CN103915464B - 1T1R array based on transparent RRAM gated thin film transistor and preparation method thereof - Google Patents
1T1R array based on transparent RRAM gated thin film transistor and preparation method thereof Download PDFInfo
- Publication number
- CN103915464B CN103915464B CN201410093949.0A CN201410093949A CN103915464B CN 103915464 B CN103915464 B CN 103915464B CN 201410093949 A CN201410093949 A CN 201410093949A CN 103915464 B CN103915464 B CN 103915464B
- Authority
- CN
- China
- Prior art keywords
- transistor
- gate
- drain
- array
- signal output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
技术领域technical field
本发明涉及信息存储技术领域,更具体涉及一种基于透明RRAM栅控薄膜晶体管的1T1R阵列及其制备方法。The invention relates to the technical field of information storage, and more specifically relates to a 1T1R array based on a transparent RRAM gate-controlled thin film transistor and a preparation method thereof.
背景技术Background technique
阻变存储器(resistive random access memory),即RRAM作为一种新型非挥发性存储器,通过利用不同电压作用下电阻的变化,实现高速(<5ns)、高密度、低操作电压(<1V)、高集成度等特点,是未来半导体存储器的有力竞争者。透明RRAM器件一般具有金属-绝缘体-金属的结构,通过在两层导电金属间加入一层氧化镍(NiO),氧化钛(TiO2),氧化铪(HfO2)或氧化锆(ZrO2)等具有阻变特性的介质薄膜材料,实现阻变材料在高低阻态的转变,从而实现数据的擦写。通常而言,薄膜材料可以通过溅射、化学汽相淀积、原子层淀积以及溶胶凝胶等方法形成。Resistive random access memory (resistive random access memory), that is, RRAM, as a new type of non-volatile memory, realizes high speed (<5ns), high density, low operating voltage (<1V), high Integration and other characteristics, it is a strong competitor for future semiconductor memory. Transparent RRAM devices generally have a metal-insulator-metal structure, by adding a layer of nickel oxide (NiO), titanium oxide (TiO 2 ), hafnium oxide (HfO 2 ) or zirconium oxide (ZrO 2 ) between two layers of conductive metal, etc. The dielectric thin film material with resistive properties realizes the transformation of the resistive material between high and low resistance states, thereby realizing data erasing and writing. Generally speaking, thin film materials can be formed by methods such as sputtering, chemical vapor deposition, atomic layer deposition, and sol-gel.
薄膜晶体管(thin-film transistor),即TFT是一种基于薄膜工艺的晶体管技术,通常可以通过化学汽相淀积、溶胶凝胶等方法制备。其在逻辑电路中有广泛的应用。传统基于RRAM的1T1R(1Transistor and1RRAM Device)结构中,薄膜晶体管(TFT)作为选择管,RRAM作为存储单元,其功能较为单一,无法实现复杂的逻辑功能。Thin-film transistor (thin-film transistor), that is, TFT is a transistor technology based on thin-film technology, which can usually be prepared by chemical vapor deposition, sol-gel and other methods. It is widely used in logic circuits. In the traditional RRAM-based 1T1R (1Transistor and 1RRAM Device) structure, thin-film transistors (TFTs) are used as selection transistors, and RRAMs are used as storage units. Their functions are relatively single, and complex logic functions cannot be realized.
发明内容Contents of the invention
(一)要解决的技术问题(1) Technical problems to be solved
本发明要解决的技术问题是如何克服1T1R阵列功能单一的不足,实现复杂的逻辑功能。The technical problem to be solved by the present invention is how to overcome the shortcoming of the single function of the 1T1R array and realize complex logic functions.
(二)技术方案(2) Technical solution
为了解决上述技术问题,本发明提供了一种基于透明RRAM栅控薄膜晶体管的1T1R阵列,所述1T1R阵列包括逻辑电路、信号输入电路、信号输出电路、电源Vdd;其中所述逻辑电路包括1T1R单元、第一晶体管;所述1T1R单元包括阻变电阻和第二晶体管;In order to solve the above technical problems, the present invention provides a 1T1R array based on transparent RRAM gate-controlled thin film transistors, the 1T1R array includes a logic circuit, a signal input circuit, a signal output circuit, and a power supply Vdd; wherein the logic circuit includes a 1T1R unit , a first transistor; the 1T1R unit includes a resistance variable resistor and a second transistor;
所述第二晶体管为NMOS晶体管或PMOS晶体管;所述第二晶体管为NMOS晶体管时,第一晶体管为PMOS晶体管,所述1T1R阵列的连接为:所述阻变电阻的一端连接所述信号输入电路,另一端连接所述第二晶体管的栅极,所述第二晶体管的源极接地,其漏极与所述信号输出电路以及所述第一晶体管的漏极连接,所述第一晶体管的栅极接地,其源极连接电源Vdd;The second transistor is an NMOS transistor or a PMOS transistor; when the second transistor is an NMOS transistor, the first transistor is a PMOS transistor, and the connection of the 1T1R array is: one end of the resistance variable resistor is connected to the signal input circuit , the other end is connected to the gate of the second transistor, the source of the second transistor is grounded, its drain is connected to the signal output circuit and the drain of the first transistor, and the gate of the first transistor The pole is grounded, and its source is connected to the power supply Vdd;
所述第二晶体管为PMOS晶体管时,第一晶体管为NMOS晶体管,所述1T1R阵列的连接为:所述阻变电阻的一端连接所述信号输入电路,另一端连接所述第二晶体管的栅极,所述第二晶体管的源极连接所述电源Vdd,其漏极与所述信号输出电路、所述第一晶体管的漏极连接;所述第一晶体管的栅极连接所述电源Vdd,其源极接地。When the second transistor is a PMOS transistor, the first transistor is an NMOS transistor, and the connection of the 1T1R array is: one end of the resistance variable resistor is connected to the signal input circuit, and the other end is connected to the gate of the second transistor , the source of the second transistor is connected to the power supply Vdd, and its drain is connected to the signal output circuit and the drain of the first transistor; the gate of the first transistor is connected to the power supply Vdd, and its drain is connected to the signal output circuit and the drain of the first transistor; Source ground.
优选地,所述1T1R单元至少为一个,多余1个时,所述1T1R单元并联。Preferably, there is at least one 1T1R unit, and if there is more than one 1T1R unit, the 1T1R unit is connected in parallel.
一种基于透明RRAM栅控薄膜晶体管的1T1R阵列的制备方法,其特征在于,包括以下步骤:A method for preparing a 1T1R array based on a transparent RRAM gate-controlled thin film transistor, characterized in that it comprises the following steps:
S1、制作逻辑电路,具体为:S1, making a logic circuit, specifically:
制备所述第二晶体管的基底;preparing a substrate for the second transistor;
在所述基底上生成栅极;forming a gate on the substrate;
在所述栅极生成阻变电阻;generating a resistive variable resistor at the gate;
在所述栅极上生成绝缘层;forming an insulating layer on the gate;
在所述阻变电阻上生成电极层;generating an electrode layer on the resistive variable resistor;
在所述基底上生成第二晶体管单元其余部分;forming a remainder of the second transistor cell on the substrate;
制备第一晶体管的栅极、源极以及漏极;preparing the gate, source and drain of the first transistor;
S2、制备信号输入电路以及信号输出电路;S2. Prepare a signal input circuit and a signal output circuit;
S3、将信号输入电路和信号输出电路分别与所述逻辑电路对应连接。S3. Correspondingly connecting the signal input circuit and the signal output circuit to the logic circuit respectively.
优选地,所述步骤S1中在所述基底上生成第二晶体管单元其余部分具体为:Preferably, in the step S1, generating the rest of the second transistor unit on the substrate is specifically:
在所述绝缘层上生成沟道层;forming a channel layer on the insulating layer;
在所述沟道层分别生成源极和漏极。A source and a drain are respectively formed in the channel layer.
(三)有益效果(3) Beneficial effects
本发明提供了一种基于透明RRAM栅控薄膜晶体管的1T1R阵列以及制备方法,通过晶体管与阻变电阻的连接关系设计,实现了1T1R阵列复杂的逻辑功能。The invention provides a 1T1R array based on a transparent RRAM gate-controlled thin film transistor and a preparation method, and realizes complex logic functions of the 1T1R array through the design of the connection relationship between the transistor and the resistance variable resistor.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1为本发明的1T1R阵列包括两个1T1R单元的一种结构示意图;Fig. 1 is a kind of structural representation that 1T1R array of the present invention comprises two 1T1R units;
图2为本发明的1T1R阵列包括两个1T1R单元的另一种结构示意图;Fig. 2 is another kind of structural representation that 1T1R array of the present invention comprises two 1T1R units;
图3本发明的制备方法流程图;The preparation method flowchart of Fig. 3 of the present invention;
图4本发明的第二晶体管以及阻变电阻的结构示意图。FIG. 4 is a schematic structural diagram of a second transistor and a resistance variable resistor of the present invention.
附图标记:Reference signs:
1、基底;2、栅极;3绝缘层;4沟道层;5源极;6漏极;7、阻变电阻;8、上电极层。1. Substrate; 2. Gate; 3. Insulation layer; 4. Channel layer; 5. Source; 6. Drain; 7. Resistor; 8. Upper electrode layer.
具体实施方式detailed description
下面结合附图和实施例对本发明作进一步详细描述。以下实施例 用于说明本发明,但不能用来限制本发明的范围。The present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments. The following examples serve to illustrate the present invention, but are not intended to limit the scope of the present invention.
本发明的基于透明RRAM栅控薄膜晶体管的1T1R阵列,包括逻辑电路、信号输入电路、信号输出电路、电源Vdd;其中所述逻辑电路包括1T1R单元、第一晶体管;所述1T1R单元包括阻变电阻和第二晶体管;所述1T1R单元至少为一个,多余1个时,1T1R单元并联。第二晶体管为NMOS晶体管或PMOS晶体管。The 1T1R array based on transparent RRAM gate-controlled thin film transistors of the present invention includes a logic circuit, a signal input circuit, a signal output circuit, and a power supply Vdd; wherein the logic circuit includes a 1T1R unit and a first transistor; the 1T1R unit includes a resistance variable resistor and the second transistor; there is at least one 1T1R unit, and if there is more than one 1T1R unit, the 1T1R unit is connected in parallel. The second transistor is an NMOS transistor or a PMOS transistor.
图1为本发明的1T1R阵列包括两个1T1R单元的一种结构示意图;图中第二晶体管为NMOS晶体管时,第一晶体管为PMOS晶体管,1T1R阵列的连接为:所述阻变电阻的一端连接所述信号输入电路,另一端连接所述第二晶体管的栅极,所述第二晶体管的源极接地,其漏极与所述信号输出电路以及所述第一晶体管的漏极连接,所述第一晶体管的栅极接地,其源极连接电源Vdd。图中OUT为信号输出电路的输出端;r1、r2为阻变电阻;A、B为输入信号。OUT输出端可以根据输入A、B信号与RRAM通断形成如下逻辑,
需要指出的是,输入变量并不局限于A、B,可以在图1基础上任意添加更多输入端。但需要注意的是,实现逻辑功能的1T1R单元必须以并联的形式出现。It should be pointed out that the input variables are not limited to A and B, and more input terminals can be arbitrarily added on the basis of Fig. 1 . However, it should be noted that the 1T1R units that implement logic functions must appear in parallel.
实现上述1T1R阵列时,需要在第二晶体管的基底上对第二晶体管、阻变电阻等进行制备,具体为:When realizing the above-mentioned 1T1R array, it is necessary to prepare the second transistor, the resistive variable resistor, etc. on the substrate of the second transistor, specifically:
所述基底1优选地为玻璃衬底,也可以是一些透明柔性衬底。所述的漏极区优选为铂、钛、铜、铝、氧化钛、镍、钨等导电材料。所述阻变电阻7可以为氧化铪、氧化钛、氧化锆、氧化锌、氧化钨、氧化钽等金属氧化物材料或它们的组合,厚度可以为10nm-100nm。所述的沟道层可以采用的氧化物薄膜化学通式为In-X-Zn-O,其中,X是硅、锗、镧、铱元素等,In-X-Zn-O氧化物中掺杂金属元素钛、铝、镁、锆、铪、镨、铈以及钕中的至少一种元素的薄膜。所述栅极2可以采用FTO、ITO等导电材料。所述的源极5和漏极6可以采用铂、钛、铜、铝、氧化钛、镍、钨等导电材料。所述绝缘层3可以是氧化铪、氧化锆等之类的介电材料或它们的混合物。所述上电极可以是ITO、FTO等导电材料。The substrate 1 is preferably a glass substrate, and may also be some transparent flexible substrates. The drain region is preferably made of conductive materials such as platinum, titanium, copper, aluminum, titanium oxide, nickel, and tungsten. The resistance variable resistor 7 can be made of metal oxide materials such as hafnium oxide, titanium oxide, zirconium oxide, zinc oxide, tungsten oxide, tantalum oxide, or a combination thereof, and the thickness can be 10nm-100nm. The general chemical formula of the oxide thin film that can be used in the channel layer is In-X-Zn-O, wherein, X is silicon, germanium, lanthanum, iridium, etc., and the In-X-Zn-O oxide is doped A thin film of at least one element among metal elements titanium, aluminum, magnesium, zirconium, hafnium, praseodymium, cerium and neodymium. The gate 2 can be made of conductive materials such as FTO and ITO. The source electrode 5 and the drain electrode 6 can be made of platinum, titanium, copper, aluminum, titanium oxide, nickel, tungsten and other conductive materials. The insulating layer 3 may be a dielectric material such as hafnium oxide, zirconium oxide, etc. or a mixture thereof. The upper electrode can be made of conductive materials such as ITO and FTO.
如图4所示,当栅控1T1R阵列如图1所示结构时,制备方法包括步骤:As shown in Figure 4, when the gate-controlled 1T1R array has the structure shown in Figure 1, the preparation method includes steps:
清洗基底1:使用超声清洗机清洗玻璃基底;Cleaning the substrate 1: cleaning the glass substrate with an ultrasonic cleaner;
制备栅极2:光刻出栅极,采用磁控溅射技术生长FTO(氟锡氧化物)导电薄膜,使用剥离方法形成栅极2;Preparation of gate 2: photolithography out of the gate, using magnetron sputtering technology to grow FTO (fluorine tin oxide) conductive film, using the lift-off method to form gate 2;
制备ZrO2栅介质(绝缘层3)与阻变层7:采用溶胶凝胶方法、PECVD(PlasmaEnhanced Chemical Vapor Deposition,等离子体增强化学气相沉积法)技术或磁控溅射技术或ALD技术生长二氧化锆栅介质层与阻变层薄膜;Preparation of ZrO2 gate dielectric (insulating layer 3) and resistive switch layer 7: growth of zirconia by sol-gel method, PECVD (PlasmaEnhanced Chemical Vapor Deposition, plasma enhanced chemical vapor deposition) technology or magnetron sputtering technology or ALD technology Gate dielectric layer and resistive layer thin film;
制备In-Y-Zn-O薄膜(沟道层4):使用溶胶凝胶方法,形成In-Y-Zn-O薄膜;Preparation of In-Y-Zn-O film (channel layer 4): using a sol-gel method to form an In-Y-Zn-O film;
制备源漏极:将上述样品进行光刻,采用PVD(Physical VaporDeposition,物理气相沉积)工艺淀积,使用剥离方法形成源极5和漏极6,得到TFT器件;Preparation of source and drain electrodes: photolithography is carried out on the above samples, deposited by PVD (Physical Vapor Deposition, physical vapor deposition) process, and the source electrode 5 and the drain electrode 6 are formed by a lift-off method to obtain a TFT device;
制备上电极:将栅极2作为RRAM的底电极,用溶胶凝胶工艺或PVD(Physical VaporDeposition,物理气相沉积)、CVD(Chemical Vapor Deposition,化学气相沉积)或ALD(Atomic layer deposition,原子层沉 积)等技术淀积ITO、FTO等导电材料,并进行退火处理,形成上电极8。Prepare the upper electrode: use the gate 2 as the bottom electrode of the RRAM, use the sol-gel process or PVD (Physical Vapor Deposition, physical vapor deposition), CVD (Chemical Vapor Deposition, chemical vapor deposition) or ALD (Atomic layer deposition, atomic layer deposition) ) and other techniques to deposit conductive materials such as ITO and FTO, and perform annealing treatment to form the upper electrode 8 .
完成后的结构如对应图4所示。The completed structure is shown in the corresponding figure 4.
本发明通过对阻变电阻施加电压预设不同阻值,使得信号输出电路能够输出需要的信号。In the present invention, different resistance values are preset by applying voltage to the resistance variable resistor, so that the signal output circuit can output the required signal.
图2为本发明的1T1R阵列包括两个1T1R单元的另一种结构示意图;所述第二晶体管为PMOS晶体管时,第一晶体管为NMOS晶体管,所述1T1R阵列的连接为:所述阻变电阻的一端连接所述信号输入电路,另一端连接所述第二晶体管的栅极,所述第二晶体管的源极连接所述电源Vdd,其漏极与所述信号输出电路、所述第一晶体管的漏极连接;所述第一晶体管的栅极连接所述电源Vdd,其源极接地。图中OUT为信号输出电路的输出端;r1、r2为阻变电阻;A、B为输入信号。OUT输出端可以根据输入A、B信号与RRAM通断形成如下逻辑,
需要指出的是,输入变量并不局限于A、B,可以在图2基础上任意添加更多输入端。但需要注意的是,实现逻辑功能的晶体管必须以并联的形式出现。图2示阵列的制备方法与图1所示的阵列的制备方法以及使用的材料相同,这里不再赘述。It should be pointed out that the input variables are not limited to A and B, and more input terminals can be arbitrarily added on the basis of Fig. 2 . However, it should be noted that the transistors that implement logic functions must appear in parallel. The preparation method of the array shown in FIG. 2 is the same as that of the array shown in FIG. 1 and the materials used, and will not be repeated here.
本发明还公开了一种基于透明RRAM栅控薄膜晶体管的1T1R阵列的制备方法,总结如下,如图3所示:The present invention also discloses a method for preparing a 1T1R array based on a transparent RRAM gate-controlled thin film transistor, which is summarized as follows, as shown in Figure 3:
S1:制备逻辑电路;S1: preparing a logic circuit;
S2:制备信号输入电路和信号输出电路;S2: preparing a signal input circuit and a signal output circuit;
实际中,可以在一块基底上实现逻辑电路、信号输入电路和信号输出电路的制备。In practice, logic circuits, signal input circuits and signal output circuits can be fabricated on one substrate.
S3:将所述信号输入电路和信号输出电路与所述逻辑电路对应连接。所述对应连接是指,根据需要,将信号输入电路、信号输出电路和逻辑电路进行连接,使得信号输出电路输出需要的信号。S3: Correspondingly connecting the signal input circuit and the signal output circuit to the logic circuit. The corresponding connection refers to connecting the signal input circuit, the signal output circuit and the logic circuit as required, so that the signal output circuit outputs the required signal.
实际中,通常先对逻辑电路进行制备,然后才对信号输入电路和信号输出电路进行制备。以图4为例,对应的步骤S1中所述制备逻辑电路具体为:In practice, the logic circuit is usually prepared first, and then the signal input circuit and signal output circuit are prepared. Taking Figure 4 as an example, the logic circuit prepared in the corresponding step S1 is specifically:
S11:制备基底1;S11: preparing substrate 1;
S12:在所述基底上生成栅材料2;S12: generating gate material 2 on the substrate;
S13:在所述基底上生成阻变电阻7与TFT绝缘层3;S13: generating a resistive variable resistor 7 and a TFT insulating layer 3 on the substrate;
S14:在所述基底上生成晶体管其余单元;S14: generating other units of the transistor on the substrate;
S15:在所述阻变电阻7上生成上电极层8;S15: generating an upper electrode layer 8 on the resistive variable resistor 7;
S16:制备第一晶体管的栅极、源极以及漏极。S16: preparing the gate, source and drain of the first transistor.
步骤S14所述在所述基底上生成晶体管单元具体为:The generating transistor unit on the substrate described in step S14 is specifically:
S141:在所述绝缘层3上生成沟道层4;S141: forming a channel layer 4 on the insulating layer 3;
S142:在所述沟道层4分别生成源极5和漏极6。S142: Forming a source 5 and a drain 6 on the channel layer 4 respectively.
所述阻变电阻7可以是氧化铪、氧化钛、氧化锆、氧化锌、氧化钨、氧化钽等金属氧化物材料或它们的组合,并通过物理气相沉积、化学气相沉积、原子层沉积或溶胶凝胶工艺形成。The varistor 7 can be made of metal oxide materials such as hafnium oxide, titanium oxide, zirconium oxide, zinc oxide, tungsten oxide, tantalum oxide, or a combination thereof, and can be deposited by physical vapor deposition, chemical vapor deposition, atomic layer deposition or sol Gel process formation.
以上实施方式仅用于说明本发明,而非对本发明的限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行各种组合、修改或者等同替换,都不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。The above embodiments are only used to illustrate the present invention, but not to limit the present invention. Although the present invention has been described in detail with reference to the embodiments, those skilled in the art should understand that various combinations, modifications or equivalent replacements of the technical solutions of the present invention do not depart from the spirit and scope of the technical solutions of the present invention, and all should cover Within the scope of the claims of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410093949.0A CN103915464B (en) | 2014-03-13 | 2014-03-13 | 1T1R array based on transparent RRAM gated thin film transistor and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410093949.0A CN103915464B (en) | 2014-03-13 | 2014-03-13 | 1T1R array based on transparent RRAM gated thin film transistor and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103915464A CN103915464A (en) | 2014-07-09 |
CN103915464B true CN103915464B (en) | 2016-09-07 |
Family
ID=51041027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410093949.0A Active CN103915464B (en) | 2014-03-13 | 2014-03-13 | 1T1R array based on transparent RRAM gated thin film transistor and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103915464B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110780728B (en) * | 2019-10-31 | 2025-01-24 | 河南思维轨道交通技术研究院有限公司 | A power module |
CN112201696B (en) * | 2020-12-08 | 2021-03-12 | 西交利物浦大学 | Self-driven triboelectric nanoelectric synaptic transistor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1996493A (en) * | 2006-01-04 | 2007-07-11 | 三星电子株式会社 | Phase-change memory device |
CN101533890A (en) * | 2009-04-03 | 2009-09-16 | 中国科学院上海硅酸盐研究所 | Transparent RRAM component with zinc oxide based homogeneous structure and manufacture method thereof |
CN102290103A (en) * | 2011-04-27 | 2011-12-21 | 上海新储集成电路有限公司 | Phase change memory capable of reaching infinite fatigue |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7778063B2 (en) * | 2006-11-08 | 2010-08-17 | Symetrix Corporation | Non-volatile resistance switching memories and methods of making same |
-
2014
- 2014-03-13 CN CN201410093949.0A patent/CN103915464B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1996493A (en) * | 2006-01-04 | 2007-07-11 | 三星电子株式会社 | Phase-change memory device |
CN101533890A (en) * | 2009-04-03 | 2009-09-16 | 中国科学院上海硅酸盐研究所 | Transparent RRAM component with zinc oxide based homogeneous structure and manufacture method thereof |
CN102290103A (en) * | 2011-04-27 | 2011-12-21 | 上海新储集成电路有限公司 | Phase change memory capable of reaching infinite fatigue |
Also Published As
Publication number | Publication date |
---|---|
CN103915464A (en) | 2014-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103490769B (en) | A kind of 1T1R array of applying in FPGA based on RRAM and preparation method thereof | |
Ambriz-Vargas et al. | A complementary metal oxide semiconductor process-compatible ferroelectric tunnel junction | |
Ryu et al. | Ferroelectric tunneling junctions based on aluminum oxide/zirconium-doped hafnium oxide for neuromorphic computing | |
Huang et al. | Manipulated transformation of filamentary and homogeneous resistive switching on ZnO thin film memristor with controllable multistate | |
Miao et al. | Continuous electrical tuning of the chemical composition of TaO x-based memristors | |
Rosa et al. | Memristors using solution-based IGZO nanoparticles | |
US10090461B2 (en) | Oxide-based three-terminal resistive switching logic devices | |
US20120132882A1 (en) | Transparent Memory for Transparent Electronic Device | |
Wu et al. | Bipolar resistance switching in transparent ITO/LaAlO3/SrTiO3 memristors | |
Chen et al. | Electroforming-free, flexible, and reliable resistive random-access memory based on an ultrathin TaO x film | |
US9281475B2 (en) | Resistive random-access memory (RRAM) with multi-layer device structure | |
CN103165172B (en) | Hybrid memory device and control method and preparation method thereof | |
US9502647B2 (en) | Resistive random-access memory (RRAM) with a low-K porous layer | |
Guido et al. | Role of defects in the breakdown phenomenon of Al1–x Sc x N: From ferroelectric to filamentary resistive switching | |
Zhang et al. | Realization of self-compliance resistive switching memory via tailoring interfacial oxygen | |
CN102005536A (en) | Improved NiO-based resistive random access memory (RRAM) and manufacturing method thereof | |
Katiyar et al. | Unipolar resistive switching in planar Pt/BiFeO3/Pt structure | |
Qian et al. | Uncovering the indium filament revolution in transparent bipolar ITO/SiO x/ITO resistive switching memories | |
CN103682095B (en) | A kind of resistance-variable storing device with selectivity characteristic and preparation method thereof | |
CN103915464B (en) | 1T1R array based on transparent RRAM gated thin film transistor and preparation method thereof | |
CN115768248A (en) | Hafnium oxide-based ferroelectric FTJ memristor and its preparation method and chip | |
CN105552080A (en) | Preparation method of non-volatile memory based on metallic oxide thin film transistor | |
Wang et al. | Bipolar Resistive Switching in Lanthanum Titanium Oxide and an Increased On/Off Ratio Using an Oxygen-Deficient ZnO Interlayer | |
CN105575991A (en) | Memory structure and method of forming the same | |
CN106098935A (en) | A kind of low-power consumption oxide wire memristor and the method realizing its synaptic function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |