CN103915530A - High-voltage flip-chip LED structure and manufacturing method thereof - Google Patents
High-voltage flip-chip LED structure and manufacturing method thereof Download PDFInfo
- Publication number
- CN103915530A CN103915530A CN201310002699.0A CN201310002699A CN103915530A CN 103915530 A CN103915530 A CN 103915530A CN 201310002699 A CN201310002699 A CN 201310002699A CN 103915530 A CN103915530 A CN 103915530A
- Authority
- CN
- China
- Prior art keywords
- layer
- led chip
- electrically connected
- chip
- led
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 28
- 229910052751 metal Inorganic materials 0.000 claims abstract description 75
- 239000002184 metal Substances 0.000 claims abstract description 75
- 238000002161 passivation Methods 0.000 claims abstract description 65
- 239000000758 substrate Substances 0.000 claims abstract description 53
- 229910052594 sapphire Inorganic materials 0.000 claims abstract description 31
- 239000010980 sapphire Substances 0.000 claims abstract description 31
- 238000000151 deposition Methods 0.000 claims abstract description 16
- 238000005530 etching Methods 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims description 14
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 6
- 239000010931 gold Substances 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 239000004332 silver Substances 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 150000002739 metals Chemical class 0.000 claims description 4
- 230000008021 deposition Effects 0.000 claims description 2
- 239000004411 aluminium Substances 0.000 claims 2
- 239000010409 thin film Substances 0.000 claims 2
- 230000003287 optical effect Effects 0.000 abstract description 7
- 230000005611 electricity Effects 0.000 abstract description 5
- 239000000463 material Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H29/00—Integrated devices, or assemblies of multiple devices, comprising at least one light-emitting semiconductor element covered by group H10H20/00
- H10H29/10—Integrated devices comprising at least one light-emitting semiconductor component covered by group H10H20/00
- H10H29/14—Integrated devices comprising at least one light-emitting semiconductor component covered by group H10H20/00 comprising multiple light-emitting semiconductor components
- H10H29/142—Two-dimensional arrangements, e.g. asymmetric LED layout
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/814—Bodies having reflecting means, e.g. semiconductor Bragg reflectors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/832—Electrodes characterised by their material
- H10H20/833—Transparent materials
Landscapes
- Led Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种LED结构及其制造方法,特别是涉及一种高压覆晶LED结构及其制造方法。The invention relates to an LED structure and a manufacturing method thereof, in particular to a high-voltage flip-chip LED structure and a manufacturing method thereof.
背景技术Background technique
近几年,发光二极管(LED)已经渐渐成为照明市场的主要产品,其小巧、高效能及环保等特性受到肯定。因此,各大厂商无不致力于开发更高发光效率、高良率的LED结构及其工艺。In recent years, light-emitting diodes (LEDs) have gradually become the main products in the lighting market, and their small size, high efficiency and environmental protection have been affirmed. Therefore, major manufacturers are all committed to developing LED structures and processes with higher luminous efficiency and high yield.
图1为现有习知的一种覆晶LED结构。如图1所示,现有习知的一种覆晶LED结构100包括:LED基板110、N极电极150、P极电极160、焊垫140、阻隔层180、反射层120、图案化绝缘层170、导电层190及磊晶叠层130。其中,磊晶叠层130包括:N型半导体层131、发光层132及P型半导体层133。为了增加出光率,现有习知的覆晶LED结构100会使用反射层120将发光层132发出的光线反射,使其向正向出光。然而,反射层120的高度不同,会造成被反射的光线间具有光程差。FIG. 1 is a conventional flip-chip LED structure. As shown in FIG. 1 , a known flip-chip LED structure 100 includes: LED substrate 110, N-pole electrode 150, P-pole electrode 160, welding pad 140, barrier layer 180, reflective layer 120, patterned insulating layer 170 , a conductive layer 190 and an epitaxial stack 130 . Wherein, the epitaxial stack 130 includes: an N-type semiconductor layer 131 , a light emitting layer 132 and a P-type semiconductor layer 133 . In order to increase the light extraction rate, the conventional flip-chip LED structure 100 uses the reflective layer 120 to reflect the light emitted by the light emitting layer 132 so that it emits light in the forward direction. However, the different heights of the reflective layer 120 will cause the reflected light to have an optical path difference.
目前,高压LED结构可通过在同一基板上串联多个LED芯片磊晶结构而达成。已知高压LED结构可以简化LED封装工艺、提升发光效率,并且在未来照明市场有极大的竞争潜力,因此如何利用高压LED结构,设计出能够大幅改良上述光程差的高压覆晶LED结构是个重要的课题。Currently, the high-voltage LED structure can be achieved by connecting multiple LED chip epitaxial structures in series on the same substrate. It is known that the high-voltage LED structure can simplify the LED packaging process, improve luminous efficiency, and has great competitive potential in the future lighting market. Therefore, how to use the high-voltage LED structure to design a high-voltage flip-chip LED structure that can greatly improve the above-mentioned optical path difference is a problem. important subject.
发明内容Contents of the invention
本发明的目的在于,克服现有的覆晶LED结构存在的问题,而提供一种高压覆晶LED结构及其制造方法,其中制造方法包括下列步骤:提供一芯片基板;沉积第一钝化层;形成共电连层;沉积第二钝化层;沉积镜面层;蚀刻两导电通道;以及设置两接合金属层。本发明所要解决的技术问题包括:制造出一种具有全透明电极且反射层在同一平面的高压覆晶LED结构。The object of the present invention is to overcome the problems existing in the existing flip-chip LED structure, and provide a high-voltage flip-chip LED structure and a manufacturing method thereof, wherein the manufacturing method includes the following steps: providing a chip substrate; depositing a first passivation layer ; forming a common electrical connection layer; depositing a second passivation layer; depositing a mirror layer; etching two conductive channels; and setting two bonding metal layers. The technical problems to be solved by the present invention include: manufacturing a high-voltage flip-chip LED structure with fully transparent electrodes and reflective layers on the same plane.
本发明提供一种高压覆晶LED结构的制造方法,包括:提供芯片基板,其中芯片基板包括:蓝宝石基板;及多个LED芯片,彼此分离地形成于蓝宝石基板上,每一LED芯片由下往上形成N型层、量子井层、P型层及透明导电氧化物层,且N型层露出N型表面,所述LED芯片包括第一LED芯片及第二LED芯片;沉积第一钝化层,其在所述LED芯片周围沉积第一钝化层;形成共电连层,其在除去位在每一透明导电氧化物层及每一N型表面上的第一钝化层后,分别于每一透明导电氧化物层及每一N型表面上形成第一电连层及第二电连层,并形成第三电连层以连接LED芯片的第一电连层及相邻的另一LED芯片的第二电连层,第一电连层、第二电连层及第三电连层构成共电连层;沉积第二钝化层,其沉积于第一钝化层及共电连层上并形成平坦的钝化表面;沉积镜面层,其在钝化表面上沉积镜面层;蚀刻两导电通道,其分别由镜面层往下蚀刻至第一LED芯片的第一电连层及往下蚀刻至第二LED芯片的第二电连层以形成所述导电通道;以及设置两接合金属层,其分别在每一导电通道填充接合金属,并设置所述接合金属层于镜面层上,以分别与接合金属接合,且所述接合金属层彼此分离。The invention provides a method for manufacturing a high-voltage flip-chip LED structure, which includes: providing a chip substrate, wherein the chip substrate includes: a sapphire substrate; and a plurality of LED chips are formed on the sapphire substrate separately from each other, and each LED chip is from bottom to top An N-type layer, a quantum well layer, a P-type layer and a transparent conductive oxide layer are formed on it, and the N-type layer exposes the N-type surface, and the LED chip includes a first LED chip and a second LED chip; depositing a first passivation layer , which deposits a first passivation layer around the LED chip; forms a common electrical connection layer, which after removing the first passivation layer on each transparent conductive oxide layer and each N-type surface, respectively A first electrical connection layer and a second electrical connection layer are formed on each transparent conductive oxide layer and each N-type surface, and a third electrical connection layer is formed to connect the first electrical connection layer of the LED chip with another adjacent The second electrical connection layer of the LED chip, the first electrical connection layer, the second electrical connection layer and the third electrical connection layer form a common electrical connection layer; the second passivation layer is deposited on the first passivation layer and the common electrical connection layer connect the layer and form a flat passivation surface; deposit a mirror layer, which deposits a mirror layer on the passivation surface; etch two conductive channels, which are respectively etched from the mirror layer down to the first electrical connection layer and the first LED chip. Etching down to the second electrical connection layer of the second LED chip to form the conductive path; and setting two bonding metal layers, which respectively fill bonding metal in each conductive path, and setting the bonding metal layer on the mirror layer , to respectively bond with the bonding metal, and the bonding metal layers are separated from each other.
较佳的,前述的制造方法,其中其进一步包括形成多个微结构于该蓝宝石基板的背侧表面。Preferably, the aforementioned manufacturing method further includes forming a plurality of microstructures on the backside surface of the sapphire substrate.
较佳的,前述的制造方法,其中其进一步包括结合电路板,其以所述接合金属层与该电路板上的导电金属电性连接。Preferably, the aforementioned manufacturing method further includes bonding a circuit board, which is electrically connected to the conductive metal on the circuit board through the bonding metal layer.
较佳的,前述的制造方法,其中该镜面层由分布布拉格反射镜及金属组成。Preferably, in the aforementioned manufacturing method, the mirror layer is composed of a distributed Bragg reflector and metal.
较佳的,前述的制造方法,其中该金属为铝或银。Preferably, in the aforementioned manufacturing method, the metal is aluminum or silver.
较佳的,前述的制造方法,其中所述接合金属层的表面电镀有金薄膜。Preferably, in the aforementioned manufacturing method, the surface of the bonding metal layer is electroplated with a gold film.
本发明又提供一种高压覆晶LED结构,其包括:芯片基板,其中芯片基板包括:蓝宝石基板;及多个LED芯片,彼此分离地形成于蓝宝石基板上,每一LED芯片由下往上形成N型层、量子井层、P型层及透明导电氧化物层,且N型层露出N型表面,所述LED芯片包括第一LED芯片及第二LED芯片;第一钝化层,其设置于每一LED芯片的侧边;共电连层,其包括:第一电连层,其位于每一透明导电氧化物层上;第二电连层,其位于每一N型表面上;及第三电连层,其连接每一相邻的第一电连层及第二电连层并覆盖于每一LED芯片侧边的第一钝化层;第二钝化层,其包覆第一钝化层及共电连层以形成平坦的钝化表面;镜面层,其设置于钝化表面上;两接合金属,其穿过镜面层及第二钝化层以分别与第一LED芯片的第一电连层及第二LED芯片的第二电连层相接;以及两接合金属层,其分别设置于镜面层上并与所述接合金属接合,且所述接合金属层彼此分离。The present invention also provides a high-voltage flip-chip LED structure, which includes: a chip substrate, wherein the chip substrate includes: a sapphire substrate; and a plurality of LED chips, which are separately formed on the sapphire substrate, and each LED chip is formed from bottom to top N-type layer, quantum well layer, P-type layer and transparent conductive oxide layer, and the N-type layer exposes the N-type surface, the LED chip includes a first LED chip and a second LED chip; a first passivation layer, which is set On the side of each LED chip; a common electrical connection layer, which includes: a first electrical connection layer, which is located on each transparent conductive oxide layer; a second electrical connection layer, which is located on each N-type surface; and The third electrical connection layer, which connects each adjacent first electrical connection layer and the second electrical connection layer and covers the first passivation layer on the side of each LED chip; the second passivation layer, which covers the first electrical connection layer A passivation layer and a common electrical connection layer to form a flat passivation surface; a mirror layer, which is arranged on the passivation surface; two bonding metals, which pass through the mirror layer and the second passivation layer to respectively connect with the first LED chip The first electrical connection layer of the second LED chip is connected to the second electrical connection layer; and two bonding metal layers are respectively arranged on the mirror layer and bonded to the bonding metal, and the bonding metal layers are separated from each other.
较佳的,前述的高压覆晶LED结构,其中其进一步包括电路板,其以导电金属与所述接合金属层电性连接。Preferably, the aforementioned high-voltage flip-chip LED structure further includes a circuit board, which is electrically connected to the bonding metal layer through conductive metal.
较佳的,前述的高压覆晶LED结构,其中该镜面层由分布布拉格反射镜及金属组成。Preferably, in the aforementioned high-voltage flip-chip LED structure, the mirror layer is composed of a distributed Bragg reflector and metal.
较佳的,前述的高压覆晶LED结构,其中该金属为铝或银。Preferably, in the aforementioned high-voltage flip-chip LED structure, the metal is aluminum or silver.
较佳的,前述的高压覆晶LED结构,其中所述接合金属层的表面电镀有金薄膜。Preferably, in the aforementioned high-voltage flip-chip LED structure, the surface of the bonding metal layer is electroplated with a gold film.
较佳的,前述的高压覆晶LED结构,其中该蓝宝石基板的背侧表面进一步包括多个微结构。Preferably, in the aforementioned high-voltage flip-chip LED structure, the backside surface of the sapphire substrate further includes a plurality of microstructures.
借由本发明的实施,至少可达到下列进步功效:By implementing the present invention, at least the following progressive effects can be achieved:
一、可以得到全透明电极的覆晶LED结构,以增加发光效率。1. A flip-chip LED structure with fully transparent electrodes can be obtained to increase luminous efficiency.
二、可以得到反射层位于同一平面的覆晶LED结构,以减少光程差。2. A flip-chip LED structure in which the reflective layer is located on the same plane can be obtained to reduce the optical path difference.
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合说明书附图,详细说明如下。The above description is only an overview of the technical solution of the present invention. In order to better understand the technical means of the present invention, it can be implemented according to the contents of the description, and in order to make the above and other purposes, features and advantages of the present invention more obvious and understandable , the following preferred embodiments are specifically cited, and in conjunction with the accompanying drawings, the detailed description is as follows.
附图说明Description of drawings
图1为现有习知的一种覆晶LED结构。FIG. 1 is a conventional flip-chip LED structure.
图2为本发明实施例的一种高压覆晶LED结构的制造方法流程图。FIG. 2 is a flowchart of a manufacturing method of a high-voltage flip-chip LED structure according to an embodiment of the present invention.
图3为本发明实施例的一种提供芯片基板步骤的剖面示意图。FIG. 3 is a schematic cross-sectional view of a step of providing a chip substrate according to an embodiment of the present invention.
图4为本发明实施例的一种沉积第一钝化层步骤的剖面示意图。FIG. 4 is a schematic cross-sectional view of a step of depositing a first passivation layer according to an embodiment of the present invention.
图5为本发明实施例的一种蚀刻第一钝化层的剖面示意图。FIG. 5 is a schematic cross-sectional view of etching a first passivation layer according to an embodiment of the present invention.
图6为本发明实施例的一种形成共电连层步骤的剖面示意图。FIG. 6 is a schematic cross-sectional view of a step of forming a common electrical connection layer according to an embodiment of the present invention.
图7为本发明实施例的一种沉积第二钝化层步骤的剖面示意图。FIG. 7 is a schematic cross-sectional view of a step of depositing a second passivation layer according to an embodiment of the present invention.
图8为本发明实施例的一种沉积镜面层步骤的剖面示意图。FIG. 8 is a schematic cross-sectional view of a step of depositing a mirror layer according to an embodiment of the present invention.
图9为本发明实施例的一种蚀刻两导电通道步骤的剖面示意图。FIG. 9 is a schematic cross-sectional view of a step of etching two conductive channels according to an embodiment of the present invention.
图10为本发明实施例的一种填充导电金属的剖面示意图。FIG. 10 is a schematic cross-sectional view of a conductive metal filling according to an embodiment of the present invention.
图11为本发明实施例的一种设置两接合金属层步骤的剖面示意图。FIG. 11 is a schematic cross-sectional view of a step of disposing two bonding metal layers according to an embodiment of the present invention.
图12为本发明实施例的一种形成多个微结构步骤的剖面示意图。FIG. 12 is a schematic cross-sectional view of a step of forming multiple microstructures according to an embodiment of the present invention.
图13为本发明实施例的一种结合电路板步骤的剖面示意图。FIG. 13 is a schematic cross-sectional view of a step of combining circuit boards according to an embodiment of the present invention.
图14为本发明实施例的高压覆晶LED结构剖视图。Fig. 14 is a cross-sectional view of the structure of a high-voltage flip-chip LED according to an embodiment of the present invention.
图15为本发明实施例的高压覆晶LED结构的使用剖视图。Fig. 15 is a cross-sectional view of the structure of the high-voltage flip-chip LED according to the embodiment of the present invention.
【主要元件符号说明】[Description of main component symbols]
10 芯片基板 11 蓝宝石基板10 Chip substrate 11 Sapphire substrate
111 第一表面 112 第二表面111 first surface 112 second surface
113 微结构 12 LED芯片113 Microstructure 12 LED chip
12’ 第一LED芯片 12” 第二LED芯片12’ 1st LED chip 12” 2nd LED chip
12”’ 第三LED芯片 121 N型层12”’ third LED chip 121 N-type layer
122 N型表面 123 量子井层122 N-type surface 123 Quantum well layer
124 P型层 125 透明导电氧化物层124 P-type layer 125 Transparent conductive oxide layer
20 第一钝化层 30 共电连层20 first passivation layer 30 common electrical connection layer
31 第一电连层 32 第二电连层31 The first electrical connection layer 32 The second electrical connection layer
33 第三电连层 40 第二钝化层33 The third electrical connection layer 40 The second passivation layer
41 钝化表面 50 镜面层41 passivated surface 50 mirror layer
60 导电通道 61 接合金属60 Conductive Path 61 Joining Metals
70 接合金属层 80 电路板70 bonding metal layer 80 circuit board
81 导电金属 100 覆晶LED结构81 Conductive metal 100 Flip chip LED structure
110 LED基板 120 反射层110 LED substrate 120 Reflective layer
130 磊晶叠层 131 N型半导体层130 Epitaxial stack 131 N-type semiconductor layer
132 发光层 133 P型半导体层132 Light-emitting layer 133 P-type semiconductor layer
140 焊垫 150 N极电极140 welding pad 150 N electrode
160 P极电极 170 图案化绝缘层160 P pole electrode 170 patterned insulating layer
180 阻隔层 190 导电层180 Barrier layer 190 Conductive layer
具体实施方式Detailed ways
为进一步阐述本发明为达成预定发明目的所采取的技术手段以及其功效,以下结合附图及较佳实施例,对依据本发明提出的高压覆晶LED结构及其制造方法的具体实施方式、结构、流程、特征及其功效,详细说明如后。In order to further explain the technical means adopted by the present invention to achieve the intended purpose of the invention and its efficacy, the specific implementation and structure of the high-voltage flip-chip LED structure and its manufacturing method proposed according to the present invention will be described below in conjunction with the accompanying drawings and preferred embodiments. , process, features and effects thereof are described in detail below.
图2为本发明实施例的一种高压覆晶LED结构的制造方法流程图。图3为本发明实施例的一种提供芯片基板步骤的剖面示意图。图4为本发明实施例的一种沉积第一钝化层步骤的剖面示意图。图5为本发明实施例的一种蚀刻第一钝化层的剖面示意图。图6为本发明实施例的一种形成共电连层步骤的剖面示意图。图7为本发明实施例的一种沉积第二钝化层步骤的剖面示意图。图8为本发明实施例的一种沉积一镜面层步骤的剖面示意图。FIG. 2 is a flowchart of a manufacturing method of a high-voltage flip-chip LED structure according to an embodiment of the present invention. FIG. 3 is a schematic cross-sectional view of a step of providing a chip substrate according to an embodiment of the present invention. FIG. 4 is a schematic cross-sectional view of a step of depositing a first passivation layer according to an embodiment of the present invention. FIG. 5 is a schematic cross-sectional view of etching a first passivation layer according to an embodiment of the present invention. FIG. 6 is a schematic cross-sectional view of a step of forming a common electrical connection layer according to an embodiment of the present invention. FIG. 7 is a schematic cross-sectional view of a step of depositing a second passivation layer according to an embodiment of the present invention. FIG. 8 is a schematic cross-sectional view of a step of depositing a mirror layer according to an embodiment of the present invention.
图9为本发明实施例的一种蚀刻两导电通道步骤的剖面示意图。图10为本发明实施例的一种填充导电金属的剖面示意图。图11为本发明实施例的一种设置两接合金属层步骤的剖面示意图。图12为本发明实施例的一种形成多个微结构步骤的剖面示意图。图13为本发明实施例的一种结合电路板步骤的剖面示意图。图14为本发明实施例的高压覆晶LED结构剖视图。图15为本发明实施例的高压覆晶LED结构的使用剖视图。FIG. 9 is a schematic cross-sectional view of a step of etching two conductive channels according to an embodiment of the present invention. FIG. 10 is a schematic cross-sectional view of a conductive metal filling according to an embodiment of the present invention. FIG. 11 is a schematic cross-sectional view of a step of disposing two bonding metal layers according to an embodiment of the present invention. FIG. 12 is a schematic cross-sectional view of a step of forming multiple microstructures according to an embodiment of the present invention. FIG. 13 is a schematic cross-sectional view of a step of combining circuit boards according to an embodiment of the present invention. Fig. 14 is a cross-sectional view of the structure of a high-voltage flip-chip LED according to an embodiment of the present invention. Fig. 15 is a cross-sectional view of the structure of the high-voltage flip-chip LED according to the embodiment of the present invention.
<高压覆晶LED结构的制造方法实施例><Example of Manufacturing Method of High Voltage Flip-Chip LED Structure>
如图2所示,本发明实施例为一种高压覆晶LED结构的制造方法S100,其包括:提供芯片基板(步骤S10);沉积第一钝化层(步骤S20);形成共电连层(步骤S30);沉积第二钝化层(步骤S40);沉积镜面层(步骤S50);蚀刻两导电通道(步骤S60);以及设置两接合金属层(步骤S70)。As shown in FIG. 2, an embodiment of the present invention is a manufacturing method S100 of a high-voltage flip-chip LED structure, which includes: providing a chip substrate (step S10); depositing a first passivation layer (step S20); forming a common electrical connection layer (step S30); deposit a second passivation layer (step S40); deposit a mirror layer (step S50); etch two conductive channels (step S60); and set two bonding metal layers (step S70).
如图3所示,提供芯片基板(步骤S10),其中芯片基板10包括:蓝宝石基板11及多个LED芯片12。蓝宝石基板11是用以成长氮化镓N型层121(以下简称为N型层121)、量子井层123、氮化镓P型层124(以下简称为P型层124)及透明导电氧化物层125,之后经过多次蚀刻得到多个LED芯片12(例如图3中的12’、12”及12”’),其彼此分离地形成于蓝宝石基板11的第一表面111上,第一表面111为蓝宝石基板11的上表面。透明导电氧化物层125的材料为透明的氧化物以提高发光效率,且可以导电。As shown in FIG. 3 , a chip substrate is provided (step S10 ), wherein the chip substrate 10 includes: a sapphire substrate 11 and a plurality of LED chips 12 . The sapphire substrate 11 is used to grow GaN N-type layer 121 (hereinafter referred to as N-type layer 121), quantum well layer 123, GaN P-type layer 124 (hereinafter referred to as P-type layer 124) and transparent conductive oxide layer 125, after which a plurality of LED chips 12 (such as 12', 12" and 12"' in FIG. 111 is the upper surface of the sapphire substrate 11 . The material of the transparent conductive oxide layer 125 is a transparent oxide to improve luminous efficiency, and can conduct electricity.
因此每一LED芯片12在磊晶工艺中由下往上形成N型层121、量子井层123、P型层124及透明导电氧化物层125。同时因为蚀刻了一部分的透明导电氧化物层125、P型层124及量子井层123而使N型层121露出N型表面122。为了对LED芯片12做更详细的说明,在本实施例中将所述LED芯片12分别命名为第一LED芯片12’、第二LED芯片12”及第三LED芯片12”’。第一LED芯片12’为蓝宝石基板11上的最左侧的LED芯片12,而第二LED芯片12”为蓝宝石基板11上的最右侧的LED芯片12,第三LED芯片12”’则位在第一LED芯片12’及第二LED芯片12”之间,然而也可设置多个第三LED芯片12”’。Therefore, each LED chip 12 forms an N-type layer 121 , a quantum well layer 123 , a P-type layer 124 and a transparent conductive oxide layer 125 from bottom to top in the epitaxy process. At the same time, part of the transparent conductive oxide layer 125 , the P-type layer 124 and the quantum well layer 123 are etched to expose the N-type surface 122 of the N-type layer 121 . In order to describe the LED chips 12 in more detail, the LED chips 12 are respectively named as the first LED chip 12', the second LED chip 12" and the third LED chip 12"' in this embodiment. The first LED chip 12' is the leftmost LED chip 12 on the sapphire substrate 11, the second LED chip 12" is the rightmost LED chip 12 on the sapphire substrate 11, and the third LED chip 12"' is the Between the first LED chip 12' and the second LED chip 12", however, a plurality of third LED chips 12"' may also be arranged.
如图4所示,沉积第一钝化层(步骤S20),其在所述LED芯片12周围沉积第一钝化层20,使第一钝化层20覆盖住每一N型层121、量子井层123、P型层124及透明导电氧化物层125的侧边及蓝宝石基板11、N型表面122及透明导电氧化物层125的表面。As shown in FIG. 4, deposit a first passivation layer (step S20), which deposits a first passivation layer 20 around the LED chip 12, so that the first passivation layer 20 covers each N-type layer 121, quantum The sides of the well layer 123 , the P-type layer 124 and the transparent conductive oxide layer 125 and the surfaces of the sapphire substrate 11 , the N-type surface 122 and the transparent conductive oxide layer 125 .
如图5所示,在形成共电连层(步骤S30)前,先利用蚀刻方式除去位在每一透明导电氧化物层125及每一N型表面122上的第一钝化层20。As shown in FIG. 5 , before forming the common electrical connection layer (step S30 ), the first passivation layer 20 located on each transparent conductive oxide layer 125 and each N-type surface 122 is removed by etching.
如图6所示,形成共电连层(步骤S30),接着分别以沉积方式形成共电连层30在第一钝化层20以及裸露的每一N型表面122及每一透明导电氧化物层125的表面。为方便叙述,将共电连层30分别定义为第一电连层31、第二电连层32及第三电连层33。第一电连层31形成在每一透明导电氧化物层125的表面上,而第二电连层32则形成在每一N型表面122上。第三电连层33则从LED芯片12的第一电连层31沿着LED芯片12的侧边延伸形成至相邻的另一LED芯片12的第二电连层32。第三电连层33用以电性连接LED芯片12的第一电连层31及相邻的另一LED芯片12的第二电连层32。As shown in FIG. 6, a common electrical connection layer is formed (step S30), and then a common electrical connection layer 30 is formed on the first passivation layer 20 and each exposed N-type surface 122 and each transparent conductive oxide by deposition. surface of layer 125 . For convenience of description, the common electrical connection layer 30 is defined as a first electrical connection layer 31 , a second electrical connection layer 32 and a third electrical connection layer 33 . The first electrical connection layer 31 is formed on the surface of each transparent conductive oxide layer 125 , and the second electrical connection layer 32 is formed on each N-type surface 122 . The third electrical connection layer 33 extends from the first electrical connection layer 31 of the LED chip 12 along the side of the LED chip 12 to the second electrical connection layer 32 of another adjacent LED chip 12 . The third electrical connection layer 33 is used to electrically connect the first electrical connection layer 31 of the LED chip 12 and the second electrical connection layer 32 of another adjacent LED chip 12 .
其中,共电连层30可以使多个LED芯片12彼此串联,形成高压LED结构。形成共电连层30的材料可以与透明导电氧化物层125相同,透明的导电材料可以避免共电连层30挡住LED芯片12的出光,而同时达到导电及提高透光性的目的。Wherein, the common electrical connection layer 30 can connect multiple LED chips 12 in series to form a high-voltage LED structure. The material forming the common electrical connection layer 30 can be the same as that of the transparent conductive oxide layer 125 , and the transparent conductive material can prevent the common electrical connection layer 30 from blocking the light emitted by the LED chip 12 , while achieving the purpose of conducting electricity and improving light transmittance.
如图7所示,沉积第二钝化层(步骤S40),其沉积第二钝化层40于暴露于外界的第一钝化层20及共电连层30上,并连续沉积第二钝化层40直到将所有LED芯片12覆盖并形成平坦且高度相同的钝化表面41,进而提供后续工艺进行。As shown in FIG. 7, deposit a second passivation layer (step S40), which deposits a second passivation layer 40 on the first passivation layer 20 and the common electrical connection layer 30 exposed to the outside world, and deposits the second passivation layer continuously. The passivation layer 40 covers all the LED chips 12 and forms a flat passivation surface 41 with the same height, so as to provide subsequent processes.
如图8所示,沉积镜面层(步骤S50),其在平坦且高度相同的钝化表面41上沉积镜面层50,因此沉积于其上的镜面层50亦平坦且高度相同,故LED芯片12发出的光线可以在同样高度被镜面层50反射,以得到反射量及强度一致的反射光,同时彼此之间没有光程差的反射光可以往蓝宝石基板11方向出光。其中,镜面层50可以由分布布拉格反射镜(Distributed BraggReflector,DBR)及金属组成,而金属可以为铝或银。As shown in FIG. 8 , deposit a mirror layer (step S50 ), which deposits a mirror layer 50 on a passivation surface 41 that is flat and has the same height, so the mirror layer 50 deposited thereon is also flat and has the same height, so that the LED chip 12 The emitted light can be reflected by the mirror layer 50 at the same height to obtain reflected light with consistent reflection amount and intensity, and at the same time, the reflected light with no optical path difference can be emitted toward the sapphire substrate 11 . Wherein, the mirror layer 50 may be composed of a distributed Bragg reflector (Distributed Bragg Reflector, DBR) and metal, and the metal may be aluminum or silver.
如图9所示,蚀刻两导电通道(步骤S60),其分别在相对于第一LED芯片12’上方附近的位置由镜面层50往下蚀刻通过第二钝化层40至第一LED芯片12’的第一电连层31,以及在相对于第二LED芯片12”上方附近的位置由镜面层50往下蚀刻通过第二钝化层40至第二LED芯片12”的第二电连层32以形成所述导电通道60,以使得第一LED芯片12’的第一电连层31及第二LED芯片12”的第二电连层32可以裸露出来。As shown in FIG. 9, two conductive channels are etched (step S60), which are respectively etched from the mirror layer 50 to the first LED chip 12 through the second passivation layer 40 at positions near the top of the first LED chip 12'. 'The first electrical connection layer 31, and the mirror layer 50 is etched down through the second passivation layer 40 to the second electrical connection layer of the second LED chip 12" at a position near the top relative to the second LED chip 12" 32 to form the conductive channel 60, so that the first electrical connection layer 31 of the first LED chip 12' and the second electrical connection layer 32 of the second LED chip 12" can be exposed.
如图10所示,设置两接合金属层(步骤S70),首先分别在步骤S60所蚀刻出的每一导电通道60中填充接合金属61,并使接合金属61表面与镜面层50表面位在相同高度。As shown in FIG. 10, two bonding metal layers are provided (step S70). Firstly, the bonding metal 61 is filled in each conductive channel 60 etched in step S60 respectively, and the surface of the bonding metal 61 is at the same position as the surface of the mirror layer 50. high.
如图11所示,接着,设置所述两接合金属层70于镜面层50上,并且使接合金属层70分别与接合金属61一对一地接合以供导电。因此,接合金属层70得以借由接合金属61而分别与第一LED芯片12’的第一电连层31和第二LED芯片12”的第二电连层32电性连接。为了避免短路,所述接合金属层70彼此分离。其中,所述接合金属层70的表面可以电镀有金薄膜以增进导电度。As shown in FIG. 11 , next, the two bonding metal layers 70 are disposed on the mirror layer 50 , and the bonding metal layers 70 are respectively bonded one-to-one with the bonding metal 61 for conduction. Therefore, the bonding metal layer 70 can be electrically connected to the first electrical connection layer 31 of the first LED chip 12' and the second electrical connection layer 32 of the second LED chip 12" respectively by the bonding metal 61. In order to avoid short circuit, The bonding metal layers 70 are separated from each other. Wherein, the surfaces of the bonding metal layers 70 may be electroplated with a gold film to improve electrical conductivity.
如图1及图12所示,制造方法S100可以进一步包括形成多个微结构(步骤S80),其在蓝宝石基板11的第二表面112形成多个微结构113以破坏全反射。第二表面112为蓝宝石基板11的下表面,而微结构113可以为锥状体、凸透镜或凹透镜等构造。As shown in FIG. 1 and FIG. 12 , the manufacturing method S100 may further include forming a plurality of microstructures (step S80 ), which forms a plurality of microstructures 113 on the second surface 112 of the sapphire substrate 11 to destroy total reflection. The second surface 112 is the lower surface of the sapphire substrate 11 , and the microstructure 113 can be a pyramid, a convex lens, or a concave lens.
如图1及图13所示,制造方法S100可以进一步包括结合电路板(步骤S90),其将上述结构倒置,并通过电性连接手段,例如金属电极或是焊球(solder ball)以使所述接合金属层70与电路板80上的导电金属81电性连接,而形成最终的高压覆晶LED结构。As shown in Figures 1 and 13, the manufacturing method S100 may further include combining a circuit board (step S90), which inverts the above-mentioned structure, and through electrical connection means, such as metal electrodes or solder balls (solder ball) so that all The bonding metal layer 70 is electrically connected to the conductive metal 81 on the circuit board 80 to form a final high voltage flip-chip LED structure.
<高压覆晶LED结构实施例><Example of High Voltage Flip Chip LED Structure>
如图1及图14所示,本发明的另一实施例为一种高压覆晶LED结构100,其包括:芯片基板、第一钝化层20、共电连层30、第二钝化层40、镜面层50、两接合金属61以及两接合金属层70。高压覆晶LED结构100可以使用上述的制造方法S100制造。As shown in FIG. 1 and FIG. 14, another embodiment of the present invention is a high-voltage flip-chip LED structure 100, which includes: a chip substrate, a first passivation layer 20, a common electrical connection layer 30, a second passivation layer 40 , mirror layer 50 , two bonding metal layers 61 and two bonding metal layers 70 . The high voltage flip-chip LED structure 100 can be manufactured using the above-mentioned manufacturing method S100.
芯片基板包括:蓝宝石基板11及多个LED芯片12。其中,多个LED芯片12彼此分离地形成于蓝宝石基板11的第一表面111上,第一表面111为蓝宝石基板11的上表面。另外,蓝宝石基板11的第二表面112可以进一步包括多个微结构113以破坏全反射,而第二表面112为蓝宝石基板11的下表面,其中微结构113可以为锥状体、凸透镜或凹透镜等构造。The chip substrate includes: a sapphire substrate 11 and a plurality of LED chips 12 . Wherein, a plurality of LED chips 12 are separately formed on the first surface 111 of the sapphire substrate 11 , and the first surface 111 is the upper surface of the sapphire substrate 11 . In addition, the second surface 112 of the sapphire substrate 11 can further include a plurality of microstructures 113 to destroy total reflection, and the second surface 112 is the lower surface of the sapphire substrate 11, wherein the microstructures 113 can be cones, convex lenses or concave lenses, etc. structure.
每一LED芯片12由下往上形成N型层121、量子井层123、P型层124及透明导电氧化物层125。其中,量子井层123、P型层124及透明导电氧化物层125的平面面积小于N型层121的平面面积,因此使最下方的N型层121露出N型表面122。透明导电氧化物层125的材料为透明的氧化物以提高透光率,且可以导电。Each LED chip 12 is formed from bottom to top with an N-type layer 121 , a quantum well layer 123 , a P-type layer 124 and a transparent conductive oxide layer 125 . Wherein, the plane area of the quantum well layer 123 , the P-type layer 124 and the transparent conductive oxide layer 125 is smaller than the plane area of the N-type layer 121 , so that the lowermost N-type layer 121 exposes the N-type surface 122 . The material of the transparent conductive oxide layer 125 is a transparent oxide to improve light transmittance and conduct electricity.
为了对LED芯片12做更详细的说明,在本实施例中将所述LED芯片12分别命名为第一LED芯片12’、第二LED芯片12”及第三LED芯片12”’。第一LED芯片12’为蓝宝石基板11上的最左侧的LED芯片12,而第二LED芯片12”为蓝宝石基板11上的最右侧的LED芯片12,第三LED芯片12”’则位在第一LED芯片12’及第二LED芯片12”之间,然而也可以设置多个第三LED芯片12”’,例如在本发明实施例中有两个第三LED芯片12”’。In order to describe the LED chips 12 in more detail, the LED chips 12 are respectively named as the first LED chip 12', the second LED chip 12" and the third LED chip 12"' in this embodiment. The first LED chip 12' is the leftmost LED chip 12 on the sapphire substrate 11, the second LED chip 12" is the rightmost LED chip 12 on the sapphire substrate 11, and the third LED chip 12"' is the Between the first LED chip 12' and the second LED chip 12", however, a plurality of third LED chips 12"' may also be arranged, for example, there are two third LED chips 12"' in the embodiment of the present invention.
第一钝化层20,其设置于每一LED芯片12的侧边,例如每一N型层121、量子井层123、P型层124及透明导电氧化物层125的侧边。The first passivation layer 20 is disposed on the side of each LED chip 12 , such as the side of each N-type layer 121 , quantum well layer 123 , P-type layer 124 and transparent conductive oxide layer 125 .
共电连层30,其包括:第一电连层31、第二电连层32及第三电连层33。第一电连层31位于每一透明导电氧化物层125的表面上,第二电连层32位于每一N型表面122上,而第三电连层33则是连接每一相邻的第一电连层31及第二电连层32,并覆盖每一LED芯片12侧边的第一钝化层20。换句话说,第三电连层33从LED芯片12的第一电连层31端沿着LED芯片12的侧边延伸至相邻的另一LED芯片12的第二电连层32端,以使多个LED芯片12彼此串联,形成高压LED结构。The common electrical connection layer 30 includes: a first electrical connection layer 31 , a second electrical connection layer 32 and a third electrical connection layer 33 . The first electrical connection layer 31 is located on the surface of each transparent conductive oxide layer 125, the second electrical connection layer 32 is located on each N-type surface 122, and the third electrical connection layer 33 is connected to each adjacent third An electrical connection layer 31 and a second electrical connection layer 32 cover the first passivation layer 20 on the side of each LED chip 12 . In other words, the third electrical connection layer 33 extends from the first electrical connection layer 31 end of the LED chip 12 along the side of the LED chip 12 to the second electrical connection layer 32 end of another adjacent LED chip 12, so as to A plurality of LED chips 12 are connected in series to form a high voltage LED structure.
形成共电连层30的材料可以与透明导电氧化物层125相同,透明的导电材料可以避免共电连层30挡住出光,而同时达到导电及提高发光效率的目的。The material forming the common electrical connection layer 30 can be the same as that of the transparent conductive oxide layer 125 , and the transparent conductive material can prevent the common electrical connection layer 30 from blocking light, while achieving the purpose of conducting electricity and improving luminous efficiency.
第二钝化层40,其包覆第一钝化层20及共电连层30,并覆盖所有LED芯片12以形成平坦的钝化表面41,进而提供后续工艺进行。The second passivation layer 40 covers the first passivation layer 20 and the common electrical connection layer 30 , and covers all the LED chips 12 to form a flat passivation surface 41 , which is further provided for subsequent processes.
镜面层50,其设置于钝化表面41上,由于钝化表面41十分平坦,故位于其上的镜面层50也具有相同的水平高度,可以在同样高度进行光反射而得到反射量及强度一致的反射光,同时彼此之间没有光程差的反射光可以往蓝宝石基板11方向出光。其中,镜面层50可以由分布布拉格反射镜(DBR)及金属组成,而金属可以为铝或银。The mirror layer 50 is arranged on the passivation surface 41. Since the passivation surface 41 is very flat, the mirror layer 50 on it also has the same horizontal height, and light reflection can be performed at the same height to obtain the same reflection amount and intensity. The reflected light, and the reflected light with no optical path difference between each other can emit light toward the direction of the sapphire substrate 11 . Wherein, the mirror layer 50 may be composed of a distributed Bragg reflector (DBR) and metal, and the metal may be aluminum or silver.
两接合金属61,其分别在相对于第一LED芯片12’上方附近的位置及在相对于第二LED芯片12”上方附近的位置自镜面层50的表面穿过镜面层50及第二钝化层40,以分别与第一LED芯片12’的第一电连层31及第二LED芯片12”的第二电连层32相接以形成电性连接。Two bonding metals 61, which respectively pass through the mirror layer 50 and the second passivation from the surface of the mirror layer 50 at positions near the top relative to the first LED chip 12' and at positions near the top relative to the second LED chip 12" The layer 40 is connected to the first electrical connection layer 31 of the first LED chip 12 ′ and the second electrical connection layer 32 of the second LED chip 12 ″ respectively to form an electrical connection.
两接合金属层70,其分别设置于镜面层50上并一对一的与所述接合金属61接合以形成电性连接,且所述接合金属层70彼此分离以避免短路。其中,所述接合金属层70的表面电镀有金薄膜以增进导电度。The two bonding metal layers 70 are respectively disposed on the mirror layer 50 and are one-to-one bonded to the bonding metal 61 to form an electrical connection, and the bonding metal layers 70 are separated from each other to avoid short circuit. Wherein, the surface of the bonding metal layer 70 is electroplated with a gold film to improve electrical conductivity.
如图15所示,高压覆晶LED结构100可以进一步包括电路板80,其以电路板80上的导电金属81与所述接合金属层70电性连接,并将电性结合电路板80后的结构倒置形成最终的高压覆晶LED结构100。其中,电路板80也可以为陶瓷电路板。As shown in FIG. 15 , the high-voltage flip-chip LED structure 100 may further include a circuit board 80, which is electrically connected to the bonding metal layer 70 by means of a conductive metal 81 on the circuit board 80, and is electrically connected to the circuit board 80. The structure is inverted to form the final high voltage flip chip LED structure 100 . Wherein, the circuit board 80 may also be a ceramic circuit board.
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的方法及技术内容作出些许的更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。The above is only a preferred embodiment of the present invention, and does not limit the present invention in any form. Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Anyone familiar with this field Those skilled in the art, without departing from the scope of the technical solution of the present invention, may use the method and technical content disclosed above to make some changes or modifications to equivalent embodiments with equivalent changes, but if they do not depart from the technical solution of the present invention, Any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention still fall within the scope of the technical solutions of the present invention.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310002699.0A CN103915530A (en) | 2013-01-05 | 2013-01-05 | High-voltage flip-chip LED structure and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310002699.0A CN103915530A (en) | 2013-01-05 | 2013-01-05 | High-voltage flip-chip LED structure and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103915530A true CN103915530A (en) | 2014-07-09 |
Family
ID=51041061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310002699.0A Pending CN103915530A (en) | 2013-01-05 | 2013-01-05 | High-voltage flip-chip LED structure and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103915530A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106887498A (en) * | 2015-12-16 | 2017-06-23 | 李乃义 | Light emitting diode packaging structure and manufacturing method thereof |
CN106887442A (en) * | 2015-12-16 | 2017-06-23 | 李乃义 | Light emitting diode device and manufacturing method thereof |
CN107170856A (en) * | 2017-04-25 | 2017-09-15 | 淮安澳洋顺昌光电技术有限公司 | The preparation method of upside-down mounting high voltage LED chip |
CN113196505A (en) * | 2018-12-19 | 2021-07-30 | 欧司朗光电半导体有限公司 | Method for producing an optoelectronic lighting device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090146165A1 (en) * | 2007-12-06 | 2009-06-11 | Ghulam Hasnain | LED Structure |
CN101752399A (en) * | 2008-12-17 | 2010-06-23 | 首尔半导体株式会社 | Light emitting diode having a plurality of light emitting cells and method of fabricating the same |
US20110084294A1 (en) * | 2007-11-14 | 2011-04-14 | Cree, Inc. | High voltage wire bond free leds |
CN102446948A (en) * | 2010-10-12 | 2012-05-09 | 晶元光电股份有限公司 | Light emitting element |
-
2013
- 2013-01-05 CN CN201310002699.0A patent/CN103915530A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110084294A1 (en) * | 2007-11-14 | 2011-04-14 | Cree, Inc. | High voltage wire bond free leds |
US20090146165A1 (en) * | 2007-12-06 | 2009-06-11 | Ghulam Hasnain | LED Structure |
CN101752399A (en) * | 2008-12-17 | 2010-06-23 | 首尔半导体株式会社 | Light emitting diode having a plurality of light emitting cells and method of fabricating the same |
CN102446948A (en) * | 2010-10-12 | 2012-05-09 | 晶元光电股份有限公司 | Light emitting element |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106887498A (en) * | 2015-12-16 | 2017-06-23 | 李乃义 | Light emitting diode packaging structure and manufacturing method thereof |
CN106887442A (en) * | 2015-12-16 | 2017-06-23 | 李乃义 | Light emitting diode device and manufacturing method thereof |
CN107170856A (en) * | 2017-04-25 | 2017-09-15 | 淮安澳洋顺昌光电技术有限公司 | The preparation method of upside-down mounting high voltage LED chip |
CN113196505A (en) * | 2018-12-19 | 2021-07-30 | 欧司朗光电半导体有限公司 | Method for producing an optoelectronic lighting device |
US12074145B2 (en) | 2018-12-19 | 2024-08-27 | Osram Opto Semiconductors Gmbh | Method for manufacturing an optoelectronic light emitting device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9224932B2 (en) | Wafer level photonic device die structure and method of making the same | |
JP6530442B2 (en) | Semiconductor light emitting diode having reflective structure and method of manufacturing the same | |
CN101515621B (en) | Light-emitting diode chip, manufacturing method and packaging method | |
CN109564930B (en) | Method for producing an optoelectronic device comprising a plurality of gallium nitride diodes | |
CN103180979B (en) | Light-emitting diode chip, light-emitting diode package structure, and forming method thereof | |
CN102593275B (en) | Method for manufacturing light-emitting diode packaging structure and light-emitting diode element | |
TW201426969A (en) | High-voltage flip chip LED structure and manufacturing method thereof | |
US9041020B2 (en) | Electrolytically coated optoelectronic semiconductor component and method for producing an optoelectronic semiconductor component | |
CN102637784A (en) | Light-emitting diode packaging substrate and manufacturing method thereof | |
WO2014036803A1 (en) | Light emitting diode flip chip for improving light emitting rate and preparation method thereof | |
CN113169259A (en) | Light-emitting diode and method of making the same | |
CN112768484A (en) | Light emitting diode and manufacturing method thereof | |
US7811843B1 (en) | Method of manufacturing light-emitting diode | |
JP2021527965A (en) | Semiconductor light emitting device | |
CN103915530A (en) | High-voltage flip-chip LED structure and manufacturing method thereof | |
CN104037296A (en) | Light emitting element and manufacturing method thereof | |
TWI398967B (en) | Light-emitting diode chip, and manufacturing method therefor | |
CN209626251U (en) | A kind of semiconductor light-emitting elements, packaging body and light emitting device | |
CN105633240B (en) | A kind of CSP packaged chip structures and production method | |
CN102623480A (en) | Light emitting diode array and manufacturing method thereof | |
CN203456494U (en) | Flip Chip LED Chip | |
WO2014106306A1 (en) | High-voltage flip chip led structure and manufacturing method therefor | |
TWI499083B (en) | Method for packaging an led chip, led package and method for making a reflector of an led package | |
CN210224057U (en) | Light emitting element | |
CN105655458A (en) | LED chip structure with increased light-emitting area and manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140709 |