[go: up one dir, main page]

CN103900609B - The course precision real-time detecting system of a kind of marine aided inertial navigation system and detection method - Google Patents

The course precision real-time detecting system of a kind of marine aided inertial navigation system and detection method Download PDF

Info

Publication number
CN103900609B
CN103900609B CN201410114594.9A CN201410114594A CN103900609B CN 103900609 B CN103900609 B CN 103900609B CN 201410114594 A CN201410114594 A CN 201410114594A CN 103900609 B CN103900609 B CN 103900609B
Authority
CN
China
Prior art keywords
unit
ship
target
photoelectric theodolite
heading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410114594.9A
Other languages
Chinese (zh)
Other versions
CN103900609A (en
Inventor
何昆鹏
韩继韬
陈熙源
张兴智
李�荣
梁海波
张晓宇
王晓雪
王晨阳
于鑫彪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201410114594.9A priority Critical patent/CN103900609B/en
Publication of CN103900609A publication Critical patent/CN103900609A/en
Application granted granted Critical
Publication of CN103900609B publication Critical patent/CN103900609B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Navigation (AREA)

Abstract

本发明提供一种船用惯性导航设备航向精度实时检测系统及方法。本系统包括:船舶差分全球定位系统单元1、光电经纬仪单元2、姿态信息接口单元3、靶标单元4、数据采集处理单元5等。船舶差分全球定位系统单元1用于保证时间同步,并获得光电经纬仪单元2和靶标单元4的精确位置信息;光电经纬仪单元2和靶标单元4用于测定船舶舷角;姿态信息接口单元3可获得船舶姿态航向信息,通过数据采集处理单元5解算得到船用惯导设备航向精度。本发明提供的装置及方法可以实现航向精度实时测量,减小动态航向精度测量误差,并且提高光电经纬仪的测量精度。

The invention provides a system and method for real-time detection of heading accuracy of marine inertial navigation equipment. The system includes: ship differential global positioning system unit 1, photoelectric theodolite unit 2, attitude information interface unit 3, target unit 4, data acquisition and processing unit 5, etc. The ship's differential global positioning system unit 1 is used to ensure time synchronization and obtain the precise position information of the photoelectric theodolite unit 2 and the target unit 4; the photoelectric theodolite unit 2 and the target unit 4 are used to measure the ship's angle; the attitude information interface unit 3 can obtain The attitude and heading information of the ship is calculated by the data acquisition and processing unit 5 to obtain the heading accuracy of the marine inertial navigation equipment. The device and method provided by the invention can realize the real-time measurement of heading accuracy, reduce the measurement error of dynamic heading accuracy, and improve the measurement accuracy of the photoelectric theodolite.

Description

一种船用惯性导航系统的航向精度实时检测系统及检测方法A real-time detection system and detection method for heading accuracy of a marine inertial navigation system

技术领域technical field

本发明涉及导航仪器性能检测领域,具体涉及一种船用惯性导航设备的动态航向精度检测系统及检测方法。The invention relates to the field of performance detection of navigation instruments, in particular to a dynamic course accuracy detection system and detection method of marine inertial navigation equipment.

背景技术Background technique

惯性导航是依据牛顿惯性原理,利用惯性元件(陀螺仪、加速度计)来测量运载体本身的角速度、加速度,经过积分和运算得到姿态(航向角、横摇角、纵摇角)、速度和位置,从而达到对运载体定姿和导航定位的目的。组成惯性导航系统的设备都安装在运载体内,工作不依赖外界信息,不向外界辐射能量,不易受到干扰,是一种自主式导航系统。Inertial navigation is based on the principle of Newton's inertia, using inertial components (gyroscopes, accelerometers) to measure the angular velocity and acceleration of the carrier itself, and the attitude (heading angle, roll angle, pitch angle), speed and position are obtained through integration and calculation , so as to achieve the purpose of determining the attitude and navigation of the vehicle. The equipment that makes up the inertial navigation system is installed in the carrier, and its work does not depend on external information, does not radiate energy to the outside world, and is not easily disturbed. It is an autonomous navigation system.

惯性导航设备安装到载体基座上后,存在安装误差角,需要进行安装误差校正,因此必须对初始安装的导航设备进行航向精度检测。After the inertial navigation equipment is installed on the carrier base, there is an installation error angle, which needs to be corrected. Therefore, the heading accuracy of the initially installed navigation equipment must be tested.

对于光纤惯性导航设备的陆上静态水平、方位的高精度测量比较容易,而对于海上动态条件下的高精度测量则非常困难。现行的系泊航行试验过程中采取的平台罗经精度检测方法,虽然符合国军标的相关要求以及船舶航行试验规范要求,但受当时技术保障条件制约,所引用的国军标测量方法只能保证航向(即艏向)的相对精度,测试过程中完全由人工完成数据采集,效率较低。因此现行的精度检测方法不能完全满足作战武器系统对真艏向的高精度要求。惯性导航设备输出参数的动态高精度检测已经成惯性导航设备试验的瓶颈,成试验鉴定的关键。It is relatively easy to measure the high-precision static level and azimuth of the fiber-optic inertial navigation equipment on land, but it is very difficult to measure high-precision under dynamic conditions at sea. Although the current platform compass accuracy detection method adopted in the mooring navigation test process meets the relevant requirements of the national military standard and the requirements of the ship navigation test specification, but is restricted by the technical support conditions at that time, the quoted national military standard measurement method can only guarantee the heading (that is, the relative accuracy of the heading), the data collection is completely completed manually during the test process, and the efficiency is low. Therefore, the current precision detection methods cannot fully meet the high precision requirements of the combat weapon system for the true heading. The dynamic and high-precision detection of output parameters of inertial navigation equipment has become the bottleneck of inertial navigation equipment testing and the key to test evaluation.

发明内容Contents of the invention

本发明的目的在于提供一种在船舶晃动状态下,精确测量船舶的航向角,并可以实时输出船舶的航向角,利用此测量值可以校正船用惯性导航设备航向角输出值的精度的船用惯性导航设备的动态航向精度检测系统,本发明的目的还在于提供一种船用惯性导航设备的动态航向精度检测方法。The purpose of the present invention is to provide a marine inertial navigation system that can accurately measure the course angle of the ship in the shaking state of the ship, and can output the course angle of the ship in real time, and can use this measurement value to correct the accuracy of the course angle output value of the ship's inertial navigation equipment. A dynamic course accuracy detection system for equipment, the purpose of the present invention is also to provide a dynamic course accuracy detection method for marine inertial navigation equipment.

本发明的目的是这样实现的:The purpose of the present invention is achieved like this:

本发明包括:船舶差分全球定位系统单元1、光电经纬仪单元2、姿态信息接口单元3、靶标单元4和数据采集处理单元5;船舶差分全球定位系统单元1用于保证检测系统所有单元的时间同步,并获得光电经纬仪单元2和靶标单元4的精确位置信息,传输至数据采集处理单元5;光电经纬仪单元2和靶标单元4,接收船舶差分全球定位系统单元1提供的时间同步信号,用于测定船舶舷角,并传输采集数据至数据采集处理单元5;姿态信息接口单元3,接收船舶差分全球定位系统单元1提供的时间同步信号,可获得船舶姿态航向信息,传输至数据采集处理单元5;系统通过数据采集处理单元5处理得到船用惯导设备航向精度;The present invention includes: a ship differential global positioning system unit 1, a photoelectric theodolite unit 2, an attitude information interface unit 3, a target unit 4 and a data acquisition processing unit 5; the ship differential global positioning system unit 1 is used to ensure time synchronization of all units of the detection system , and obtain the precise position information of the photoelectric theodolite unit 2 and the target unit 4, and transmit it to the data acquisition processing unit 5; ship angle, and transmit the collected data to the data collection processing unit 5; the attitude information interface unit 3 receives the time synchronization signal provided by the ship differential global positioning system unit 1, and can obtain the ship attitude heading information, which is transmitted to the data collection processing unit 5; The system obtains the heading accuracy of the marine inertial navigation equipment through data acquisition and processing unit 5;

所涉及的光电经纬仪单元2,包括:陀螺稳定装置6,可见光成像系统7、图像跟踪器8、主控计算机9、机架10、伺服控制系统11和差分全球定位系统接收天线12;可见光成像系统7与差分全球定位系统接收天线12安装于机架10上,机架10安装于陀螺稳定装置6上,将光电经纬仪的视轴和舰体的运动相隔离;;可见光成像系统输出信号至图像跟踪器8,再传输至主控计算机9;主控计算机9发出指令作用于伺服控制系统11,伺服控制系统11输出控制信号控制陀螺稳定装置6;通过可见光成像系统7和图像跟踪器8进行靶标实时跟踪;The involved photoelectric theodolite unit 2 includes: gyro stabilization device 6, visible light imaging system 7, image tracker 8, main control computer 9, frame 10, servo control system 11 and differential global positioning system receiving antenna 12; visible light imaging system 7 and the differential global positioning system receiving antenna 12 are installed on the frame 10, and the frame 10 is installed on the gyro stabilization device 6 to isolate the visual axis of the photoelectric theodolite from the movement of the hull; the visible light imaging system outputs signals to image tracking device 8, and then transmitted to the main control computer 9; the main control computer 9 sends instructions to the servo control system 11, and the servo control system 11 outputs control signals to control the gyro stabilization device 6; track;

所涉及的靶标单元4,包括:靶标架台13、标志天线14、差分全球定位系统模块15和无线电传输模块16;标志天线14、差分全球定位系统模块15安装于靶标架台13顶端,无线电传输模块16安装于靶标架台13靠近顶端位置。The target unit 4 involved includes: a target stand 13, a marker antenna 14, a differential global positioning system module 15 and a radio transmission module 16; Installed on the target stand 13 near the top position.

一种船用惯性导航系统的航向精度实时检测方法,包括以下步骤:A method for real-time detection of heading accuracy of a marine inertial navigation system, comprising the following steps:

步骤一、利用船舶差分全球定位系统单元1进行各个单元的时间同步,并获取光电经纬仪单元2位置坐标以及靶标单元4位置坐标,通过大地方位角法可求得两点间的大地方位角A;Step 1, utilize ship differential global positioning system unit 1 to carry out the time synchronization of each unit, and obtain photoelectric theodolite unit 2 position coordinates and target unit 4 position coordinates, can obtain the geodetic azimuth A between two points by the geodetic azimuth method;

所涉及的大地方位角A光电经纬仪单元2位置、靶标单元4位置连线与真北向夹角;The geodetic azimuth A involved is the angle between the position of photoelectric theodolite unit 2 and the position of target unit 4 and true north;

步骤二、利用光电经纬仪单元2实时跟踪靶标单元4,得到船舶载体坐标系上的大地方位角A及靶标舷角q,并计算得到观测航向角H;Step 2, use the photoelectric theodolite unit 2 to track the target unit 4 in real time, obtain the earth azimuth A and the target angle q on the ship carrier coordinate system, and calculate the observation course angle H;

所涉及的观测航向角H的表达式:The expression for the observed heading angle H involved:

H=A-qH=A-q

步骤三、根据姿态信息接口单元4同步输出的惯导设备所测得的航向角Hp,在数据采集处理单元5中进行解算,可得到航向偏差ΔH;Step 3: According to the heading angle H p measured by the inertial navigation equipment synchronously output by the attitude information interface unit 4, the calculation is performed in the data acquisition and processing unit 5 to obtain the heading deviation ΔH;

所涉及的航向偏差ΔH的表达式:The expression for the heading deviation ΔH involved is:

ΔH=Hp-HΔH=H p -H

本发明的有益效果在于,综合使用了大地测量、光电跟踪、惯性测量方法,可以在船舶晃动状态下实时测得航向角偏差,解决了光学测量仪器在船舶处于系泊或者靠岸行驶状态时测量误差较大的问题,而且结合惯性导航设备实时输出航向角偏差,航向角精度试验提供更可靠的数据支持。The beneficial effects of the present invention are that, comprehensively using geodetic surveying, photoelectric tracking, and inertial measurement methods, the course angle deviation can be measured in real time when the ship is shaking, and it solves the problem of optical measuring instruments measuring when the ship is moored or docked. The problem of large errors, and combined with the real-time output of the heading angle deviation of the inertial navigation equipment, the heading angle accuracy test provides more reliable data support.

附图说明Description of drawings

图1为本发明系统总体构成示意图。Fig. 1 is a schematic diagram of the overall structure of the system of the present invention.

图2为光电经纬仪单元构成示意图。Figure 2 is a schematic diagram of the photoelectric theodolite unit.

图3为光电经纬仪单元基本结构示意图。Figure 3 is a schematic diagram of the basic structure of the photoelectric theodolite unit.

图4为靶标单元基本结构示意图。Fig. 4 is a schematic diagram of the basic structure of the target unit.

图5为大地方位角与航向和舷角的关系。Figure 5 shows the relationship between the geodetic azimuth and the heading and the ship angle.

图6为系统安装位置简易图。Figure 6 is a simplified diagram of the system installation location.

具体实施方式detailed description

下面结合附图对本发明做进一步描述。The present invention will be further described below in conjunction with the accompanying drawings.

附图标记:1船舶DGPS单元,2光电经纬仪单元,3姿态信息接口单元,4靶标单元,5数据采集处理单元;6陀螺稳定装置,7可见光成像系统,8图像跟踪器,9主控计算机,10光电经纬仪机架,11伺服控制系统,12船舶DGPS天线;13靶标单元架台,14靶标标志天线,15无线电传输模块,16DGPS模块;17表示船舶艏艉线,18表示光电经纬仪单元,19电子设备箱(含光电经纬仪单元2的伺服控制系统11电路板和主控计算机9电路板,船舶DGPS单元1,以及数据采集处理单元5),20船舶导航设备(含姿态信息接口单元3),4靶标单元,21校正光电经纬仪初始零位的平面反光镜。Reference signs: 1 ship DGPS unit, 2 photoelectric theodolite unit, 3 attitude information interface unit, 4 target unit, 5 data acquisition and processing unit; 6 gyro stabilization device, 7 visible light imaging system, 8 image tracker, 9 main control computer, 10 photoelectric theodolite frame, 11 servo control system, 12 ship DGPS antenna; 13 target unit stand, 14 target mark antenna, 15 radio transmission module, 16DGPS module; 17 represents the bow and stern line of the ship, 18 represents the photoelectric theodolite unit, 19 electronic equipment Box (including servo control system 11 circuit board of photoelectric theodolite unit 2 and main control computer 9 circuit board, ship DGPS unit 1, and data acquisition and processing unit 5), 20 ship navigation equipment (including attitude information interface unit 3), 4 targets Unit 21 corrects the plane reflector for the initial zero position of the photoelectric theodolite.

本发明设计了一种船用动态航向精度实时检测系统及方法,可以精确测量并实时输出船舶的航向角,利用此测量值可以校正船用惯性导航设备航向角输出值。系统整体构成示意图如图1所示。The present invention designs a system and method for real-time detection of dynamic course accuracy of ships, which can accurately measure and output the course angle of ships in real time, and use the measured value to correct the course angle output value of marine inertial navigation equipment. The schematic diagram of the overall structure of the system is shown in Figure 1.

本系统包括:船舶DGPS单元1、光电经纬仪单元2、靶标单元4、姿态信息接口单元3、数据采集处理单元5等构成。The system includes: ship DGPS unit 1, photoelectric theodolite unit 2, target unit 4, attitude information interface unit 3, data acquisition and processing unit 5, etc.

船舶DSPS单元1:本单元是系统测量的时间基准和船位基准。该模块向光电经纬仪单元、数据采集处理单元、姿态信息接口单元、靶标单元发送1PPS(每秒1个脉冲)脉冲信号以及包含时间(t)和船舶船位信息的串口报文。Ship DSPS unit 1: This unit is the time reference and ship position reference for system measurement. The module sends 1PPS (1 pulse per second) pulse signal and includes time (t) and ship position to the photoelectric theodolite unit, data acquisition and processing unit, attitude information interface unit and target unit The serial port message of the information.

光电经纬仪单元:本单元通过1PPS信号同步采样标靶在载体坐标系上的舷角和高度角,通过串行接口发送给数据采样处理单元,供解算使用。该单元包括:陀螺稳定装置6,可见光成像系统7、图像跟踪器8、主控计算机9、光电经纬仪机架10、伺服控制系统11和DGPS天线12等部分组成,其构成示意图如图2所示。在图3中描述了光电经纬仪单元2的基本结构,陀螺稳定装置6采用两轴两自由度的稳定结构,用于消除船体的运动过程中,海浪、风等其他扰动对光电经纬仪造成的影响,将光电经纬仪的视轴和船体的运动相隔离,使光电经纬仪稳定在固定的惯性空间方向。陀螺稳定平台上搭载光电经纬仪机架10,可见光成像系统7安装于机架的俯仰轴上,可形成靶标信号图像。图像跟踪器8采用重心跟踪和相关跟踪结合的方式进行靶标跟踪,并将跟踪信息传递给主控计算机9,经过计算将跟踪所需转动信息传递给伺服控制系统11,调整光电经纬仪机架10,保证光电经纬仪实时跟踪靶标信号。光电经纬仪通过光学手段,将船艏艉线当做零位参考,通过实时跟踪靶标信号可实现靶标在载体坐标系上靶标舷角和高度角的实时测量。保证光纤经纬仪输出的航向角测量值,在最终的数据处理过程中能与惯性导航设备以及DGPS系统的测量值在时间轴上对准,需要安装在机架俯仰轴上DGPS天线12的1PPS信号在数据中加入绝对时间标签。Photoelectric theodolite unit: This unit synchronously samples the ship angle and elevation angle of the target on the carrier coordinate system through the 1PPS signal, and sends it to the data sampling processing unit through the serial interface for calculation. The unit includes: gyro stabilization device 6, visible light imaging system 7, image tracker 8, main control computer 9, photoelectric theodolite frame 10, servo control system 11 and DGPS antenna 12, etc., and its composition diagram is shown in Figure 2 . Described in Fig. 3 the basic structure of photoelectric theodolite unit 2, gyro stabilizer 6 adopts the stable structure of two axes two degrees of freedom, is used for eliminating the impact that other disturbances such as sea waves, wind etc. cause to photoelectric theodolite during the motion process of hull, The visual axis of the photoelectric theodolite is isolated from the movement of the hull, so that the photoelectric theodolite is stabilized in a fixed inertial space direction. A photoelectric theodolite frame 10 is mounted on the gyro-stabilized platform, and a visible light imaging system 7 is installed on the pitch axis of the frame to form target signal images. Image tracker 8 adopts center of gravity tracking and correlation tracking to combine target tracking, and the tracking information is transmitted to the main control computer 9, and the rotation information required for tracking is transmitted to the servo control system 11 through calculation, and the photoelectric theodolite frame 10 is adjusted, Ensure that the photoelectric theodolite tracks the target signal in real time. The photoelectric theodolite uses optical means to regard the bow and stern lines as the zero reference, and can realize the real-time measurement of the target angle and elevation angle of the target on the carrier coordinate system by tracking the target signal in real time. To ensure that the heading angle measurement value output by the optical fiber theodolite can be aligned with the measurement value of the inertial navigation equipment and the DGPS system on the time axis in the final data processing process, the 1PPS signal of the DGPS antenna 12 that needs to be installed on the frame pitch axis Add absolute time stamps to the data.

姿态信息接口单元3:该单元利用1PPS同步信号将载体姿态信息(航向角、横摇角、纵摇角)同步至数据采集处理单元5,供航向角解算之用。该单元的姿态信息主要来源于船舶的惯性导航设备。Attitude information interface unit 3: This unit uses 1PPS synchronization signal to synchronize the carrier attitude information (heading angle, roll angle, pitch angle) to the data acquisition and processing unit 5 for the purpose of heading angle calculation. The attitude information of the unit mainly comes from the inertial navigation equipment of the ship.

靶标单元4:具体结构图如图4所示,包括靶标架台13,标志天线14,DGPS模块16以及无线电传输模块15。该单元为光电经纬仪单元2提供一个具有精确坐标的瞄准点,并通过该单元中的无线传输模块15将具有时间和位置信息的报文传输给数据采样处理单元5。该单元的精确时间位置信息可以由靶标单元中安装的DGPS模块16测得。该单元需伫立在远离船舶500m~1500m之间的地方,例如港口岸边,也可通过在水面固定小型船只来构建靶标单元4。Target unit 4 : the specific structure diagram is shown in FIG. 4 , including a target stand 13 , a marker antenna 14 , a DGPS module 16 and a radio transmission module 15 . This unit provides an aiming point with precise coordinates for the photoelectric theodolite unit 2, and transmits the message with time and position information to the data sampling processing unit 5 through the wireless transmission module 15 in the unit. The precise time position information of the unit can be measured by the DGPS module 16 installed in the target unit. The unit needs to stand at a place between 500m and 1500m away from the ship, such as the shore of a port, and the target unit 4 can also be constructed by fixing small boats on the water surface.

数据采集处理单元5:该单元通过1PPS信号同步采样姿态信息接口单元数据3、光电经纬仪单元2测得的目标高度角与舷角数据,以及靶标精确坐标点数据,解算出船舶的真航向。Data collection and processing unit 5: This unit uses 1PPS signal to synchronously sample attitude information interface unit data 3, target altitude angle and sheer angle data measured by photoelectric theodolite unit 2, and target precise coordinate point data, and calculate the true course of the ship.

实施测量具体过程如下:The specific process of implementing the measurement is as follows:

1.测量系统设备安装与连接1. Measurement system equipment installation and connection

首先需要进行系统设备安装,系统安装位置简易图如图6所示,在船舶艏艉线17上安装光电经纬仪单元18,其中陀螺稳定装置6,在陀螺稳定装置6上安装光电经纬仪机架10,光电经纬仪俯仰机架上安装船舶DGPS天线12和可见光成像系统7。光电经纬仪的伺服控制系统11和主控计算机9放在位于单独的电子设备箱19内。DSPS信息发送模块和数据采集处理单元同样置于此电子设备箱19内。姿态信息接口与船舶本身的惯性导航设备相连接于20处。靶标单元4安装在岸边附近,距离船舶500m~1000m之间,并在靶标上布置DGPS天线,连接好无线传输模块,保证其与数据采集处理单元的信息通畅。At first need to carry out system equipment installation, system installation location simple diagram as shown in Figure 6, install photoelectric theodolite unit 18 on ship bow and stern line 17, wherein gyro stabilizer 6, install photoelectric theodolite frame 10 on gyro stabilizer 6, The ship DGPS antenna 12 and the visible light imaging system 7 are installed on the pitch frame of the photoelectric theodolite. The servo control system 11 and the main control computer 9 of the photoelectric theodolite are placed in a separate electronic equipment box 19 . The DSPS information sending module and the data acquisition processing unit are also placed in the electronic equipment box 19 . The attitude information interface is connected at 20 with the inertial navigation equipment of the ship itself. The target unit 4 is installed near the shore, between 500m and 1000m away from the ship, and the DGPS antenna is arranged on the target, and the wireless transmission module is connected to ensure smooth communication with the data acquisition and processing unit.

2.光电经纬仪单元2调平与初始零位的确定2. Leveling of photoelectric theodolite unit 2 and determination of initial zero position

陀螺稳定平台6开始工作,将光电经纬仪的视轴和船舶的运动相隔离,即保证光电经纬仪的水平放置。同时,沿船舶的船艏艉线方向上安置一反光镜21,保证反光镜21法线水平且处于船艏艉线上,调节光电经纬仪,保证反光镜法线与经纬仪的视向对准,确认位置对准后,即可确认船舶的船艏艉线方向光电经纬仪的零位参考方向。The gyro-stabilized platform 6 starts to work, and isolates the visual axis of the photoelectric theodolite from the motion of the ship, so as to ensure the horizontal placement of the photoelectric theodolite. Simultaneously, arrange a mirror 21 along the bow and stern line direction of the ship, ensure that the normal line of the mirror 21 is horizontal and be on the bow and stern line, adjust the photoelectric theodolite, ensure that the normal line of the mirror is aligned with the theodolite, and confirm After the position is aligned, the zero reference direction of the photoelectric theodolite in the direction of the bow and stern of the ship can be confirmed.

3.航向角误差实时测量3. Real-time measurement of heading angle error

调整光电经纬仪单元18方向,让光电经纬仪机架俯仰轴上的可见光成像系统7瞄准靶标单元4,形成靶标信号图像。图像跟踪器8采用重心跟踪和相关跟踪相结合的方式进行靶标跟踪,并将跟踪信息传递给主控计算机9,经过计算将跟踪所需转动信息传递给伺服控制系统11,调整光电经纬仪机架10,保证光电经纬仪实时跟踪靶标信号,在光电经纬仪零位参考已建立的基础上,光电经纬仪可实时测量得到靶标在载体坐标系上的舷角和高度角。Adjust the direction of the photoelectric theodolite unit 18 so that the visible light imaging system 7 on the pitch axis of the photoelectric theodolite frame is aimed at the target unit 4 to form a target signal image. Image tracker 8 adopts center of gravity tracking and correlation tracking to combine target tracking, and the tracking information is transmitted to the main control computer 9, and after calculation, the rotation information required for tracking is transmitted to the servo control system 11, and the photoelectric theodolite frame 10 is adjusted. , to ensure that the photoelectric theodolite tracks the target signal in real time. On the basis that the zero reference of the photoelectric theodolite has been established, the photoelectric theodolite can measure the side angle and elevation angle of the target in the carrier coordinate system in real time.

启动19中的数据采集处理单元,利用船舶DSPS单元向光电经纬仪单元18、靶标单元4、姿态信息接口单元中的数据采集处理单元发送1PPS(每秒1个脉冲)脉冲信号以及包含时间(t)和船舶船位(纬度,经度)(B1,L1)信息的串口报文,由于船舶DGPS天线安装于光电经纬仪机架10的俯仰轴上,此处提供的船位信息可看做是光电经纬仪的位置信息。Start the data acquisition and processing unit in 19, utilize ship DSPS unit to send 1PPS (1 pulse per second) pulse signal and include time (t) to the data acquisition and processing unit in photoelectric theodolite unit 18, target unit 4, attitude information interface unit And the serial port message of the ship's position (latitude, longitude) (B1, L1) information, because the ship's DGPS antenna is installed on the pitch axis of the photoelectric theodolite frame 10, the ship's position information provided here can be regarded as the position information of the photoelectric theodolite .

光电经纬仪单元18通过1PPS信号同步采样标靶单元4在载体坐标系上的舷角q和高度角,通过串行接口发送给19中的数据采样处理单元5。靶标单元利用1PPS信号将靶标单元4的位置(B2,L2)和时间(t)信息同步,通过靶标单元自带无线传输模块15将具有时间(t)和位置(B2,L2)信息的报文传输给19中的数据采样处理单元5。姿态信息接口单元通过1PPS同步信号,将船舶惯性导航设备测量得到的载体姿态(航向角、横摇角、纵摇角)信息同步至数据采集处理单元5。19中的数据采集处理单元通过1PPS同步信号,可将采集得到光电经纬仪单元18位置(B1,L1)信息、靶标单元4位置(B2,L2)信息、姿态信息接口单元20的载体姿态(航向角H、横摇角R、纵摇角P)信息以及靶标单元4在载体坐标系上的舷角q进行时间同步,保证所测数据时间一致性,提高实时测量数据输出的准确性。The photoelectric theodolite unit 18 synchronously samples the sheer angle q and altitude angle of the target unit 4 on the carrier coordinate system through the 1PPS signal, and sends them to the data sampling processing unit 5 in 19 through the serial interface. The target unit uses the 1PPS signal to synchronize the position (B2, L2) and time (t) information of the target unit 4, and transmits the message with the time (t) and position (B2, L2) information through the wireless transmission module 15 of the target unit. transmitted to the data sampling processing unit 5 in 19. The attitude information interface unit synchronizes the carrier attitude (course angle, roll angle, pitch angle) information measured by the ship inertial navigation equipment to the data acquisition and processing unit 5 through the 1PPS synchronization signal. The data acquisition and processing unit in 19 is synchronized through the 1PPS The signal can be collected to obtain the position (B1, L1) information of the photoelectric theodolite unit 18, the position (B 2 , L 2 ) information of the target unit 4, and the attitude of the carrier of the attitude information interface unit 20 (heading angle H, roll angle R, vertical The information of the roll angle P) and the ship angle q of the target unit 4 on the carrier coordinate system are time-synchronized to ensure the time consistency of the measured data and improve the accuracy of real-time measurement data output.

根据所得到的数据信息,运用数据采集处理单元5进行计算,具体计算规则如下:According to the obtained data information, the data acquisition and processing unit 5 is used for calculation, and the specific calculation rules are as follows:

设起点P1光电经纬仪单元坐标(B1,L1),终点P2靶标单元坐标(B2,L2),已知两位置坐标,通过大地方位角法可求得两点间的大地方位角A,如图3所示。大地方位角法属于大地测量常见方法,此处不予赘述。Set the starting point P1 photoelectric theodolite unit coordinates (B1, L1), the end point P2 target unit coordinates (B2, L2), and the coordinates of the two positions are known, and the azimuth A between the two points can be obtained by the azimuth method, as shown in Figure 3 shown. The geodetic azimuth method is a common method of geodesy, so it will not be repeated here.

具体实施例的系统示意图如图5所示,OXY为载体坐标系的水平表示,OY为船舶艏艉线,O点处P1光电经纬仪机架,N为真北向,P2点为靶标单元;q为船艏艉线到靶标单元的舷角,A为由P1、P2点测得的大地方位角,H为系统测量得到的精确航向角;The system schematic diagram of specific embodiment is as shown in Figure 5, and OXY is the horizontal expression of carrier coordinate system, and OY is ship bow and stern line, and P1 photoelectric theodolite frame at O point, N is true north direction, and P2 point is target unit; The ship angle from the bow and stern line to the target unit, A is the geodetic azimuth angle measured from P1 and P2 points, and H is the precise heading angle measured by the system;

经过时间同步得到的同一时刻的大地方位角A和靶标舷角q,根据图3中所绘制的角度关系图,可得到航向角:H=A-q。The geodetic azimuth A and the target ship angle q at the same moment obtained through time synchronization, according to the angle relationship diagram drawn in Figure 3, the course angle can be obtained: H=A-q.

根据姿态信息接口单元输出的惯导设备所测得航向角Hp,可得到航向偏差角:ΔH=Hp-H。According to the heading angle H p measured by the inertial navigation equipment output by the attitude information interface unit, the heading deviation angle can be obtained: ΔH=H p −H.

电子设备箱19中的数据采集处理单元可以经DGPS时间同步后计算得到船舶安装惯性导航设备的航向偏差值,由于此偏差值可以实时测量、计算得到,因此船舶在晃动或者行进过程中也可以精确测得航向偏差角并进行输出。The data acquisition and processing unit in the electronic equipment box 19 can calculate the course deviation value of the inertial navigation equipment installed on the ship after DGPS time synchronization. Since this deviation value can be measured and calculated in real time, the ship can also be accurately measured when shaking or moving. Measure the heading deviation angle and output it.

本系统可以应用于船舶处于系泊、匀速直航等运动状态时,从检测系统实时输出的航向偏差角的大小可以判断安装于船舶上的惯性导航设备的精度。This system can be applied to when the ship is in mooring, constant speed and direct sailing, etc., and the accuracy of the inertial navigation equipment installed on the ship can be judged by the magnitude of the course deviation angle output in real time from the detection system.

Claims (2)

1.一种船用惯性导航系统的航向精度实时检测系统,其特征在于,包括:船舶差分全球定位系统单元(1)、光电经纬仪单元(2)、姿态信息接口单元(3)、靶标单元(4)和数据采集处理单元(5);船舶差分全球定位系统单元(1)用于保证检测系统所有单元的时间同步,并获得光电经纬仪单元(2)和靶标单元(4)的精确位置信息,传输至数据采集处理单元(5);光电经纬仪单元(2)和靶标单元(4),接收船舶差分全球定位系统单元(1)提供的时间同步信号,用于测定船舶舷角,并传输采集数据至数据采集处理单元(5);姿态信息接口单元(3),接收船舶差分全球定位系统单元(1)提供的时间同步信号,可获得船舶姿态航向信息,传输至数据采集处理单元(5);系统通过数据采集处理单元(5)处理得到船用惯导设备航向精度;1. A real-time detection system of heading accuracy of a marine inertial navigation system, characterized in that it comprises: a ship's differential global positioning system unit (1), a photoelectric theodolite unit (2), an attitude information interface unit (3), a target unit (4 ) and data acquisition processing unit (5); the ship differential global positioning system unit (1) is used to ensure the time synchronization of all units of the detection system, and obtains the precise position information of the photoelectric theodolite unit (2) and the target unit (4), and transmits To the data acquisition and processing unit (5); the photoelectric theodolite unit (2) and the target unit (4), receive the time synchronization signal provided by the ship's differential global positioning system unit (1), for measuring the ship's angle, and transmit the collected data to The data acquisition and processing unit (5); the attitude information interface unit (3), which receives the time synchronization signal provided by the ship's differential global positioning system unit (1), can obtain the ship's attitude and heading information, and transmits it to the data acquisition and processing unit (5); the system The heading accuracy of the marine inertial navigation equipment is obtained through processing by the data acquisition and processing unit (5); 所述的光电经纬仪单元(2),包括陀螺稳定装置(6),可见光成像系统(7)、图像跟踪器(8)、主控计算机(9)、机架(10)、伺服控制系统(11)和差分全球定位系统接收天线(12);可见光成像系统(7)与差分全球定位系统接收天线(12)安装于机架(10)上,机架(10)安装于陀螺稳定装置(6)上,将光电经纬仪的视轴和舰体的运动相隔离;可见光成像系统输出信号至图像跟踪器(8),再传输至主控计算机(9);主控计算机(9)发出指令作用于伺服控制系统(11),伺服控制系统(11)输出控制信号控制陀螺稳定装置(6);通过可见光成像系统(7)和图像跟踪器(8)进行靶标实时跟踪;The photoelectric theodolite unit (2) comprises a gyro stabilizer (6), a visible light imaging system (7), an image tracker (8), a main control computer (9), a frame (10), a servo control system (11 ) and the differential global positioning system receiving antenna (12); the visible light imaging system (7) and the differential global positioning system receiving antenna (12) are installed on the frame (10), and the frame (10) is installed on the gyro stabilization device (6) above, the visual axis of the photoelectric theodolite is isolated from the movement of the hull; the output signal of the visible light imaging system is sent to the image tracker (8), and then transmitted to the main control computer (9); the main control computer (9) sends instructions to act on the servo The control system (11), the servo control system (11) outputs a control signal to control the gyro stabilization device (6); the target is tracked in real time through the visible light imaging system (7) and the image tracker (8); 所述的靶标单元(4),包括靶标架台(13)、标志天线(14)、差分全球定位系统模块(15)和无线电传输模块(16);标志天线(14)、差分全球定位系统模块(15)安装于靶标架台(13)顶端,无线电传输模块(16)安装于靶标架台(13)靠近顶端位置。Described target unit (4), comprises target platform (13), mark antenna (14), differential global positioning system module (15) and radio transmission module (16); Mark antenna (14), differential global positioning system module ( 15) Installed on the top of the target stand (13), the radio transmission module (16) is installed near the top of the target stand (13). 2.一种船用惯性导航系统的航向精度实时检测方法,其特征在于,包括以下步骤:2. A real-time detection method of heading accuracy of a marine inertial navigation system, characterized in that, comprising the following steps: 步骤一、利用船舶差分全球定位系统单元(1)进行各个单元的时间同步,并获取光电经纬仪单元(2)位置坐标以及靶标单元(4)位置坐标,通过大地方位角法求得光电经纬仪单元(2)位置坐标以及靶标单元(4)位置坐标间的大地方位角A;Step 1, utilize ship differential global positioning system unit (1) to carry out time synchronization of each unit, and obtain photoelectric theodolite unit (2) position coordinates and target unit (4) position coordinates, obtain photoelectric theodolite unit ( 2) The geodetic azimuth A between the position coordinates and the target unit (4) position coordinates; 所涉及的大地方位角A光电经纬仪单元(2)位置、靶标单元(4)位置连线与真北向夹角;Involved geodetic azimuth A The angle between the position of the photoelectric theodolite unit (2) and the position of the target unit (4) and true north; 步骤二、利用光电经纬仪单元(2)实时跟踪靶标单元(4),得到船舶载体坐标系上的大地方位角A及靶标舷角q,并计算得到观测航向角H;Step 2, utilize the photoelectric theodolite unit (2) to track the target unit (4) in real time, obtain the geodetic azimuth A and the target ship angle q on the ship carrier coordinate system, and calculate the observation course angle H; 所涉及的观测航向角H的表达式为:The expression for the observed heading angle H involved is: H=A-qH=A-q 步骤三、根据姿态信息接口单元(4)同步输出的惯导设备所测得的航向角Hp,在数据采集处理单元(5)中进行解算,得到航向偏差ΔH;Step 3, according to the heading angle H p measured by the inertial navigation equipment synchronously output by the attitude information interface unit (4), solve it in the data acquisition and processing unit (5), and obtain the heading deviation ΔH; 所涉及的航向偏差ΔH的表达式为:The expression for the heading deviation ΔH involved is: ΔH=Hp-H。ΔH = Hp-H.
CN201410114594.9A 2014-03-26 2014-03-26 The course precision real-time detecting system of a kind of marine aided inertial navigation system and detection method Expired - Fee Related CN103900609B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410114594.9A CN103900609B (en) 2014-03-26 2014-03-26 The course precision real-time detecting system of a kind of marine aided inertial navigation system and detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410114594.9A CN103900609B (en) 2014-03-26 2014-03-26 The course precision real-time detecting system of a kind of marine aided inertial navigation system and detection method

Publications (2)

Publication Number Publication Date
CN103900609A CN103900609A (en) 2014-07-02
CN103900609B true CN103900609B (en) 2016-08-17

Family

ID=50992078

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410114594.9A Expired - Fee Related CN103900609B (en) 2014-03-26 2014-03-26 The course precision real-time detecting system of a kind of marine aided inertial navigation system and detection method

Country Status (1)

Country Link
CN (1) CN103900609B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104235618B (en) * 2014-09-04 2017-02-15 哈尔滨工程大学 MEMS (Micro Electro Mechanical System) inertial measurement unit-based pipeline surveying and mapping and defect positioning device and pipeline surveying and mapping and defect positioning method thereof
CN104459646B (en) * 2014-11-14 2017-04-12 中国人民解放军63680部队 Moon tracking photoelectricity deviation detecting method
CN105045281A (en) * 2015-08-13 2015-11-11 深圳一电科技有限公司 Unmanned aerial vehicle flight control method and device
CN105300408B (en) * 2015-10-15 2018-02-06 中国人民解放军63636部队 Electro-optic theodolite timing tracking accuracy detecting system and detection method
CN106705965A (en) * 2017-01-12 2017-05-24 苏州中德睿博智能科技有限公司 Scene three-dimensional data registration method and navigation system error correction method
CN109238305B (en) * 2018-08-29 2021-11-05 广船国际有限公司 Marine equipment adjusting method
CN110209186A (en) * 2019-07-04 2019-09-06 广州市上赛电子科技有限公司 Gyro stability control system with drift compensation
CN112649023B (en) * 2021-01-08 2022-12-09 中国船舶重工集团公司第七0七研究所 Method suitable for installation calibration of small and medium-sized ship strapdown inertial navigation system
CN114935327A (en) * 2022-04-26 2022-08-23 中国舰船研究设计中心 Improvement method of deck theodolite
CN114935344A (en) * 2022-04-28 2022-08-23 中国舰船研究设计中心 Attitude angle dynamic alignment method for ship navigation system
CN117687346A (en) * 2024-02-01 2024-03-12 中国科学院长春光学精密机械与物理研究所 Spatial image stabilization control system and control method of shipborne photoelectric theodolite
CN119619984B (en) * 2025-02-17 2025-05-13 西北工业大学 A Kalman innovation direction finding correction method assisted by heading angle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2054162C1 (en) * 1993-08-31 1996-02-10 Николай Михайлович Расолько Method for computation of parking direction for aircraft
RU2347192C1 (en) * 2007-08-06 2009-02-20 Валерий Наумович Нарвер Method and device of determination of course of object
CN101706284A (en) * 2009-11-09 2010-05-12 哈尔滨工程大学 Method for increasing position precision of optical fiber gyro strap-down inertial navigation system used by ship
CN102052921A (en) * 2010-11-19 2011-05-11 哈尔滨工程大学 Method for determining initial heading of single-axis rotating strapdown inertial navigation system
CN102486377A (en) * 2009-11-17 2012-06-06 哈尔滨工程大学 A Method for Attitude Acquisition of Initial Heading of Fiber Optic Gyro Strapdown Inertial Navigation System
CN102998690A (en) * 2012-11-26 2013-03-27 哈尔滨工程大学 Attitude angle direct resolving method based on global position system (GPS) carrier wave double-difference equation
CN103234555A (en) * 2013-04-18 2013-08-07 中国科学院长春光学精密机械与物理研究所 Photoelectric stabilized platform assembly zero calibration method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2054162C1 (en) * 1993-08-31 1996-02-10 Николай Михайлович Расолько Method for computation of parking direction for aircraft
RU2347192C1 (en) * 2007-08-06 2009-02-20 Валерий Наумович Нарвер Method and device of determination of course of object
CN101706284A (en) * 2009-11-09 2010-05-12 哈尔滨工程大学 Method for increasing position precision of optical fiber gyro strap-down inertial navigation system used by ship
CN102486377A (en) * 2009-11-17 2012-06-06 哈尔滨工程大学 A Method for Attitude Acquisition of Initial Heading of Fiber Optic Gyro Strapdown Inertial Navigation System
CN102052921A (en) * 2010-11-19 2011-05-11 哈尔滨工程大学 Method for determining initial heading of single-axis rotating strapdown inertial navigation system
CN102998690A (en) * 2012-11-26 2013-03-27 哈尔滨工程大学 Attitude angle direct resolving method based on global position system (GPS) carrier wave double-difference equation
CN103234555A (en) * 2013-04-18 2013-08-07 中国科学院长春光学精密机械与物理研究所 Photoelectric stabilized platform assembly zero calibration method

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
基于标校经纬仪的测量船坞内标校新方法;钟德安;《无线电工程》;20091231;第39卷(第7期);49-52 *
基于船姿测量的舰载光电经纬仪视轴稳定方法研究;李哲等;《光子学报》;20090630;第38卷(第6期);1552-1556 *
小型水面船舶惯导系统标校方法初探;王飞等;《航海技术》;20081231(第1期);39-41 *
测量船基于标校经纬仪的雷达光轴动态标定方法研究;孙昊;《科学技术与工程》;20111130;第11卷(第32期);8089-8092 *
稳像技术在舰载光电跟踪系统中的应用;张卫国等;《现代应用光学》;20071130;40-454 *
船载经纬仪数据处理;盛磊;《光学精密工程》;20130930;第21卷(第9期);2421-2429 *
钟德安.航天测量船测量设备方位取齐误差分析.《无线电工程》.2008,第38卷(第4期),37-39. *

Also Published As

Publication number Publication date
CN103900609A (en) 2014-07-02

Similar Documents

Publication Publication Date Title
CN103900609B (en) The course precision real-time detecting system of a kind of marine aided inertial navigation system and detection method
US10323941B2 (en) Offshore positioning system and method
EP2993620B1 (en) Spatial positioning of offshore structures
CN113311436B (en) Method for correcting wind measurement of motion attitude of laser wind measuring radar on mobile platform
CN110031882B (en) A Compensation Method for External Measurement Information Based on SINS/DVL Integrated Navigation System
CN104316045B (en) A SINS/LBL-based AUV underwater interactive auxiliary positioning system and positioning method
CN103760584B (en) A motion monitoring system for actual measurement of float-over installations
EP1019862B1 (en) Method and apparatus for generating navigation data
US20090089001A1 (en) Self-calibrated azimuth and attitude accuracy enhancing method and system (SAAAEMS)
CN109782323A (en) A kind of deep-sea autonomous underwater vehicle navigator fix and calibration method
CN107063198A (en) A kind of boat-carrying Self-stabilization holder measuring system and application process
KR100860767B1 (en) Numerical drawing fabrication apparatus and method using aviation laser survey data
CN105928515B (en) A kind of UAV Navigation System
CN102706361A (en) Attitude precision estimation method of multiple high-accuracy inertial navigations system
CN103439727A (en) Method for measuring geographical coordinates
CN108225294A (en) A kind of built-up boat platform compass mooring state course scaling method
CN103017793B (en) A kind of ship of theodolite shakes the method for optic central extract
US10794692B2 (en) Offshore positioning system and method
CN103575297B (en) Estimation method of course angle of GNSS (Global Navigation Satellite System) and MIMU (MEMS based Inertial Measurement Units) integrated navigation based on satellite navigation receiver
CN103630123A (en) Wave sensor
CN101556154A (en) Positioning and path map generation system and data acquisition analysis method thereof
CN110187400B (en) Course tracking-based sea-air gravity disturbance horizontal component measurement error modulation method
CN110082033B (en) Device and method for measuring center of gravity of water carrier in motion state
CN103823209A (en) Low-cost motion error measuring device used in light and small-sized synthetic aperture radar system
CN202928583U (en) Offshore drilling platform attitude monitor and location device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160817

CF01 Termination of patent right due to non-payment of annual fee