 claims abstract description 6
- 238000010438 heat treatment Methods 0.000 claims abstract description 4
- 239000003795 chemical substances by application Substances 0.000 claims abstract 4
- 239000000243 solution Substances 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 23
- 239000003999 initiator Substances 0.000 claims description 16
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 claims description 13
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 12
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 12
- OVARTBFNCCXQKS-UHFFFAOYSA-N propan-2-one;hydrate Chemical compound O.CC(C)=O OVARTBFNCCXQKS-UHFFFAOYSA-N 0.000 claims description 11
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 claims description 8
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000011837 N,N-methylenebisacrylamide Substances 0.000 claims description 8
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 claims description 8
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 claims description 8
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 claims description 7
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims description 6
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 claims description 5
- 239000002202 Polyethylene glycol Substances 0.000 claims description 5
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Chemical compound CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 claims description 5
- 229920001223 polyethylene glycol Polymers 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 3
- 229920002261 Corn starch Polymers 0.000 claims description 3
- 229920001612 Hydroxyethyl starch Polymers 0.000 claims description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 3
- 229910001870 ammonium persulfate Inorganic materials 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims description 3
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 claims description 3
- 239000008120 corn starch Substances 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 3
- 229940050526 hydroxyethylstarch Drugs 0.000 claims description 3
- -1 poly(ethylene glycol dimethacrylate) Polymers 0.000 claims 3
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims 1
- 239000004593 Epoxy Substances 0.000 claims 1
- 239000001294 propane Substances 0.000 claims 1
- 239000011148 porous material Substances 0.000 abstract description 9
- 230000008961 swelling Effects 0.000 abstract description 8
- 238000005406 washing Methods 0.000 abstract description 5
- 238000002156 mixing Methods 0.000 abstract description 3
- 230000000977 initiatory effect Effects 0.000 abstract 2
- 239000007788 liquid Substances 0.000 abstract 2
- 239000012153 distilled water Substances 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000004088 foaming agent Substances 0.000 description 6
- 238000002791 soaking Methods 0.000 description 6
- 238000000635 electron micrograph Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000006386 neutralization reaction Methods 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 239000003361 porogen Substances 0.000 description 4
- 238000004108 freeze drying Methods 0.000 description 3
- 238000005191 phase separation Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229940099112 cornstarch Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 229920000578 graft copolymer Polymers 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- VAPQAGMSICPBKJ-UHFFFAOYSA-N 2-nitroacridine Chemical compound C1=CC=CC2=CC3=CC([N+](=O)[O-])=CC=C3N=C21 VAPQAGMSICPBKJ-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 239000004604 Blowing Agent Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229910021386 carbon form Inorganic materials 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 229920003213 poly(N-isopropyl acrylamide) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 230000002522 swelling effect Effects 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 229920003176 water-insoluble polymer Polymers 0.000 description 1
Landscapes
- Graft Or Block Polymers (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种高分子材料技术领域,尤其是基于淀粉组成的多孔水凝胶及其制备方法。 The invention relates to the technical field of polymer materials, in particular to a starch-based porous hydrogel and a preparation method thereof.
背景技术 Background technique
水凝胶是一种具有亲水性且不溶于水的高分子聚合物,在水中可迅速溶胀至溶胀平衡,其三维结构和形状保持不变,在食品加工、医药、材料领域得到了广泛的应用。与传统的水凝胶相比,多孔水凝胶内部有大量的孔隙结构,拥有更大的空间和更大的内部表面积,因此具有更好的溶胀性能、更快的溶胀动力学以及对外部更快速响应的特点。 Hydrogel is a kind of hydrophilic and water-insoluble polymer, which can rapidly swell to swelling equilibrium in water, and its three-dimensional structure and shape remain unchanged. It has been widely used in the fields of food processing, medicine, and materials. application. Compared with traditional hydrogels, porous hydrogels have a large number of pore structures inside, with larger spaces and larger internal surface areas, so they have better swelling properties, faster swelling kinetics, and more external contact. Features of quick response.
淀粉是一种可再生的天然资源,来源丰富、价格低廉,具有可资源再生性、低毒性、生物相容性、生物降解性。但是淀粉本身具有结晶性强、难于加工和成型等缺点,因此,通常将淀粉进行物理或化学改性,以改善淀粉的结构和性能,拓宽淀粉的应用领域。近年来淀粉等天然高分子作为可再生、可持续发展的绿色材料,在化工、医药、环境等领域得到了更广泛和深入的研究和应用。 Starch is a renewable natural resource with abundant sources, low price, renewable resources, low toxicity, biocompatibility and biodegradability. However, starch itself has disadvantages such as strong crystallinity, difficulty in processing and forming, etc. Therefore, starch is usually modified physically or chemically to improve the structure and performance of starch and broaden the application fields of starch. In recent years, starch and other natural polymers, as renewable and sustainable green materials, have been more widely and deeply researched and applied in the fields of chemical industry, medicine, and environment.
目前制备多孔水凝胶常用的方法有:发泡法、致孔剂法、相分离法、冷冻干燥法、溶剂交换法。发泡法利用发泡剂反应产生的气体或有机溶剂气体挥发,在材料内部形成泡孔,如CN103044703A以空气为发泡剂制备出多孔气泡胶体,作为创伤敷料的组成部分,CN102492093A、CN1264321 A、CN1757662 A、CN1488331 A、CN1763123A、CN1768920A、CN102633956 B等采用碳酸盐或碳酸氢盐作为发泡剂,在酸性条件下反应生成气体二氧化碳,挥发后形成多孔结构。 CN102702559A采用微生物———干酵母做发泡剂,通过其发酵产生气体,从而形成多孔水凝胶。CN102167763A用低沸点溶剂做发泡剂低温光聚合制备多孔水凝胶。CN101588790A、CN1527860A等是利用聚合反应过程中反应产生的气体作为发泡剂,在水凝胶基体中留下孔洞。CN1763124A、CN102406595A采用锐孔凝固浴法制备的微胶囊作为发泡剂,在水凝胶中产生泡孔结构。致孔法是将成孔剂掺杂在聚合物本体中,将聚合物置于水中。致孔剂溶解于水中而聚合物不溶解,就会在聚合物内部留下孔洞,如以乙醇为致孔剂制备聚丙烯酰胺/丙烯酸钾互穿网络多孔水凝胶(材料导报,2011,25(10),28-31)。相分离法利用聚合物在溶剂中不溶解,聚合物相和溶剂相产生相分离,然后在干燥过程中,溶剂挥发,在聚合物基体内留下孔洞,如Zhang等以蔗糖溶液和1,4-二氧杂环混合液为溶剂制备PNIPA多孔水凝胶(Macromolecular Chemistry and Physics,2004,205(1),107-113.)。冷冻干燥法是在低温真空条件下使聚合物中的溶剂挥发,从而在聚合物中留下孔洞,如CN103094596A利用冷冻干燥法制备多孔水凝胶,作为质子膜的载体。 At present, the commonly used methods for preparing porous hydrogels are: foaming method, porogen method, phase separation method, freeze-drying method, and solvent exchange method. The foaming method utilizes the gas generated by the foaming agent reaction or the volatilization of the organic solvent gas to form cells inside the material. For example, CN103044703A uses air as the foaming agent to prepare porous foam colloid, which is used as a component of wound dressings. CN102492093A, CN1264321 A, CN1757662 A, CN1488331 A, CN1763123A, CN1768920A, CN102633956 B, etc. use carbonate or bicarbonate as a blowing agent, react under acidic conditions to generate gaseous carbon dioxide, and form a porous structure after volatilization. CN102702559A uses microorganisms—dried yeast as a foaming agent, and generates gas through its fermentation to form a porous hydrogel. CN102167763A A low-boiling-point solvent is used as a foaming agent to prepare a porous hydrogel by low-temperature photopolymerization. CN101588790A, CN1527860A etc. utilize the gas generated during the polymerization reaction as a foaming agent to leave holes in the hydrogel matrix. CN1763124A and CN102406595A adopt the microcapsule prepared by the sharp-hole coagulation bath method as a foaming agent to generate a cell structure in the hydrogel. The porogenic method is to dope the porogen into the polymer body and place the polymer in water. If the porogen dissolves in water but the polymer does not dissolve, holes will be left inside the polymer, such as the preparation of polyacrylamide/potassium acrylate interpenetrating network porous hydrogel with ethanol as porogen (Materials Report, 2011, 25 (10), 28-31). The phase separation method utilizes that the polymer is insoluble in the solvent, and the polymer phase and the solvent phase are separated, and then during the drying process, the solvent volatilizes, leaving holes in the polymer matrix, such as Zhang et al. with sucrose solution and 1,4 PNIPA porous hydrogel was prepared with dioxane mixture as solvent (Macromolecular Chemistry and Physics, 2004, 205 (1), 107-113.). The freeze-drying method is to volatilize the solvent in the polymer under low-temperature vacuum conditions, thereby leaving holes in the polymer. For example, CN103094596A utilizes the freeze-drying method to prepare porous hydrogel as a carrier of the proton membrane.
在这些制备多孔水凝胶的方法中,通常存在一些问题:如气体挥发速率较快,反应程度以及孔结构常常难以控制;溶剂挥发或者相分离形成孔洞的时候,水凝胶的三维结构通常会遭到破坏,孔洞的结构、大小和形态难以控制,开孔性较差,并且多孔水凝胶在溶胀前后其三维尺寸通常会发生剧烈的变化,在某些需要维持多孔水凝胶稳定的立体结构的时候,应用就会受到限制。溶剂交换法是用有机溶剂将水凝胶中溶胀的水分交换、替代,再将有机溶剂挥发,即可得到多孔结构。这种方法可在常温下处理,条件温和,方法简便,但是水分子在被有机溶剂交换时由于受到水分子间氢键的作用以及水凝胶结构中极性键的作用,孔洞结构会发生严重的收缩或坍塌。 In these methods of preparing porous hydrogels, there are usually some problems: such as the gas volatilization rate is fast, the degree of reaction and the pore structure are often difficult to control; when the solvent volatilizes or phase separation forms pores, the three-dimensional structure of the hydrogel usually changes. When the porous hydrogel is destroyed, the structure, size and shape of the pores are difficult to control, the porosity is poor, and the three-dimensional size of the porous hydrogel usually changes drastically before and after swelling. When the structure is used, the application will be limited. The solvent exchange method uses an organic solvent to exchange and replace the swollen water in the hydrogel, and then volatilizes the organic solvent to obtain a porous structure. This method can be processed at room temperature, the conditions are mild, and the method is simple, but when water molecules are exchanged by organic solvents, due to the action of hydrogen bonds between water molecules and the action of polar bonds in the hydrogel structure, the pore structure will seriously occur. shrinkage or collapse.
发明内容 Contents of the invention
为了克服上述现有技术中存在的不足,本发明提供了一种梯度溶剂交换法。采用特定组成的有机溶剂-水混合溶液,不会破坏原有的孔洞结构,能够保持水凝胶的三维结构,且操作简便、开孔性好、三维结构稳定的淀粉基多孔水凝胶及其制备方法。 In order to overcome the deficiencies in the above-mentioned prior art, the present invention provides a gradient solvent exchange method. Using a specific composition of organic solvent-water mixed solution, will not destroy the original pore structure, can maintain the three-dimensional structure of the hydrogel, and is easy to operate, good porosity, three-dimensional structure stable starch-based porous hydrogel and its Preparation.
本发明的目的是这样实现的: The purpose of the present invention is achieved like this:
一种淀粉基多孔水凝胶,包括淀粉溶液、引发剂、单体和交联剂。 A starch-based porous hydrogel includes starch solution, initiator, monomer and cross-linking agent.
所述的淀粉基多孔水凝胶的制备方法为:在淀粉溶液中加入引发剂、单体和交联剂,并在每一种组分加入后混合均匀,加热使其充分反应,即可得到淀粉基水凝胶;将得到的淀粉基水凝胶洗涤、溶胀后,浸入有机溶剂-水混合溶液中进行梯度溶剂交换,经过干燥,即可得到淀粉基多孔水凝胶。 The preparation method of the starch-based porous hydrogel is as follows: adding an initiator, a monomer and a crosslinking agent into the starch solution, and mixing evenly after each component is added, heating to make it fully react, and then obtaining Starch-based hydrogel: after the obtained starch-based hydrogel is washed and swollen, immersed in an organic solvent-water mixed solution for gradient solvent exchange, and dried, the starch-based porous hydrogel can be obtained.
所述淀粉溶液中的淀粉为可溶性淀粉、玉米淀粉、羧甲基淀粉、羟乙基淀粉;所述的淀粉溶液为:淀粉的水溶液或者淀粉的二甲亚砜溶液;所述的引发剂为:过硫酸钾、过硫酸铵、偶氮二异丁腈;所述的单体为:丙烯酰胺、丙烯酸、丙烯酸酯和甲基丙烯酸中的至少一种;所述的交联剂为:聚二甲基丙烯酸乙二醇酯、N,N-亚甲基二丙烯酰胺、戊二醛和环氧氯丙烷中的至少一种;所述的有机溶剂-水混合溶液为:乙醇-水混合溶液或丙酮—水混合溶液;所述的梯度溶剂交换是指:将淀粉基水凝胶顺序浸入到体积浓度由小到大呈梯度分布的乙醇-水混合溶液或丙酮-水混合溶液中,依次进行溶剂交换。 The starch in the starch solution is soluble starch, cornstarch, carboxymethyl starch, hydroxyethyl starch; the starch solution is: the aqueous solution of starch or the dimethyl sulfoxide solution of starch; the initiator is: Potassium persulfate, ammonium persulfate, azobisisobutyronitrile; the monomer is: at least one of acrylamide, acrylic acid, acrylate and methacrylic acid; the crosslinking agent is: polydimethyl At least one of ethylene glycol acrylate, N,N-methylenebisacrylamide, glutaraldehyde and epichlorohydrin; the organic solvent-water mixed solution is: ethanol-water mixed solution or acetone —Water mixed solution; the gradient solvent exchange refers to: immerse the starch-based hydrogel sequentially in the ethanol-water mixed solution or acetone-water mixed solution with a gradient distribution of volume concentration from small to large, and perform solvent exchange sequentially .
所述的淀粉溶液的质量浓度为1%-5%。 The mass concentration of the starch solution is 1%-5%.
所述的淀粉与单体的质量比为1:1-1:8。 The mass ratio of the starch to the monomer is 1:1-1:8.
所述的交联剂为聚二甲基丙烯酸乙二醇酯、N,N-亚甲基二丙烯酰胺时,其工艺路线为:在淀粉溶液中加入引发剂、单体和交联剂,并在每一种组分加入后混合均匀,加热使其充分反应,即可得到淀粉基水凝胶;将得到的淀粉基水凝胶在水中浸泡、洗涤、溶胀后,将其浸入有机溶剂-水混合溶液中进行梯度溶剂交换,经过干燥,即可得到淀粉基多孔水凝胶。 When the cross-linking agent is polyethylene glycol dimethacrylate or N,N-methylenebisacrylamide, the process route is: add initiator, monomer and cross-linking agent to the starch solution, and After each component is added, mix evenly, heat to make it fully react, and the starch-based hydrogel can be obtained; after soaking, washing and swelling the obtained starch-based hydrogel in water, immerse it in an organic solvent-water Gradient solvent exchange is carried out in the mixed solution, and after drying, the starch-based porous hydrogel can be obtained.
所述的交联剂为戊二醛、环氧氯丙烷时,其工艺路线为:在淀粉溶液中加入引发剂、单体,混合均匀,加热使其反应一定时间,然后加入交联剂继续反应,即可得到淀粉基水凝胶。将得到的淀粉基水凝胶在水中浸泡、洗涤、溶胀后,将其浸入有机溶剂-水混合溶液中进行梯度溶剂交换,经过干燥,即可得到淀粉基多孔水凝胶。 When the cross-linking agent is glutaraldehyde or epichlorohydrin, the process route is: add initiator and monomer to the starch solution, mix evenly, heat it to react for a certain period of time, then add the cross-linking agent to continue the reaction , the starch-based hydrogel can be obtained. After soaking, washing and swelling the obtained starch-based hydrogel in water, immersing the obtained starch-based hydrogel in an organic solvent-water mixed solution for gradient solvent exchange and drying, the starch-based porous hydrogel can be obtained.
所述的乙醇-水混合溶液和丙酮-水混合溶液,混合溶液的体积浓度由10%到100%呈梯度分布,体积浓度的设定以水凝胶不出现明显的体积收缩为合适。 For the ethanol-water mixed solution and the acetone-water mixed solution, the volume concentration of the mixed solution is distributed in a gradient from 10% to 100%, and the setting of the volume concentration is suitable if the hydrogel does not appear obvious volume shrinkage.
积极有益效果:本发明的优点是:1、将淀粉与单体发生接枝共聚形成淀粉接枝聚合物,对淀粉进行化学改性,不仅可以改善淀粉的性能,并且使淀粉基多孔水凝胶的形成更容易,结构更稳定;2、将淀粉基水凝胶用有机溶剂-水混合溶液进行梯度溶剂交换,易于形成开孔结构的淀粉基多孔水凝胶,并能较好地保持淀粉基水凝胶的三维结构。 Positive and beneficial effects: the advantages of the present invention are: 1. Grafting and copolymerizing starch and monomers to form starch graft polymers, and chemically modifying starch can not only improve the performance of starch, but also make starch-based porous hydrogel The formation of the starch-based hydrogel is easier and the structure is more stable; 2. The starch-based hydrogel is subjected to gradient solvent exchange with an organic solvent-water mixed solution, which is easy to form a starch-based porous hydrogel with an open-pore structure, and can better maintain the starch-based hydrogel. Three-dimensional structure of hydrogels.
附图说明 Description of drawings
图1为实施例1制备的淀粉-丙烯酰胺多孔水凝胶断面电镜图; Fig. 1 is the starch-acrylamide porous hydrogel cross-sectional electron micrograph that embodiment 1 prepares;
图2为实施例2制备的淀粉-丙烯酸酰胺多孔水凝胶断面电镜图; Fig. 2 is the starch-acrylic acid amide porous hydrogel cross-sectional electron micrograph that embodiment 2 prepares;
图3为实施例6制备的淀粉-丙烯酸-丙烯酸丁酯多孔水凝胶断面电镜图。 Fig. 3 is the cross-sectional electron microscope image of the starch-acrylic acid-butyl acrylate porous hydrogel prepared in Example 6.
具体实施方式 Detailed ways
下面结合具体实施例,对本发明做进一步的说明: Below in conjunction with specific embodiment, the present invention will be further described:
一种淀粉基多孔水凝胶,包括淀粉溶液、引发剂、单体和交联剂。 A starch-based porous hydrogel includes starch solution, initiator, monomer and cross-linking agent.
所述的淀粉基多孔水凝胶的制备方法为:在淀粉溶液中加入引发剂、单体和交联剂,并在每一种组分加入后混合均匀,加热使其充分反应,即可得到淀粉基水凝胶;将得到的淀粉基水凝胶洗涤、溶胀后,浸入有机溶剂-水混合溶液中进行梯度溶剂交换,经过干燥,即可得到淀粉基多孔水凝胶。 The preparation method of the starch-based porous hydrogel is as follows: adding an initiator, a monomer and a crosslinking agent into the starch solution, and mixing evenly after each component is added, heating to make it fully react, and then obtaining Starch-based hydrogel: after the obtained starch-based hydrogel is washed and swollen, immersed in an organic solvent-water mixed solution for gradient solvent exchange, and dried, the starch-based porous hydrogel can be obtained.
所述淀粉溶液中的淀粉为可溶性淀粉、玉米淀粉、羧甲基淀粉、羟乙基淀粉;所述的淀粉溶液为:淀粉的水溶液或者淀粉的二甲亚砜溶液;所述的引发剂为:过硫酸钾、过硫酸铵、偶氮二异丁腈;所述的单体为:丙烯酰胺、丙烯酸、丙烯酸酯和甲基丙烯酸中的至少一种;所述的交联剂为:聚二甲基丙烯酸乙二醇酯、N,N-亚甲基二丙烯酰胺、戊二醛和环氧氯丙烷中的至少一种;所述的有机溶剂-水混合溶液为:乙醇-水混合溶液或丙酮—水混合溶液;所述的梯度溶剂交换是指:将淀粉基水凝胶顺序浸入到体积浓度由小到大呈梯度分布的乙醇-水混合溶液或丙酮-水混合溶液中,依次进行溶剂交换。 The starch in the starch solution is soluble starch, cornstarch, carboxymethyl starch, hydroxyethyl starch; the starch solution is: the aqueous solution of starch or the dimethyl sulfoxide solution of starch; the initiator is: Potassium persulfate, ammonium persulfate, azobisisobutyronitrile; the monomer is: at least one of acrylamide, acrylic acid, acrylate and methacrylic acid; the crosslinking agent is: polydimethyl At least one of ethylene glycol acrylate, N,N-methylenebisacrylamide, glutaraldehyde and epichlorohydrin; the organic solvent-water mixed solution is: ethanol-water mixed solution or acetone —Water mixed solution; the gradient solvent exchange refers to: immerse the starch-based hydrogel sequentially in the ethanol-water mixed solution or acetone-water mixed solution with a gradient distribution of volume concentration from small to large, and perform solvent exchange sequentially .
所述的淀粉溶液的质量浓度为1%-5%。 The mass concentration of the starch solution is 1%-5%.
所述的淀粉与单体的质量比为1:1-1:8。 The mass ratio of the starch to the monomer is 1:1-1:8.
所述的交联剂为聚二甲基丙烯酸乙二醇酯、N,N-亚甲基二丙烯酰胺时,其工艺路线为:在淀粉溶液中加入引发剂、单体和交联剂,并在每一种组分加入后混合均匀,加热使其充分反应,即可得到淀粉基水凝胶;将得到的淀粉基水凝胶在水中浸泡、洗涤、溶胀后,将其浸入有机溶剂-水混合溶液中进行梯度溶剂交换,经过干燥,即可得到淀粉基多孔水凝胶。 When the cross-linking agent is polyethylene glycol dimethacrylate or N,N-methylenebisacrylamide, the process route is: add initiator, monomer and cross-linking agent to the starch solution, and After each component is added, mix evenly, heat to make it fully react, and the starch-based hydrogel can be obtained; after soaking, washing and swelling the obtained starch-based hydrogel in water, immerse it in an organic solvent-water Gradient solvent exchange is carried out in the mixed solution, and after drying, the starch-based porous hydrogel can be obtained.
所述的交联剂为戊二醛、环氧氯丙烷时,其工艺路线为:在淀粉溶液中加入引发剂、单体,混合均匀,加热使其反应一定时间,然后加入交联剂继续反应,即可得到淀粉基水凝胶。将得到的淀粉基水凝胶在水中浸泡、洗涤、溶胀后,将其浸入有机溶剂-水混合溶液中进行梯度溶剂交换,经过干燥,即可得到淀粉基多孔水凝胶。 When the cross-linking agent is glutaraldehyde or epichlorohydrin, the process route is: add initiator and monomer to the starch solution, mix evenly, heat it to react for a certain period of time, then add the cross-linking agent to continue the reaction , the starch-based hydrogel can be obtained. After soaking, washing and swelling the obtained starch-based hydrogel in water, immersing the obtained starch-based hydrogel in an organic solvent-water mixed solution for gradient solvent exchange and drying, the starch-based porous hydrogel can be obtained.
所述的乙醇-水混合溶液和丙酮-水混合溶液,混合溶液的体积浓度由10%到100%呈梯度分布,体积浓度的设定以水凝胶不出现明显的体积收缩为合适。 For the ethanol-water mixed solution and the acetone-water mixed solution, the volume concentration of the mixed solution is distributed in a gradient from 10% to 100%, and the setting of the volume concentration is suitable if the hydrogel does not appear obvious volume shrinkage.
实施例Example 1 1
在圆底烧瓶内加入2.00g淀粉和40mL蒸馏水,搅拌均匀,加热至85˚C,使淀粉充分糊化,然后冷却至室温。在淀粉溶液中依次加入单体丙烯酰胺4.00g、过硫酸钾0.08g,交联剂聚乙二醇二甲基丙烯酸酯1.00g,加热反应2.5 h,即得淀粉基水凝胶。将水凝胶取出,反复用蒸馏水浸泡、溶胀、洗涤数次,即得到纯净的水凝胶。将溶胀的水凝胶依次浸入体积浓度分别为20%、40%、50%、60%、65%、70%、75%、80%、100%的乙醇-水混合溶液中,每次浸泡、振荡2小时。在100%的乙醇中振荡12小时以上,以水凝胶变硬、不再有弹性为标准,然后放在干燥箱中干燥,即得淀粉基多孔水凝胶,如图1所示的淀粉-丙烯酰胺多孔水凝胶断面电镜图。 Add 2.00 g of starch and 40 mL of distilled water into a round bottom flask, stir well, heat to 85°C to fully gelatinize the starch, and then cool to room temperature. Add 4.00 g of monomer acrylamide, 0.08 g of potassium persulfate, and 1.00 g of cross-linking agent polyethylene glycol dimethacrylate to the starch solution in sequence, and heat for 2.5 h to obtain starch-based hydrogel. The hydrogel is taken out, repeatedly soaked in distilled water, swelled, and washed several times to obtain a pure hydrogel. The swollen hydrogel was sequentially immersed in ethanol-water mixed solutions with volume concentrations of 20%, 40%, 50%, 60%, 65%, 70%, 75%, 80%, and 100%. Shake for 2 hours. Oscillate in 100% ethanol for more than 12 hours, take the hydrogel hardened and no longer elastic as the standard, and then dry it in a drying oven to obtain a starch-based porous hydrogel, as shown in Figure 1. Electron micrograph of the section of acrylamide porous hydrogel.
实施例Example 2 2
在圆底烧瓶内加入2.00g淀粉和40mL蒸馏水,搅拌均匀,加热至85˚C,使淀粉充分糊化,然后冷却至室温。在淀粉溶液中依次加入单体丙烯酰胺4.00g、过硫酸钾0.08g,恒温至75˚C反应1小时。加入稀盐酸,调整溶液pH值为1,加入交联剂戊二醛4.00g,加热至50˚C反应一定时间,即得淀粉基水凝胶。将水凝胶取出,反复用蒸馏水浸泡、溶胀、洗涤数次,即得到纯净的水凝胶。将溶胀的水凝胶依次浸入体积浓度分别为20%、40%、50%、60%、65%、70%、75%、80%、100%的乙醇-水混合溶液中,每次浸泡、振荡2小时。在100%的乙醇中振荡12小时以上,以水凝胶变硬、不再有弹性为标准,然后放在干燥箱中干燥,即得淀粉基多孔水凝胶,如图2所示的淀粉-丙烯酰胺多孔水凝胶断面电镜图。 Add 2.00 g of starch and 40 mL of distilled water into a round bottom flask, stir well, heat to 85°C to fully gelatinize the starch, and then cool to room temperature. Add 4.00 g of monomer acrylamide and 0.08 g of potassium persulfate in turn to the starch solution, and keep the temperature at 75 °C for 1 hour. Add dilute hydrochloric acid to adjust the pH of the solution to 1, add 4.00 g of glutaraldehyde as a cross-linking agent, and heat to 50°C for a certain period of time to obtain a starch-based hydrogel. The hydrogel is taken out, repeatedly soaked in distilled water, swelled, and washed several times to obtain a pure hydrogel. The swollen hydrogel was sequentially immersed in ethanol-water mixed solutions with volume concentrations of 20%, 40%, 50%, 60%, 65%, 70%, 75%, 80%, and 100%. Shake for 2 hours. Oscillate in 100% ethanol for more than 12 hours, take the hydrogel hardened and no longer elastic as the standard, and then dry it in a drying oven to obtain a starch-based porous hydrogel, as shown in Figure 2. Electron micrograph of the section of acrylamide porous hydrogel.
实施例Example 3 3
称取丙烯酸3.0g,加入对应量的25%氢氧化钠溶液中和丙烯酸(中和度60%),冷却至室温。在烧杯中放入1.0g淀粉、10mL蒸馏水,加热至70˚C,反应0.5 h。然后再依次加入上述中和度为60%的丙烯酸溶液、0.9% N,N-亚甲基二丙烯酰胺溶液1mL,2.0%过硫酸钾溶液3mL,加热反应1.5 h,即得淀粉基水凝胶。将水凝胶取出,反复用蒸馏水浸泡、溶胀、洗涤数次,即得到纯净的水凝胶。将充分溶胀的水凝胶依次浸入体积浓度分别为20%、40%、50%、60%、65%、70%、75%、80%、100%的乙醇-水混合溶液中,每次浸泡、振荡2小时。然后放在干燥箱中干燥,即得淀粉基多孔水凝胶。 Weigh 3.0 g of acrylic acid, add corresponding amount of 25% sodium hydroxide solution to neutralize acrylic acid (neutralization degree 60%), and cool to room temperature. Put 1.0 g of starch and 10 mL of distilled water in a beaker, heat to 70 °C, and react for 0.5 h. Then add the above-mentioned acrylic acid solution with a neutralization degree of 60%, 1 mL of 0.9% N,N-methylenebisacrylamide solution, and 3 mL of 2.0% potassium persulfate solution in sequence, and heat for 1.5 h to obtain a starch-based hydrogel. . The hydrogel is taken out, repeatedly soaked in distilled water, swelled, and washed several times to obtain a pure hydrogel. The fully swollen hydrogels were immersed in the ethanol-water mixed solutions with volume concentrations of 20%, 40%, 50%, 60%, 65%, 70%, 75%, 80%, and 100% in sequence, and each immersion , Shake for 2 hours. Then it is placed in a drying oven to dry to obtain the starch-based porous hydrogel.
实施例Example 4 4
称取丙烯酸3.0g,加入对应量的25%氢氧化钠溶液中和丙烯酸(中和度60%),冷却至室温。在烧杯中放入1.0g淀粉、10mL蒸馏水,加热至70˚C,反应0.5 h。然后再依次加入上述中和度为60%的丙烯酸溶液、0.9% N,N-亚甲基二丙烯酰胺溶液1mL,2.0%过硫酸钾溶液3mL,加热反应1.5 h,即得淀粉基水凝胶。将水凝胶取出,反复用蒸馏水浸泡、溶胀、洗涤数次,即得到纯净的水凝胶。将充分溶胀的水凝胶依次浸入体积浓度分别为35%、70%、73%、76%、79%、82%、90%、100%的丙酮-水混合溶液中,每次浸泡、振荡2小时。然后放在干燥箱中干燥,即得淀粉基多孔水凝胶。 Weigh 3.0 g of acrylic acid, add corresponding amount of 25% sodium hydroxide solution to neutralize acrylic acid (neutralization degree 60%), and cool to room temperature. Put 1.0 g of starch and 10 mL of distilled water in a beaker, heat to 70 °C, and react for 0.5 h. Then add the above-mentioned acrylic acid solution with a neutralization degree of 60%, 1 mL of 0.9% N,N-methylenebisacrylamide solution, and 3 mL of 2.0% potassium persulfate solution in sequence, and heat for 1.5 h to obtain a starch-based hydrogel. . The hydrogel is taken out, repeatedly soaked in distilled water, swelled, and washed several times to obtain a pure hydrogel. The fully swollen hydrogels were immersed in the acetone-water mixed solutions with volume concentrations of 35%, 70%, 73%, 76%, 79%, 82%, 90%, and 100% in sequence, each soaking and shaking for 2 Hour. Then place it in a drying oven to dry to obtain the starch-based porous hydrogel.
实施例Example 5 5
在烧杯中放入1.0g淀粉、10mL蒸馏水,加热至70˚C,反应0.5 h。然后再依次加入丙烯酸和丙烯酰胺,淀粉、丙烯酸、丙烯酰胺的质量比例分别为1:3:6,0.9% N,N-亚甲基二丙烯酰胺溶液1mL,2.0%过硫酸钾溶液3mL,加热反应1.5 h,即得淀粉基水凝胶。将淀粉基水凝胶取出,反复用蒸馏水浸泡、溶胀、洗涤数次,即得到纯净的水凝胶。将充分溶胀的水凝胶依次浸入体积浓度分别为35%、70%、73%、76%、79%、82%、90%、100%的丙酮-水混合溶液中,每次浸泡、振荡2小时。然后放在干燥箱中干燥,即得淀粉基多孔水凝胶。 Put 1.0 g of starch and 10 mL of distilled water in a beaker, heat to 70 °C, and react for 0.5 h. Then add acrylic acid and acrylamide in sequence, the mass ratio of starch, acrylic acid, and acrylamide is 1:3:6, 0.9% N,N-methylenebisacrylamide solution 1mL, 2.0% potassium persulfate solution 3mL, heat After reacting for 1.5 h, the starch-based hydrogel was obtained. The starch-based hydrogel is taken out, repeatedly soaked in distilled water, swelled, and washed several times to obtain a pure hydrogel. The fully swollen hydrogels were immersed in the acetone-water mixed solutions with volume concentrations of 35%, 70%, 73%, 76%, 79%, 82%, 90%, and 100% in sequence, each soaking and shaking for 2 Hour. Then place it in a drying oven to dry to obtain the starch-based porous hydrogel.
实施例Example 6 6
向圆底烧瓶中加入20mL的二甲基亚砜和2.0g的淀粉,85°C加热搅拌溶解,然后冷却至室温。 Add 20 mL of dimethyl sulfoxide and 2.0 g of starch into a round bottom flask, heat and stir at 85° C. to dissolve, and then cool to room temperature.
向溶液中依次加入0.34g交联剂聚乙二醇二甲基丙烯酸酯、6.0g丙烯酸和2.0g丙烯酸丁酯,0.34g引发剂偶氮二异丁腈,加热至65°,反应1.5h,便得到淀粉基水凝胶。将制好的淀粉基水凝胶取出后用蒸馏水反复浸泡、洗涤,可以除去包括溶剂在内的杂质,从而得到较纯净的淀粉基水凝胶。将溶胀的水凝胶从水中取出,放在体积分数为20%的乙醇中,然后每隔2h换一次乙醇—水混合溶液,其体积分数分别为40%、50%、60%、65%、70%、75%、80%、100%,最后一次要放置4h以上。放在水浴恒温振荡器中效果更好。以凝胶体积不变化为准,达到要求后放在真空干燥箱中干燥至恒重,即得到淀粉基多孔水凝胶,如图3所示的淀粉-丙烯酸-丙烯酸丁酯多孔水凝胶断面电镜图。 Add 0.34g of crosslinking agent polyethylene glycol dimethacrylate, 6.0g of acrylic acid and 2.0g of butyl acrylate, 0.34g of initiator azobisisobutyronitrile to the solution successively, heat to 65°, and react for 1.5h, A starch-based hydrogel is obtained. The prepared starch-based hydrogel is taken out, soaked and washed repeatedly with distilled water, and impurities including solvents can be removed, thereby obtaining a relatively pure starch-based hydrogel. The swollen hydrogel was taken out of the water, placed in ethanol with a volume fraction of 20%, and then the ethanol-water mixed solution was changed every 2 hours, and the volume fractions were 40%, 50%, 60%, 65%, 70%, 75%, 80%, 100%, the last time should be placed for more than 4 hours. It is better to place it in a water bath constant temperature shaker. Subject to the unchanged gel volume, after meeting the requirements, put it in a vacuum drying oven and dry it to a constant weight to obtain a starch-based porous hydrogel, as shown in Figure 3. The cross-section of the starch-acrylic acid-butyl acrylate porous hydrogel Electron micrograph.
本发明的优点是:1、将淀粉与单体发生接枝共聚形成淀粉接枝聚合物,对淀粉进行化学改性,不仅可以改善淀粉的性能,并且使淀粉基多孔水凝胶的形成更容易,结构更稳定;2、将淀粉基水凝胶用有机溶剂-水混合溶液进行梯度溶剂交换,易于形成开孔结构的淀粉基多孔水凝胶,并能较好地保持淀粉基水凝胶的三维结构。 The advantages of the present invention are: 1. Graft copolymerization of starch and monomers to form starch graft polymers, chemical modification of starch can not only improve the performance of starch, but also make the formation of starch-based porous hydrogel easier , the structure is more stable; 2. The starch-based hydrogel is subjected to gradient solvent exchange with an organic solvent-water mixed solution, which is easy to form a starch-based porous hydrogel with an open-pore structure, and can better maintain the structure of the starch-based hydrogel. three-dimensional structure.
以上实施案例仅用于说明本发明的优选实施方式,但本发明并不限于上述实施方式,在所述领域普通技术人员所具备的知识范围内,本发明的精神和原则之内所作的任何修改、等同替代及改进等,均应视为本申请的保护范围。 The above implementation cases are only used to illustrate the preferred implementation of the present invention, but the present invention is not limited to the above-mentioned implementation, within the scope of knowledge of those of ordinary skill in the art, any modifications made within the spirit and principles of the present invention , equivalent substitutions and improvements, etc., should all be regarded as the scope of protection of this application.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410166127.0A CN103923428A (en) | 2014-04-24 | 2014-04-24 | Starch-based porous hydrogel and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410166127.0A CN103923428A (en) | 2014-04-24 | 2014-04-24 | Starch-based porous hydrogel and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103923428A true CN103923428A (en) | 2014-07-16 |
Family
ID=51141837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410166127.0A Pending CN103923428A (en) | 2014-04-24 | 2014-04-24 | Starch-based porous hydrogel and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103923428A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104151475A (en) * | 2014-07-17 | 2014-11-19 | 中国林业科学研究院林产化学工业研究所 | Preparation method of sugary gel adsorbing material sensitive to pH value |
CN107236146A (en) * | 2017-07-10 | 2017-10-10 | 河南工业大学 | Utilize the method for pinpointing concentration solvent exchange process preparation starch base porous aquagel |
CN107936197A (en) * | 2017-12-08 | 2018-04-20 | 中国矿业大学 | A kind of humic acid composite gel material and preparation method |
CN108641135A (en) * | 2018-04-28 | 2018-10-12 | 深圳方塔科技有限公司 | Curdling glue composite material and preparation method |
CN108884394A (en) * | 2016-03-09 | 2018-11-23 | 雅盖隆大学 | Carbon gel anode material and preparation method thereof |
CN110548491A (en) * | 2019-07-31 | 2019-12-10 | 浙江大学 | Efficient adsorption material for adsorbing toxic substances in cigarette smoke |
CN111592679A (en) * | 2020-05-08 | 2020-08-28 | 丽水学院 | Novel nano hydrogel for promoting growth of lactic acid bacteria and preparation method thereof |
CN112521628A (en) * | 2020-11-17 | 2021-03-19 | 池州学院 | Method for improving transparency of starch-based hydrogel |
CN112892589A (en) * | 2021-01-26 | 2021-06-04 | 华南农业大学 | Ag3PO4/BiPO4Modified 3D porous starch-rGO composite photocatalytic hydrogel and preparation method thereof |
CN114671703A (en) * | 2022-04-01 | 2022-06-28 | 东北大学 | Preparation method of silicon carbide grade porous ceramic |
CN114957551A (en) * | 2022-08-02 | 2022-08-30 | 江苏恒峰精细化学股份有限公司 | Preparation method of graft modified polyacrylamide |
US12076445B2 (en) | 2015-09-29 | 2024-09-03 | Kimberly-Clark Worldwide, Inc. | Materials that shrink in one dimension and expand in another dimension |
US12102516B2 (en) | 2018-03-22 | 2024-10-01 | Kimberly-Clark Worldwide, Inc. | Products with materials that shrink in one dimension and expand in another dimension |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1264321A (en) * | 1997-05-13 | 2000-08-23 | 普渡研究基金会 | Hydrogel composites and superporous hydrogel composites having fast swelling, high mechanical strenght, and superabsorbent properties |
CN1527860A (en) * | 2001-05-11 | 2004-09-08 | ������ϵ�о���˾ | Methods for the preparation of cellular hydrogels |
CN101870755A (en) * | 2009-04-23 | 2010-10-27 | 天津大学 | Sticky rice starch/acrylic acid ester copolymer, its composition and application |
CN103191657A (en) * | 2013-04-02 | 2013-07-10 | 天津工业大学 | Hybridized gel film for filtration of organic solvent and preparation method thereof |
-
2014
- 2014-04-24 CN CN201410166127.0A patent/CN103923428A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1264321A (en) * | 1997-05-13 | 2000-08-23 | 普渡研究基金会 | Hydrogel composites and superporous hydrogel composites having fast swelling, high mechanical strenght, and superabsorbent properties |
CN1527860A (en) * | 2001-05-11 | 2004-09-08 | ������ϵ�о���˾ | Methods for the preparation of cellular hydrogels |
CN101870755A (en) * | 2009-04-23 | 2010-10-27 | 天津大学 | Sticky rice starch/acrylic acid ester copolymer, its composition and application |
CN103191657A (en) * | 2013-04-02 | 2013-07-10 | 天津工业大学 | Hybridized gel film for filtration of organic solvent and preparation method thereof |
Non-Patent Citations (3)
Title |
---|
楚晖娟 等: "交联剂对多孔水凝胶形态结构的影响", 《中州大学学报》, vol. 30, no. 5, 20 October 2013 (2013-10-20) * |
楚晖娟 等: "淀粉基多孔水凝胶的制备及缓释性能研究", 《河南省化学会2012年学术年会论文摘要集》, 1 July 2012 (2012-07-01) * |
魏宏亮 等: "基于水中的Diels_Alder反应制备水凝胶的研究", 《高分子通报》, no. 5, 15 May 2010 (2010-05-15) * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104151475B (en) * | 2014-07-17 | 2016-04-13 | 中国林业科学研究院林产化学工业研究所 | To the preparation method of the sugary gel adsorption material of potential of hydrogen sensitivity |
CN104151475A (en) * | 2014-07-17 | 2014-11-19 | 中国林业科学研究院林产化学工业研究所 | Preparation method of sugary gel adsorbing material sensitive to pH value |
US12076445B2 (en) | 2015-09-29 | 2024-09-03 | Kimberly-Clark Worldwide, Inc. | Materials that shrink in one dimension and expand in another dimension |
CN108884394A (en) * | 2016-03-09 | 2018-11-23 | 雅盖隆大学 | Carbon gel anode material and preparation method thereof |
CN108884394B (en) * | 2016-03-09 | 2021-04-06 | 雅盖隆大学 | Carbon gel anode material and preparation method thereof |
CN107236146A (en) * | 2017-07-10 | 2017-10-10 | 河南工业大学 | Utilize the method for pinpointing concentration solvent exchange process preparation starch base porous aquagel |
CN107936197A (en) * | 2017-12-08 | 2018-04-20 | 中国矿业大学 | A kind of humic acid composite gel material and preparation method |
US12102516B2 (en) | 2018-03-22 | 2024-10-01 | Kimberly-Clark Worldwide, Inc. | Products with materials that shrink in one dimension and expand in another dimension |
CN108641135A (en) * | 2018-04-28 | 2018-10-12 | 深圳方塔科技有限公司 | Curdling glue composite material and preparation method |
CN110548491A (en) * | 2019-07-31 | 2019-12-10 | 浙江大学 | Efficient adsorption material for adsorbing toxic substances in cigarette smoke |
CN111592679B (en) * | 2020-05-08 | 2022-11-08 | 丽水学院 | Novel nano hydrogel for promoting growth of lactic acid bacteria and preparation method thereof |
CN111592679A (en) * | 2020-05-08 | 2020-08-28 | 丽水学院 | Novel nano hydrogel for promoting growth of lactic acid bacteria and preparation method thereof |
CN112521628A (en) * | 2020-11-17 | 2021-03-19 | 池州学院 | Method for improving transparency of starch-based hydrogel |
CN112521628B (en) * | 2020-11-17 | 2023-05-30 | 池州学院 | Method for improving transparency of starch-based hydrogel |
CN112892589A (en) * | 2021-01-26 | 2021-06-04 | 华南农业大学 | Ag3PO4/BiPO4Modified 3D porous starch-rGO composite photocatalytic hydrogel and preparation method thereof |
CN114671703A (en) * | 2022-04-01 | 2022-06-28 | 东北大学 | Preparation method of silicon carbide grade porous ceramic |
CN114957551A (en) * | 2022-08-02 | 2022-08-30 | 江苏恒峰精细化学股份有限公司 | Preparation method of graft modified polyacrylamide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103923428A (en) | Starch-based porous hydrogel and preparation method thereof | |
CN107236146A (en) | Utilize the method for pinpointing concentration solvent exchange process preparation starch base porous aquagel | |
Xu et al. | Morphological and swelling behavior of cellulose nanofiber (CNF)/poly (vinyl alcohol)(PVA) hydrogels: poly (ethylene glycol)(PEG) as porogen | |
Ahmed | Hydrogel: Preparation, characterization, and applications: A review | |
Omidian et al. | Advances in superporous hydrogels | |
Chavda et al. | Effect of crosslinker concentration on characteristics of superporous hydrogel | |
CN103191657B (en) | Hybridized gel film for filtration of organic solvent and preparation method thereof | |
Chen et al. | Novel chitosan–pectin composite membranes with enhanced strength, hydrophilicity and controllable disintegration | |
JP6715348B2 (en) | A method to modify polymer separation membrane by applying ultrasonic in-situ polymerization | |
CN108579709A (en) | A kind of porous structure elastic composite and preparation method thereof for the extraction of uranium from seawater | |
Sun et al. | Porous double network gels with high toughness, high stretchability and fast solvent-absorption | |
Serrano-Aroca et al. | Dynamic mechanical analysis and water vapour sorption of highly porous poly (methyl methacrylate) | |
CN105131185B (en) | Pineapple bran hemicellulose group pH responsive types porous aquagel and its preparation method and application | |
WO2018161155A1 (en) | Porous crosslinked hydrophilic polymeric materials prepared from high internal phase emulsions containing hydrophilic polymers | |
JP2019507011A5 (en) | ||
Dinu et al. | Morphogical and swelling properties of porous hydrogels based on poly (hydroxyethyl methacrylate) and chitosan modulated by ice-templating process and porogen leaching | |
Tanan et al. | Microwave assisted synthesis of poly (acrylamide-co-2-hydroxyethyl methacrylate)/poly (vinyl alcohol) semi-IPN hydrogel | |
CN104861179A (en) | Preparation for feather keratin and sodium alginate composite polymer double-sensitive hydrogel and application therefore as drug carrier | |
Shi et al. | Development of a superporous hydroxyethyl cellulose‐based hydrogel by anionic surfactant micelle templating with fast swelling and superabsorbent properties | |
CN111545182A (en) | A spherical double network thermosensitive hydrogel adsorbent and its preparation method and application | |
CN103962111A (en) | Cationic hydrogel material and preparation method thereof | |
CN106589208A (en) | Preparation method of simple convenient and environment-friendly polymer porous material | |
Lan et al. | Synthesis and Swelling Behavior of Super‐Absorbent Soluble Starch‐g‐poly (AM‐co‐NaAMC14S) Through Graft Copolymerization and Hydrolysis | |
Tian et al. | Preparation of PVDF anionic exchange membrane by chemical grafting of GMA onto PVDF macromolecule | |
CN105504636A (en) | Water-absorption desalination composite material for soil relic desalination, and applications thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140716 |