CN103872145A - GaN heterojunction power diode - Google Patents
GaN heterojunction power diode Download PDFInfo
- Publication number
- CN103872145A CN103872145A CN201410083056.8A CN201410083056A CN103872145A CN 103872145 A CN103872145 A CN 103872145A CN 201410083056 A CN201410083056 A CN 201410083056A CN 103872145 A CN103872145 A CN 103872145A
- Authority
- CN
- China
- Prior art keywords
- layer
- voltage
- gan
- schottky metal
- gan heterojunction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 claims abstract description 38
- 239000002184 metal Substances 0.000 claims abstract description 38
- 239000000758 substrate Substances 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 6
- 229910052733 gallium Inorganic materials 0.000 claims description 4
- 229910052738 indium Inorganic materials 0.000 claims description 4
- 238000002161 passivation Methods 0.000 claims description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 3
- -1 Si 3 N 4 Inorganic materials 0.000 claims description 3
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 3
- 239000010953 base metal Substances 0.000 claims description 2
- 230000004888 barrier function Effects 0.000 abstract description 20
- 239000004065 semiconductor Substances 0.000 abstract description 8
- 230000005533 two-dimensional electron gas Effects 0.000 abstract description 6
- 230000010354 integration Effects 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 35
- 229910002601 GaN Inorganic materials 0.000 description 34
- 238000010586 diagram Methods 0.000 description 20
- 238000000034 method Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 7
- 229910002704 AlGaN Inorganic materials 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 230000005669 field effect Effects 0.000 description 4
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
本发明涉及半导体器件技术领域,涉及GaN异质结功率二极管。本发明中阳极的肖特基金属淀积在凹槽中而不是直接淀积在异质结表面,并且在凹槽的右下方靠近阴极一侧淀积电介质在阳极形成结终端结构,并通过刻蚀势垒层降低肖特基金属下方沟道中的二维电子气(2DEG)的浓度实现器件具有极低的正向开启电压。本发明的有益效果为,具有低开启电压、低导通电阻、高导通电流、高反向耐压和低功耗等优点,同时其制造工艺与传统GaN异质结HEMT器件兼容,可以实现与传统GaN异质结HEMT器件的单片集成。本发明尤其适用于GaN异质结功率二极管。
The invention relates to the technical field of semiconductor devices, and relates to a GaN heterojunction power diode. In the present invention, the Schottky metal of the anode is deposited in the groove rather than directly on the surface of the heterojunction, and a dielectric is deposited on the lower right side of the groove near the cathode side to form a junction terminal structure at the anode, and through engraving The etch barrier layer reduces the concentration of two-dimensional electron gas (2DEG) in the channel below the Schottky metal to achieve an extremely low forward turn-on voltage of the device. The beneficial effect of the present invention is that it has the advantages of low turn-on voltage, low conduction resistance, high conduction current, high reverse withstand voltage and low power consumption, and its manufacturing process is compatible with traditional GaN heterojunction HEMT devices, which can realize Monolithic integration with conventional GaN heterojunction HEMT devices. The invention is especially suitable for GaN heterojunction power diodes.
Description
技术领域technical field
本发明涉及半导体器件技术领域,涉及GaN异质结功率二极管。The invention relates to the technical field of semiconductor devices, and relates to a GaN heterojunction power diode.
背景技术Background technique
作为第三代宽禁带半导体的典型代表,氮化镓(GaN)具有很多优良的特性:高临界击穿电场(~3.5×106V/cm)、高电子迁移率(~2000cm2/vs)、高的二维电子气(2DEG)浓度(~1013cm-2)和良好的高温工作能力等。基于AlGaN/GaN异质结的高电子迁移率晶体管(HEMT)(或异质结场效应晶体管HFET,调制掺杂场效应晶体管MODFET,以下统称为HEMT器件)在半导体领域已经得到应用,尤其是在射频/微波领域已经应用于无线通信、卫星通信等。另外,基于宽禁带GaN材料的该类器件具有反向阻断电压高、正向导通电阻低、工作频率高、效率高等特性,可以满足系统对半导体器件更大功率、更高频率、更小体积、更低功耗和更恶劣工作环境的要求。As a typical representative of the third-generation wide-bandgap semiconductor, gallium nitride (GaN) has many excellent characteristics: high critical breakdown electric field (~3.5×10 6 V/cm), high electron mobility (~2000cm 2 /vs ), high two-dimensional electron gas (2DEG) concentration (~10 13 cm -2 ) and good high temperature working ability, etc. High Electron Mobility Transistor (HEMT) based on AlGaN/GaN heterojunction (or heterojunction field effect transistor HFET, modulation doped field effect transistor MODFET, hereinafter collectively referred to as HEMT devices) has been applied in the semiconductor field, especially in The field of radio frequency/microwave has been applied in wireless communication, satellite communication, etc. In addition, such devices based on wide-bandgap GaN materials have the characteristics of high reverse blocking voltage, low forward conduction resistance, high operating frequency, and high efficiency, which can meet the requirements of the system for semiconductor devices with higher power, higher frequency, and smaller size. The requirements of volume, lower power consumption and harsher working environment.
二极管在半导体领域占有极其重要的地位,近年来,基于GaN异质结材料的二极管也已经取得了较大发展。然而,传统的GaN异质结肖特基二极管受肖特基接触势垒的影响其开启电压较大且其耐压能力取决于肖特基金属与GaN半导体之间的金属-半导体接触。较大的开启电压会增加器件的正向工作损耗,因此开发一种具有低正向开启电压、高反向耐压的GaN功率二极管对于实际应用具有重要意义。文献Jae-Gil Lee,et.al.,“Low Turn-on VoltageAlGaN/GaN-on-Si Rectifier With Gated Ohmic Anode”,IEEE Electron DeviceLetters,vol.34,no.2,Feb2013提出的凹槽结构具有0.37V的开启电压,远小于肖特基势垒二极管>1.0V的开启电压,但是在反向耐压方面该结构受传统肖特基接触反向漏电的限制。文献Silvia Lenci,et.al.,“Au-Free AlGaN/GaN Power Diode on8-in Si Substrate With Gated EdgeTermination”,IEEE Electron Device Letters,vol.34,no.8,Aug2013提出一种具有结终端的肖特基二极管。该结构利用结终端结构减小肖特基接触反向漏电,但器件正向导通电流受到肖特基接触载流能力的限制。Diodes play an extremely important role in the semiconductor field. In recent years, diodes based on GaN heterojunction materials have also achieved great development. However, the traditional GaN heterojunction Schottky diode has a large turn-on voltage due to the Schottky contact barrier and its withstand voltage capability depends on the metal-semiconductor contact between the Schottky metal and the GaN semiconductor. A larger turn-on voltage will increase the forward operating loss of the device, so it is of great significance to develop a GaN power diode with low forward turn-on voltage and high reverse withstand voltage for practical applications. Literature Jae-Gil Lee, et.al., "Low Turn-on VoltageAlGaN/GaN-on-Si Rectifier With Gated Ohmic Anode", IEEE Electron Device Letters, vol.34, no.2, Feb2013 proposed a groove structure with 0.37 The turn-on voltage of V is much smaller than the turn-on voltage of the Schottky barrier diode>1.0V, but in terms of reverse withstand voltage, this structure is limited by the reverse leakage of the traditional Schottky contact. Literature Silvia Lenci, et.al., "Au-Free AlGaN/GaN Power Diode on8-in Si Substrate With Gated EdgeTermination", IEEE Electron Device Letters, vol.34, no.8, Aug2013 proposed a Xiao Teky diode. This structure utilizes the junction terminal structure to reduce the reverse leakage of the Schottky contact, but the forward conduction current of the device is limited by the current carrying capacity of the Schottky contact.
发明内容Contents of the invention
本发明所要解决的,就是针对上述传统GaN异质结功率二极管存在的问题,提出了一种具有低开启电压、低导通电阻、高导通电流、高反向耐压和低功耗的新型GaN异质结二极管。What the present invention aims to solve is to propose a new type of diode with low turn-on voltage, low on-resistance, high on-current, high reverse withstand voltage and low power consumption for the above-mentioned problems existing in the traditional GaN heterojunction power diode. GaN heterojunction diodes.
本发明解决上述技术问题所采用的技术方案是:一种GaN异质结功率二极管,包括衬底基片1、设置在衬底基片1上端面的GaN层2、设置在GaN层2上端面的AlMN层3,所述GaN层2和AlMN层3构成异质结,所述AlMN层3上端面的两侧分别设置有第一肖特基金属5和第二肖特基金属9,所述第一肖特基金属5和第二肖特基金属9之间设置有钝化层7,所述第一肖特基金属5与AlMN层3之间设置有第一欧姆接触层4,其特征在于,所述AlMN层3与第二肖特基金属9的接触面设置有凹槽8,所述凹槽8中靠近第一肖特基金属5的一侧设置有电介质6,另一侧设置第二欧姆接触层10。The technical solution adopted by the present invention to solve the above technical problems is: a GaN heterojunction power diode, comprising a
本发明总的技术方案,基于刻蚀AlMN势垒层局部减薄AlMN势垒层的厚度从而降低异质结的二维电子气(2DEG)的浓度实现对二极管正向开启电压的调制从而获得较低的器件正向开启电压,并利用电介质引入到阳极结终端来降低反向漏电以提高器件反向耐压,形成基于结终端实现高耐压的GaN异质结横向二极管。该二极管具有极低的开启电压和高的耐压能力。需要指出的是当AlMN势垒层的厚度、AlMN势垒层Al的组分,或是异质结中插入了AlN层,或是AlMN势垒层中有掺杂以及掺杂的分布不同时,要实现同样低的正向开启电压所对应的凹槽的深度会有所不同The general technical solution of the present invention is based on etching the AlMN barrier layer to locally reduce the thickness of the AlMN barrier layer so as to reduce the concentration of the two-dimensional electron gas (2DEG) of the heterojunction to realize the modulation of the forward turn-on voltage of the diode so as to obtain a higher The device has a low forward turn-on voltage, and the dielectric is introduced into the anode junction terminal to reduce the reverse leakage to improve the reverse withstand voltage of the device, forming a GaN heterojunction lateral diode based on the junction terminal to achieve high withstand voltage. The diode has an extremely low turn-on voltage and a high withstand voltage capability. It should be pointed out that when the thickness of the AlMN barrier layer, the composition of the AlMN barrier layer Al, or the AlN layer is inserted in the heterojunction, or there is doping in the AlMN barrier layer and the distribution of the doping is different, The depth of the groove corresponding to the same low forward turn-on voltage will vary
具体的,所述AlMN层3中M为Ga、In和Ga与In的混合物中的一种。Specifically, M in the
具体的,所述电介质6为SiO2、Si3N4、AlN、Al2O3、MgO和HfO2中的一种。Specifically, the dielectric 6 is one of SiO 2 , Si 3 N 4 , AlN, Al 2 O 3 , MgO and HfO 2 .
具体的,所述凹槽8的深度为20nm。Specifically, the depth of the
本发明的有益效果为,具有低开启电压、低导通电阻、高导通电流、高反向耐压和低功耗等优点,同时其制造工艺与传统GaN异质结HEMT器件兼容,可以实现与传统GaN异质结HEMT器件的单片集成。The beneficial effect of the present invention is that it has the advantages of low turn-on voltage, low conduction resistance, high conduction current, high reverse withstand voltage and low power consumption, and its manufacturing process is compatible with traditional GaN heterojunction HEMT devices, which can realize Monolithic integration with conventional GaN heterojunction HEMT devices.
附图说明Description of drawings
图1为本发明的GaN异质结功率二极管的结构示意图;Fig. 1 is the structural representation of GaN heterojunction power diode of the present invention;
图2为本发明的GaN异质结功率二极管的工艺流程中器件隔离示意图;2 is a schematic diagram of device isolation in the process flow of the GaN heterojunction power diode of the present invention;
图3为本发明的GaN异质结功率二极管的工艺流程中淀积欧姆接触示意图;3 is a schematic diagram of depositing ohmic contacts in the process flow of the GaN heterojunction power diode of the present invention;
图4为本发明的GaN异质结功率二极管的工艺流程中刻蚀AlMN,形成凹槽示意图;4 is a schematic diagram of etching AlMN and forming grooves in the process flow of the GaN heterojunction power diode of the present invention;
图5为本发明的GaN异质结功率二极管的工艺流程中淀积电介质示意图;Fig. 5 is a schematic diagram of depositing a dielectric in the process flow of the GaN heterojunction power diode of the present invention;
图6为本发明的GaN异质结功率二极管的工艺流程中淀积淀积肖特基金属示意图;Fig. 6 is a schematic diagram of depositing and depositing Schottky metal in the process flow of the GaN heterojunction power diode of the present invention;
图7为本发明的GaN异质结功率二极管的工艺流程中有源区钝化示意图;7 is a schematic diagram of passivation of the active region in the process flow of the GaN heterojunction power diode of the present invention;
图8为凹槽横向场效应二极管结构示意图;Fig. 8 is a schematic diagram of the structure of a groove lateral field effect diode;
图9为图8所示结构的仿真示意图,在凹槽深度为20nm时有正的开启电压,约为0.25V(定义Ia=1mA/mm时为器件正向开启);Figure 9 is a simulation schematic diagram of the structure shown in Figure 8, when the depth of the groove is 20nm, there is a positive turn-on voltage, which is about 0.25V (when Ia=1mA/mm is defined as the device is turned on in the forward direction);
图10为图8所示器件结构的开启电压(定义Ia=1mA/mm时为器件正向开启)随凹槽深度的变化示意图;Figure 10 is a schematic diagram of the turn-on voltage of the device structure shown in Figure 8 (defined as Ia=1mA/mm when the device is turned on in the forward direction) as a function of the depth of the groove;
图11为传统肖特基势垒二极管SBD结构示意图;Fig. 11 is a schematic diagram of the structure of a traditional Schottky barrier diode SBD;
图12为三种结构的正向电流能力对比示意图;Figure 12 is a schematic diagram of the comparison of forward current capabilities of the three structures;
图13为三种结构的正向开启电压对比示意图;Fig. 13 is a schematic diagram of comparison of forward turn-on voltages of three structures;
图14为图8和图1所示结构在反向耐压时的电场分布图;Fig. 14 is an electric field distribution diagram of the structures shown in Fig. 8 and Fig. 1 during reverse withstand voltage;
图15为图8所示结构在反向耐压522.5V下的电流分布图;Fig. 15 is a current distribution diagram of the structure shown in Fig. 8 under a reverse withstand voltage of 522.5V;
图16为图1所示结构在反向耐压522.5V下的电流分布图;Fig. 16 is a current distribution diagram of the structure shown in Fig. 1 under a reverse withstand voltage of 522.5V;
图17为图1和8所述两种结构的反向漏电与耐压对比示意图。FIG. 17 is a schematic diagram showing the comparison of reverse leakage and withstand voltage of the two structures described in FIGS. 1 and 8 .
具体实施方式Detailed ways
下面结合附图,详细描述本发明的技术方案:Below in conjunction with accompanying drawing, describe technical scheme of the present invention in detail:
本发明提出一种高性能GaN异质结功率二极管,与常规的横向场效应整流器不同,本发明中阳极的肖特基金属淀积在凹槽中而不是直接淀积在异质结表面,并且在凹槽的右下方靠近阴极一侧淀积电介质在阳极形成结终端结构。本发明通过刻蚀势垒层降低肖特基金属下方沟道中的二维电子气(2DEG)的浓度实现器件具有极低的正向开启电压,且电介质只在凹槽的右下方靠近阴极一侧有淀积,并没有覆盖到整个凹槽,所以开启电压不会受到电介质的影响;并且本发明所提供的二极管在阳极采用欧姆/肖特基混合阳极设计,其中肖特基接触控制器件的开启/关断,欧姆接触是器件的导电通道。因此,本发明所提供二极管具有极低的阳极接触电阻,从而整个器件的导通电阻大大降低且导通电流大幅增加。另一反面,器件在方向工作模式中,电场集中在靠近阴极一侧的肖特基金属边缘,当引入结终端结构后能够有效降低流经肖特基金属的反向漏电,从而能够提高器件反向耐压能力。故本发明提供的GaN异质结二极管具有低开启电压、低导通电阻、高导通电流、高反向耐压和低功耗等优点,与此同时本发明所公布的器件制备工艺与传统GaN HEMT工艺兼容,可以实现GaN二极管与HEMT的单片集成。The present invention proposes a high-performance GaN heterojunction power diode. Different from conventional lateral field effect rectifiers, the Schottky metal of the anode in the present invention is deposited in the groove rather than directly on the surface of the heterojunction, and A dielectric is deposited on the lower right side of the groove near the cathode to form a junction termination structure at the anode. The invention reduces the concentration of two-dimensional electron gas (2DEG) in the channel below the Schottky metal by etching the barrier layer to realize the device has an extremely low forward turn-on voltage, and the dielectric is only on the lower right side of the groove close to the cathode side There is deposition, and does not cover the entire groove, so the turn-on voltage will not be affected by the dielectric; and the diode provided by the present invention adopts an Ohm/Schottky mixed anode design at the anode, wherein the Schottky contact controls the opening of the device /off, the ohmic contact is the conduction path of the device. Therefore, the diode provided by the present invention has extremely low anode contact resistance, so that the conduction resistance of the whole device is greatly reduced and the conduction current is greatly increased. On the other hand, when the device is in the directional mode, the electric field is concentrated on the edge of the Schottky metal near the cathode side. When the junction termination structure is introduced, the reverse leakage current flowing through the Schottky metal can be effectively reduced, thereby improving the device’s response. to withstand pressure. Therefore, the GaN heterojunction diode provided by the present invention has the advantages of low turn-on voltage, low on-resistance, high on-current, high reverse withstand voltage and low power consumption. The GaN HEMT process is compatible, and the monolithic integration of GaN diodes and HEMTs can be realized.
如图1所示,本发明的GaN异质结功率二极管,包括衬底基片1、设置在衬底基片1上端面的GaN层2、设置在GaN层2上端面的AlMN层3,所述GaN层2和AlMN层3构成异质结,所述AlMN层3上端面的两侧分别设置有第一肖特基金属5和第二肖特基金属9,所述第一肖特基金属5和第二肖特基金属9之间设置有钝化层7,所述第一肖特基金属5与AlMN层3之间设置有第一欧姆接触层4,所述AlMN层3与第二肖特基金属9的接触面设置有凹槽8,所述凹槽8中靠近第一肖特基金属5的一侧设置有电介质6,另一侧设置第二欧姆接触层10。As shown in Figure 1, the GaN heterojunction power diode of the present invention comprises
本发明的工作原理为:Working principle of the present invention is:
由于肖特基金属下方的AlMN势垒层被刻蚀,所以其对应的沟道处的二维电子气(2DEG)浓度降低。当阳极施加电压,且小于开启电压时,肖特基金属下方的沟道处没有电子积累,2DEG导电沟道断开,不能形成电流通路;当阳极施加正电压,且大于开启电压时,肖特基金属下方的沟道处积累电子,形成从阳极到阴极的电流通路,于是器件开启。图8为对比图,通过仿真图8的结构,得到开启电压与凹槽深度的关系,见图9。通过图8中结构仿真出在凹槽深度为20nm(AlGaN势垒层厚为25nm,Al组分26%)时,具有正的开启电压,约为0.25V。图11为对比结构,传统的肖特基势垒二极管SBD。图12和13为三种结构的正向特性对比图,其中本发明提出的GaN异质结功率二极管的凹槽深度为20nm。以Ia=1mA/mm时为器件开启,则所提出器件的开启电压也为0.25V。然而肖特基势垒二极管SBD的开启电压则有1.5V,可见所提出的器件的开启电压远远小于传统肖特基势垒二极管SBD的开启电压。Since the AlMN barrier layer under the Schottky metal is etched, the corresponding two-dimensional electron gas (2DEG) concentration in the channel is reduced. When the voltage applied to the anode is lower than the turn-on voltage, there is no electron accumulation in the channel under the Schottky metal, the 2DEG conductive channel is disconnected, and no current path can be formed; Electrons accumulate in the channel beneath the base metal, forming a current path from the anode to the cathode, and the device turns on. Fig. 8 is a comparison diagram. By simulating the structure of Fig. 8, the relationship between the turn-on voltage and the groove depth is obtained, as shown in Fig. 9 . Through the simulation of the structure in Figure 8, when the depth of the groove is 20nm (the thickness of the AlGaN barrier layer is 25nm, and the Al composition is 26%), it has a positive turn-on voltage, which is about 0.25V. Figure 11 is a comparative structure, a traditional Schottky barrier diode SBD. Figures 12 and 13 are comparison diagrams of the forward characteristics of the three structures, wherein the groove depth of the GaN heterojunction power diode proposed by the present invention is 20nm. When the device is turned on when Ia=1mA/mm, the turn-on voltage of the proposed device is also 0.25V. However, the turn-on voltage of the Schottky barrier diode SBD is 1.5V. It can be seen that the turn-on voltage of the proposed device is much smaller than that of the traditional Schottky barrier diode SBD.
当阳极施加反向电压时,如图14所示,电场集中在肖特基金属靠近阴极的一侧,对比于没有结终端结构的情况而言,本发明能有效降低流经肖特基接触反向漏电,如图15和16所示,进而提高器件的反向耐压。图17为图1和图8所示结构的漏电与耐压对比图。When a reverse voltage is applied to the anode, as shown in Figure 14, the electric field is concentrated on the side of the Schottky metal close to the cathode. Compared with the situation without a junction terminal structure, the present invention can effectively reduce the reverse voltage flowing through the Schottky contact. To leakage, as shown in Figures 15 and 16, and then improve the reverse withstand voltage of the device. Fig. 17 is a comparison diagram of leakage and withstand voltage of the structures shown in Fig. 1 and Fig. 8 .
本发明可通过优化凹槽8的深度来调节器件正向开启电压。为了实现低的正开启电压,采用刻蚀AlMN势垒层降低肖特基金属下方沟道中二维电子气浓度的方法,并且只在凹槽的右下方靠近阴极一侧淀积电介质,使得电介质的引入并没有改变开启电压。仿真中势垒层Al组分为26%,厚度为25nm,电介质的厚度为10nm,凹槽8中电介质6长度为0.5um。The present invention can adjust the forward turn-on voltage of the device by optimizing the depth of the
本发明提供了一种可选制备工艺流程图,包括以下步骤:The invention provides an optional preparation process flow chart, comprising the following steps:
第一步:如图2,制备衬底,实现器件隔离。Step 1: As shown in Figure 2, prepare the substrate to realize device isolation.
第二步:如图3,淀积欧姆接触金属。The second step: as shown in Figure 3, deposit ohmic contact metal.
第三步:如图4,湿法或者干法刻蚀AlMN层,实现整流器正开启电压。Step 3: as shown in Figure 4, wet or dry etch the AlMN layer to realize the positive turn-on voltage of the rectifier.
第四步:如图5,用原子层淀积(ALD)或等离子体增强化学气相沉积(PECVD)的方式淀积电介质SiO2、Si3N4、AlN、Al2O3、MgO或者HfO2等以及介质层的图形化。The fourth step: as shown in Figure 5, deposit dielectric SiO 2 , Si 3 N 4 , AlN, Al 2 O 3 , MgO or HfO 2 by means of atomic layer deposition (ALD) or plasma enhanced chemical vapor deposition (PECVD) etc. and the patterning of the medium layer.
第五步:如图6,淀积肖特基金属。Step 5: as shown in Figure 6, deposit Schottky metal.
第六步:如图7,器件有源区钝化。Step 6: As shown in Figure 7, the active area of the device is passivated.
其中阳极采用混合阳极的方式由欧姆金属和肖特基金属相连构成。The anode adopts a mixed anode method, which is composed of ohmic metal and Schottky metal connected.
采用器件仿真软件Sentaurus对本发明所提出的结构进行了仿真分析。在仿真中,AlGaN势垒层厚度为25nm,Al组分为26%,阴阳极间距离Lac=5μm。凹槽在AlGaN势垒层中的深度为trecess,凹槽右下方的电介质材料采用HfO2,其厚为10nm,下方长为0.5μm。在仿真凹槽深度对器件正向开启电压的影响时,由图9可看出当凹槽深度trecess为20nm时,器件正向开启电压仅为0.25V,该开启电压远远小于图11所示的传统肖特基势垒二极管SBD1.5V的开启电压。由图12和13的对比图可得,以正向导通电流Ia=1mA/mm时定义为器件正向开启,则图1结构和图8结构的开启电压均为0.25V,结终端结构的引入并没有改变正向开启电压和导通电流,器件导通电流主要流经混合阳极结构中的欧姆接触。从图15和16图17的反向特性对比中可以发现,本发明所提出的二极管中结终端结构的引入使得器件的反向漏电大幅减小,器件反向耐压得到明显提高。上述仿真结果说明了本发明所提出器件的有效性和可实施性。The structure proposed by the present invention is simulated and analyzed by using the device simulation software Sentaurus. In the simulation, the thickness of the AlGaN barrier layer is 25nm, the Al composition is 26%, and the distance between cathode and anode is Lac=5μm. The depth of the groove in the AlGaN barrier layer is trecess, the dielectric material at the bottom right of the groove is HfO 2 , the thickness is 10nm, and the bottom length is 0.5μm. When simulating the effect of the trench depth on the forward turn-on voltage of the device, it can be seen from Figure 9 that when the trench depth trecess is 20nm, the forward turn-on voltage of the device is only 0.25V, which is much smaller than that shown in Figure 11 The turn-on voltage of the traditional Schottky barrier diode SBD1.5V. From the comparison diagrams of Figures 12 and 13, it can be seen that when the forward conduction current Ia=1mA/mm is defined as the device is turned on in the forward direction, then the turn-on voltage of the structure in Figure 1 and the structure in Figure 8 is both 0.25V, and the introduction of the junction terminal structure The forward turn-on voltage and conduction current are not changed, and the conduction current of the device mainly flows through the ohmic contact in the mixed anode structure. From the comparison of the reverse characteristics in Figures 15 and 16 and Figure 17, it can be found that the introduction of the junction terminal structure in the diode proposed by the present invention greatly reduces the reverse leakage of the device and significantly improves the reverse withstand voltage of the device. The above simulation results illustrate the effectiveness and practicability of the device proposed by the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410083056.8A CN103872145A (en) | 2014-03-07 | 2014-03-07 | GaN heterojunction power diode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410083056.8A CN103872145A (en) | 2014-03-07 | 2014-03-07 | GaN heterojunction power diode |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103872145A true CN103872145A (en) | 2014-06-18 |
Family
ID=50910490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410083056.8A Pending CN103872145A (en) | 2014-03-07 | 2014-03-07 | GaN heterojunction power diode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103872145A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104952938A (en) * | 2015-05-07 | 2015-09-30 | 电子科技大学 | Gallium nitride heterojunction MIS grid-control power diode and manufacturing method thereof |
CN105140278A (en) * | 2015-07-30 | 2015-12-09 | 电子科技大学 | GaN heterojunction power diode with grid-controlled structure |
CN106601806A (en) * | 2015-10-15 | 2017-04-26 | 北京大学 | Semiconductor device and manufacture method thereof |
CN108831932A (en) * | 2018-06-27 | 2018-11-16 | 电子科技大学 | A GaN Lateral MIS-Schottky Hybrid Anode Diode |
CN109087955A (en) * | 2017-06-14 | 2018-12-25 | 乐山加兴科技有限公司 | Hetero-junctions power diode |
US10985269B2 (en) | 2019-04-05 | 2021-04-20 | Stmicroelectronics S.R.L. | Two-dimensional electron gas (2DEG)-confined devices and methods |
US11355624B2 (en) | 2019-04-05 | 2022-06-07 | Stmicroelectronics S.R.L. | Electrically confined ballistic devices and methods |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110133251A1 (en) * | 2009-12-07 | 2011-06-09 | International Rectifier Corporation | Gated algan/gan heterojunction schottky device |
CN102097492A (en) * | 2010-12-24 | 2011-06-15 | 中山大学 | Hetetrostructure field effect diode and manufacturing method thereof |
WO2012008074A1 (en) * | 2010-07-16 | 2012-01-19 | パナソニック株式会社 | Diode |
-
2014
- 2014-03-07 CN CN201410083056.8A patent/CN103872145A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110133251A1 (en) * | 2009-12-07 | 2011-06-09 | International Rectifier Corporation | Gated algan/gan heterojunction schottky device |
WO2012008074A1 (en) * | 2010-07-16 | 2012-01-19 | パナソニック株式会社 | Diode |
CN102097492A (en) * | 2010-12-24 | 2011-06-15 | 中山大学 | Hetetrostructure field effect diode and manufacturing method thereof |
Non-Patent Citations (2)
Title |
---|
JAE-GIL LEE ET AL: "Low Turn-on Voltage AlGaN/GaN-on-Si Rectifier With Gated Ohmic Anode", 《IEEE ELECTRON DEVICE LETTERS》 * |
SILVIA LENCI ET AL: "Au-Free AlGaN/GaN Power Diode on8-in Si Substrate With Gated Edge Termination", 《IEEE ELECTRON DEVICE LETTERS》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104952938A (en) * | 2015-05-07 | 2015-09-30 | 电子科技大学 | Gallium nitride heterojunction MIS grid-control power diode and manufacturing method thereof |
CN105140278A (en) * | 2015-07-30 | 2015-12-09 | 电子科技大学 | GaN heterojunction power diode with grid-controlled structure |
CN106601806A (en) * | 2015-10-15 | 2017-04-26 | 北京大学 | Semiconductor device and manufacture method thereof |
CN109087955A (en) * | 2017-06-14 | 2018-12-25 | 乐山加兴科技有限公司 | Hetero-junctions power diode |
CN108831932A (en) * | 2018-06-27 | 2018-11-16 | 电子科技大学 | A GaN Lateral MIS-Schottky Hybrid Anode Diode |
CN108831932B (en) * | 2018-06-27 | 2021-07-02 | 电子科技大学 | A GaN Lateral MIS-Schottky Hybrid Anode Diode |
US10985269B2 (en) | 2019-04-05 | 2021-04-20 | Stmicroelectronics S.R.L. | Two-dimensional electron gas (2DEG)-confined devices and methods |
US11355624B2 (en) | 2019-04-05 | 2022-06-07 | Stmicroelectronics S.R.L. | Electrically confined ballistic devices and methods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6999197B2 (en) | Group III nitride enhancement type HEMT based on the composite barrier layer structure and its manufacturing method | |
CN108028273B (en) | Semiconductor device and method for manufacturing semiconductor device | |
CN103930997B (en) | Semiconductor devices with recessed electrode structure | |
JP6474881B2 (en) | Schottky diode and manufacturing method thereof | |
Matioli et al. | Ultralow leakage current AlGaN/GaN Schottky diodes with 3-D anode structure | |
CN107482059B (en) | A GaN heterojunction longitudinal reverse conduction field effect transistor | |
CN108807526B (en) | Enhanced switching device and method of making same | |
CN103872145A (en) | GaN heterojunction power diode | |
CN101320751B (en) | HEMT device and manufacturing method thereof | |
CN102856374B (en) | GaN enhanced MIS-HFET device and preparation method of same | |
CN102130158A (en) | Stepped recessed gate high electron mobility transistor | |
CN111370470B (en) | Gallium nitride MIS gate-controlled hybrid channel power field effect transistor and method of making the same | |
CN102945859A (en) | GaN heterojunction HEMT (High Electron Mobility Transistor) device | |
CN104952938A (en) | Gallium nitride heterojunction MIS grid-control power diode and manufacturing method thereof | |
CN104332504A (en) | GaN-based heterojunction schottky diode device and preparing method thereof | |
CN108807510B (en) | Reverse-resistance gallium nitride high-electron-mobility transistor | |
CN106298906A (en) | A kind of power semiconductor and manufacture method thereof | |
US20150034958A1 (en) | Hemt-compatible lateral rectifier structure | |
CN109166929A (en) | A kind of GaN base Schottky barrier diode with p-type GaN cap | |
CN107393954B (en) | A kind of GaN hetero-junctions vertical field effect pipe | |
CN113745331A (en) | Group III nitride grooved gate normally-off P-channel HEMT device and manufacturing method thereof | |
CN204118078U (en) | A kind of GaN base heterojunction schottky diode device | |
CN105304707A (en) | Enhanced HEMT device | |
CN108831932B (en) | A GaN Lateral MIS-Schottky Hybrid Anode Diode | |
CN205303470U (en) | Enhancement mode gaN device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140618 |