CN103887605A - Wing antenna integrating structures and functions - Google Patents
Wing antenna integrating structures and functions Download PDFInfo
- Publication number
- CN103887605A CN103887605A CN201410135872.9A CN201410135872A CN103887605A CN 103887605 A CN103887605 A CN 103887605A CN 201410135872 A CN201410135872 A CN 201410135872A CN 103887605 A CN103887605 A CN 103887605A
- Authority
- CN
- China
- Prior art keywords
- antenna
- circuit layer
- wing
- layer
- radio frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 claims abstract description 43
- 238000001816 cooling Methods 0.000 claims abstract description 27
- 238000012545 processing Methods 0.000 claims abstract description 22
- 239000013307 optical fiber Substances 0.000 claims abstract description 20
- 238000004806 packaging method and process Methods 0.000 claims abstract description 4
- 230000010354 integration Effects 0.000 claims description 15
- 239000002131 composite material Substances 0.000 claims description 10
- 238000010168 coupling process Methods 0.000 claims description 7
- 238000005859 coupling reaction Methods 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 229910010293 ceramic material Inorganic materials 0.000 claims description 3
- 238000005245 sintering Methods 0.000 claims description 3
- 238000000465 moulding Methods 0.000 claims description 2
- 238000010276 construction Methods 0.000 claims 2
- 210000000214 mouth Anatomy 0.000 claims 2
- 239000004593 Epoxy Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 abstract description 88
- 239000002346 layers by function Substances 0.000 abstract description 20
- 239000006260 foam Substances 0.000 abstract description 16
- 238000003491 array Methods 0.000 abstract description 6
- 230000017525 heat dissipation Effects 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 230000005855 radiation Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 230000008878 coupling Effects 0.000 description 3
- 238000005538 encapsulation Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000005670 electromagnetic radiation Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Landscapes
- Details Of Aerials (AREA)
Abstract
本发明公开了一种结构功能一体化机翼天线,包括:机翼骨架、机翼蒙皮、控制和信号处理系统,机翼蒙皮从上至下依次包括:上面板、上蜂窝/泡沫层、射频功能层、下蜂窝/泡沫层和下面板,下面板上铺设有光纤,每根光纤上每隔一段间距设置一个布拉格光栅;前述射频功能层包括:射频电路层、波控电路层和封装框架,射频功能层的内部制作有液冷通道;前述射频电路层包括由若干采用分布布局方式排列的天线子阵组成的天线阵面,天线子阵由若干微带辐射单元组成。本发明的有益之处在于:降低了机身重量,提高了飞行器的气动性能,散热好;能实时监测机翼结构的变形和强度,自动补偿结构振动和变形对电性能的影响,保证天线在恶劣环境下的电磁性能稳定性。
The invention discloses a structure-function integrated wing antenna, comprising: a wing frame, a wing skin, a control and signal processing system, and the wing skin sequentially includes: an upper panel, an upper honeycomb/foam layer from top to bottom , a radio frequency functional layer, a lower honeycomb/foam layer and a lower panel, the lower panel is laid with optical fibers, and a Bragg grating is arranged at intervals on each optical fiber; the aforementioned radio frequency functional layer includes: a radio frequency circuit layer, a wave control circuit layer and packaging The frame and the radio frequency functional layer are made with liquid cooling channels inside; the aforementioned radio frequency circuit layer includes an antenna array composed of a number of antenna sub-arrays arranged in a distributed layout, and the antenna sub-array is composed of a number of microstrip radiating units. The invention is beneficial in that it reduces the weight of the fuselage, improves the aerodynamic performance of the aircraft, and has good heat dissipation; it can monitor the deformation and strength of the wing structure in real time, automatically compensate the influence of structural vibration and deformation on the electrical performance, and ensure that the antenna is in the air. Electromagnetic performance stability in harsh environments.
Description
技术领域technical field
本发明涉及一种机翼天线,具体涉及一种结构功能一体化机翼天线,属于飞行器天线技术领域。The invention relates to a wing antenna, in particular to a structure-function integrated wing antenna, which belongs to the technical field of aircraft antennas.
背景技术Background technique
结构功能一体化机翼天线是指将集成微带天线阵列的射频功能件嵌入到飞行器的机翼结构中,通过利用一体化复合成型工艺制造的高度集成化蒙皮天线,它既可以作为武器平台结构的力学承载功能件,也可以作为收发无线电磁波的电磁功能件。与传统天线对比,结构功能一体化机翼天线具有结构/电路的高度融合特点。它可以应用到未来飞行器如变体飞机、无人机、飞艇预警机等,是实现飞行器隐身化、多功能化和高机动性的关键技术,能够有效地减轻飞行器的重量和保持飞行器良好的气动外形。The structure-function integrated wing antenna refers to the embedding of the radio frequency functional parts of the integrated microstrip antenna array into the wing structure of the aircraft. The highly integrated skin antenna manufactured by the integrated compound molding process can be used as a weapon platform The mechanical load-bearing functional parts of the structure can also be used as electromagnetic functional parts for sending and receiving wireless electromagnetic waves. Compared with traditional antennas, the structure-function integrated wing antenna has the characteristics of high integration of structure and circuit. It can be applied to future aircraft such as variant aircraft, unmanned aerial vehicles, airship early warning aircraft, etc. It is the key technology to realize the stealth, multi-function and high maneuverability of the aircraft, and can effectively reduce the weight of the aircraft and maintain the good aerodynamic shape of the aircraft .
结构功能一体化机翼天线既可以作为飞行器的机翼,也可以作为发射和接收电磁波的天线装置,满足飞行器的气动性能、电磁隐身和适装性能等需求。The structure-functional integrated wing antenna can be used not only as the wing of the aircraft, but also as the antenna device for transmitting and receiving electromagnetic waves, so as to meet the requirements of the aircraft's aerodynamic performance, electromagnetic stealth and adaptability.
在相关的研究中,NASA研制了一种长航程无人机的机翼,其微带天线阵列、太阳能电池阵列与机翼结构完全融为一体。该研究在公开文献“Structurally Integrated antenna concepts for hale UAVS.NASAReport-2006-214513.Langley Research Center,Virginia,2006:23681-2199”(结构一体化无人飞行器天线概念.NASA研究报告-2006-214513.兰利研究中心,弗吉尼亚,23681-2199)中有报导。In related research, NASA has developed a long-range UAV wing, whose microstrip antenna array, solar cell array and wing structure are fully integrated. The research is published in the open literature "Structurally Integrated antenna concepts for hale UAVS.NASAReport-2006-214513.Langley Research Center, Virginia, 2006:23681-2199" (Structurally Integrated antenna concepts for hale UAVS.NASAReport-2006-214513. Langley Research Center, Virginia, 23681-2199).
波音公司研制了集成X波段微带天线阵列的蜂窝夹层机翼结构,该研究在公开文献“Urcia M,Banks D.Structurally integrated phasedarrays.2011IEEE Aerospace Conference,Big Sky,MT,United states,2011:1-8.”(M.Urcia,D.Banks.结构集成的相控阵.2011年IEEE航空会议,Big Sky,MT,United states,2011:1-8.)中有报导。Boeing has developed a honeycomb sandwich wing structure that integrates X-band microstrip antenna arrays. 8." (M.Urcia, D.Banks. Structural Integrated Phased Array. 2011 IEEE Aviation Conference, Big Sky, MT, United states, 2011:1-8.) Reported.
国内的西北工业大学提出了一种将微带天线预封装后嵌入到复合材料夹层结构的新构型,该构型能够实现天线阵列与机体结构的共形。该研究在公开的发明专利“谢宗蕻,赵伟,张朋,李磊.一种新型嵌入式复合材料智能蒙皮天线结构,申请时间:2010-6-10,专利国别:中国,专利申请号:201010197298.1”有报道。The Northwestern Polytechnical University in China proposed a new configuration in which the microstrip antenna is pre-packaged and embedded in a composite sandwich structure. This configuration can realize the conformal shape of the antenna array and the body structure. The research was published in the invention patent "Xie Zonghong, Zhao Wei, Zhang Peng, Li Lei. A new type of embedded composite material smart skin antenna structure, application time: 2010-6-10, patent country: China, patent application number: 201010197298.1" is reported.
国内外已经公开了把微带天线阵嵌入到机翼结构中的技术方案,但是,现有技术还存在以下不足之处:The technical scheme of embedding the microstrip antenna array into the wing structure has been disclosed at home and abroad, but the existing technology still has the following deficiencies:
1、现有的文献所公开的技术方案中,仅给出把微带天线阵集成到机翼结构中的方法,然而,没有说明天线在机翼结构中的布局方式、射频信号连接方式以及制作方法。1. In the technical solutions disclosed in the existing documents, only the method of integrating the microstrip antenna array into the wing structure is given. However, the layout method of the antenna in the wing structure, the radio frequency signal connection method and the production method are not described. method.
2、由于微带天线高度集成到机翼结构,在天线工作时,射频器件会发热,导致天线辐射性能降低,甚至完全失效。现有的文献并没有给出降低天线温度的结构设计方法。2. Since the microstrip antenna is highly integrated into the wing structure, when the antenna is working, the radio frequency device will heat up, resulting in reduced radiation performance of the antenna, or even complete failure. The existing literature does not provide a structural design method to reduce the temperature of the antenna.
3、在服役过程中,机翼结构不可避免地要受到气动载荷的影响,会引起机翼结构的振动和变形,导致嵌入结构中天线辐射单元位置的变化,影响电磁辐射性能。这些现象在NASA和波音公司的报告中已经提到,然而,他们却没有提出一种有效的结构来补偿结构的振动和变形对电磁性能的影响。3. During service, the wing structure will inevitably be affected by aerodynamic loads, which will cause vibration and deformation of the wing structure, resulting in changes in the position of the antenna radiation unit embedded in the structure, affecting electromagnetic radiation performance. These phenomena have been mentioned in the reports of NASA and Boeing, however, they have not proposed an effective structure to compensate the influence of the vibration and deformation of the structure on the electromagnetic performance.
发明内容Contents of the invention
本发明的目的在于提供一种新颖的集成微带天线阵列和光纤光栅的结构功能一体化机翼天线,其不仅能够降低机身重量,而且能够实现机翼结构振动和变形的实时检测和电性能补偿,同时能有效降低由于高密度集成带来的天线散热问题。The purpose of the present invention is to provide a novel integrated microstrip antenna array and fiber grating structure-function integrated wing antenna, which can not only reduce the weight of the fuselage, but also realize the real-time detection and electrical performance of the vibration and deformation of the wing structure. Compensation, and at the same time, it can effectively reduce the antenna heat dissipation problem caused by high-density integration.
为了实现上述目标,本发明采用如下的技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种结构功能一体化机翼天线,包括:机翼骨架和覆盖前述机翼骨架的机翼蒙皮,其特征在于,A structure-function integrated wing antenna, comprising: a wing frame and a wing skin covering the aforementioned wing frame, characterized in that,
前述机翼骨架包括:平行排列的若干翼肋,穿过并连接前述翼肋的空心三角形翼梁,安装在前述翼肋前端的机翼前缘,以及安装在前述翼肋后端的机翼后缘;The aforementioned wing skeleton comprises: several wing ribs arranged in parallel, a hollow triangular spar passing through and connecting the aforementioned wing ribs, a leading edge of the wing installed at the front end of the aforementioned wing ribs, and a trailing edge of the wing installed at the rear end of the aforementioned wing ribs ;
前述机翼蒙皮为复合结构,从上至下依次包括:上面板、上蜂窝/泡沫层、射频功能层、下蜂窝/泡沫层和下面板;前述下面板在与下蜂窝/泡沫层接触的界面处铺设有若干光纤,前述光纤与翼肋平行,每根光纤上每隔一段间距设置一个布拉格光栅;The aforementioned wing skin is a composite structure, including from top to bottom: an upper panel, an upper honeycomb/foam layer, a radio frequency functional layer, a lower honeycomb/foam layer and a lower panel; the aforementioned lower panel is in contact with the lower honeycomb/foam layer A number of optical fibers are laid at the interface, the aforementioned optical fibers are parallel to the ribs, and a Bragg grating is arranged at intervals on each optical fiber;
前述射频功能层包括:位于上层的射频电路层,位于下层的波控电路层,以及封装框架,前述射频电路层与波控电路层之间使用插针连接;前述射频功能层的内部制作有液冷通道;The aforementioned radio frequency functional layer includes: a radio frequency circuit layer located on the upper layer, a wave control circuit layer located on the lower layer, and a packaging frame. The aforementioned radio frequency circuit layer and the wave control circuit layer are connected by pins; cold aisle;
前述射频电路层为复合结构,最上层为天线阵面,前述天线阵面由若干天线子阵组成,前述天线子阵由若干微带辐射单元组成,前述天线子阵采用分布布局方式排列,天线子阵中的每个微带辐射单元均镀有一层铜;The aforementioned radio frequency circuit layer is a composite structure, and the uppermost layer is an antenna array. The aforementioned antenna array is composed of a number of antenna sub-arrays. Each microstrip radiating element in the array is plated with a layer of copper;
结构功能一体化机翼天线还包括:控制和信号处理系统,前述控制和信号处理系统安装在前述翼梁的空心中,每个天线子阵中的控制信号、光纤的测量信号均统一到前述控制和信号处理系统进行集中处理,前述控制和信号处理系统还向前述波控电路层提供控制信号。The structure and function integrated wing antenna also includes: control and signal processing system, the aforementioned control and signal processing system is installed in the hollow of the aforementioned spar, the control signals in each antenna sub-array and the measurement signals of optical fibers are unified to the aforementioned control and the signal processing system for centralized processing, and the aforementioned control and signal processing system also provides control signals to the aforementioned wave control circuit layer.
前述的结构功能一体化机翼天线,其特征在于,前述射频电路层还包括:位于天线阵面下方的T/R电路层,位于T/R电路层下方的功分电路层,前述T/R电路层和功分电路层分别通过低频线、高频线与波控电路层信号连接。The aforementioned structure and function integrated wing antenna is characterized in that the aforementioned radio frequency circuit layer also includes: a T/R circuit layer positioned below the antenna front, a power division circuit layer positioned below the T/R circuit layer, and the aforementioned T/R circuit layer The circuit layer and the power division circuit layer are signal-connected to the wave control circuit layer through low-frequency lines and high-frequency lines respectively.
前述的结构功能一体化机翼天线,其特征在于,前述天线阵面中的微带辐射单元与T/R电路层之间采用微带天线-同轴-微带线或微带天线-耦合小孔-微带线的连接结构互联实现电信号连接。The aforementioned structure and function integrated wing antenna is characterized in that, between the microstrip radiation unit in the aforementioned antenna array and the T/R circuit layer, a microstrip antenna-coaxial-microstrip line or a microstrip antenna-coupling small The hole-microstrip connection structure is interconnected to realize electrical signal connection.
前述的结构功能一体化机翼天线,其特征在于,前述T/R电路层与功分电路层之间采用微带线-同轴-带状线或微带线-同轴—带状线的垂直互联方式实现电信号连接。The aforementioned structure-function integrated wing antenna is characterized in that, between the aforementioned T/R circuit layer and the power division circuit layer, a microstrip-coaxial-stripline or microstrip-coaxial-stripline The electrical signal connection is realized by vertical interconnection.
前述的结构功能一体化机翼天线,其特征在于,前述液冷通道由:若干平行设置的微通道、分别设置在前述微通道两端的液体出口腔和液体入口腔、分别与前述液体出口腔和液体入口腔连通的液冷通道出口和液冷通道入口组成;前述液冷通道出口和液冷通道入口穿过前述波控电路层,并且联接外部的液压回路。The aforementioned structure-function integrated wing antenna is characterized in that the aforementioned liquid cooling channel is composed of: several microchannels arranged in parallel, a liquid outlet cavity and a liquid inlet cavity respectively arranged at both ends of the aforementioned microchannel, and the aforementioned liquid outlet cavity and the liquid inlet cavity respectively. The liquid-cooling channel outlet and the liquid-cooling channel inlet connected by the liquid inlet are composed of; the aforementioned liquid-cooling channel outlet and the liquid-cooling channel inlet pass through the aforementioned wave control circuit layer and are connected to an external hydraulic circuit.
前述的结构功能一体化机翼天线,其特征在于,前述微通道呈矩形。The aforementioned structure-function integrated wing antenna is characterized in that the aforementioned microchannel is rectangular.
前述的结构功能一体化机翼天线,其特征在于,前述微通道的长和宽分别为0.1mm和0.5mm。The aforementioned structure-function integrated wing antenna is characterized in that the length and width of the aforementioned microchannel are 0.1 mm and 0.5 mm, respectively.
前述的结构功能一体化机翼天线,其特征在于,前述射频电路层由低温共烧陶瓷材料烧结制造成型。The aforementioned structure-function integrated wing antenna is characterized in that the aforementioned radio frequency circuit layer is manufactured and formed by sintering low temperature co-fired ceramic materials.
前述的结构功能一体化机翼天线,其特征在于,前述波控电路层由玻璃纤维环氧树脂覆铜板制造而成。The aforementioned structure-function integrated wing antenna is characterized in that the aforementioned wave control circuit layer is made of glass fiber epoxy resin copper-clad laminate.
前述的结构功能一体化机翼天线,其特征在于,前述微带辐射单元呈矩形或者圆形。The aforementioned structure-function integrated wing antenna is characterized in that the aforementioned microstrip radiation unit is rectangular or circular.
本发明的有益之处在于:The benefits of the present invention are:
1、本发明的结构功能一体化机翼天线,其既可以作为飞行器机翼,也可以作为收发天线,其不仅去除了大量外置天线及安装底座,降低了机身重量,提高了飞行器的气动性能,而且天线子阵采用分布布局方式排列,更增加了天线孔径。1. The structure-function integrated wing antenna of the present invention can be used as an aircraft wing or as a transceiver antenna. It not only removes a large number of external antennas and mounting bases, reduces the weight of the fuselage, but also improves the aerodynamic performance of the aircraft. Performance, and the antenna sub-arrays are arranged in a distributed layout, which increases the antenna aperture.
2、本发明的结构功能一体化机翼天线,其结构中嵌入了光纤和布拉格光栅,不仅能够实时监测机翼结构的变形和强度,实现机翼结构的健康监控,而且,通过对光纤和布拉格光栅的测试数据的信号处理可以自动补偿结构振动和变形对电性能的影响,保证天线在恶劣服役环境下的电磁性能稳定性。2. The structure-function integrated wing antenna of the present invention has optical fiber and Bragg grating embedded in its structure, which can not only monitor the deformation and strength of the wing structure in real time, and realize the health monitoring of the wing structure, but also, through the optical fiber and Bragg grating The signal processing of the test data of the grating can automatically compensate the influence of structural vibration and deformation on the electrical performance, and ensure the stability of the electromagnetic performance of the antenna in the harsh service environment.
3、本发明的结构功能一体化机翼天线,其结构中设计了微通道结构,通过热传导方式、利用微通道中的液体把射频功能层器件的热量带走,降低了由于高密度集成带来的微带天线阵面温度导致天线性能降低或失效的弊端。3. The structure-function integrated wing antenna of the present invention has a micro-channel structure designed in its structure, and the heat of the radio-frequency functional layer device is taken away by the liquid in the micro-channel through heat conduction, which reduces the heat caused by high-density integration. The temperature of the microstrip antenna front leads to the disadvantages of the performance degradation or failure of the antenna.
附图说明Description of drawings
图1是本发明的结构功能一体化机翼天线的组成结构示意图;Fig. 1 is the composition structure schematic diagram of the structural function integrated wing antenna of the present invention;
图2是图1中的机翼天线的总装效果图;Fig. 2 is the general assembly rendering of the wing antenna in Fig. 1;
图3是图2中的机翼骨架图;Fig. 3 is the wing skeleton diagram in Fig. 2;
图4是图2中的机翼蒙皮图;Fig. 4 is the wing skin figure in Fig. 2;
图5是图4中嵌入的微带天线阵布局示意图;Fig. 5 is a schematic diagram of the layout of the microstrip antenna array embedded in Fig. 4;
图6是图4中的机翼蒙皮的剖视图;Fig. 6 is a sectional view of the wing skin in Fig. 4;
图7是图6中的机翼蒙皮的分解示意图;Fig. 7 is an exploded schematic view of the wing skin in Fig. 6;
图8是图7中的下面板结构的组成示意图;Fig. 8 is a schematic composition diagram of the lower panel structure in Fig. 7;
图9是射频功能层上表面的微带天线阵面示意图;Fig. 9 is a schematic diagram of the microstrip antenna front on the upper surface of the radio frequency functional layer;
图10是射频功能层内部的液冷通道示意图;Fig. 10 is a schematic diagram of the liquid cooling channel inside the radio frequency functional layer;
图11是射频功能层的电连接关系示意图;Fig. 11 is a schematic diagram of the electrical connection relationship of the radio frequency functional layer;
图12是图7中的矩形微带辐射单元几何结构图;Fig. 12 is a geometric structure diagram of the rectangular microstrip radiation unit in Fig. 7;
图13是图7中的圆形微带辐射单元几何结构图;Fig. 13 is a geometric structure diagram of the circular microstrip radiation unit in Fig. 7;
图14是图7中的微带天线口径耦合馈电连接几何结构图。FIG. 14 is a geometric structure diagram of the aperture coupling feed connection of the microstrip antenna in FIG. 7 .
图中附图标记的含义:101-机翼前缘,102-机翼后缘,103-翼肋,104-翼梁,105-上蒙皮,106-下蒙皮,107-控制和信号处理系统,301-上面板,302-上蜂窝/泡沫层,303-封装框架,304-射频电路层,305-液冷通道,306-波控电路层,307-下蜂窝/泡沫层,308-下面板,309-微带辐射单元,310-光纤,311-布拉格光栅,401-微通道,402-液体出口腔,403-液冷通道出口,404-液冷通道入口,405-液体入口腔,601-T/R电路层,602-功分电路层,603-天线阵面,801-馈电点,802-介质板,803-接地平面,804-同轴馈电接口,805-耦合小孔,806-馈电微带线。The meanings of reference signs in the figure: 101-wing leading edge, 102-wing trailing edge, 103-rib, 104-spar, 105-upper skin, 106-lower skin, 107-control and signal processing System, 301-upper panel, 302-upper honeycomb/foam layer, 303-encapsulation frame, 304-radio frequency circuit layer, 305-liquid cooling channel, 306-wave control circuit layer, 307-lower honeycomb/foam layer, 308-bottom Panel, 309-microstrip radiation unit, 310-optical fiber, 311-Bragg grating, 401-microchannel, 402-liquid outlet, 403-liquid cooling channel outlet, 404-liquid cooling channel inlet, 405-liquid inlet, 601 -T/R circuit layer, 602-power division circuit layer, 603-antenna array, 801-feed point, 802-dielectric plate, 803-ground plane, 804-coaxial feed interface, 805-coupling hole, 806 - Feed microstrip line.
具体实施方式Detailed ways
以下结合附图和具体实施例对本发明作具体的介绍。The present invention will be specifically introduced below in conjunction with the accompanying drawings and specific embodiments.
参照图1、图2和图3,本发明的结构功能一体化机翼天线,包括:机翼骨架、机翼蒙皮、控制和信号处理系统107。机翼蒙皮覆盖在机翼骨架外面,机翼蒙皮根据覆盖机翼骨架的位置区分为:上蒙皮105和下蒙皮106,二者结构完全相同。下面分别介绍机翼骨架、机翼蒙皮的结构,以及控制和信号处理系统107。Referring to FIG. 1 , FIG. 2 and FIG. 3 , the structure-function integrated wing antenna of the present invention includes: a wing frame, a wing skin, and a control and
参照图1、图2和图3,机翼骨架包括:翼肋103、翼梁104、机翼前缘101和机翼后缘102。翼肋103设置有若干个,并且平行排列;翼梁104呈三角形,并且为空心结构,该空心结构用于放置控制和信号处理系统107,翼梁104穿过翼肋103,起到连接翼肋103的作用;机翼前缘101安装在翼肋103的前端,机翼后缘102安装在翼肋103的后端。Referring to FIG. 1 , FIG. 2 and FIG. 3 , the wing skeleton includes:
参照图4至图7,机翼蒙皮为复合结构,从上至下依次包括:上面板301、上蜂窝/泡沫层302、射频功能层、下蜂窝/泡沫层307和下面板308。上面板301和下面板308用于实现力学承载功能,上蜂窝/泡沫层302和下蜂窝/泡沫层307用于实现隔热防护功能,射频功能层主要实现电磁信号的收发功能。上面板301与上蜂窝/泡沫层302之间、下面板308与下蜂窝/泡沫层307之间优选采用粘接的方式连接,上面板301与下面板308优选采用碳纤维复合材料制成,或者采用玻璃纤维复合材料制成。其中,参照图8,下面板308在与下蜂窝/泡沫层307接触的界面处铺设有若干光纤310,光纤310与翼肋103平行,每根光纤310上每隔一段间距设置一个布拉格光栅311。光纤310和布拉格光栅311能够实时检测机翼结构变形的应变,实现对机翼结构的智能监控,并且光纤310的测量信号经过控制和信号处理系统107的算法处理后,可以自动补偿结构振动和变形对电性能的影响,保证天线在恶劣服役环境下的电磁性能稳定性。4 to 7, the wing skin is a composite structure, including from top to bottom:
参照图7,射频功能层包括:射频电路层304、波控电路层306以及封装框架303。其中,射频电路层304位于上层,波控电路层306位于下层,射频电路层304与波控电路层306之间使用插针连接,射频电路层304能够实现电磁信号的传输和辐射功能,波控电路层306能够实现波束控制、信道和电源控制等功能。射频电路层304优选才有低温共烧陶瓷材料烧结制造成型。波控电路层306优选采用玻璃纤维环氧树脂覆铜板制造而成。封装框架303采用粘接工艺实现射频功能层与上面板301、上蜂窝/泡沫层302、下面板308、下蜂窝/泡沫层307的连接,封装框架303一方面保护了射频功能层的电路,另一方面提供了射频功能层所需要的接地需要。射频功能层的内部制作有液冷通道305、还埋设有芯片,液冷通道305是在射频电路层304内部制作的微型矩形通道,用于对射频功能层内的组件冷却、散热,以保证射频功能层工作需要的温度。Referring to FIG. 7 , the radio frequency functional layer includes: a radio
参照图10,液冷通道305由:微通道401、液体出口腔402、液体入口腔405、液冷通道出口403和液冷通道入口404组成。微通道401有若干条,并且平行设置;液体出口腔402和液体入口腔405分别设置在微通道401的两端,二者起到缓存液体的功能;液冷通道出口403与液体出口腔402连通,液体入口腔405和液冷通道入口404连通,同时,液冷通道出口403和液冷通道入口404穿过波控电路层306,并且联接外部的液压回路。Referring to FIG. 10 , the
本发明的结构功能一体化机翼天线,其结构中设计了微通道401结构,通过热传导方式、利用微通道401中的液体把射频功能层器件的热量带走,降低了由于高密度集成带来的微带天线阵面603温度导致天线性能降低或失效的弊端。The structure and function integrated wing antenna of the present invention has a
作为一种优选的方案,微通道401呈矩形,其长和宽分别优选为0.1mm和0.5mm。As a preferred solution, the
参照图7和图11,射频电路层304为复合结构,最上层为天线阵面603。天线阵面603由若干天线子阵组成,天线子阵采用分布布局方式排列,如图5所示,依次为子阵A、子阵B、子阵C、子阵D、……、子阵T;每个天线子阵由若干微带辐射单元309组成,微带辐射单元309是在射频功能层表面利用丝网印刷工艺镀微波电路形成的,每个微带辐射单元309均镀有一层铜,从而实现电信号的辐射和传输。如图9所示,微带辐射单元309依据设计指标和安装空间来布置,从而形成天线子阵。Referring to FIG. 7 and FIG. 11 , the radio
参照图11,射频电路层304还包括:T/R电路层601(即射频信号收发层,其上有射频信号收发组件,液冷通道305主要是对T/R电路层601中的射频信号收发组件进行冷却、散热)和功分电路层602(即功率分配/合成网络层)。T/R电路层601位于天线阵面603的下方,功分电路层602位于T/R电路层601的下方。其中,天线阵面603中的微带辐射单元309通过微带天线-同轴-微带线的连接结构与T/R电路层601实现电信号连接,T/R电路层601与功分电路层602通过微带线-同轴-带状线或微带线-同轴-带状线的垂直互联方式实现电信号连接,T/R电路层601和功分电路层602又分别通过低频线、高频线与波控电路层306信号连接。Referring to Fig. 11, the radio
作为一种优选的方案,参照图11,微带辐射单元309与T/R电路层601之间采用微带天线-同轴-微带线的垂直互联结构;T/R电路层601与功分电路层602之间采用微带线-同轴-带状线的垂直互联结构。As a preferred solution, referring to Fig. 11, a vertical interconnection structure of microstrip antenna-coaxial-microstrip line is adopted between the
在本发明中,微带辐射单元309呈矩形。如图9和图12所示,微带辐射单元309的长边为a、宽边为b,该微带辐射单元309是利用覆铜板生产工艺在厚度为h的介质板802上表面处制作的导电贴片,并且,微带辐射单元309中的馈电点801是通过同轴馈电接口804与T/R电路层601实现电磁信号的连接,介质板802的底面为接地平面803。In the present invention, the
作为一种替代的方案,微带辐射单元309呈圆形。如图13所示,微带辐射单元309的半径为r,其上设置有馈电点801,其他结构同上,不再赘述。As an alternative, the
作为一种替代的方案,微带辐射单元309与T/R电路层601不使用微带天线-同轴-微带线的连接结构,而是使用微带天线-耦合小孔-微带线的连接结构,如图14所示。该馈电方式利于位于下层介质板802中的下表面中印刷的馈电微带线806实现T/R电路层601与耦合小孔805的电磁信号连接,并通过耦合小孔805把电磁信号耦合到辐射单元309以实现电磁信号的辐射或接收。上层介质板使用低介电常数以利于电磁辐射,下层介质板使用高介电常数,以利于将场约束在馈电微带线806上。As an alternative, the
参照图3和图11,控制和信号处理系统107安装在翼梁104的空心中。每个天线子阵中的控制信号、光纤310的测量信号均统一到该控制和信号处理系统107进行集中处理,同时,控制和信号处理系统107还向波控电路层306提供控制信号,控制和信号处理系统107与波控电路层306之间使用线缆连接。Referring to FIGS. 3 and 11 , the control and
综上所述,本发明的结构功能一体化机翼天线,其既可以作为飞行器机翼,也可以作为收发天线,不仅去除了大量外置天线及安装底座,降低了机身重量,提高了飞行器的气动性能,而且分布式的天线阵列布置方式更增加了天线孔径;同时,通过光纤310、布拉格光栅311测试数据的处理可以自动补偿结构振动和变形对电性能的影响,保证天线在恶劣服役环境下的电磁性能稳定性;此外,射频功能层中设计的微通道401通过其内的液体可以把器件热量带走,降低了高密度集成器件温度过高导致天线性能降低或失效的弊端。In summary, the structure-function integrated wing antenna of the present invention can be used as an aircraft wing or as a transceiver antenna, which not only removes a large number of external antennas and mounting bases, reduces the weight of the fuselage, and improves the Excellent aerodynamic performance, and the distributed antenna array layout increases the antenna aperture; at the same time, through the processing of
需要说明的是,上述实施例不以任何形式限制本发明,凡采用等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。It should be noted that the above embodiments do not limit the present invention in any form, and all technical solutions obtained by means of equivalent replacement or equivalent transformation fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410135872.9A CN103887605B (en) | 2014-04-04 | 2014-04-04 | Structure-function integration wing antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410135872.9A CN103887605B (en) | 2014-04-04 | 2014-04-04 | Structure-function integration wing antenna |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103887605A true CN103887605A (en) | 2014-06-25 |
CN103887605B CN103887605B (en) | 2016-08-24 |
Family
ID=50956394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410135872.9A Expired - Fee Related CN103887605B (en) | 2014-04-04 | 2014-04-04 | Structure-function integration wing antenna |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103887605B (en) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104577329A (en) * | 2015-02-10 | 2015-04-29 | 重庆大学 | High-gain high-efficiency miniaturized flexible antenna applied to complex communication system |
CN105305075A (en) * | 2015-11-23 | 2016-02-03 | 中国电子科技集团公司第五十四研究所 | Sheathed millimeter wave satellite communication phased array antenna |
CN105375116A (en) * | 2015-11-13 | 2016-03-02 | 成都雷电微力科技有限公司 | Antenna interconnection unit |
GB2530069A (en) * | 2014-09-12 | 2016-03-16 | Bae Systems Plc | Signal processing apparatus |
CN105606907A (en) * | 2016-01-20 | 2016-05-25 | 西安电子科技大学 | Deformation experiment apparatus for smart skin antenna test |
GB2536014A (en) * | 2015-03-03 | 2016-09-07 | Stratospheric Platforms Ltd | High altitude aircraft wing geometry |
CN106025524A (en) * | 2016-05-10 | 2016-10-12 | 西安电子科技大学 | Manufacturing method of inelegant skin antenna |
CN106876870A (en) * | 2015-12-14 | 2017-06-20 | 中国航空工业集团公司雷华电子技术研究所 | A kind of conformal paster antenna in aircraft wing edge |
WO2017197996A1 (en) * | 2016-05-19 | 2017-11-23 | 深圳光启空间技术有限公司 | Covering, aerostat, and covering preparation method |
CN108039562A (en) * | 2017-12-13 | 2018-05-15 | 中国电子科技集团公司第三十八研究所 | A kind of Active conformal array antenna applied to unmanned aerial vehicle platform |
CN108917806A (en) * | 2018-07-03 | 2018-11-30 | 中国电子科技集团公司第十四研究所 | Fiber-optic grating sensor built-in process based on carbon fiber honeycomb sandwich construction |
CN109066081A (en) * | 2018-08-14 | 2018-12-21 | 中国电子科技集团公司第三十八研究所 | A kind of head skin antenna integrated morphology and production method |
CN109698398A (en) * | 2018-12-13 | 2019-04-30 | 中国电子科技集团公司第五十四研究所 | A kind of integrated design Millimeter Wave Phased Array Antenna |
CN110504548A (en) * | 2019-07-18 | 2019-11-26 | 西安电子科技大学 | Liquid-metal-based heat-sinkable frequency selection device |
CN110718741A (en) * | 2019-10-16 | 2020-01-21 | 中国航空工业集团公司西安飞机设计研究所 | Bearable sandwich structure of integrated antenna array |
CN111918530A (en) * | 2020-07-30 | 2020-11-10 | 华中科技大学 | Conformal TR component and full-printing preparation method thereof |
FR3099001A1 (en) | 2019-07-19 | 2021-01-22 | Airbus Defence And Space Sas | AERODYNE WITH ANTENNA AND ASSOCIATED ARRANGEMENT PROCESS |
CN113612009A (en) * | 2021-08-03 | 2021-11-05 | 中国电子科技集团公司第三十八研究所 | Airborne conformal bearing antenna |
CN113809534A (en) * | 2021-09-18 | 2021-12-17 | 中国电子科技集团公司第三十八研究所 | Ultra-wide bandwidth wave beam embedded end-fire skin antenna |
CN114056544A (en) * | 2021-12-24 | 2022-02-18 | 中国商用飞机有限责任公司 | Skin structure for a wing, aircraft with a skin structure and method for mounting a skin structure |
CN114243263A (en) * | 2021-12-20 | 2022-03-25 | 陕西烽火诺信科技有限公司 | Conformal embedded short wave antenna of airplane vertical tail |
CN114267935A (en) * | 2021-12-14 | 2022-04-01 | 重庆交通大学绿色航空技术研究院 | Bidirectional communication array antenna applied to unmanned aerial vehicle and communication method |
CN114552169A (en) * | 2022-04-25 | 2022-05-27 | 中国电子科技集团公司第二十九研究所 | Construction method of broadband curved surface conformal radio frequency functional circuit assembly |
CN114725657A (en) * | 2022-04-13 | 2022-07-08 | 中国电子科技集团公司第三十八研究所 | Wing skeleton antenna |
CN115320825A (en) * | 2022-08-18 | 2022-11-11 | 西北工业大学 | High-altitude, ultra-long endurance and large aspect ratio integrated unmanned aerial platform driven by microwave energy |
CN115395210A (en) * | 2022-08-29 | 2022-11-25 | 中国电子科技集团公司第十四研究所 | A low-profile broadband end-fire array skin antenna unit and antenna array |
CN115743515A (en) * | 2022-11-01 | 2023-03-07 | 中国电子科技集团公司第三十八研究所 | High-wave-transmission flat tail wing box based on skin antenna integrated design |
CN116654321A (en) * | 2023-06-26 | 2023-08-29 | 中国舰船研究设计中心 | Conformal method of microwave wireless energy-transmitting receiving antenna and fixed wing unmanned aerial vehicle |
CN117465655A (en) * | 2023-12-28 | 2024-01-30 | 山河星航实业股份有限公司 | Light aircraft wing and light aircraft |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101867084A (en) * | 2010-06-10 | 2010-10-20 | 西北工业大学 | A New Type of Embedded Composite Material Smart Skin Antenna Structure |
CN103353904A (en) * | 2013-04-12 | 2013-10-16 | 西安电子科技大学 | Data-driven design method integrating active interlayer microstrip antenna structure and electromagnetism and antenna |
US20130303067A1 (en) * | 2012-05-11 | 2013-11-14 | The Boeing Company | Ventilated aero-structures, aircraft and associated methods |
-
2014
- 2014-04-04 CN CN201410135872.9A patent/CN103887605B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101867084A (en) * | 2010-06-10 | 2010-10-20 | 西北工业大学 | A New Type of Embedded Composite Material Smart Skin Antenna Structure |
US20130303067A1 (en) * | 2012-05-11 | 2013-11-14 | The Boeing Company | Ventilated aero-structures, aircraft and associated methods |
CN103353904A (en) * | 2013-04-12 | 2013-10-16 | 西安电子科技大学 | Data-driven design method integrating active interlayer microstrip antenna structure and electromagnetism and antenna |
Non-Patent Citations (1)
Title |
---|
刘晓明: "飞机结构健康监控中的信息获取技术", 《航空科学技术》 * |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2530069A (en) * | 2014-09-12 | 2016-03-16 | Bae Systems Plc | Signal processing apparatus |
CN104577329A (en) * | 2015-02-10 | 2015-04-29 | 重庆大学 | High-gain high-efficiency miniaturized flexible antenna applied to complex communication system |
CN104577329B (en) * | 2015-02-10 | 2017-06-16 | 重庆大学 | It is applied to the miniaturization flexible antennas of the high gain and high efficiency of complex communication system |
GB2536014A (en) * | 2015-03-03 | 2016-09-07 | Stratospheric Platforms Ltd | High altitude aircraft wing geometry |
CN105375116B (en) * | 2015-11-13 | 2017-12-19 | 成都雷电微力科技有限公司 | A kind of antenna interconnection unit |
CN105375116A (en) * | 2015-11-13 | 2016-03-02 | 成都雷电微力科技有限公司 | Antenna interconnection unit |
CN105305075A (en) * | 2015-11-23 | 2016-02-03 | 中国电子科技集团公司第五十四研究所 | Sheathed millimeter wave satellite communication phased array antenna |
CN106876870A (en) * | 2015-12-14 | 2017-06-20 | 中国航空工业集团公司雷华电子技术研究所 | A kind of conformal paster antenna in aircraft wing edge |
CN105606907B (en) * | 2016-01-20 | 2018-07-10 | 西安电子科技大学 | A kind of deformation experiment device towards smart skins antenna measurement |
CN105606907A (en) * | 2016-01-20 | 2016-05-25 | 西安电子科技大学 | Deformation experiment apparatus for smart skin antenna test |
CN106025524B (en) * | 2016-05-10 | 2019-07-16 | 西安电子科技大学 | A kind of manufacturing method of intelligent skin antenna |
CN106025524A (en) * | 2016-05-10 | 2016-10-12 | 西安电子科技大学 | Manufacturing method of inelegant skin antenna |
WO2017197996A1 (en) * | 2016-05-19 | 2017-11-23 | 深圳光启空间技术有限公司 | Covering, aerostat, and covering preparation method |
CN108039562A (en) * | 2017-12-13 | 2018-05-15 | 中国电子科技集团公司第三十八研究所 | A kind of Active conformal array antenna applied to unmanned aerial vehicle platform |
CN108917806A (en) * | 2018-07-03 | 2018-11-30 | 中国电子科技集团公司第十四研究所 | Fiber-optic grating sensor built-in process based on carbon fiber honeycomb sandwich construction |
CN109066081A (en) * | 2018-08-14 | 2018-12-21 | 中国电子科技集团公司第三十八研究所 | A kind of head skin antenna integrated morphology and production method |
CN109066081B (en) * | 2018-08-14 | 2020-11-27 | 中国电子科技集团公司第三十八研究所 | Nose skin antenna integrated structure and manufacturing method |
CN109698398A (en) * | 2018-12-13 | 2019-04-30 | 中国电子科技集团公司第五十四研究所 | A kind of integrated design Millimeter Wave Phased Array Antenna |
CN109698398B (en) * | 2018-12-13 | 2020-10-16 | 中国电子科技集团公司第五十四研究所 | Integrally designed millimeter wave phased array antenna |
CN110504548A (en) * | 2019-07-18 | 2019-11-26 | 西安电子科技大学 | Liquid-metal-based heat-sinkable frequency selection device |
WO2021013589A1 (en) | 2019-07-19 | 2021-01-28 | Airbus Defence And Space Sas | Aerodyne with antenna and associated arrangement method |
FR3099001A1 (en) | 2019-07-19 | 2021-01-22 | Airbus Defence And Space Sas | AERODYNE WITH ANTENNA AND ASSOCIATED ARRANGEMENT PROCESS |
CN110718741A (en) * | 2019-10-16 | 2020-01-21 | 中国航空工业集团公司西安飞机设计研究所 | Bearable sandwich structure of integrated antenna array |
CN111918530A (en) * | 2020-07-30 | 2020-11-10 | 华中科技大学 | Conformal TR component and full-printing preparation method thereof |
CN113612009B (en) * | 2021-08-03 | 2023-05-09 | 中国电子科技集团公司第三十八研究所 | Airborne conformal bearing antenna |
CN113612009A (en) * | 2021-08-03 | 2021-11-05 | 中国电子科技集团公司第三十八研究所 | Airborne conformal bearing antenna |
CN113809534A (en) * | 2021-09-18 | 2021-12-17 | 中国电子科技集团公司第三十八研究所 | Ultra-wide bandwidth wave beam embedded end-fire skin antenna |
CN114267935B (en) * | 2021-12-14 | 2023-11-07 | 重庆交通大学绿色航空技术研究院 | Bidirectional communication array antenna and communication method applied to unmanned aerial vehicle |
CN114267935A (en) * | 2021-12-14 | 2022-04-01 | 重庆交通大学绿色航空技术研究院 | Bidirectional communication array antenna applied to unmanned aerial vehicle and communication method |
CN114243263A (en) * | 2021-12-20 | 2022-03-25 | 陕西烽火诺信科技有限公司 | Conformal embedded short wave antenna of airplane vertical tail |
CN114056544A (en) * | 2021-12-24 | 2022-02-18 | 中国商用飞机有限责任公司 | Skin structure for a wing, aircraft with a skin structure and method for mounting a skin structure |
CN114725657A (en) * | 2022-04-13 | 2022-07-08 | 中国电子科技集团公司第三十八研究所 | Wing skeleton antenna |
CN114552169A (en) * | 2022-04-25 | 2022-05-27 | 中国电子科技集团公司第二十九研究所 | Construction method of broadband curved surface conformal radio frequency functional circuit assembly |
CN115320825A (en) * | 2022-08-18 | 2022-11-11 | 西北工业大学 | High-altitude, ultra-long endurance and large aspect ratio integrated unmanned aerial platform driven by microwave energy |
CN115395210A (en) * | 2022-08-29 | 2022-11-25 | 中国电子科技集团公司第十四研究所 | A low-profile broadband end-fire array skin antenna unit and antenna array |
CN115743515A (en) * | 2022-11-01 | 2023-03-07 | 中国电子科技集团公司第三十八研究所 | High-wave-transmission flat tail wing box based on skin antenna integrated design |
CN116654321A (en) * | 2023-06-26 | 2023-08-29 | 中国舰船研究设计中心 | Conformal method of microwave wireless energy-transmitting receiving antenna and fixed wing unmanned aerial vehicle |
CN116654321B (en) * | 2023-06-26 | 2024-07-23 | 中国舰船研究设计中心 | Conformal method of microwave wireless energy-transmitting receiving antenna and fixed wing unmanned aerial vehicle |
CN117465655A (en) * | 2023-12-28 | 2024-01-30 | 山河星航实业股份有限公司 | Light aircraft wing and light aircraft |
CN117465655B (en) * | 2023-12-28 | 2024-03-01 | 山河星航实业股份有限公司 | Light aircraft wing and light aircraft |
Also Published As
Publication number | Publication date |
---|---|
CN103887605B (en) | 2016-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103887605B (en) | Structure-function integration wing antenna | |
RU2713069C2 (en) | Omnidirectional antenna system | |
RU2714862C2 (en) | Conformal composite antenna assembly | |
US9761939B2 (en) | Integrated low profile phased array antenna system | |
US8149177B1 (en) | Slotted waveguide antenna stiffened structure | |
US8654017B1 (en) | Antenna tile device and cold plate | |
US10581146B2 (en) | Broadband stacked multi-spiral antenna array | |
US20100177011A1 (en) | Flexible phased array antennas | |
CN103618130B (en) | Embedded intelligence skin antenna | |
US20170054205A1 (en) | Balanced Multi-Layer Printed Circuit Board for Phased-Array Antenna | |
CN113612009B (en) | Airborne conformal bearing antenna | |
EP2664029B1 (en) | Printed circuit board based feed horn | |
US10992037B2 (en) | Steerable antenna assembly | |
CN206250390U (en) | A kind of suspended stripline fed planar array antenna | |
US11791544B2 (en) | High gain stripline antenna assemblies | |
US11128059B2 (en) | Antenna assembly having one or more cavities | |
CN113851830B (en) | Light multi-unit antenna oscillator and production method thereof | |
CN108923110B (en) | MIMO (multiple input multiple output) airborne antenna adopting WiFi and LTE (Long term evolution) | |
CN214336906U (en) | Antenna module and unmanned aerial vehicle | |
CN203674388U (en) | Planar antenna | |
CN203351750U (en) | Airborne communication antenna top radiation device | |
CN206922005U (en) | A kind of intelligent skin antenna structure based on 3 D-printing | |
CN118232010B (en) | High-power dual-band conformal antenna | |
US11715882B2 (en) | Low-profile magnetic antenna assemblies | |
CN116365229A (en) | Composite material 3D printing conformal antenna skin structure and manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160824 |