[go: up one dir, main page]

CN103887605A - Wing antenna integrating structures and functions - Google Patents

Wing antenna integrating structures and functions Download PDF

Info

Publication number
CN103887605A
CN103887605A CN201410135872.9A CN201410135872A CN103887605A CN 103887605 A CN103887605 A CN 103887605A CN 201410135872 A CN201410135872 A CN 201410135872A CN 103887605 A CN103887605 A CN 103887605A
Authority
CN
China
Prior art keywords
antenna
circuit layer
wing
layer
radio frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410135872.9A
Other languages
Chinese (zh)
Other versions
CN103887605B (en
Inventor
周金柱
何庆强
保宏
李明
黄进
陈光达
王从思
宋立伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201410135872.9A priority Critical patent/CN103887605B/en
Publication of CN103887605A publication Critical patent/CN103887605A/en
Application granted granted Critical
Publication of CN103887605B publication Critical patent/CN103887605B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Aerials (AREA)

Abstract

本发明公开了一种结构功能一体化机翼天线,包括:机翼骨架、机翼蒙皮、控制和信号处理系统,机翼蒙皮从上至下依次包括:上面板、上蜂窝/泡沫层、射频功能层、下蜂窝/泡沫层和下面板,下面板上铺设有光纤,每根光纤上每隔一段间距设置一个布拉格光栅;前述射频功能层包括:射频电路层、波控电路层和封装框架,射频功能层的内部制作有液冷通道;前述射频电路层包括由若干采用分布布局方式排列的天线子阵组成的天线阵面,天线子阵由若干微带辐射单元组成。本发明的有益之处在于:降低了机身重量,提高了飞行器的气动性能,散热好;能实时监测机翼结构的变形和强度,自动补偿结构振动和变形对电性能的影响,保证天线在恶劣环境下的电磁性能稳定性。

The invention discloses a structure-function integrated wing antenna, comprising: a wing frame, a wing skin, a control and signal processing system, and the wing skin sequentially includes: an upper panel, an upper honeycomb/foam layer from top to bottom , a radio frequency functional layer, a lower honeycomb/foam layer and a lower panel, the lower panel is laid with optical fibers, and a Bragg grating is arranged at intervals on each optical fiber; the aforementioned radio frequency functional layer includes: a radio frequency circuit layer, a wave control circuit layer and packaging The frame and the radio frequency functional layer are made with liquid cooling channels inside; the aforementioned radio frequency circuit layer includes an antenna array composed of a number of antenna sub-arrays arranged in a distributed layout, and the antenna sub-array is composed of a number of microstrip radiating units. The invention is beneficial in that it reduces the weight of the fuselage, improves the aerodynamic performance of the aircraft, and has good heat dissipation; it can monitor the deformation and strength of the wing structure in real time, automatically compensate the influence of structural vibration and deformation on the electrical performance, and ensure that the antenna is in the air. Electromagnetic performance stability in harsh environments.

Description

结构功能一体化机翼天线Structure and function integrated wing antenna

技术领域technical field

本发明涉及一种机翼天线,具体涉及一种结构功能一体化机翼天线,属于飞行器天线技术领域。The invention relates to a wing antenna, in particular to a structure-function integrated wing antenna, which belongs to the technical field of aircraft antennas.

背景技术Background technique

结构功能一体化机翼天线是指将集成微带天线阵列的射频功能件嵌入到飞行器的机翼结构中,通过利用一体化复合成型工艺制造的高度集成化蒙皮天线,它既可以作为武器平台结构的力学承载功能件,也可以作为收发无线电磁波的电磁功能件。与传统天线对比,结构功能一体化机翼天线具有结构/电路的高度融合特点。它可以应用到未来飞行器如变体飞机、无人机、飞艇预警机等,是实现飞行器隐身化、多功能化和高机动性的关键技术,能够有效地减轻飞行器的重量和保持飞行器良好的气动外形。The structure-function integrated wing antenna refers to the embedding of the radio frequency functional parts of the integrated microstrip antenna array into the wing structure of the aircraft. The highly integrated skin antenna manufactured by the integrated compound molding process can be used as a weapon platform The mechanical load-bearing functional parts of the structure can also be used as electromagnetic functional parts for sending and receiving wireless electromagnetic waves. Compared with traditional antennas, the structure-function integrated wing antenna has the characteristics of high integration of structure and circuit. It can be applied to future aircraft such as variant aircraft, unmanned aerial vehicles, airship early warning aircraft, etc. It is the key technology to realize the stealth, multi-function and high maneuverability of the aircraft, and can effectively reduce the weight of the aircraft and maintain the good aerodynamic shape of the aircraft .

结构功能一体化机翼天线既可以作为飞行器的机翼,也可以作为发射和接收电磁波的天线装置,满足飞行器的气动性能、电磁隐身和适装性能等需求。The structure-functional integrated wing antenna can be used not only as the wing of the aircraft, but also as the antenna device for transmitting and receiving electromagnetic waves, so as to meet the requirements of the aircraft's aerodynamic performance, electromagnetic stealth and adaptability.

在相关的研究中,NASA研制了一种长航程无人机的机翼,其微带天线阵列、太阳能电池阵列与机翼结构完全融为一体。该研究在公开文献“Structurally Integrated antenna concepts for hale UAVS.NASAReport-2006-214513.Langley Research Center,Virginia,2006:23681-2199”(结构一体化无人飞行器天线概念.NASA研究报告-2006-214513.兰利研究中心,弗吉尼亚,23681-2199)中有报导。In related research, NASA has developed a long-range UAV wing, whose microstrip antenna array, solar cell array and wing structure are fully integrated. The research is published in the open literature "Structurally Integrated antenna concepts for hale UAVS.NASAReport-2006-214513.Langley Research Center, Virginia, 2006:23681-2199" (Structurally Integrated antenna concepts for hale UAVS.NASAReport-2006-214513. Langley Research Center, Virginia, 23681-2199).

波音公司研制了集成X波段微带天线阵列的蜂窝夹层机翼结构,该研究在公开文献“Urcia M,Banks D.Structurally integrated phasedarrays.2011IEEE Aerospace Conference,Big Sky,MT,United states,2011:1-8.”(M.Urcia,D.Banks.结构集成的相控阵.2011年IEEE航空会议,Big Sky,MT,United states,2011:1-8.)中有报导。Boeing has developed a honeycomb sandwich wing structure that integrates X-band microstrip antenna arrays. 8." (M.Urcia, D.Banks. Structural Integrated Phased Array. 2011 IEEE Aviation Conference, Big Sky, MT, United states, 2011:1-8.) Reported.

国内的西北工业大学提出了一种将微带天线预封装后嵌入到复合材料夹层结构的新构型,该构型能够实现天线阵列与机体结构的共形。该研究在公开的发明专利“谢宗蕻,赵伟,张朋,李磊.一种新型嵌入式复合材料智能蒙皮天线结构,申请时间:2010-6-10,专利国别:中国,专利申请号:201010197298.1”有报道。The Northwestern Polytechnical University in China proposed a new configuration in which the microstrip antenna is pre-packaged and embedded in a composite sandwich structure. This configuration can realize the conformal shape of the antenna array and the body structure. The research was published in the invention patent "Xie Zonghong, Zhao Wei, Zhang Peng, Li Lei. A new type of embedded composite material smart skin antenna structure, application time: 2010-6-10, patent country: China, patent application number: 201010197298.1" is reported.

国内外已经公开了把微带天线阵嵌入到机翼结构中的技术方案,但是,现有技术还存在以下不足之处:The technical scheme of embedding the microstrip antenna array into the wing structure has been disclosed at home and abroad, but the existing technology still has the following deficiencies:

1、现有的文献所公开的技术方案中,仅给出把微带天线阵集成到机翼结构中的方法,然而,没有说明天线在机翼结构中的布局方式、射频信号连接方式以及制作方法。1. In the technical solutions disclosed in the existing documents, only the method of integrating the microstrip antenna array into the wing structure is given. However, the layout method of the antenna in the wing structure, the radio frequency signal connection method and the production method are not described. method.

2、由于微带天线高度集成到机翼结构,在天线工作时,射频器件会发热,导致天线辐射性能降低,甚至完全失效。现有的文献并没有给出降低天线温度的结构设计方法。2. Since the microstrip antenna is highly integrated into the wing structure, when the antenna is working, the radio frequency device will heat up, resulting in reduced radiation performance of the antenna, or even complete failure. The existing literature does not provide a structural design method to reduce the temperature of the antenna.

3、在服役过程中,机翼结构不可避免地要受到气动载荷的影响,会引起机翼结构的振动和变形,导致嵌入结构中天线辐射单元位置的变化,影响电磁辐射性能。这些现象在NASA和波音公司的报告中已经提到,然而,他们却没有提出一种有效的结构来补偿结构的振动和变形对电磁性能的影响。3. During service, the wing structure will inevitably be affected by aerodynamic loads, which will cause vibration and deformation of the wing structure, resulting in changes in the position of the antenna radiation unit embedded in the structure, affecting electromagnetic radiation performance. These phenomena have been mentioned in the reports of NASA and Boeing, however, they have not proposed an effective structure to compensate the influence of the vibration and deformation of the structure on the electromagnetic performance.

发明内容Contents of the invention

本发明的目的在于提供一种新颖的集成微带天线阵列和光纤光栅的结构功能一体化机翼天线,其不仅能够降低机身重量,而且能够实现机翼结构振动和变形的实时检测和电性能补偿,同时能有效降低由于高密度集成带来的天线散热问题。The purpose of the present invention is to provide a novel integrated microstrip antenna array and fiber grating structure-function integrated wing antenna, which can not only reduce the weight of the fuselage, but also realize the real-time detection and electrical performance of the vibration and deformation of the wing structure. Compensation, and at the same time, it can effectively reduce the antenna heat dissipation problem caused by high-density integration.

为了实现上述目标,本发明采用如下的技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:

一种结构功能一体化机翼天线,包括:机翼骨架和覆盖前述机翼骨架的机翼蒙皮,其特征在于,A structure-function integrated wing antenna, comprising: a wing frame and a wing skin covering the aforementioned wing frame, characterized in that,

前述机翼骨架包括:平行排列的若干翼肋,穿过并连接前述翼肋的空心三角形翼梁,安装在前述翼肋前端的机翼前缘,以及安装在前述翼肋后端的机翼后缘;The aforementioned wing skeleton comprises: several wing ribs arranged in parallel, a hollow triangular spar passing through and connecting the aforementioned wing ribs, a leading edge of the wing installed at the front end of the aforementioned wing ribs, and a trailing edge of the wing installed at the rear end of the aforementioned wing ribs ;

前述机翼蒙皮为复合结构,从上至下依次包括:上面板、上蜂窝/泡沫层、射频功能层、下蜂窝/泡沫层和下面板;前述下面板在与下蜂窝/泡沫层接触的界面处铺设有若干光纤,前述光纤与翼肋平行,每根光纤上每隔一段间距设置一个布拉格光栅;The aforementioned wing skin is a composite structure, including from top to bottom: an upper panel, an upper honeycomb/foam layer, a radio frequency functional layer, a lower honeycomb/foam layer and a lower panel; the aforementioned lower panel is in contact with the lower honeycomb/foam layer A number of optical fibers are laid at the interface, the aforementioned optical fibers are parallel to the ribs, and a Bragg grating is arranged at intervals on each optical fiber;

前述射频功能层包括:位于上层的射频电路层,位于下层的波控电路层,以及封装框架,前述射频电路层与波控电路层之间使用插针连接;前述射频功能层的内部制作有液冷通道;The aforementioned radio frequency functional layer includes: a radio frequency circuit layer located on the upper layer, a wave control circuit layer located on the lower layer, and a packaging frame. The aforementioned radio frequency circuit layer and the wave control circuit layer are connected by pins; cold aisle;

前述射频电路层为复合结构,最上层为天线阵面,前述天线阵面由若干天线子阵组成,前述天线子阵由若干微带辐射单元组成,前述天线子阵采用分布布局方式排列,天线子阵中的每个微带辐射单元均镀有一层铜;The aforementioned radio frequency circuit layer is a composite structure, and the uppermost layer is an antenna array. The aforementioned antenna array is composed of a number of antenna sub-arrays. Each microstrip radiating element in the array is plated with a layer of copper;

结构功能一体化机翼天线还包括:控制和信号处理系统,前述控制和信号处理系统安装在前述翼梁的空心中,每个天线子阵中的控制信号、光纤的测量信号均统一到前述控制和信号处理系统进行集中处理,前述控制和信号处理系统还向前述波控电路层提供控制信号。The structure and function integrated wing antenna also includes: control and signal processing system, the aforementioned control and signal processing system is installed in the hollow of the aforementioned spar, the control signals in each antenna sub-array and the measurement signals of optical fibers are unified to the aforementioned control and the signal processing system for centralized processing, and the aforementioned control and signal processing system also provides control signals to the aforementioned wave control circuit layer.

前述的结构功能一体化机翼天线,其特征在于,前述射频电路层还包括:位于天线阵面下方的T/R电路层,位于T/R电路层下方的功分电路层,前述T/R电路层和功分电路层分别通过低频线、高频线与波控电路层信号连接。The aforementioned structure and function integrated wing antenna is characterized in that the aforementioned radio frequency circuit layer also includes: a T/R circuit layer positioned below the antenna front, a power division circuit layer positioned below the T/R circuit layer, and the aforementioned T/R circuit layer The circuit layer and the power division circuit layer are signal-connected to the wave control circuit layer through low-frequency lines and high-frequency lines respectively.

前述的结构功能一体化机翼天线,其特征在于,前述天线阵面中的微带辐射单元与T/R电路层之间采用微带天线-同轴-微带线或微带天线-耦合小孔-微带线的连接结构互联实现电信号连接。The aforementioned structure and function integrated wing antenna is characterized in that, between the microstrip radiation unit in the aforementioned antenna array and the T/R circuit layer, a microstrip antenna-coaxial-microstrip line or a microstrip antenna-coupling small The hole-microstrip connection structure is interconnected to realize electrical signal connection.

前述的结构功能一体化机翼天线,其特征在于,前述T/R电路层与功分电路层之间采用微带线-同轴-带状线或微带线-同轴—带状线的垂直互联方式实现电信号连接。The aforementioned structure-function integrated wing antenna is characterized in that, between the aforementioned T/R circuit layer and the power division circuit layer, a microstrip-coaxial-stripline or microstrip-coaxial-stripline The electrical signal connection is realized by vertical interconnection.

前述的结构功能一体化机翼天线,其特征在于,前述液冷通道由:若干平行设置的微通道、分别设置在前述微通道两端的液体出口腔和液体入口腔、分别与前述液体出口腔和液体入口腔连通的液冷通道出口和液冷通道入口组成;前述液冷通道出口和液冷通道入口穿过前述波控电路层,并且联接外部的液压回路。The aforementioned structure-function integrated wing antenna is characterized in that the aforementioned liquid cooling channel is composed of: several microchannels arranged in parallel, a liquid outlet cavity and a liquid inlet cavity respectively arranged at both ends of the aforementioned microchannel, and the aforementioned liquid outlet cavity and the liquid inlet cavity respectively. The liquid-cooling channel outlet and the liquid-cooling channel inlet connected by the liquid inlet are composed of; the aforementioned liquid-cooling channel outlet and the liquid-cooling channel inlet pass through the aforementioned wave control circuit layer and are connected to an external hydraulic circuit.

前述的结构功能一体化机翼天线,其特征在于,前述微通道呈矩形。The aforementioned structure-function integrated wing antenna is characterized in that the aforementioned microchannel is rectangular.

前述的结构功能一体化机翼天线,其特征在于,前述微通道的长和宽分别为0.1mm和0.5mm。The aforementioned structure-function integrated wing antenna is characterized in that the length and width of the aforementioned microchannel are 0.1 mm and 0.5 mm, respectively.

前述的结构功能一体化机翼天线,其特征在于,前述射频电路层由低温共烧陶瓷材料烧结制造成型。The aforementioned structure-function integrated wing antenna is characterized in that the aforementioned radio frequency circuit layer is manufactured and formed by sintering low temperature co-fired ceramic materials.

前述的结构功能一体化机翼天线,其特征在于,前述波控电路层由玻璃纤维环氧树脂覆铜板制造而成。The aforementioned structure-function integrated wing antenna is characterized in that the aforementioned wave control circuit layer is made of glass fiber epoxy resin copper-clad laminate.

前述的结构功能一体化机翼天线,其特征在于,前述微带辐射单元呈矩形或者圆形。The aforementioned structure-function integrated wing antenna is characterized in that the aforementioned microstrip radiation unit is rectangular or circular.

本发明的有益之处在于:The benefits of the present invention are:

1、本发明的结构功能一体化机翼天线,其既可以作为飞行器机翼,也可以作为收发天线,其不仅去除了大量外置天线及安装底座,降低了机身重量,提高了飞行器的气动性能,而且天线子阵采用分布布局方式排列,更增加了天线孔径。1. The structure-function integrated wing antenna of the present invention can be used as an aircraft wing or as a transceiver antenna. It not only removes a large number of external antennas and mounting bases, reduces the weight of the fuselage, but also improves the aerodynamic performance of the aircraft. Performance, and the antenna sub-arrays are arranged in a distributed layout, which increases the antenna aperture.

2、本发明的结构功能一体化机翼天线,其结构中嵌入了光纤和布拉格光栅,不仅能够实时监测机翼结构的变形和强度,实现机翼结构的健康监控,而且,通过对光纤和布拉格光栅的测试数据的信号处理可以自动补偿结构振动和变形对电性能的影响,保证天线在恶劣服役环境下的电磁性能稳定性。2. The structure-function integrated wing antenna of the present invention has optical fiber and Bragg grating embedded in its structure, which can not only monitor the deformation and strength of the wing structure in real time, and realize the health monitoring of the wing structure, but also, through the optical fiber and Bragg grating The signal processing of the test data of the grating can automatically compensate the influence of structural vibration and deformation on the electrical performance, and ensure the stability of the electromagnetic performance of the antenna in the harsh service environment.

3、本发明的结构功能一体化机翼天线,其结构中设计了微通道结构,通过热传导方式、利用微通道中的液体把射频功能层器件的热量带走,降低了由于高密度集成带来的微带天线阵面温度导致天线性能降低或失效的弊端。3. The structure-function integrated wing antenna of the present invention has a micro-channel structure designed in its structure, and the heat of the radio-frequency functional layer device is taken away by the liquid in the micro-channel through heat conduction, which reduces the heat caused by high-density integration. The temperature of the microstrip antenna front leads to the disadvantages of the performance degradation or failure of the antenna.

附图说明Description of drawings

图1是本发明的结构功能一体化机翼天线的组成结构示意图;Fig. 1 is the composition structure schematic diagram of the structural function integrated wing antenna of the present invention;

图2是图1中的机翼天线的总装效果图;Fig. 2 is the general assembly rendering of the wing antenna in Fig. 1;

图3是图2中的机翼骨架图;Fig. 3 is the wing skeleton diagram in Fig. 2;

图4是图2中的机翼蒙皮图;Fig. 4 is the wing skin figure in Fig. 2;

图5是图4中嵌入的微带天线阵布局示意图;Fig. 5 is a schematic diagram of the layout of the microstrip antenna array embedded in Fig. 4;

图6是图4中的机翼蒙皮的剖视图;Fig. 6 is a sectional view of the wing skin in Fig. 4;

图7是图6中的机翼蒙皮的分解示意图;Fig. 7 is an exploded schematic view of the wing skin in Fig. 6;

图8是图7中的下面板结构的组成示意图;Fig. 8 is a schematic composition diagram of the lower panel structure in Fig. 7;

图9是射频功能层上表面的微带天线阵面示意图;Fig. 9 is a schematic diagram of the microstrip antenna front on the upper surface of the radio frequency functional layer;

图10是射频功能层内部的液冷通道示意图;Fig. 10 is a schematic diagram of the liquid cooling channel inside the radio frequency functional layer;

图11是射频功能层的电连接关系示意图;Fig. 11 is a schematic diagram of the electrical connection relationship of the radio frequency functional layer;

图12是图7中的矩形微带辐射单元几何结构图;Fig. 12 is a geometric structure diagram of the rectangular microstrip radiation unit in Fig. 7;

图13是图7中的圆形微带辐射单元几何结构图;Fig. 13 is a geometric structure diagram of the circular microstrip radiation unit in Fig. 7;

图14是图7中的微带天线口径耦合馈电连接几何结构图。FIG. 14 is a geometric structure diagram of the aperture coupling feed connection of the microstrip antenna in FIG. 7 .

图中附图标记的含义:101-机翼前缘,102-机翼后缘,103-翼肋,104-翼梁,105-上蒙皮,106-下蒙皮,107-控制和信号处理系统,301-上面板,302-上蜂窝/泡沫层,303-封装框架,304-射频电路层,305-液冷通道,306-波控电路层,307-下蜂窝/泡沫层,308-下面板,309-微带辐射单元,310-光纤,311-布拉格光栅,401-微通道,402-液体出口腔,403-液冷通道出口,404-液冷通道入口,405-液体入口腔,601-T/R电路层,602-功分电路层,603-天线阵面,801-馈电点,802-介质板,803-接地平面,804-同轴馈电接口,805-耦合小孔,806-馈电微带线。The meanings of reference signs in the figure: 101-wing leading edge, 102-wing trailing edge, 103-rib, 104-spar, 105-upper skin, 106-lower skin, 107-control and signal processing System, 301-upper panel, 302-upper honeycomb/foam layer, 303-encapsulation frame, 304-radio frequency circuit layer, 305-liquid cooling channel, 306-wave control circuit layer, 307-lower honeycomb/foam layer, 308-bottom Panel, 309-microstrip radiation unit, 310-optical fiber, 311-Bragg grating, 401-microchannel, 402-liquid outlet, 403-liquid cooling channel outlet, 404-liquid cooling channel inlet, 405-liquid inlet, 601 -T/R circuit layer, 602-power division circuit layer, 603-antenna array, 801-feed point, 802-dielectric plate, 803-ground plane, 804-coaxial feed interface, 805-coupling hole, 806 - Feed microstrip line.

具体实施方式Detailed ways

以下结合附图和具体实施例对本发明作具体的介绍。The present invention will be specifically introduced below in conjunction with the accompanying drawings and specific embodiments.

参照图1、图2和图3,本发明的结构功能一体化机翼天线,包括:机翼骨架、机翼蒙皮、控制和信号处理系统107。机翼蒙皮覆盖在机翼骨架外面,机翼蒙皮根据覆盖机翼骨架的位置区分为:上蒙皮105和下蒙皮106,二者结构完全相同。下面分别介绍机翼骨架、机翼蒙皮的结构,以及控制和信号处理系统107。Referring to FIG. 1 , FIG. 2 and FIG. 3 , the structure-function integrated wing antenna of the present invention includes: a wing frame, a wing skin, and a control and signal processing system 107 . The wing skin covers the outside of the wing skeleton, and the wing skin is divided into an upper skin 105 and a lower skin 106 according to the positions covering the wing skeleton, both of which have identical structures. The structure of the wing skeleton, the wing skin, and the control and signal processing system 107 will be introduced respectively below.

参照图1、图2和图3,机翼骨架包括:翼肋103、翼梁104、机翼前缘101和机翼后缘102。翼肋103设置有若干个,并且平行排列;翼梁104呈三角形,并且为空心结构,该空心结构用于放置控制和信号处理系统107,翼梁104穿过翼肋103,起到连接翼肋103的作用;机翼前缘101安装在翼肋103的前端,机翼后缘102安装在翼肋103的后端。Referring to FIG. 1 , FIG. 2 and FIG. 3 , the wing skeleton includes: ribs 103 , spars 104 , wing leading edge 101 and wing trailing edge 102 . There are several ribs 103 arranged in parallel; the spar 104 is triangular in shape and is a hollow structure, which is used to place the control and signal processing system 107, and the spar 104 passes through the ribs 103 to connect the ribs The effect of 103; Wing leading edge 101 is installed in the front end of wing rib 103, and wing trailing edge 102 is installed in the rear end of wing rib 103.

参照图4至图7,机翼蒙皮为复合结构,从上至下依次包括:上面板301、上蜂窝/泡沫层302、射频功能层、下蜂窝/泡沫层307和下面板308。上面板301和下面板308用于实现力学承载功能,上蜂窝/泡沫层302和下蜂窝/泡沫层307用于实现隔热防护功能,射频功能层主要实现电磁信号的收发功能。上面板301与上蜂窝/泡沫层302之间、下面板308与下蜂窝/泡沫层307之间优选采用粘接的方式连接,上面板301与下面板308优选采用碳纤维复合材料制成,或者采用玻璃纤维复合材料制成。其中,参照图8,下面板308在与下蜂窝/泡沫层307接触的界面处铺设有若干光纤310,光纤310与翼肋103平行,每根光纤310上每隔一段间距设置一个布拉格光栅311。光纤310和布拉格光栅311能够实时检测机翼结构变形的应变,实现对机翼结构的智能监控,并且光纤310的测量信号经过控制和信号处理系统107的算法处理后,可以自动补偿结构振动和变形对电性能的影响,保证天线在恶劣服役环境下的电磁性能稳定性。4 to 7, the wing skin is a composite structure, including from top to bottom: upper panel 301, upper honeycomb/foam layer 302, radio frequency functional layer, lower honeycomb/foam layer 307 and lower panel 308. The upper panel 301 and the lower panel 308 are used to realize the mechanical bearing function, the upper honeycomb/foam layer 302 and the lower honeycomb/foam layer 307 are used to realize the heat insulation function, and the radio frequency function layer mainly realizes the function of transmitting and receiving electromagnetic signals. The upper panel 301 and the upper honeycomb/foam layer 302, the lower panel 308 and the lower honeycomb/foam layer 307 are preferably connected by bonding, and the upper panel 301 and the lower panel 308 are preferably made of carbon fiber composite materials, or Made of fiberglass composite. Wherein, referring to FIG. 8 , the lower panel 308 is laid with several optical fibers 310 at the interface in contact with the lower honeycomb/foam layer 307 , the optical fibers 310 are parallel to the ribs 103 , and each optical fiber 310 is provided with a Bragg grating 311 at intervals. The optical fiber 310 and the Bragg grating 311 can detect the strain of the deformation of the wing structure in real time, realizing the intelligent monitoring of the wing structure, and the measurement signal of the optical fiber 310 can automatically compensate the structural vibration and deformation after being processed by the algorithm of the control and signal processing system 107 The impact on electrical performance ensures the stability of the electromagnetic performance of the antenna in harsh service environments.

参照图7,射频功能层包括:射频电路层304、波控电路层306以及封装框架303。其中,射频电路层304位于上层,波控电路层306位于下层,射频电路层304与波控电路层306之间使用插针连接,射频电路层304能够实现电磁信号的传输和辐射功能,波控电路层306能够实现波束控制、信道和电源控制等功能。射频电路层304优选才有低温共烧陶瓷材料烧结制造成型。波控电路层306优选采用玻璃纤维环氧树脂覆铜板制造而成。封装框架303采用粘接工艺实现射频功能层与上面板301、上蜂窝/泡沫层302、下面板308、下蜂窝/泡沫层307的连接,封装框架303一方面保护了射频功能层的电路,另一方面提供了射频功能层所需要的接地需要。射频功能层的内部制作有液冷通道305、还埋设有芯片,液冷通道305是在射频电路层304内部制作的微型矩形通道,用于对射频功能层内的组件冷却、散热,以保证射频功能层工作需要的温度。Referring to FIG. 7 , the radio frequency functional layer includes: a radio frequency circuit layer 304 , a wave control circuit layer 306 and a packaging frame 303 . Among them, the radio frequency circuit layer 304 is located on the upper layer, and the wave control circuit layer 306 is located on the lower layer. The radio frequency circuit layer 304 and the wave control circuit layer 306 are connected by pins. The radio frequency circuit layer 304 can realize the transmission and radiation functions of electromagnetic signals. The circuit layer 306 can implement functions such as beam steering, channel and power control. The radio frequency circuit layer 304 is preferably manufactured by sintering low-temperature co-fired ceramic materials. The wave control circuit layer 306 is preferably made of glass fiber epoxy resin copper clad laminate. The encapsulation frame 303 uses a bonding process to realize the connection between the radio frequency functional layer and the upper panel 301, the upper honeycomb/foam layer 302, the lower panel 308, and the lower honeycomb/foam layer 307. The encapsulation frame 303 protects the circuit of the radio frequency functional layer on the one hand, and on the other hand On the one hand, it provides the grounding requirements required by the radio frequency functional layer. The inside of the radio frequency functional layer is made with a liquid cooling channel 305 and embedded with chips. The liquid cooling channel 305 is a miniature rectangular channel made inside the radio frequency circuit layer 304, which is used to cool and dissipate the components in the radio frequency functional layer to ensure that the radio frequency The temperature required for the functional layer to work.

参照图10,液冷通道305由:微通道401、液体出口腔402、液体入口腔405、液冷通道出口403和液冷通道入口404组成。微通道401有若干条,并且平行设置;液体出口腔402和液体入口腔405分别设置在微通道401的两端,二者起到缓存液体的功能;液冷通道出口403与液体出口腔402连通,液体入口腔405和液冷通道入口404连通,同时,液冷通道出口403和液冷通道入口404穿过波控电路层306,并且联接外部的液压回路。Referring to FIG. 10 , the liquid cooling channel 305 is composed of: a micro channel 401 , a liquid outlet 402 , a liquid inlet 405 , a liquid cooling channel outlet 403 and a liquid cooling channel inlet 404 . There are several microchannels 401, and they are arranged in parallel; the liquid outlet cavity 402 and the liquid inlet cavity 405 are respectively arranged at the two ends of the microchannel 401, and both play the function of buffering liquid; the outlet 403 of the liquid cooling channel communicates with the liquid outlet cavity 402 , the liquid inlet 405 communicates with the liquid cooling channel inlet 404, and at the same time, the liquid cooling channel outlet 403 and the liquid cooling channel inlet 404 pass through the wave control circuit layer 306 and are connected to an external hydraulic circuit.

本发明的结构功能一体化机翼天线,其结构中设计了微通道401结构,通过热传导方式、利用微通道401中的液体把射频功能层器件的热量带走,降低了由于高密度集成带来的微带天线阵面603温度导致天线性能降低或失效的弊端。The structure and function integrated wing antenna of the present invention has a microchannel 401 structure designed in its structure, and the heat of the radio frequency functional layer device is taken away by using the liquid in the microchannel 401 through heat conduction, which reduces the heat caused by high-density integration. The temperature of the microstrip antenna front 603 leads to the disadvantages of performance degradation or failure of the antenna.

作为一种优选的方案,微通道401呈矩形,其长和宽分别优选为0.1mm和0.5mm。As a preferred solution, the microchannel 401 is rectangular, and its length and width are preferably 0.1 mm and 0.5 mm, respectively.

参照图7和图11,射频电路层304为复合结构,最上层为天线阵面603。天线阵面603由若干天线子阵组成,天线子阵采用分布布局方式排列,如图5所示,依次为子阵A、子阵B、子阵C、子阵D、……、子阵T;每个天线子阵由若干微带辐射单元309组成,微带辐射单元309是在射频功能层表面利用丝网印刷工艺镀微波电路形成的,每个微带辐射单元309均镀有一层铜,从而实现电信号的辐射和传输。如图9所示,微带辐射单元309依据设计指标和安装空间来布置,从而形成天线子阵。Referring to FIG. 7 and FIG. 11 , the radio frequency circuit layer 304 is a composite structure, and the uppermost layer is an antenna front 603 . The antenna array 603 is composed of several antenna sub-arrays. The antenna sub-arrays are arranged in a distributed layout, as shown in FIG. Each antenna sub-array is made up of some microstrip radiating units 309, and the microstrip radiating unit 309 is formed on the surface of the radio frequency functional layer by using a screen printing process to plate a microwave circuit, and each microstrip radiating unit 309 is plated with a layer of copper, Thereby realizing the radiation and transmission of electrical signals. As shown in FIG. 9 , the microstrip radiating units 309 are arranged according to the design index and installation space, so as to form an antenna sub-array.

参照图11,射频电路层304还包括:T/R电路层601(即射频信号收发层,其上有射频信号收发组件,液冷通道305主要是对T/R电路层601中的射频信号收发组件进行冷却、散热)和功分电路层602(即功率分配/合成网络层)。T/R电路层601位于天线阵面603的下方,功分电路层602位于T/R电路层601的下方。其中,天线阵面603中的微带辐射单元309通过微带天线-同轴-微带线的连接结构与T/R电路层601实现电信号连接,T/R电路层601与功分电路层602通过微带线-同轴-带状线或微带线-同轴-带状线的垂直互联方式实现电信号连接,T/R电路层601和功分电路层602又分别通过低频线、高频线与波控电路层306信号连接。Referring to Fig. 11, the radio frequency circuit layer 304 also includes: a T/R circuit layer 601 (that is, a radio frequency signal transceiver layer, on which there are radio frequency signal transceiver components, and the liquid cooling channel 305 mainly transmits and receives radio frequency signals in the T/R circuit layer 601 components for cooling and heat dissipation) and the power division circuit layer 602 (that is, the power distribution/synthesis network layer). The T/R circuit layer 601 is located below the antenna array 603 , and the power dividing circuit layer 602 is located below the T/R circuit layer 601 . Wherein, the microstrip radiating unit 309 in the antenna front 603 realizes electrical signal connection with the T/R circuit layer 601 through the connection structure of microstrip antenna-coaxial-microstrip line, and the T/R circuit layer 601 and the power dividing circuit layer 602 realizes electrical signal connection through the vertical interconnection mode of microstrip line-coaxial-stripline or microstrip line-coaxial-stripline, and the T/R circuit layer 601 and the power division circuit layer 602 respectively pass low-frequency lines, The high frequency line is connected to the wave control circuit layer 306 for signals.

作为一种优选的方案,参照图11,微带辐射单元309与T/R电路层601之间采用微带天线-同轴-微带线的垂直互联结构;T/R电路层601与功分电路层602之间采用微带线-同轴-带状线的垂直互联结构。As a preferred solution, referring to Fig. 11, a vertical interconnection structure of microstrip antenna-coaxial-microstrip line is adopted between the microstrip radiating unit 309 and the T/R circuit layer 601; the T/R circuit layer 601 and the power divider A vertical interconnection structure of microstrip-coaxial-stripline is adopted between the circuit layers 602 .

在本发明中,微带辐射单元309呈矩形。如图9和图12所示,微带辐射单元309的长边为a、宽边为b,该微带辐射单元309是利用覆铜板生产工艺在厚度为h的介质板802上表面处制作的导电贴片,并且,微带辐射单元309中的馈电点801是通过同轴馈电接口804与T/R电路层601实现电磁信号的连接,介质板802的底面为接地平面803。In the present invention, the microstrip radiation unit 309 is rectangular. As shown in Figure 9 and Figure 12, the long side of the microstrip radiating unit 309 is a, and the broad side is b, and the microstrip radiating unit 309 is manufactured on the upper surface of a dielectric board 802 with a thickness h by using a copper-clad laminate production process Conductive patches, and the feed point 801 in the microstrip radiation unit 309 is connected to the T/R circuit layer 601 for electromagnetic signals through the coaxial feed interface 804 , and the bottom surface of the dielectric board 802 is a ground plane 803 .

作为一种替代的方案,微带辐射单元309呈圆形。如图13所示,微带辐射单元309的半径为r,其上设置有馈电点801,其他结构同上,不再赘述。As an alternative, the microstrip radiation unit 309 is circular. As shown in FIG. 13 , the radius of the microstrip radiating unit 309 is r, and a feeding point 801 is arranged on it, and other structures are the same as above, and will not be repeated here.

作为一种替代的方案,微带辐射单元309与T/R电路层601不使用微带天线-同轴-微带线的连接结构,而是使用微带天线-耦合小孔-微带线的连接结构,如图14所示。该馈电方式利于位于下层介质板802中的下表面中印刷的馈电微带线806实现T/R电路层601与耦合小孔805的电磁信号连接,并通过耦合小孔805把电磁信号耦合到辐射单元309以实现电磁信号的辐射或接收。上层介质板使用低介电常数以利于电磁辐射,下层介质板使用高介电常数,以利于将场约束在馈电微带线806上。As an alternative, the microstrip radiating unit 309 and the T/R circuit layer 601 do not use the connection structure of microstrip antenna-coaxial-microstrip line, but use the connection structure of microstrip antenna-coupling hole-microstrip line The connection structure is shown in Figure 14. This feeding method is beneficial to the feeding microstrip line 806 printed on the lower surface of the lower dielectric board 802 to realize the electromagnetic signal connection between the T/R circuit layer 601 and the coupling hole 805, and to couple the electromagnetic signal through the coupling hole 805. to the radiation unit 309 to realize the radiation or reception of electromagnetic signals. The upper dielectric plate uses a low dielectric constant to facilitate electromagnetic radiation, and the lower dielectric plate uses a high dielectric constant to facilitate field confinement on the feeding microstrip line 806 .

参照图3和图11,控制和信号处理系统107安装在翼梁104的空心中。每个天线子阵中的控制信号、光纤310的测量信号均统一到该控制和信号处理系统107进行集中处理,同时,控制和信号处理系统107还向波控电路层306提供控制信号,控制和信号处理系统107与波控电路层306之间使用线缆连接。Referring to FIGS. 3 and 11 , the control and signal processing system 107 is mounted in the hollow of the spar 104 . The control signals in each antenna sub-array and the measurement signals of the optical fiber 310 are all unified to the control and signal processing system 107 for centralized processing. At the same time, the control and signal processing system 107 also provides control signals to the wave control circuit layer 306. The signal processing system 107 and the wave control circuit layer 306 are connected by cables.

综上所述,本发明的结构功能一体化机翼天线,其既可以作为飞行器机翼,也可以作为收发天线,不仅去除了大量外置天线及安装底座,降低了机身重量,提高了飞行器的气动性能,而且分布式的天线阵列布置方式更增加了天线孔径;同时,通过光纤310、布拉格光栅311测试数据的处理可以自动补偿结构振动和变形对电性能的影响,保证天线在恶劣服役环境下的电磁性能稳定性;此外,射频功能层中设计的微通道401通过其内的液体可以把器件热量带走,降低了高密度集成器件温度过高导致天线性能降低或失效的弊端。In summary, the structure-function integrated wing antenna of the present invention can be used as an aircraft wing or as a transceiver antenna, which not only removes a large number of external antennas and mounting bases, reduces the weight of the fuselage, and improves the Excellent aerodynamic performance, and the distributed antenna array layout increases the antenna aperture; at the same time, through the processing of optical fiber 310 and Bragg grating 311 test data, it can automatically compensate for the influence of structural vibration and deformation on electrical performance, ensuring that the antenna can be used in harsh service environments. In addition, the microchannel 401 designed in the radio frequency functional layer can take away the heat of the device through the liquid in it, which reduces the disadvantages of the high-density integrated device temperature that causes the antenna performance to decrease or fail.

需要说明的是,上述实施例不以任何形式限制本发明,凡采用等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。It should be noted that the above embodiments do not limit the present invention in any form, and all technical solutions obtained by means of equivalent replacement or equivalent transformation fall within the protection scope of the present invention.

Claims (10)

1. a structure-function integration wing antenna, comprising: the wing cover of wing skeleton and the described wing skeleton of covering, it is characterized in that,
Described wing skeleton comprises: the some ribs (103) that are arranged in parallel, pass and connect the hollow triangle spar (104) of described rib (103), be arranged on the leading edge of a wing (101) of described rib (103) front end, and be arranged on the trailing edge (102) of described rib (103) rear end;
Described wing cover is composite construction, comprises successively from top to bottom: top panel (301), upper honeycomb/froth bed (302), radio-frequency enabled layer, lower honeycomb/froth bed (307) and lower panel (308); Described lower panel (308) is equipped with some optical fiber (310) in the interface contacting with lower honeycomb/froth bed (307), described optical fiber (310) is parallel with rib (103), and every optical fiber (310) is upper arranges a Bragg grating (311) every an intersegmental distance;
Described radio-frequency enabled layer comprises: is positioned at the radio circuit layer (304) on upper strata, is positioned at the ripple control circuit layer (306) of lower floor, and packaging frame (303), between described radio circuit layer (304) and ripple control circuit layer (306), use contact pin to be connected; The internal production of described radio-frequency enabled layer has liquid cooling passage (305);
Described radio circuit layer (304) is composite construction, the superiors are antenna array (603), described antenna array (603) is made up of some antenna submatrixs, described antenna submatrix is made up of some micro-band radiating elements (309), described antenna submatrix adopts distributed layout mode to arrange, and the each micro-band radiating element (309) in antenna submatrix is all coated with layer of copper;
Structure-function integration wing antenna also comprises: control and signal processing system, described control and signal processing system are arranged in described spar (104) hollow, control signal in each antenna submatrix, the measuring-signal of optical fiber (310) are all unified to be focused on to described control and signal processing system, and described control and signal processing system also provide control signal to described ripple control circuit layer (306).
2. structure-function integration wing antenna according to claim 1, it is characterized in that, described radio circuit layer (304) also comprises: the T/R circuit layer (601) that is positioned at antenna array (603) below, the merit parallel circuit layer (602) that is positioned at T/R circuit layer (601) below, described T/R circuit layer (601) is connected with ripple control circuit layer (306) signal by low frequency wire, high-frequency line respectively with merit parallel circuit layer (602).
3. structure-function integration wing antenna according to claim 2, it is characterized in that, between the micro-band radiating element (309) in described antenna array and T/R circuit layer (601), adopt the interconnected signal of telecommunication of realizing of syndeton of microstrip antenna-coaxial-microstrip line or microstrip antenna-coupling aperture-microstrip line to be connected.
4. structure-function integration wing antenna according to claim 3, it is characterized in that, between described T/R circuit layer (601) and merit parallel circuit layer (602), adopt the vertical interconnect mode of microstrip line-coaxial-strip line or microstrip line-coaxial-strip line to realize the signal of telecommunication and be connected.
5. structure-function integration wing antenna according to claim 1, it is characterized in that, liquid cooling channel outlet (403) and liquid cooling feeder connection (404) that described liquid cooling passage (305) is communicated with described liquid discharge oral cavity (402) and chamber, liquid inlet (405) by: some microchannels that be arranged in parallel (401), the liquid discharge oral cavity (402) that is separately positioned on two ends, described microchannel (401) and chamber, liquid inlet (405), respectively form; Described liquid cooling channel outlet (403) and liquid cooling feeder connection (404) pass described ripple control circuit layer (306), and connect outside hydraulic circuit.
6. structure-function integration wing antenna according to claim 5, is characterized in that, described microchannel (401) are rectangular.
7. structure-function integration wing antenna according to claim 6, is characterized in that, the length of described microchannel (401) and wide 0.1mm and the 0.5mm of being respectively.
8. according to the structure-function integration wing antenna described in claim 1 to 7 any one, it is characterized in that, described radio circuit layer (304) is manufactured moulding by low-temperature co-burning ceramic material sintering.
9. according to the structure-function integration wing antenna described in claim 1 to 7 any one, it is characterized in that, described ripple control circuit layer (306) is formed by glass-epoxy copper-clad plate manufacture.
10. according to the structure-function integration wing antenna described in claim 1 to 7 any one, it is characterized in that, described micro-band radiating element (309) is rectangular or circular.
CN201410135872.9A 2014-04-04 2014-04-04 Structure-function integration wing antenna Expired - Fee Related CN103887605B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410135872.9A CN103887605B (en) 2014-04-04 2014-04-04 Structure-function integration wing antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410135872.9A CN103887605B (en) 2014-04-04 2014-04-04 Structure-function integration wing antenna

Publications (2)

Publication Number Publication Date
CN103887605A true CN103887605A (en) 2014-06-25
CN103887605B CN103887605B (en) 2016-08-24

Family

ID=50956394

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410135872.9A Expired - Fee Related CN103887605B (en) 2014-04-04 2014-04-04 Structure-function integration wing antenna

Country Status (1)

Country Link
CN (1) CN103887605B (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104577329A (en) * 2015-02-10 2015-04-29 重庆大学 High-gain high-efficiency miniaturized flexible antenna applied to complex communication system
CN105305075A (en) * 2015-11-23 2016-02-03 中国电子科技集团公司第五十四研究所 Sheathed millimeter wave satellite communication phased array antenna
CN105375116A (en) * 2015-11-13 2016-03-02 成都雷电微力科技有限公司 Antenna interconnection unit
GB2530069A (en) * 2014-09-12 2016-03-16 Bae Systems Plc Signal processing apparatus
CN105606907A (en) * 2016-01-20 2016-05-25 西安电子科技大学 Deformation experiment apparatus for smart skin antenna test
GB2536014A (en) * 2015-03-03 2016-09-07 Stratospheric Platforms Ltd High altitude aircraft wing geometry
CN106025524A (en) * 2016-05-10 2016-10-12 西安电子科技大学 Manufacturing method of inelegant skin antenna
CN106876870A (en) * 2015-12-14 2017-06-20 中国航空工业集团公司雷华电子技术研究所 A kind of conformal paster antenna in aircraft wing edge
WO2017197996A1 (en) * 2016-05-19 2017-11-23 深圳光启空间技术有限公司 Covering, aerostat, and covering preparation method
CN108039562A (en) * 2017-12-13 2018-05-15 中国电子科技集团公司第三十八研究所 A kind of Active conformal array antenna applied to unmanned aerial vehicle platform
CN108917806A (en) * 2018-07-03 2018-11-30 中国电子科技集团公司第十四研究所 Fiber-optic grating sensor built-in process based on carbon fiber honeycomb sandwich construction
CN109066081A (en) * 2018-08-14 2018-12-21 中国电子科技集团公司第三十八研究所 A kind of head skin antenna integrated morphology and production method
CN109698398A (en) * 2018-12-13 2019-04-30 中国电子科技集团公司第五十四研究所 A kind of integrated design Millimeter Wave Phased Array Antenna
CN110504548A (en) * 2019-07-18 2019-11-26 西安电子科技大学 Liquid-metal-based heat-sinkable frequency selection device
CN110718741A (en) * 2019-10-16 2020-01-21 中国航空工业集团公司西安飞机设计研究所 Bearable sandwich structure of integrated antenna array
CN111918530A (en) * 2020-07-30 2020-11-10 华中科技大学 Conformal TR component and full-printing preparation method thereof
FR3099001A1 (en) 2019-07-19 2021-01-22 Airbus Defence And Space Sas AERODYNE WITH ANTENNA AND ASSOCIATED ARRANGEMENT PROCESS
CN113612009A (en) * 2021-08-03 2021-11-05 中国电子科技集团公司第三十八研究所 Airborne conformal bearing antenna
CN113809534A (en) * 2021-09-18 2021-12-17 中国电子科技集团公司第三十八研究所 Ultra-wide bandwidth wave beam embedded end-fire skin antenna
CN114056544A (en) * 2021-12-24 2022-02-18 中国商用飞机有限责任公司 Skin structure for a wing, aircraft with a skin structure and method for mounting a skin structure
CN114243263A (en) * 2021-12-20 2022-03-25 陕西烽火诺信科技有限公司 Conformal embedded short wave antenna of airplane vertical tail
CN114267935A (en) * 2021-12-14 2022-04-01 重庆交通大学绿色航空技术研究院 Bidirectional communication array antenna applied to unmanned aerial vehicle and communication method
CN114552169A (en) * 2022-04-25 2022-05-27 中国电子科技集团公司第二十九研究所 Construction method of broadband curved surface conformal radio frequency functional circuit assembly
CN114725657A (en) * 2022-04-13 2022-07-08 中国电子科技集团公司第三十八研究所 Wing skeleton antenna
CN115320825A (en) * 2022-08-18 2022-11-11 西北工业大学 High-altitude, ultra-long endurance and large aspect ratio integrated unmanned aerial platform driven by microwave energy
CN115395210A (en) * 2022-08-29 2022-11-25 中国电子科技集团公司第十四研究所 A low-profile broadband end-fire array skin antenna unit and antenna array
CN115743515A (en) * 2022-11-01 2023-03-07 中国电子科技集团公司第三十八研究所 High-wave-transmission flat tail wing box based on skin antenna integrated design
CN116654321A (en) * 2023-06-26 2023-08-29 中国舰船研究设计中心 Conformal method of microwave wireless energy-transmitting receiving antenna and fixed wing unmanned aerial vehicle
CN117465655A (en) * 2023-12-28 2024-01-30 山河星航实业股份有限公司 Light aircraft wing and light aircraft

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867084A (en) * 2010-06-10 2010-10-20 西北工业大学 A New Type of Embedded Composite Material Smart Skin Antenna Structure
CN103353904A (en) * 2013-04-12 2013-10-16 西安电子科技大学 Data-driven design method integrating active interlayer microstrip antenna structure and electromagnetism and antenna
US20130303067A1 (en) * 2012-05-11 2013-11-14 The Boeing Company Ventilated aero-structures, aircraft and associated methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867084A (en) * 2010-06-10 2010-10-20 西北工业大学 A New Type of Embedded Composite Material Smart Skin Antenna Structure
US20130303067A1 (en) * 2012-05-11 2013-11-14 The Boeing Company Ventilated aero-structures, aircraft and associated methods
CN103353904A (en) * 2013-04-12 2013-10-16 西安电子科技大学 Data-driven design method integrating active interlayer microstrip antenna structure and electromagnetism and antenna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘晓明: "飞机结构健康监控中的信息获取技术", 《航空科学技术》 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2530069A (en) * 2014-09-12 2016-03-16 Bae Systems Plc Signal processing apparatus
CN104577329A (en) * 2015-02-10 2015-04-29 重庆大学 High-gain high-efficiency miniaturized flexible antenna applied to complex communication system
CN104577329B (en) * 2015-02-10 2017-06-16 重庆大学 It is applied to the miniaturization flexible antennas of the high gain and high efficiency of complex communication system
GB2536014A (en) * 2015-03-03 2016-09-07 Stratospheric Platforms Ltd High altitude aircraft wing geometry
CN105375116B (en) * 2015-11-13 2017-12-19 成都雷电微力科技有限公司 A kind of antenna interconnection unit
CN105375116A (en) * 2015-11-13 2016-03-02 成都雷电微力科技有限公司 Antenna interconnection unit
CN105305075A (en) * 2015-11-23 2016-02-03 中国电子科技集团公司第五十四研究所 Sheathed millimeter wave satellite communication phased array antenna
CN106876870A (en) * 2015-12-14 2017-06-20 中国航空工业集团公司雷华电子技术研究所 A kind of conformal paster antenna in aircraft wing edge
CN105606907B (en) * 2016-01-20 2018-07-10 西安电子科技大学 A kind of deformation experiment device towards smart skins antenna measurement
CN105606907A (en) * 2016-01-20 2016-05-25 西安电子科技大学 Deformation experiment apparatus for smart skin antenna test
CN106025524B (en) * 2016-05-10 2019-07-16 西安电子科技大学 A kind of manufacturing method of intelligent skin antenna
CN106025524A (en) * 2016-05-10 2016-10-12 西安电子科技大学 Manufacturing method of inelegant skin antenna
WO2017197996A1 (en) * 2016-05-19 2017-11-23 深圳光启空间技术有限公司 Covering, aerostat, and covering preparation method
CN108039562A (en) * 2017-12-13 2018-05-15 中国电子科技集团公司第三十八研究所 A kind of Active conformal array antenna applied to unmanned aerial vehicle platform
CN108917806A (en) * 2018-07-03 2018-11-30 中国电子科技集团公司第十四研究所 Fiber-optic grating sensor built-in process based on carbon fiber honeycomb sandwich construction
CN109066081A (en) * 2018-08-14 2018-12-21 中国电子科技集团公司第三十八研究所 A kind of head skin antenna integrated morphology and production method
CN109066081B (en) * 2018-08-14 2020-11-27 中国电子科技集团公司第三十八研究所 Nose skin antenna integrated structure and manufacturing method
CN109698398A (en) * 2018-12-13 2019-04-30 中国电子科技集团公司第五十四研究所 A kind of integrated design Millimeter Wave Phased Array Antenna
CN109698398B (en) * 2018-12-13 2020-10-16 中国电子科技集团公司第五十四研究所 Integrally designed millimeter wave phased array antenna
CN110504548A (en) * 2019-07-18 2019-11-26 西安电子科技大学 Liquid-metal-based heat-sinkable frequency selection device
WO2021013589A1 (en) 2019-07-19 2021-01-28 Airbus Defence And Space Sas Aerodyne with antenna and associated arrangement method
FR3099001A1 (en) 2019-07-19 2021-01-22 Airbus Defence And Space Sas AERODYNE WITH ANTENNA AND ASSOCIATED ARRANGEMENT PROCESS
CN110718741A (en) * 2019-10-16 2020-01-21 中国航空工业集团公司西安飞机设计研究所 Bearable sandwich structure of integrated antenna array
CN111918530A (en) * 2020-07-30 2020-11-10 华中科技大学 Conformal TR component and full-printing preparation method thereof
CN113612009B (en) * 2021-08-03 2023-05-09 中国电子科技集团公司第三十八研究所 Airborne conformal bearing antenna
CN113612009A (en) * 2021-08-03 2021-11-05 中国电子科技集团公司第三十八研究所 Airborne conformal bearing antenna
CN113809534A (en) * 2021-09-18 2021-12-17 中国电子科技集团公司第三十八研究所 Ultra-wide bandwidth wave beam embedded end-fire skin antenna
CN114267935B (en) * 2021-12-14 2023-11-07 重庆交通大学绿色航空技术研究院 Bidirectional communication array antenna and communication method applied to unmanned aerial vehicle
CN114267935A (en) * 2021-12-14 2022-04-01 重庆交通大学绿色航空技术研究院 Bidirectional communication array antenna applied to unmanned aerial vehicle and communication method
CN114243263A (en) * 2021-12-20 2022-03-25 陕西烽火诺信科技有限公司 Conformal embedded short wave antenna of airplane vertical tail
CN114056544A (en) * 2021-12-24 2022-02-18 中国商用飞机有限责任公司 Skin structure for a wing, aircraft with a skin structure and method for mounting a skin structure
CN114725657A (en) * 2022-04-13 2022-07-08 中国电子科技集团公司第三十八研究所 Wing skeleton antenna
CN114552169A (en) * 2022-04-25 2022-05-27 中国电子科技集团公司第二十九研究所 Construction method of broadband curved surface conformal radio frequency functional circuit assembly
CN115320825A (en) * 2022-08-18 2022-11-11 西北工业大学 High-altitude, ultra-long endurance and large aspect ratio integrated unmanned aerial platform driven by microwave energy
CN115395210A (en) * 2022-08-29 2022-11-25 中国电子科技集团公司第十四研究所 A low-profile broadband end-fire array skin antenna unit and antenna array
CN115743515A (en) * 2022-11-01 2023-03-07 中国电子科技集团公司第三十八研究所 High-wave-transmission flat tail wing box based on skin antenna integrated design
CN116654321A (en) * 2023-06-26 2023-08-29 中国舰船研究设计中心 Conformal method of microwave wireless energy-transmitting receiving antenna and fixed wing unmanned aerial vehicle
CN116654321B (en) * 2023-06-26 2024-07-23 中国舰船研究设计中心 Conformal method of microwave wireless energy-transmitting receiving antenna and fixed wing unmanned aerial vehicle
CN117465655A (en) * 2023-12-28 2024-01-30 山河星航实业股份有限公司 Light aircraft wing and light aircraft
CN117465655B (en) * 2023-12-28 2024-03-01 山河星航实业股份有限公司 Light aircraft wing and light aircraft

Also Published As

Publication number Publication date
CN103887605B (en) 2016-08-24

Similar Documents

Publication Publication Date Title
CN103887605B (en) Structure-function integration wing antenna
RU2713069C2 (en) Omnidirectional antenna system
RU2714862C2 (en) Conformal composite antenna assembly
US9761939B2 (en) Integrated low profile phased array antenna system
US8149177B1 (en) Slotted waveguide antenna stiffened structure
US8654017B1 (en) Antenna tile device and cold plate
US10581146B2 (en) Broadband stacked multi-spiral antenna array
US20100177011A1 (en) Flexible phased array antennas
CN103618130B (en) Embedded intelligence skin antenna
US20170054205A1 (en) Balanced Multi-Layer Printed Circuit Board for Phased-Array Antenna
CN113612009B (en) Airborne conformal bearing antenna
EP2664029B1 (en) Printed circuit board based feed horn
US10992037B2 (en) Steerable antenna assembly
CN206250390U (en) A kind of suspended stripline fed planar array antenna
US11791544B2 (en) High gain stripline antenna assemblies
US11128059B2 (en) Antenna assembly having one or more cavities
CN113851830B (en) Light multi-unit antenna oscillator and production method thereof
CN108923110B (en) MIMO (multiple input multiple output) airborne antenna adopting WiFi and LTE (Long term evolution)
CN214336906U (en) Antenna module and unmanned aerial vehicle
CN203674388U (en) Planar antenna
CN203351750U (en) Airborne communication antenna top radiation device
CN206922005U (en) A kind of intelligent skin antenna structure based on 3 D-printing
CN118232010B (en) High-power dual-band conformal antenna
US11715882B2 (en) Low-profile magnetic antenna assemblies
CN116365229A (en) Composite material 3D printing conformal antenna skin structure and manufacturing method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160824