[go: up one dir, main page]

CN103904975B - A kind of control method of salient-pole synchronous motor - Google Patents

A kind of control method of salient-pole synchronous motor Download PDF

Info

Publication number
CN103904975B
CN103904975B CN201410121053.9A CN201410121053A CN103904975B CN 103904975 B CN103904975 B CN 103904975B CN 201410121053 A CN201410121053 A CN 201410121053A CN 103904975 B CN103904975 B CN 103904975B
Authority
CN
China
Prior art keywords
given
current
synchronous motor
coordinate system
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410121053.9A
Other languages
Chinese (zh)
Other versions
CN103904975A (en
Inventor
毛帅
刘卫国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201410121053.9A priority Critical patent/CN103904975B/en
Publication of CN103904975A publication Critical patent/CN103904975A/en
Application granted granted Critical
Publication of CN103904975B publication Critical patent/CN103904975B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

本发明涉及一种凸极式同步电动机的控制方法,首先将dq坐标系变换到jm坐标系,由坐标变换关系将凸极式同步电动机在dq坐标系下的电磁转矩表达式进行变换,得到一种对磁阻转矩进行分解的电磁转矩表达式,然后根据直交轴电感的大小关系,选择磁阻转矩中的保留项,从而实现对凸极式同步电动机的控制。控制过程对参数不敏感,不存在曲线拟合,鲁棒性较MTPA方法得到有效提高。在本发明所述的整个控制过程中,只需要知道凸极式同步电动机的三相电流与转子位置信息,以及直交轴电感Ld、Lq的大小关系即可,对电机参数变化不敏感,控制简单,抗扰性好,调速范围宽。

The invention relates to a control method of a salient-pole synchronous motor. Firstly, the dq coordinate system is transformed into the jm coordinate system, and the electromagnetic torque expression of the salient-pole synchronous motor in the dq coordinate system is transformed according to the coordinate transformation relationship, and the obtained An electromagnetic torque expression that decomposes the reluctance torque, and then selects the reserved items in the reluctance torque according to the size relationship of the orthogonal axis inductance, so as to realize the control of the salient pole synchronous motor. The control process is insensitive to parameters, there is no curve fitting, and the robustness is effectively improved compared with the MTPA method. In the whole control process of the present invention, it is only necessary to know the three-phase current of the salient pole synchronous motor and the rotor position information, as well as the relationship between the inductance L d and L q of the orthogonal axis, and it is not sensitive to the change of the motor parameters. The control is simple, the immunity is good, and the speed range is wide.

Description

一种凸极式同步电动机的控制方法A control method for a salient pole synchronous motor

技术领域technical field

本发明涉及一种凸极式同步电动机的控制方法,是一种通过对凸极式同步电动机磁阻转矩进行分解的控制方法,属于交流电机传动技术领域。The invention relates to a control method of a salient-pole synchronous motor, which is a control method by decomposing the reluctance torque of the salient-pole synchronous motor, and belongs to the technical field of AC motor transmission.

背景技术Background technique

目前,矢量控制技术以速度控制精确、转矩脉动小、调速范围宽等优势在同步电动机传动领域得到了广泛的应用。针对凸极式同步电动机的矢量控制,为了充分利用其磁阻转矩,而产生了最大转矩电流比(MTPA)控制方法。由MTPA方法的推导过程可知,MTPA可以得到最优的交直轴电流分配效果,从而实现使用最小的电流获得最大的电磁转矩,从理论上讲,这是一种理想的控制方案。但是在实际应用当中,MTPA并不能达到其应有的效果。主要原因有:(1)在其理论推导的过程中,用到了电机的转子磁链,交直轴电感等电机参数,由于这些参数在电机的运行过程中,随着电机转速、温度以及电流的变化而不断变化,并且是非线性变化,使得控制系统的抗扰性能变差。所以在实际应用中,并不能实现交直轴电流的最优分配和预期的控制效果,而且会引起转矩脉动,进一步影响控制精度。(2)由于在MTPA控制方法中,交直轴电流的计算公式十分复杂,通常的做法是离线拟合交直轴电流分配曲线,然后写入到单片机、DSP等微控制器中进行实时控制,由数值分析方法的相关知识可知这种离线拟合方法只能满足一种整体上的误差最小,所以可能在某些部分会存在较大的误差,从而造成控制精度变差,结合(1)中所述原因,控制效果会进一步变差。At present, vector control technology has been widely used in the field of synchronous motor transmission due to its advantages of precise speed control, small torque ripple, and wide speed range. Aiming at the vector control of the salient pole synchronous motor, in order to make full use of its reluctance torque, a maximum torque-to-current ratio (MTPA) control method was developed. From the derivation process of the MTPA method, it can be known that MTPA can obtain the optimal current distribution effect of the orthogonal and direct axes, so as to achieve the maximum electromagnetic torque with the minimum current. In theory, this is an ideal control scheme. However, in practical applications, MTPA cannot achieve its desired effect. The main reasons are: (1) In the process of theoretical derivation, motor parameters such as the rotor flux linkage of the motor and the inductance of the AC/D axis are used. Since these parameters change with the speed, temperature and current of the motor during the operation of the motor, And it is constantly changing, and it is a nonlinear change, which makes the anti-disturbance performance of the control system worse. Therefore, in practical applications, the optimal distribution of the AC and D axis currents and the expected control effect cannot be achieved, and it will cause torque ripple, which will further affect the control accuracy. (2) In the MTPA control method, the calculation formula of the AC-D axis current is very complicated. The usual practice is to fit the AC-D axis current distribution curve offline, and then write it into microcontrollers such as single-chip microcomputers and DSPs for real-time control. The relevant knowledge of the analysis method shows that this offline fitting method can only meet the minimum error on the whole, so there may be large errors in some parts, which will cause the control accuracy to deteriorate. Combined with (1) The reason, the control effect will be further deteriorated.

发明内容Contents of the invention

要解决的技术问题technical problem to be solved

为了避免现有技术的不足之处,本发明提出一种凸极式同步电动机的控制方法,解决最大转矩电流比(MTPA)方法在实际使用中受参数与计算影响较大的问题。In order to avoid the shortcomings of the prior art, the present invention proposes a salient-pole synchronous motor control method to solve the problem that the maximum torque-to-current ratio (MTPA) method is greatly affected by parameters and calculations in actual use.

技术方案Technical solutions

一种凸极式同步电动机的控制方法,对磁阻转矩进行了分解,然后由直交轴电感的大小关系,选择磁阻转矩中的保留项,从而实现对凸极式同步电动机的控制。技术特征在于它依次含有以下步骤:A control method of a salient-pole synchronous motor decomposes the reluctance torque, and then selects a reserved item in the reluctance torque according to the size relationship of the orthogonal axis inductance, thereby realizing the control of the salient-pole synchronous motor. The technical feature is that it contains the following steps in turn:

步骤1:根据给定转速n*与反馈转速n之差进行PI调节,得到给定交轴电流 i q * = K pn · e n + K in ∫ e n dt , K pn > 0 , K in > 0 ; 其中:Kpn、Kin分别为PI调节器的比例、积分系数;en=n*-n;Step 1: Perform PI adjustment according to the difference between the given speed n * and the feedback speed n to obtain the given quadrature axis current i q * = K pn · e no + K in ∫ e no dt , K pn > 0 , K in > 0 ; Among them: K pn and K in are the proportional and integral coefficients of the PI regulator respectively; e n =n * -n;

步骤2:根据给定交轴电流与反馈交轴电流iq之差进行PI调节,得到给定交轴电压 u q * = K pq · e iq + K iq ∫ e iq dt , K pq > 0 , K iq > 0 ; 其中:Kpq、Kiq分别为PI调节器的比例、积分系数; e iq = i q * - i q ; Step 2: According to the given quadrature axis current Perform PI adjustment with the difference between the feedback quadrature axis current i q to obtain a given quadrature axis voltage u q * = K pq · e iq + K iq ∫ e iq dt , K pq > 0 , K iq > 0 ; Among them: K pq and K iq are the proportional and integral coefficients of the PI regulator respectively; e iq = i q * - i q ;

步骤3:根据直交轴电感的大小关系,选择jm坐标系下相应的电流分量进行闭环调节,经过电流PI调节器后,输出给定直轴电压具体步骤如下:Step 3: According to the size relationship of the orthogonal axis inductance, select the corresponding current component in the jm coordinate system for closed-loop adjustment, and output the given direct axis voltage after passing through the current PI regulator Specific steps are as follows:

步骤(a)将dq轴坐标系顺时针旋转45°,得到jm坐标系;Step (a) Rotate the dq-axis coordinate system clockwise by 45° to obtain the jm coordinate system;

步骤(b)通过坐标变换公式由电流id、iq得到电流ij、imStep (b) through the coordinate transformation formula Get current i j , im from current id , i q ;

步骤(c)根据电机的类型得到直交轴电感Ld和Lq,如果Ld>Lq,以电流分量im进行闭环调节,给定参数为反馈参数为imStep (c) Obtain the orthogonal axis inductance L d and L q according to the type of the motor. If L d >L q , perform closed-loop adjustment with the current component im , and the given parameters are The feedback parameter is i m ;

如果Ld<Lq,以电流分量ij进行闭环调节,给定参数为反馈参数为ijIf L d <L q , the current component i j is used for closed-loop regulation, and the given parameter is The feedback parameter is i j ;

步骤4:以步骤3中进行闭环控制的电流分量的给定参数与反馈参数之差进行PI调节,得到给定直轴电压 u d * = K pd &CenterDot; e id + K id &Integral; e id dt , K pd > 0 , K id > 0 ; 其中:Kpd、Kid分别为PI调节器的比例、积分系数;Step 4: Use the difference between the given parameter and the feedback parameter of the current component of the closed-loop control in step 3 to perform PI adjustment to obtain the given direct-axis voltage u d * = K pd &Center Dot; e id + K id &Integral; e id dt , K pd > 0 , K id > 0 ; Among them: K pd and K id are the proportional and integral coefficients of the PI regulator respectively;

如果进行闭环控制的电流分量为im,那么 If the current component for closed-loop control is i m , then

如果进行闭环控制的电流分量为ij,那么 If the current component for closed-loop control is i j , then

步骤5:由给定的直交轴电压分量得到给定的空间电压矢量根据空间矢量脉宽调制方法对进行矢量合成,得到逆变器所需要的控制信号。Step 5: By the given orthogonal axis voltage component Get the given space voltage vector According to the space vector pulse width modulation method, the Perform vector synthesis to obtain the control signal required by the inverter.

所述的3个PI调节器的参数,需要根据凸极式同步电动机本身特性和系统性能要求进行调节。The parameters of the three PI regulators need to be adjusted according to the characteristics of the salient pole synchronous motor itself and the system performance requirements.

有益效果Beneficial effect

本发明提出的一种凸极式同步电动机的控制方法,控制原理框图如图1所示:首先将dq坐标系变换到jm坐标系,如图2所示,由坐标变换关系将凸极式同步电动机在dq坐标系下的电磁转矩表达式进行变换,得到一种对磁阻转矩进行分解的电磁转矩表达式,然后根据直交轴电感的大小关系,选择磁阻转矩中的保留项,从而实现对凸极式同步电动机的控制。控制过程对参数不敏感,不存在曲线拟合,鲁棒性较MTPA方法得到有效提高。A control method for a salient-pole synchronous motor proposed by the present invention, the control principle block diagram is shown in Figure 1: first, the dq coordinate system is transformed into the jm coordinate system, as shown in Figure 2, the salient-pole synchronous motor is converted from the coordinate transformation relationship Transform the electromagnetic torque expression of the motor in the dq coordinate system to obtain an electromagnetic torque expression that decomposes the reluctance torque, and then select the reserved items in the reluctance torque according to the magnitude relationship of the orthogonal axis inductance , so as to realize the control of the salient pole synchronous motor. The control process is insensitive to parameters, there is no curve fitting, and the robustness is effectively improved compared with the MTPA method.

本发明方法具有以下有益效果:The inventive method has the following beneficial effects:

(1)在本发明所述的整个控制过程中,只需要知道凸极式同步电动机的三相电流与转子位置信息,以及直交轴电感Ld、Lq的大小关系即可,对电机参数变化不敏感,控制简单,抗扰性好,调速范围宽;(1) In the entire control process of the present invention, it is only necessary to know the three-phase current and rotor position information of the salient pole synchronous motor, as well as the relationship between the inductances L d and L q of the orthogonal axis. Insensitivity, simple control, good anti-interference, wide speed range;

(2)本发明由于不需要进行传统MTPA的曲线拟合等工作,所以没有曲线拟合带来的误差,程序编写简单,转矩脉动小,计算速度快,控制的鲁棒性得到有效提高。(2) Since the present invention does not need to perform the curve fitting work of the traditional MTPA, there is no error caused by the curve fitting, the programming is simple, the torque ripple is small, the calculation speed is fast, and the robustness of the control is effectively improved.

附图说明Description of drawings

图1:控制原理框图Figure 1: Block diagram of the control principle

图2:dq坐标系与jm坐标系Figure 2: dq coordinate system and jm coordinate system

图3:dq坐标系电流到jm坐标系电流的变换Figure 3: Transformation of dq coordinate system current to jm coordinate system current

图4:负载转矩变化曲线Figure 4: Load torque change curve

图5:仿真结果——A相电流、转速、电磁转矩曲线Figure 5: Simulation results - phase A current, speed, electromagnetic torque curves

具体实施方式detailed description

现结合实施例、附图对本发明作进一步描述:Now in conjunction with embodiment, accompanying drawing, the present invention will be further described:

本发明对磁阻转矩进行了分解,然后由直交轴电感的大小关系,选择磁阻转矩中的保留项,从而实现对凸极式同步电动机的控制。技术特征在于它依次含有以下步骤:The invention decomposes the reluctance torque, and then selects the reserved item in the reluctance torque according to the size relationship of the orthogonal axis inductance, thereby realizing the control of the salient pole synchronous motor. The technical feature is that it contains the following steps in turn:

(1)根据给定转速n*与反馈转速n之差进行PI调节,得到给定交轴电流 i q * = K pn &CenterDot; e n + K in &Integral; e n dt , K pn > 0 , K in > 0 ; 其中,Kpn、Kin分别为PI调节器的比例、积分系数,en=n*-n;(1) Perform PI adjustment according to the difference between the given speed n * and the feedback speed n to obtain the given quadrature axis current i q * = K pn &CenterDot; e no + K in &Integral; e no dt , K pn > 0 , K in > 0 ; Among them, K pn and K in are the proportional and integral coefficients of the PI regulator respectively, e n =n*-n;

(2)根据给定交轴电流与反馈交轴电流iq之差进行PI调节,得到给定交轴电压 u q * = K pq &CenterDot; e iq + K iq &Integral; e iq dt , K pq > 0 , K iq > 0 ; 其中,Kpq、Kiq分别为PI调节器的比例、积分系数, e iq = i q * - i q . (2) According to the given quadrature axis current Perform PI adjustment with the difference between the feedback quadrature axis current i q to obtain a given quadrature axis voltage u q * = K pq &Center Dot; e iq + K iq &Integral; e iq dt , K pq > 0 , K iq > 0 ; Among them, K pq and K iq are the proportional and integral coefficients of the PI regulator respectively, e iq = i q * - i q .

(3)在图1所示的I区中先将直交轴电流变换到jm坐标系下,根据直交轴电感的大小关系,选择jm坐标系下相应的电流分量进行闭环调节,经过电流PI调节器后,输出给定直轴电压具体步骤如下:(3) In the I area shown in Figure 1, the orthogonal axis current is first transformed into the jm coordinate system, and according to the size relationship of the orthogonal axis inductance, the corresponding current component in the jm coordinate system is selected for closed-loop adjustment, and the current PI regulator is passed After that, output the given direct axis voltage Specific steps are as follows:

(a)将dq轴坐标系顺时针旋转45°,得到jm坐标系;(a) Rotate the dq-axis coordinate system clockwise by 45° to obtain the jm coordinate system;

(b)通过坐标变换公式(b) Through the coordinate transformation formula

ii jj ii mm == 22 22 11 11 11 -- 11 ii dd ii qq -- -- -- (( 11 ))

由电流id、iq得到电流ij、imGet current i j , im from current id , i q ;

(c)由电机的类型得到直交轴电感Ld、Lq的大小,如果Ld>Lq,那么闭环参数为im,即给定为im=0,反馈参数为im;如果Ld<Lq,那么闭环参数为ij,即给定为ij=0,反馈参数为ij。这里分别以嵌入式永磁同步电动机和凸极式电励磁同步电动机为例,对闭环电流分量的选择进行说明:(c) Obtain the size of the orthogonal axis inductance L d and L q from the type of motor, if L d >L q , then the closed-loop parameter is i m , that is, given as im =0, the feedback parameter is i m ; if L d <L q , then the closed-loop parameter is i j , that is, the given is i j =0, and the feedback parameter is i j . Here, the embedded permanent magnet synchronous motor and the salient pole electric excitation synchronous motor are taken as examples to illustrate the selection of closed-loop current components:

①嵌入式永磁同步电动机dq坐标系下的电磁转矩表达式为①The expression of the electromagnetic torque in the dq coordinate system of the embedded permanent magnet synchronous motor is

TT emem == 33 22 pp nno (( &psi;&psi; dd ii qq -- &psi;&psi; qq ii dd )) == 33 22 pp nno [[ &psi;&psi; ff ii qq ++ (( LL dd -- LL qq )) ii dd ii qq ]] -- -- -- (( 22 ))

式中,Tem:电磁转矩;pn:极对数;ψd:d轴磁链;ψq:q轴磁链。In the formula, T em : electromagnetic torque; p n : number of pole pairs; ψ d : d-axis flux linkage; ψ q : q-axis flux linkage.

由式(1)得By formula (1) get

TT emem == 33 22 pp nno &psi;&psi; ff ii qq ++ 33 pp nno 44 (( LL dd -- LL qq )) (( ii jj 22 -- ii mm 22 )) -- -- -- (( 33 ))

在嵌入式永磁同步电动机中,有Ld<Lq,即Ld-Lq<0,又因为均大于等于0,因此,可控制ij=0,则电磁转矩表达式变为In the embedded permanent magnet synchronous motor, there is L d <L q , that is, L d - L q <0, and because are greater than or equal to 0, therefore, i j =0 can be controlled, then the electromagnetic torque expression becomes

TT emem == 33 22 pp nno &psi;&psi; ff ii qq -- 33 pp nno 44 (( LL dd -- LL qq )) ii mm 22 -- -- -- (( 44 ))

②凸极式电励磁同步电动机(无阻尼绕组)dq坐标系下的电磁转矩表达式为② The expression of the electromagnetic torque in the dq coordinate system of the salient pole electric excitation synchronous motor (without damping winding) is

TT emem == 33 22 pp nno (( &psi;&psi; dd ii qq -- &psi;&psi; qq ii dd )) == 33 22 pp nno [[ Mm afaf ii ff ii qq ++ (( LL dd -- LL qq )) ii dd ii qq ]] -- -- -- (( 55 ))

式中,Maf:定子一相绕组与励磁绕组互感的幅值;if:励磁电流。In the formula, M af : the magnitude of the mutual inductance between the stator one-phase winding and the excitation winding; if f : the excitation current.

由式(1)得By formula (1) get

TT emem == 33 22 pp nno Mm afaf ii qq ++ 33 pp nno 44 (( LL dd -- LL qq )) (( ii jj 22 -- ii mm 22 )) -- -- -- (( 66 ))

在凸极式电励磁同步电动机中,有Ld>Lq,即Ld-Lq>0,又因为均大于等于0,因此,可控制im=0,则电磁转矩表达式变为In the salient pole electric excitation synchronous motor, there is L d >L q , that is, L d - L q >0, and because are greater than or equal to 0, therefore, can control i m =0, then the electromagnetic torque expression becomes

TT emem == 33 22 pp nno Mm afaf ii ff ii qq -- 33 pp nno 44 (( LL dd -- LL qq )) ii jj 22 -- -- -- (( 77 ))

由嵌入式永磁同步电动机和凸极式电励磁同步电动机(无阻尼绕组)的电磁转矩表达式可以看出,本发明提出的控制方法首先对磁阻转矩进行了分解,然后确定磁阻转矩中具体的保留项。It can be seen from the electromagnetic torque expressions of the embedded permanent magnet synchronous motor and the salient pole electric excitation synchronous motor (without damping windings), that the control method proposed by the present invention firstly decomposes the reluctance torque, and then determines the reluctance Specific reserved items in torque.

(4)将步骤(2)中选定的闭环电流分量的给定值与反馈值之差进行PI调节,得到给定直轴电压 u d * = K pd &CenterDot; e id + K id &Integral; e id dt , K pd > 0 , K id > 0 ; 其中,Kpd、Kid分别为PI调节器的比例、积分系数,如果闭环电流分量选择为im,那么如果闭环电流分量选择ij,那么 (4) Perform PI adjustment on the difference between the given value and the feedback value of the closed-loop current component selected in step (2) to obtain the given direct-axis voltage u d * = K pd &CenterDot; e id + K id &Integral; e id dt , K pd > 0 , K id > 0 ; Among them, K pd and K id are the proportional and integral coefficients of the PI regulator respectively. If the closed-loop current component is selected as i m , then If the closed-loop current component chooses i j , then

(5)由给定的直交轴电压分量得到给定的空间电压矢量根据空间矢量脉宽调制方法对进行矢量合成,得到逆变器所需要的控制信号。(5) By the given orthogonal axis voltage component Get the given space voltage vector According to the space vector pulse width modulation method, the Perform vector synthesis to obtain the control signal required by the inverter.

具体实施例如下:Specific examples are as follows:

采用Matlab2008b/Simulink6.0进行仿真验证。仿真中采用的凸极式同步电动机为一台嵌入式永磁同步电动机,具体参数为:极对数pn=6;定子绕组电阻Rs=0.03048Ω;直轴电感Ld=0.602mH;交轴电感Lq=1.295mH;永磁磁链Ψr=0.0566wb;给定转速n*=1500rpm。仿真条件具体为:仿真时间为0.2s,仿真步长为1e-5,解算方法为ode4(Runge-Kutta);起动负载转矩为10Nm,0.08s时逐渐升高到15Nm,0.15s时逐渐下降到5Nm,直到0.2s时仿真结束,具体负载转矩变化曲线如图4所示。Using Matlab2008b/Simulink6.0 for simulation verification. The salient pole synchronous motor used in the simulation is an embedded permanent magnet synchronous motor. The specific parameters are: number of pole pairs p n =6; stator winding resistance R s =0.03048Ω; direct axis inductance L d =0.602mH; Shaft inductance L q =1.295mH; permanent magnet flux linkage Ψ r =0.0566wb; given speed n * =1500rpm. The simulation conditions are as follows: the simulation time is 0.2s, the simulation step size is 1e-5, and the solution method is ode4 (Runge-Kutta); the starting load torque is 10Nm, which gradually increases to 15Nm at 0.08s, and gradually increases at 0.15s. Decrease to 5Nm, until the end of the simulation at 0.2s, the specific load torque change curve is shown in Figure 4.

实施例包含的具体步骤如下:The concrete steps that embodiment comprises are as follows:

1.通过永磁同步电动机的仿真模型得到当前转子位置θ和转速n以及定子三相电流iA、iB、iC1. Obtain the current rotor position θ, speed n and stator three-phase current i A , i B , i C through the simulation model of the permanent magnet synchronous motor;

2.计算永磁同步电动机在dq坐标系下的电流分量:2. Calculate the current component of the permanent magnet synchronous motor in the dq coordinate system:

(2.1).由下式计算永磁同步电动机定子电流在αβ坐标系下的分量:(2.1). The component of the permanent magnet synchronous motor stator current in the αβ coordinate system is calculated by the following formula:

ii &alpha;&alpha; ii &beta;&beta; == 33 22 11 -- 11 22 -- 11 22 00 33 22 -- 33 22 ii AA ii BB ii CC -- -- -- (( 88 ))

(2.2).由下式计算永磁同步电动机定子电流在dq坐标系下的分量:(2.2). The component of the permanent magnet synchronous motor stator current in the dq coordinate system is calculated by the following formula:

ii dd ii qq == coscos &theta;&theta; sinsin &theta;&theta; -- sinsin &theta;&theta; coscos &theta;&theta; ii &alpha;&alpha; ii &beta;&beta; -- -- -- (( 99 ))

3.通过以下步骤计算ij、im3. Calculate i j and i m through the following steps:

(3.1).将dq坐标系顺时针旋转45°,得到jm坐标系;(3.1). Rotate the dq coordinate system clockwise by 45° to obtain the jm coordinate system;

(3.2).由下式计算永磁同步电动机定子电流在jm坐标系下的电流分量(3.2). Calculate the current component of the permanent magnet synchronous motor stator current in the jm coordinate system by the following formula

ii jj ii mm == 22 22 11 11 11 -- 11 ii dd ii qq -- -- -- (( 1010 ))

4.判断直交轴电感Ld、Lq的大小,确定闭环电流分量:因为Ld<Lq,所以闭环参数为ij,即给定为ij=0,反馈参数为ij4. Determine the size of the orthogonal axis inductance L d and L q , and determine the closed-loop current component: because L d <L q , the closed-loop parameter is i j , that is, given as i j =0, and the feedback parameter is i j ;

5.通过以下步骤实施永磁同步电动机的运行控制:5. Implement the operation control of the permanent magnet synchronous motor through the following steps:

(5.1).设定速度环PI调节器的调节参数分别为Kpn=5、Kin=1;设定两个电流环PI调节器的调节参数Kpq=50、Kiq=10,Kpd=50、Kid=10;(5.1). Set the adjustment parameters of the speed loop PI regulator as K pn =5, K in =1; set the adjustment parameters of the two current loop PI regulators K pq =50, K iq =10, K pd =50, K id =10;

(5.2).由以下步骤获得给定交轴电压uq*:(5.2). Obtain the given quadrature axis voltage u q * by the following steps:

(5.2.1). e iq = i q * - i q ; (5.2.1). e iq = i q * - i q ;

(5.2.2). u q * = K pq &CenterDot; e iq + K iq &Integral; e iq dt ; (5.2.2). u q * = K pq &Center Dot; e iq + K iq &Integral; e iq dt ;

(5.3).由以下步骤获得给定直轴电压 (5.3). Obtain the given direct axis voltage by the following steps

(5.3.1). e id = i j * - i j ; (5.3.1). e id = i j * - i j ;

(5.3.2). u d * = K pd &CenterDot; e id + K id &Integral; e id dt ; (5.3.2). u d * = K pd &Center Dot; e id + K id &Integral; e id dt ;

(5.4).根据永磁同步电动机的转子位置θ和(5.2)得出的给定交轴电压和(5.3)得出的给定直轴电压由下式计算电压矢量在αβ坐标系下的分量:(5.4). According to the rotor position θ of the permanent magnet synchronous motor and the given quadrature axis voltage obtained from (5.2) and (5.3) for a given direct-axis voltage The components of the voltage vector in the αβ coordinate system are calculated by the following formula:

uu &alpha;&alpha; ** uu &beta;&beta; ** == coscos &theta;&theta; -- sinsin &theta;&theta; sinsin &theta;&theta; coscos &theta;&theta; uu dd ** uu qq ** -- -- -- (( 1111 ))

(5.5).根据空间矢量脉宽调制方法来进行电压矢量合成,通过以下步骤计算逆变器所需要的三相开关控制信号SA、SB、SC(5.5). The voltage vector synthesis is performed according to the space vector pulse width modulation method, and the three-phase switch control signals S A , S B , and S C required by the inverter are calculated through the following steps:

(5.5.1)判断合成矢量所处扇区:(5.5.1) Judging the sector where the composite vector is located:

由已知输入by known input make

uu 11 == uu &beta;&beta; ** uu 22 == 33 uu &alpha;&alpha; ** -- uu &beta;&beta; ** uu 33 == -- 33 uu &alpha;&alpha; ** -- uu &beta;&beta; ** -- -- -- (( 1212 ))

通过以下原则求出N:如果u1>0,则A=1,否则A=0;如果u2>0,则B=1,否则B=0;如果u3>0,则C=1,否则C=0。则N=A+2B+4C。Calculate N by following principles: if u 1 >0, then A=1, otherwise A=0; if u 2 >0, then B=1, otherwise B=0; if u 3 >0, then C=1, Otherwise C=0. Then N=A+2B+4C.

得到N值以后,由表1所示的对应关系,得到合成矢量所处扇区。After obtaining the N value, the sector where the resultant vector is located can be obtained from the corresponding relationship shown in Table 1.

表1N值与扇区的对应关系Table 1 Correspondence between N values and sectors

NN 11 22 33 44 55 66 扇区号sector number II I IV III V

(5.5.2)确定该扇区对应的相邻两个矢量的作用时间:令(5.5.2) Determine the action time of the two adjacent vectors corresponding to the sector: Let

Xx == 33 TT sthe s Uu dcdc uu &beta;&beta; YY == 22 TT sthe s 22 Uu dcdc (( 33 uu &alpha;&alpha; ++ uu &beta;&beta; )) ZZ == 33 TT sthe s 22 Uu dcdc (( -- 33 uu &alpha;&alpha; ++ uu &beta;&beta; )) -- -- -- (( 1313 ))

则合成空间电压矢量相邻两电压空间矢量的作用时间可由表2获得。其中,TX表示相邻两个矢量中的前一矢量的作用时间,TY表示后一矢量的作用时间。Then the synthetic space voltage vector The action time of two adjacent voltage space vectors can be obtained from Table 2. Among them, T X represents the action time of the previous vector among the two adjacent vectors, and TY represents the action time of the latter vector.

表2矢量作用时间表Table 2 Vector Action Schedule

扇区号sector number I II III IV TX T X -Z-Z ZZ Xx -X-X -Y-Y YY TY T Y Xx YY -Y-Y ZZ -Z-Z -X-X

当计算出(TX+TY)>Ts时,产生饱和,使得零矢量作用时间为负值,因此要对饱和时间进行处理。当(TX+TY)>Ts时,令When (T X +T Y )>T s is calculated, saturation occurs, making the zero-vector action time a negative value, so the saturation time needs to be processed. When (T X +T Y )>T s , let

TT Xx == TT Xx TT Xx ++ TT YY TT sthe s TT ythe y == TT YY TT Xx ++ TT YY TT sthe s -- -- -- (( 1414 ))

(5.5.3)计算电压空间矢量切换点时间,令(5.5.3) Calculate the voltage space vector switching point time, so that

TT &alpha;&alpha; == TT sthe s -- TT Xx -- TT YY 44 TT bb == TT aa ++ TT Xx 22 TT cc == TT bb ++ TT YY 22 -- -- -- (( 1515 ))

则电压空间矢量切换点时间可查表3得出。表3中Tcm1、Tcm2、Tcm3分别为电压空间矢量切换点时刻。Then the voltage space vector switching point time can be found in Table 3. In Table 3, T cm1 , T cm2 , and T cm3 are respectively the switching point of the voltage space vector.

表3电压空间矢量切换点时间表Table 3 Voltage space vector switching point schedule

扇区号sector number I II III IV V Tcm1 T cm1 Ta T a Tb T b Tc T c Tc T c Tb T b Ta T a Tcm2 T cm2 Tb T b Ta T a Ta T a Tb T b Tc T c Tc T c Tcm3 T cm3 Tc T c Tc T c Tb T b Ta T a Ta T a Tb T b

(5.5.4)脉冲生成(5.5.4) Pulse generation

将计算得到的Tcm1、Tcm2、Tcm3作为调制波与载波相比较,最终得到逆变器的控制信号SA、SB、SC,驱动电机,实现控制功能。Comparing the calculated T cm1 , T cm2 , and T cm3 as the modulation wave with the carrier wave, the control signals S A , S B , and S C of the inverter are finally obtained to drive the motor and realize the control function.

最终获得仿真结果如图5所示。The final simulation results are shown in Figure 5.

Claims (2)

1.一种凸极式同步电动机的控制方法,其特征在于步骤如下:1. A control method for a salient pole type synchronous motor, characterized in that the steps are as follows: 步骤1:根据给定转速n*与反馈转速n之差进行PI调节,得到给定交轴电流 Kpn>0,Kin>0;其中:Kpn、Kin分别为PI调节器的比例、积分系数;en=n*-n;Step 1: Perform PI adjustment according to the difference between the given speed n * and the feedback speed n to obtain the given quadrature axis current K pn >0, K in >0; where: K pn and K in are the proportional and integral coefficients of the PI regulator respectively; e n =n * -n; 步骤2:根据给定交轴电流与反馈交轴电流iq之差进行PI调节,得到给定交轴电压 Kpq>0,Kiq>0;其中:Kpq、Kiq分别为PI调节器的比例、积分系数; Step 2: According to the given quadrature axis current Perform PI adjustment with the difference between the feedback quadrature axis current i q to obtain a given quadrature axis voltage K pq >0, K iq >0; where: K pq and K iq are the proportional and integral coefficients of the PI regulator respectively; 步骤3:根据直交轴电感的大小关系,选择jm坐标系下相应的电流分量进行闭环调节,经过电流PI调节器后,输出给定直轴电压具体步骤如下:Step 3: According to the size relationship of the orthogonal axis inductance, select the corresponding current component in the jm coordinate system for closed-loop adjustment, and output the given direct axis voltage after passing through the current PI regulator Specific steps are as follows: 步骤(a)将dq轴坐标系顺时针旋转45°,得到jm坐标系;Step (a) rotate the dq-axis coordinate system clockwise by 45° to obtain the jm coordinate system; 步骤(b)通过坐标变换公式 i j i m = 2 2 1 1 1 - 1 i d i q , 由电流id、iq得到电流ij、imStep (b) through the coordinate transformation formula i j i m = 2 2 1 1 1 - 1 i d i q , Get current i j , im from current id , i q ; 步骤(c)根据电机的类型得到直交轴电感Ld和Lq,如果Ld>Lq,以电流分量im进行闭环调节,给定参数为反馈参数为imStep (c) Obtain the orthogonal axis inductance L d and L q according to the type of the motor. If L d >L q , perform closed-loop adjustment with the current component im , and the given parameters are The feedback parameter is i m ; 如果Ld<Lq,以电流分量ij进行闭环调节,给定参数为反馈参数为ijIf L d <L q , the current component i j is used for closed-loop regulation, and the given parameter is The feedback parameter is i j ; 步骤4:以步骤3中进行闭环控制的电流分量的给定参数与反馈参数之差进行PI调节,得到给定直轴电压 Kpd>0,Kid>0;其中:Kpd、Kid分别为PI调节器的比例、积分系数;Step 4: Use the difference between the given parameter and the feedback parameter of the current component of the closed-loop control in step 3 to perform PI adjustment to obtain the given direct-axis voltage K pd >0, K id >0; where: K pd and K id are the proportional and integral coefficients of the PI regulator respectively; 如果进行闭环控制的电流分量为im,那么 If the current component for closed-loop control is i m , then 如果进行闭环控制的电流分量为ij,那么 If the current component for closed-loop control is i j , then 步骤5:给定的直交轴电压分量经过Park逆变换后得到电压矢量在αβ坐标系下的分量再根据空间矢量脉宽调制方法对进行电压矢量合成,得到逆变器所需要的控制信号。Step 5: Given the orthogonal axis voltage components After Park inverse transformation, the components of the voltage vector in the αβ coordinate system are obtained Then according to the space vector pulse width modulation method to Perform voltage vector synthesis to obtain the control signal required by the inverter. 2.根据权利要求1所述凸极式同步电动机的控制方法,其特征在于:所述的3个PI调节器的参数,需要根据凸极式同步电动机本身特性和系统性能要求进行调节。2. The control method of the salient pole synchronous motor according to claim 1, characterized in that: the parameters of the three PI regulators need to be adjusted according to the characteristics of the salient pole synchronous motor itself and system performance requirements.
CN201410121053.9A 2014-03-27 2014-03-27 A kind of control method of salient-pole synchronous motor Active CN103904975B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410121053.9A CN103904975B (en) 2014-03-27 2014-03-27 A kind of control method of salient-pole synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410121053.9A CN103904975B (en) 2014-03-27 2014-03-27 A kind of control method of salient-pole synchronous motor

Publications (2)

Publication Number Publication Date
CN103904975A CN103904975A (en) 2014-07-02
CN103904975B true CN103904975B (en) 2016-04-06

Family

ID=50996157

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410121053.9A Active CN103904975B (en) 2014-03-27 2014-03-27 A kind of control method of salient-pole synchronous motor

Country Status (1)

Country Link
CN (1) CN103904975B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106026823A (en) * 2016-06-21 2016-10-12 山东大学(威海) Motor driver topology and control algorithm

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105978387A (en) * 2015-12-16 2016-09-28 许昌学院 SVPWM-based photovoltaic grid-connected inverter control method
CN105991012A (en) * 2015-12-16 2016-10-05 许昌学院 SVPWM controller of grid-connected inverter
CN108565878A (en) * 2018-04-20 2018-09-21 清华大学 Flywheel energy storage array control method for coordinating and device for micro-capacitance sensor island state

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008295200A (en) * 2007-05-24 2008-12-04 Aisin Seiki Co Ltd Synchronous motor control device and method for optimizing synchronous motor control
CN102223133A (en) * 2011-06-02 2011-10-19 西北工业大学 Maximum torque control method for salient-pole permanent-magnet synchronous motor
CN102362424A (en) * 2009-03-25 2012-02-22 三菱电机株式会社 Device and method for rotating electric machine
CN102710210A (en) * 2012-06-19 2012-10-03 合肥工业大学 Control method of drive system of salient pole type permanent magnet synchronous motor
CN103166559A (en) * 2011-12-16 2013-06-19 三菱电机株式会社 Controller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008295200A (en) * 2007-05-24 2008-12-04 Aisin Seiki Co Ltd Synchronous motor control device and method for optimizing synchronous motor control
CN102362424A (en) * 2009-03-25 2012-02-22 三菱电机株式会社 Device and method for rotating electric machine
CN102223133A (en) * 2011-06-02 2011-10-19 西北工业大学 Maximum torque control method for salient-pole permanent-magnet synchronous motor
CN103166559A (en) * 2011-12-16 2013-06-19 三菱电机株式会社 Controller
CN102710210A (en) * 2012-06-19 2012-10-03 合肥工业大学 Control method of drive system of salient pole type permanent magnet synchronous motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106026823A (en) * 2016-06-21 2016-10-12 山东大学(威海) Motor driver topology and control algorithm
CN106026823B (en) * 2016-06-21 2019-03-26 山东大学(威海) A kind of motor driver topology and control algolithm

Also Published As

Publication number Publication date
CN103904975A (en) 2014-07-02

Similar Documents

Publication Publication Date Title
CN109194221B (en) A method for field weakening control of permanent magnet synchronous motor with table look-up
CN101286724A (en) A Direct Torque Control Method for Permanent Magnet Synchronous Motor
CN106992729B (en) A kind of stator permanent magnetic type memory electrical machine permanent magnet flux linkage Discrete control method
CN103762926B (en) Torque Control Method of Switched Flux Linkage Permanent Magnet Synchronous Motor Based on Model Prediction
CN105245159A (en) Direct torque control method of five-phase permanent magnet fault-tolerant motor based on new pulse width modulation
CN107086836A (en) An improved speed regulation method for permanent magnet synchronous motor with field weakening
CN109150042A (en) A kind of surface permanent magnetic synchronous motor Feedforward Decoupling field weakening control method
CN103746629B (en) Current Control Method of Switched Flux Linkage Permanent Magnet Synchronous Motor Based on Model Prediction
CN104617850A (en) Double-closed-loop controller and double-closed-loop control method of permanent magnet synchronous motor
CN103904975B (en) A kind of control method of salient-pole synchronous motor
CN103051274A (en) Variable damping-based passive control method for two-degree-of-freedom permanent magnetic synchronous motor
CN106788041B (en) A kind of stator permanent magnetic type memory electrical machine high efficiency and wide speed regulation control method
CN110635740A (en) A Vector Control Method of Permanent Magnet Synchronous Motor Based on Voltage Feedforward Compensation Strategy
CN110661461B (en) Compressor permanent magnet synchronous motor control method and device and air conditioner
Zhong et al. Speed fluctuation mitigation control for variable flux memory machine during magnetization state manipulations
CN110086398B (en) A DIRECT TORQUE CONTROL METHOD BASED ON DUTY CYCLE CONTROL
CN105763121A (en) Synchronous electric main shaft acceleration strong magnetic control method for variable-load superhigh-speed grinding
CN111769778A (en) PMSM direct torque control method based on simplified three-level SVPWM algorithm
CN107171611A (en) A kind of big control method for torque output of stator permanent magnetic type memory electrical machine
CN110707980B (en) A Fitting Method of MTPA Control Curve of Permanent Magnet Synchronous Motor
Zhang et al. Direct torque control of synchronous reluctance motor in MT reference frame considering magnetic circuit saturation and cross saturation
Kadum New adaptive hysteresis band width control for direct torque control of induction machine drives
CN106452235A (en) Excitation control method of independent generating system of brushless doubly-fed machine under asymmetric load
CN101814887A (en) Driving control method and circuit of low-loss hybrid stepping motor
CN113949322B (en) Current distribution control method of claw-pole motor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant