CN103869488B - three-dimensional display - Google Patents
three-dimensional display Download PDFInfo
- Publication number
- CN103869488B CN103869488B CN201410136206.7A CN201410136206A CN103869488B CN 103869488 B CN103869488 B CN 103869488B CN 201410136206 A CN201410136206 A CN 201410136206A CN 103869488 B CN103869488 B CN 103869488B
- Authority
- CN
- China
- Prior art keywords
- region
- light
- substrate
- electrode
- electric field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000004888 barrier function Effects 0.000 claims abstract description 65
- 239000000758 substrate Substances 0.000 claims abstract description 58
- 230000003287 optical effect Effects 0.000 claims abstract description 28
- 230000005684 electric field Effects 0.000 claims description 51
- 230000007704 transition Effects 0.000 claims description 13
- 230000008859 change Effects 0.000 claims description 9
- 239000010410 layer Substances 0.000 description 139
- 239000004973 liquid crystal related substance Substances 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 206010047571 Visual impairment Diseases 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 238000013461 design Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 239000004988 Nematic liquid crystal Substances 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- RQIPKMUHKBASFK-UHFFFAOYSA-N [O-2].[Zn+2].[Ge+2].[In+3] Chemical compound [O-2].[Zn+2].[Ge+2].[In+3] RQIPKMUHKBASFK-UHFFFAOYSA-N 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- -1 aluminum tin oxide Chemical compound 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 210000002858 crystal cell Anatomy 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Abstract
本发明提供一种立体显示器,包括显示面板、屏障面板及背光模块。屏障面板具有交替配置的透光区与遮光区,且各透光区包括两折射区及位于折射区之间的非折射区。屏障面板包括相对设置的第一及第二基板、位于此两基板之间的光学异向性介质、以及第一及第二电极层。第一电极层位于第一基板与光学异向性介质之间。第二电极层位于第二基板与光学异向性介质之间。在屏障面板被致能时光学异向性介质在折射区的相位推迟介于在遮光区的相位推迟与在非折射区的相位推迟之间,使得通过折射区的光线朝向非折射区偏折。本发明可以维持或提高立体显示器的亮度,并可以有效地降低或调整残影的程度。
The invention provides a three-dimensional display, which includes a display panel, a barrier panel and a backlight module. The barrier panel has alternately arranged light-transmitting areas and light-shielding areas, and each light-transmitting area includes two refractive areas and a non-refractive area located between the refractive areas. The barrier panel includes first and second substrates arranged oppositely, an optically anisotropic medium located between the two substrates, and first and second electrode layers. The first electrode layer is located between the first substrate and the optically anisotropic medium. The second electrode layer is located between the second substrate and the optically anisotropic medium. When the barrier panel is enabled, the phase retardation of the optical anisotropic medium in the refractive region is between the phase retardation in the light-shielding region and the phase retardation in the non-refractive region, so that the light passing through the refractive region is deflected toward the non-refractive region. The present invention can maintain or improve the brightness of a three-dimensional display, and can effectively reduce or adjust the degree of residual images.
Description
技术领域technical field
本发明涉及一种显示器,尤其涉及一种立体显示器。The invention relates to a display, in particular to a stereoscopic display.
背景技术Background technique
近年来,随着显示技术的不断进步,使用者对于显示器的显示品质(如图像解析度、色彩饱和度等)的要求也越来越高。然而,除了高图像解析度以及高色彩饱和度之外,为了满足使用者观看真实图像的需求,亦发展出能够显示出立体图像的显示器。In recent years, with the continuous advancement of display technology, users have higher and higher requirements on the display quality (such as image resolution, color saturation, etc.) of the display. However, in addition to high image resolution and high color saturation, displays capable of displaying stereoscopic images have also been developed in order to satisfy users' demands for viewing real images.
目前发展较快速也较成熟的立体显示技术为空间多路复用技术(spatial-multiplexed technology)。在空间多路复用的立体显示技术中,为了建立立体图像效果,常利用视差屏障(parallax barrier)或者柱状透镜在空间中形成不同视域(viewingzone)以让观看者的右眼和左眼分别接收不同图像信息。其中,屏障工艺技术又比透镜工艺技术更为成熟,因此被广泛应用于商品中。Currently, the fastest-growing and mature stereoscopic display technology is spatial-multiplexed technology. In spatial multiplexing stereoscopic display technology, in order to create a stereoscopic image effect, a parallax barrier or a lenticular lens is often used to form different viewing zones in space so that the viewer's right eye and left eye are separated from each other. Receive different image information. Among them, the barrier process technology is more mature than the lens process technology, so it is widely used in products.
一般来说,使用视差屏障的传统立体显示器并无法完美地只让左右眼接收到应该接收的图像信息,且通常会有一些错误的图像信息进入眼中。举例来说,原本右眼的图像信息应该只让右眼接收得到,但由于遮蔽不完美而使得部分右眼的图像信息也被左眼接收,因此左眼会同时接收到左右眼的图像信息,此现象称为残影(X-talk)。目前用来改善残影现象的主要方法是增加遮蔽区域以使得残影的程度降低,但同时也会使透光区域减少。也就是说,随着开口率(slit ratio)的下降(亦即,透光区域的减少),虽然可使残影的程度降低,但同时也会导致亮度下降的问题,进而影响显示品质。因此,如何在不改变开口率的情况下能有效地降低残影的程度并维持或提高亮度乃业界所致力研究的课题之一。Generally speaking, a traditional stereoscopic display using a parallax barrier cannot perfectly allow only the left and right eyes to receive the image information that should be received, and usually some wrong image information will enter the eyes. For example, the image information of the right eye should only be received by the right eye, but due to imperfect occlusion, part of the image information of the right eye is also received by the left eye, so the left eye will receive the image information of the left and right eyes at the same time. This phenomenon is called X-talk. At present, the main method used to improve the afterimage phenomenon is to increase the shielding area to reduce the degree of afterimage, but at the same time, it will also reduce the light transmission area. That is to say, with the decrease of the slit ratio (that is, the decrease of the light-transmitting area), although the degree of image sticking can be reduced, it will also lead to the problem of decreased brightness, which further affects the display quality. Therefore, how to effectively reduce the degree of image sticking and maintain or increase the brightness without changing the aperture ratio is one of the research topics that the industry is devoted to.
发明内容Contents of the invention
为了克服现有技术的缺陷,本发明提供一种立体显示器,可以维持或提高亮度,并有效地降低或调整残影的程度。In order to overcome the defects of the prior art, the present invention provides a stereoscopic display, which can maintain or increase brightness and effectively reduce or adjust the degree of afterimage.
本发明提出一种立体显示器,包括显示面板、屏障面板以及背光模块。显示面板具有相对的第一侧与第二侧。屏障面板位于显示面板的第一侧,屏障面板具有交替配置的多个透光区与多个遮光区,且每一透光区包括两折射区与非折射区,非折射区位于两折射区之间。屏障面板包括第一基板、第二基板、光学异向性介质、第一电极层以及第二电极层。第二基板位于第一基板的对向。光学异向性介质位于第一基板与第二基板之间。第一电极层配置于第一基板与光学异向性介质之间。第二电极层配置于第二基板与光学异向性介质之间。第一电极层与第二电极层被设置为,在屏障面板被致能(enable)时(即被开启时)光学异向性介质在折射区的相位推迟(Phase Retardation)介于在遮光区的相位推迟与在非折射区的相位推迟之间,使得通过各折射区出射的光线朝向相应的非折射区偏折。背光模块位于显示面板的第二侧,用以提供光线。The invention provides a stereoscopic display, which includes a display panel, a barrier panel and a backlight module. The display panel has opposite first and second sides. The barrier panel is located on the first side of the display panel. The barrier panel has a plurality of light-transmitting regions and a plurality of light-shielding regions arranged alternately, and each light-transmitting region includes two refraction regions and a non-refraction region, and the non-refraction region is located between the two refraction regions. between. The barrier panel includes a first substrate, a second substrate, an optically anisotropic medium, a first electrode layer and a second electrode layer. The second substrate is located opposite to the first substrate. The optical anisotropic medium is located between the first substrate and the second substrate. The first electrode layer is disposed between the first substrate and the optical anisotropic medium. The second electrode layer is disposed between the second substrate and the optical anisotropic medium. The first electrode layer and the second electrode layer are arranged so that when the barrier panel is enabled (that is, turned on), the phase retardation (Phase Retardation) of the optical anisotropic medium in the refraction region is between that in the light shielding region Between the phase retardation and the phase retardation in the non-refractive region, the light emitted through each refraction region is deflected toward the corresponding non-refractive region. The backlight module is located on the second side of the display panel to provide light.
基于上述,在不改变开口率的情况下,由于每一透光区内具有折射区可使光线朝向非折射区集中,并使本发明的位于透光区内的光学异向性介质具有类似透镜或棱镜的效果,因此本发明可以维持或提高立体显示器的亮度,并可以有效地降低或调整残影的程度。Based on the above, under the condition of not changing the aperture ratio, since each light transmission area has a refraction area, the light can be concentrated towards the non-refraction area, and the optical anisotropic medium in the light transmission area of the present invention has a similar lens or prism effect, so the present invention can maintain or improve the brightness of the stereoscopic display, and can effectively reduce or adjust the degree of afterimage.
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail with reference to the accompanying drawings.
附图说明Description of drawings
图1为依照本发明的第一实施例的立体显示器的剖面示意图。FIG. 1 is a schematic cross-sectional view of a stereoscopic display according to a first embodiment of the present invention.
图2为图1的屏障面板的上视示意图。FIG. 2 is a schematic top view of the barrier panel of FIG. 1 .
图3A为图2中沿线I-I’的屏障面板的透光区的剖面示意图。3A is a schematic cross-sectional view of the light-transmitting region of the barrier panel along the line I-I' in FIG. 2 .
图3B为图3A的屏障面板被致能时的相位推迟分布的示意图。FIG. 3B is a schematic diagram of the phase retardation distribution when the barrier panel of FIG. 3A is enabled.
图4A为依照本发明的第二实施例的屏障面板的透光区的剖面示意图。4A is a schematic cross-sectional view of a light-transmitting region of a barrier panel according to a second embodiment of the present invention.
图4B为图4A的屏障面板被致能时的相位推迟分布的示意图。FIG. 4B is a schematic diagram of the phase retardation distribution when the barrier panel of FIG. 4A is enabled.
图5A为依照本发明的第三实施例的屏障面板的透光区的剖面示意图。5A is a schematic cross-sectional view of a light-transmitting region of a barrier panel according to a third embodiment of the present invention.
图5B为图5A的屏障面板被致能时的相位推迟分布的示意图。FIG. 5B is a schematic diagram of the phase retardation distribution when the barrier panel of FIG. 5A is enabled.
图6A为依照本发明的第四实施例的屏障面板的透光区的剖面示意图。6A is a schematic cross-sectional view of a light-transmitting region of a barrier panel according to a fourth embodiment of the present invention.
图6B为图6A的屏障面板被致能时的相位推迟分布的示意图。FIG. 6B is a schematic diagram of the phase retardation distribution when the barrier panel of FIG. 6A is enabled.
图7A为依照本发明的第五实施例的屏障面板的透光区的剖面示意图。7A is a schematic cross-sectional view of a light-transmitting region of a barrier panel according to a fifth embodiment of the present invention.
图7B为图7A的屏障面板被致能时的相位推迟分布的示意图。FIG. 7B is a schematic diagram of the phase retardation distribution when the barrier panel of FIG. 7A is enabled.
图8为以不同倾斜视角观看立体显示器时所呈现的显示亮度对倾斜视角的关系曲线图。FIG. 8 is a graph showing the relationship between the display brightness and the tilted viewing angle when the stereoscopic display is viewed at different tilted viewing angles.
图9为以不同倾斜视角观看立体显示器时所呈现的残影对倾斜视角的关系曲线图。FIG. 9 is a graph showing the relationship between afterimages and oblique viewing angles when viewing a stereoscopic display at different oblique viewing angles.
其中,附图标记说明如下:Wherein, the reference signs are explained as follows:
100:立体显示器100: stereoscopic display
110:显示面板110: display panel
110a:第一侧110a: first side
110b:第二侧110b: second side
112:基板112: Substrate
114:像素阵列114: pixel array
116:对向基板116: opposite substrate
118:显示介质118: display media
120:屏障面板120: Barrier Panel
120A:透光区120A: Translucent area
120B:遮光区120B: shading area
122:第一基板122: First substrate
124:第一电极层124: first electrode layer
124a:第一子电极124a: first sub-electrode
124b:第一介电层124b: first dielectric layer
126:第二基板126: Second substrate
128:第二电极层128: Second electrode layer
128a:第二子电极128a: second sub-electrode
128b:第二介电层128b: second dielectric layer
130:光学异向性介质130: Optically anisotropic media
140:背光模块140: Backlight module
150:相位推迟分布150: Phase delay distribution
160:凸块160: Bump
160a:斜面160a: bevel
210、220、310、320:曲线210, 220, 310, 320: curve
1202:折射区1202: Refraction zone
1202a:次折射区1202a: sub-refractive zone
1204:非折射区1204: Non-refractive zone
1242、1282:下电极图案层1242, 1282: lower electrode pattern layer
1244、1284:上电极图案层1244, 1284: upper electrode pattern layer
I-I’:线I-I': line
L:光线L: light
X、Y、Z:方向X, Y, Z: direction
具体实施方式detailed description
图1为依照本发明的第一实施例的立体显示器的剖面示意图,图2为图1的屏障面板的上视示意图,图3A为图2中沿线I-I’的屏障面板的透光区的剖面示意图,而图3B为图3A的屏障面板被致能时的相位推迟分布的示意图。1 is a schematic cross-sectional view of a stereoscopic display according to the first embodiment of the present invention, FIG. 2 is a schematic top view of the barrier panel of FIG. 1, and FIG. 3B is a schematic diagram of the phase retardation distribution when the barrier panel of FIG. 3A is enabled.
请同时参照图1至图3B,立体显示器100包括显示面板110、背光模块140以及屏障面板120。立体显示器100例如是能提供直式(portrait)显示模式和/或横式(landscape)显示模式的立体显示装置,或者例如是可切换式平面/立体(2D/3D)的显示装置,或者其他合适的立体显示装置等。Please refer to FIG. 1 to FIG. 3B at the same time. The stereoscopic display 100 includes a display panel 110 , a backlight module 140 and a barrier panel 120 . The stereoscopic display 100 is, for example, a stereoscopic display device capable of providing a portrait display mode and/or a landscape display mode, or a switchable flat/stereoscopic (2D/3D) display device, or other suitable stereoscopic display devices, etc.
显示面板110包括基板112、像素阵列114、对向基板116以及显示介质118。显示面板110是任何可以显示图像的构件,例如液晶显示面板、有机发光二极体显示面板、电泳显示面板、等离子体显示面板或其它型式显示面板。像素阵列114配置在基板112上,且像素阵列114的每一像素单元(未绘示)例如是包括数据线、扫描线、有源元件以及像素电极等构件。对向基板116位于基板112的对向。显示介质118位于像素阵列114与对向基板116之间。当显示面板110为液晶显示面板时,显示介质118例如是液晶分子。在其他实施例中,当显示面板110为有机发光二极体显示面板时,显示介质118例如是有机发光层。当显示面板110为电泳显示面板时,显示介质118例如是电泳显示介质。当显示面板110为等离子体显示面板时,显示介质118例如是等离子体显示介质。再者,当显示面板110采用非自行发光的材料(例如液晶材料)作为显示介质118时,则立体显示器100可以选择性地还包括有光源模块以提供显示所需的光源。此外,显示面板110具有相对的第一侧110a与第二侧110b。在下文中,将以显示面板110为液晶显示面板为例来进行说明,其中背光模块140位于显示面板110的第二侧110b,用以提供显示用的光线L。The display panel 110 includes a substrate 112 , a pixel array 114 , an opposite substrate 116 and a display medium 118 . The display panel 110 is any component capable of displaying images, such as a liquid crystal display panel, an organic light emitting diode display panel, an electrophoretic display panel, a plasma display panel or other types of display panels. The pixel array 114 is disposed on the substrate 112 , and each pixel unit (not shown) of the pixel array 114 includes, for example, components such as data lines, scan lines, active elements, and pixel electrodes. The opposite substrate 116 is located opposite to the substrate 112 . The display medium 118 is located between the pixel array 114 and the opposite substrate 116 . When the display panel 110 is a liquid crystal display panel, the display medium 118 is, for example, liquid crystal molecules. In other embodiments, when the display panel 110 is an organic light emitting diode display panel, the display medium 118 is, for example, an organic light emitting layer. When the display panel 110 is an electrophoretic display panel, the display medium 118 is, for example, an electrophoretic display medium. When the display panel 110 is a plasma display panel, the display medium 118 is, for example, a plasma display medium. Moreover, when the display panel 110 uses non-self-luminous materials (such as liquid crystal materials) as the display medium 118 , the stereoscopic display 100 may optionally further include a light source module to provide a light source required for display. In addition, the display panel 110 has a first side 110 a and a second side 110 b opposite to each other. In the following, the display panel 110 will be described as an example of a liquid crystal display panel, wherein the backlight module 140 is located on the second side 110b of the display panel 110 to provide light L for display.
屏障面板120位于显示面板110的第一侧110a,且显示面板110的显示面(即第一侧110a)朝向屏障面板120。屏障面板120例如是扭转向列型液晶盒(Twisted Nematic LiquidCrystal Cell,TN-LC Cell)或其他合适的屏障面板。如图2所示,屏障面板120具有交替配置的多个透光区120A与多个遮光区120B,其中透光区120A例如是条状狭缝。然而,本发明不限于此,在其他实施例中,透光区120A的形状可以包括矩形、正方形、梯形、圆形、椭圆形、三角形、菱形、多边形或其他合适的形状。每一透光区120A包括两个折射区1202以及一个非折射区1204,且非折射区1204位于所述两个折射区1202之间。再者,屏障面板120包括第一基板122、第二基板126、光学异向性介质130、第一电极层124以及第二电极层128。The barrier panel 120 is located on the first side 110 a of the display panel 110 , and the display surface of the display panel 110 (ie, the first side 110 a ) faces the barrier panel 120 . The barrier panel 120 is, for example, a twisted nematic liquid crystal cell (TN-LC Cell) or other suitable barrier panels. As shown in FIG. 2 , the barrier panel 120 has a plurality of light-transmitting regions 120A and a plurality of light-shielding regions 120B arranged alternately, wherein the light-transmitting regions 120A are, for example, strip-shaped slits. However, the present invention is not limited thereto. In other embodiments, the shape of the transparent region 120A may include a rectangle, a square, a trapezoid, a circle, an ellipse, a triangle, a rhombus, a polygon or other suitable shapes. Each light-transmitting region 120A includes two refraction regions 1202 and a non-refraction region 1204 , and the non-refraction region 1204 is located between the two refraction regions 1202 . Furthermore, the barrier panel 120 includes a first substrate 122 , a second substrate 126 , an optically anisotropic medium 130 , a first electrode layer 124 and a second electrode layer 128 .
第一基板122与第二基板126彼此相对向设置,且其材料可为玻璃、石英、有机聚合物或其他合适的材料。The first substrate 122 and the second substrate 126 are disposed opposite to each other, and their materials can be glass, quartz, organic polymer or other suitable materials.
光学异向性介质130位于第一基板122与第二基板126之间。光学异向性介质130例如是具有双折射性的介质,例如液晶分子或是其他合适的物质。以液晶分子为例,通常液晶分子具有第一轴向折射率(no)以及第二轴向折射率(ne)。所述第一轴向折射率(no)一般又可称为液晶分子的短轴折射率,所述第二轴向折射率(ne)又可称为液晶分子的长轴折射率。而且,上述的光学异向性介质130会随着屏蔽面板120中的电场分布来排列。在本实施例中,光学异向性介质130例如是包括多个正型液晶分子(未绘示)或多个负型液晶分子(未绘示)。The optical anisotropic medium 130 is located between the first substrate 122 and the second substrate 126 . The optical anisotropic medium 130 is, for example, a medium with birefringence, such as liquid crystal molecules or other suitable substances. Taking liquid crystal molecules as an example, usually the liquid crystal molecules have a first axial refractive index (no) and a second axial refractive index (ne). The first axial refractive index (no) can also generally be referred to as the short-axis refractive index of liquid crystal molecules, and the second axial refractive index (ne) can also be referred to as the long-axis refractive index of liquid crystal molecules. Moreover, the above-mentioned optical anisotropic medium 130 is arranged along with the electric field distribution in the shielding panel 120 . In this embodiment, the optical anisotropic medium 130 includes, for example, a plurality of positive liquid crystal molecules (not shown) or a plurality of negative liquid crystal molecules (not shown).
第一电极层124与第二电极层128分别地位于第一基板122与第二基板126上,且为靠近光学异向性介质130的一侧。也就是说,第一电极层124配置于第一基板122与光学异向性介质130之间,而第二电极层128配置于第二基板126与光学异向性介质130之间。再者,在本实施例中,第一电极层124与第二电极层128例如是分别包括多个彼此平行排列的条状电极,但本发明不限于此。在其他实施例中,第一电极层124与第二电极层128亦可以是分别包括其他合适的图案化电极。第一电极层124与第二电极层128的材料包括透明导电材料,其例如是金属氧化物,如铟锡氧化物、铟锌氧化物、铝锡氧化物、铝锌氧化物、铟锗锌氧化物、或其它合适的氧化物、或者是上述至少二个的堆叠层。The first electrode layer 124 and the second electrode layer 128 are located on the first substrate 122 and the second substrate 126 respectively, and are on a side close to the optical anisotropic medium 130 . That is to say, the first electrode layer 124 is disposed between the first substrate 122 and the optically anisotropic medium 130 , and the second electrode layer 128 is disposed between the second substrate 126 and the optically anisotropic medium 130 . Furthermore, in this embodiment, the first electrode layer 124 and the second electrode layer 128 respectively include a plurality of strip electrodes arranged in parallel, for example, but the present invention is not limited thereto. In other embodiments, the first electrode layer 124 and the second electrode layer 128 may respectively include other suitable patterned electrodes. The materials of the first electrode layer 124 and the second electrode layer 128 include transparent conductive materials, such as metal oxides, such as indium tin oxide, indium zinc oxide, aluminum tin oxide, aluminum zinc oxide, indium germanium zinc oxide material, or other suitable oxides, or a stacked layer of at least two of the above.
在本实施例中,第一电极层124位于遮光区120B以及折射区1202中,而第二电极层128位于遮光区120B中。再者,在本实施例中,在遮光区120B中的第一电极层124及第二电极层128例如是分别为单一层的电极层,以有效地遮蔽光线的穿透,但本发明不限于此。在其他实施例中,在遮光区120B中的第一电极层124及第二电极层128亦可以是分别为两层以上的电极层,只要遮光区120B可有效地遮蔽光线的穿透即可。此外,在折射区1202中的第一电极层124可以是单一层或两层以上的电极层,只要折射区1202可使通过其所出射的光线偏折即可。In this embodiment, the first electrode layer 124 is located in the light shielding area 120B and the refraction area 1202 , and the second electrode layer 128 is located in the light shielding area 120B. Furthermore, in this embodiment, the first electrode layer 124 and the second electrode layer 128 in the light-shielding region 120B are, for example, single-layer electrode layers to effectively shield the penetration of light, but the present invention is not limited to this. In other embodiments, the first electrode layer 124 and the second electrode layer 128 in the light-shielding region 120B may also be more than two electrode layers, as long as the light-shielding region 120B can effectively shield light from penetrating. In addition, the first electrode layer 124 in the refraction region 1202 may be a single layer or more than two layers of electrode layers, as long as the refraction region 1202 can deflect light emitted through it.
当屏障面板120被致能(enable)时,第一电极层124与第二电极层128分别在非折射区1204内提供第一电场,在折射区1202内提供过渡电场,且在遮光区120B内提供第二电场。再者,在垂直于屏障面板120的方向(例如当屏障面板120位于X-Y平面上时,则所述垂直于屏障面板120的方向为Z方向)上,过渡电场的强度介于第一电场的强度与第二电场的强度之间。在本实施例中,过渡电场的强度例如是沿第一电场朝向第二电场的方向渐进变化。也就是说,过渡电场的电压呈梯度分布,以使得在折射区1202内的光学异向性介质130随着过渡电场的电压分布而排列成具有渐进变化的相位推迟(Phase Retardation)分布。由于相位推迟的渐进变化,因此通过折射区1202出射的光线L会因为不同的相位差而产生折射的效果。When the barrier panel 120 is enabled (enable), the first electrode layer 124 and the second electrode layer 128 respectively provide the first electric field in the non-refractive region 1204, provide the transitional electric field in the refraction region 1202, and provide the transition electric field in the light-shielding region 120B. A second electric field is provided. Furthermore, in the direction perpendicular to the barrier panel 120 (for example, when the barrier panel 120 is located on the X-Y plane, the direction perpendicular to the barrier panel 120 is the Z direction), the strength of the transition electric field is between the strength of the first electric field and the strength of the second electric field. In this embodiment, the strength of the transitional electric field changes gradually along the direction of the first electric field toward the second electric field, for example. That is to say, the voltage of the transition electric field is distributed in a gradient, so that the optical anisotropic medium 130 in the refraction region 1202 is arranged to have a gradually changing phase retardation (Phase Retardation) distribution along with the voltage distribution of the transition electric field. Due to the gradual change of the phase delay, the light L emitted through the refraction region 1202 will be refracted due to different phase differences.
换句话说,在本实施例中,可借由延伸至折射区1202的第一电极层124与位于遮光区120B的第二电极层128产生横向电场,以使在垂直于屏障面板120的方向(亦即,Z方向)上,过渡电场的强度例如是沿第一电场朝向第二电场的方向渐进变化,进而使得在折射区1202内的光学异向性介质130随着过渡电场的电压分布而排列成具有渐进变化的相位推迟分布。举例来说,遮光区120B的第二电场的强度相对较大,非折射区1204的第一电场的强度相对较小,且从遮光区120B朝向非折射区1204的方向上,折射区1202的过渡电场的强度逐渐减小,以使得折射率逐渐减小。In other words, in this embodiment, a transverse electric field can be generated by the first electrode layer 124 extending to the refraction region 1202 and the second electrode layer 128 located in the light-shielding region 120B, so that in the direction perpendicular to the barrier panel 120 ( That is, in the Z direction), the intensity of the transition electric field, for example, gradually changes along the direction of the first electric field toward the second electric field, so that the optical anisotropic medium 130 in the refraction region 1202 is aligned with the voltage distribution of the transition electric field into a phase delay distribution with a gradual change. For example, the intensity of the second electric field in the light-shielding region 120B is relatively large, and the intensity of the first electric field in the non-refractive region 1204 is relatively small, and in the direction from the light-shielding region 120B toward the non-refractive region 1204, the transition of the refraction region 1202 The strength of the electric field is gradually reduced, so that the refractive index is gradually reduced.
请参照图3B,如相位推迟分布150所示,由于本实施例的上述电极的配置位置以及电场的强度变化的设计,因此第一电极层124与第二电极层128被设置为,在屏障面板120被致能时光学异向性介质130在折射区1202的相位推迟介于在遮光区120B的相位推迟与在非折射区1204的相位推迟之间,以使得通过各折射区1202出射的光线L会朝向相应的非折射区1204(亦即,位于同一透光区120A内的非折射区1204)偏折。在本实施例中,光线L例如是由背光模块140所提供的光线,但本发明不限于此。在其他实施例中,光线L亦可以是由显示面板110所提供的光线。Please refer to FIG. 3B , as shown in the phase retardation distribution 150, due to the design of the arrangement position of the above-mentioned electrodes and the intensity change of the electric field in this embodiment, the first electrode layer 124 and the second electrode layer 128 are set as, on the barrier panel When 120 is activated, the phase retardation of the optical anisotropic medium 130 in the refraction region 1202 is between the phase retardation in the light-shielding region 120B and the phase retardation in the non-refraction region 1204, so that the light L emitted through each refraction region 1202 It will be deflected toward the corresponding non-refractive region 1204 (ie, the non-refractive region 1204 located in the same light-transmitting region 120A). In this embodiment, the light L is, for example, the light provided by the backlight module 140 , but the invention is not limited thereto. In other embodiments, the light L may also be the light provided by the display panel 110 .
值得一提的是,在不改变开口率的情况下,由于每一透光区120A内具有折射区1202可使光线L朝向非折射区1204集中,并使本发明的位于透光区120A内的光学异向性介质130(亦即,液晶光栅)具有类似透镜或棱镜的效果,因此本发明可以维持或提高立体显示器100的亮度,并可以有效地降低或调整残影(X-talk)的程度。更详细来说,由于每一透光区120A内具有折射区1202,因此可借由过渡电场的渐进变化使光线L折射,以有效地使由光线L所集中而成的光场区域(未绘示)更集中,亦即可使光场区域的面积更小。如此一来,可提升光场区域的最大亮度并缩小光场(未绘示)的半高宽。其中,光场的半高宽的缩小也就是可使不同光场之间的重叠面积减少,因此可提高光场之间的分光效果,进而可使残影的程度下降。It is worth mentioning that, without changing the aperture ratio, since each light-transmitting region 120A has a refraction region 1202, the light L can be concentrated toward the non-refraction region 1204, and the present invention located in the light-transmitting region 120A The optical anisotropic medium 130 (that is, liquid crystal grating) has an effect similar to a lens or a prism, so the present invention can maintain or improve the brightness of the stereoscopic display 100, and can effectively reduce or adjust the degree of afterimage (X-talk) . In more detail, since each light-transmitting region 120A has a refraction region 1202, the light L can be refracted by the gradual change of the transition electric field, so that the light field area (not shown) formed by the concentration of the light L can be effectively made Shown) is more concentrated, that is, the area of the light field area can be made smaller. In this way, the maximum brightness of the light field area can be increased and the FWHM of the light field (not shown) can be reduced. Wherein, the narrowing of the full width at half maximum of the light field can reduce the overlapping area between different light fields, so the light splitting effect between the light fields can be improved, and the degree of afterimage can be reduced.
此外,在本实施例中,立体显示器100例如是还包括粘着层(未绘示),用以接合显示面板110与屏蔽面板120。如此一来,当显示面板110与屏蔽面板120贴合后,经由屏蔽面板120的作用,观看者的左眼就只能观察到播放左眼图像的像素,右眼就只能观察到播放右眼图像的像素,进而产生立体图像效果。再者,立体显示器100例如是还包括偏光片(未绘示),分别配置于显示面板110与屏蔽面板120的表面上。In addition, in this embodiment, the stereoscopic display 100 further includes, for example, an adhesive layer (not shown) for bonding the display panel 110 and the shielding panel 120 . In this way, when the display panel 110 is bonded to the shielding panel 120, through the function of the shielding panel 120, the left eye of the viewer can only observe the pixels displaying the image for the left eye, and the right eye can only observe the pixels displaying the image for the right eye. The pixels of the image, thereby producing a stereoscopic image effect. Furthermore, the stereoscopic display 100 further includes, for example, polarizers (not shown), which are respectively disposed on the surfaces of the display panel 110 and the shielding panel 120 .
在上述图1至图3B的实施例中是以屏障面板120的两个基板的结构为平面结构为例来说明,但本发明不限于此。在其他实施例中,亦可以是屏障面板120的至少一基板的结构为非平面结构。In the embodiments of FIGS. 1 to 3B , the structure of the two substrates of the barrier panel 120 is taken as an example for illustration, but the present invention is not limited thereto. In other embodiments, the structure of at least one substrate of the barrier panel 120 may also be a non-planar structure.
图4A为依照本发明的第二实施例的屏障面板的透光区的剖面示意图,而图4B为图4A的屏障面板被致能时的相位推迟分布的示意图。图4A至图4B的实施例与上述图1至图3B的实施例相似,因此相同或相似的元件以相同或相似的符号表示,且不再重复说明。图4A至图4B的实施例与上述图1至图3B的实施例的不同之处在于,屏障面板120的第一基板122的结构为非平面结构。4A is a schematic cross-sectional view of a light-transmitting region of a barrier panel according to a second embodiment of the present invention, and FIG. 4B is a schematic diagram of a phase retardation distribution when the barrier panel of FIG. 4A is activated. The embodiment in FIGS. 4A to 4B is similar to the embodiment in FIGS. 1 to 3B described above, so the same or similar elements are denoted by the same or similar symbols, and the description will not be repeated. The difference between the embodiment of FIGS. 4A-4B and the embodiment of FIGS. 1-3B is that the structure of the first substrate 122 of the barrier panel 120 is a non-planar structure.
更详细来说,请参照图4A,在屏障面板120的第一基板122上还配置有多个凸块(bump)160。这些凸块160在每一折射区1202内提供相对于第一基板122的斜面160a,其中在折射区1202内的第一电极层124位于斜面160a上。凸块160的材料例如是玻璃、石英、有机聚合物或其他合适的材料。凸块160的材料可与第一基板122的材料相同或不同。在另一实施例中,亦可以是凸块160与第一基板122为一体成型。也就是说,本发明不特别限定凸块160的材料、形状以及数量等,只要其可在每一折射区1202内提供相对于第一基板122的斜面160a即可。此外,在其他实施例中,亦可以是在第二基板126上还配置有多个凸块160、或者是在第一基板122与第二基板126上皆配置有多个凸块160。In more detail, referring to FIG. 4A , a plurality of bumps 160 are disposed on the first substrate 122 of the barrier panel 120 . The bumps 160 provide a slope 160 a relative to the first substrate 122 in each refraction region 1202 , wherein the first electrode layer 124 in the refraction region 1202 is located on the slope 160 a. The material of the bump 160 is, for example, glass, quartz, organic polymer or other suitable materials. The material of the bump 160 may be the same as or different from that of the first substrate 122 . In another embodiment, the bump 160 and the first substrate 122 may also be integrally formed. That is to say, the present invention does not specifically limit the material, shape, and quantity of the bumps 160 , as long as they can provide an inclined surface 160 a relative to the first substrate 122 in each refraction region 1202 . In addition, in other embodiments, a plurality of bumps 160 may also be disposed on the second substrate 126 , or a plurality of bumps 160 may be disposed on both the first substrate 122 and the second substrate 126 .
再者,如图4B的相位推迟分布150所示,由于本实施例的上述电极的配置位置以及电场的强度变化的设计,因此第一电极层124与第二电极层128被设置为,在屏障面板120被致能时光学异向性介质130在折射区1202的相位推迟介于在遮光区120B的相位推迟与在非折射区1204的相位推迟之间,以使得通过各折射区1202出射的光线L会朝向相应的非折射区1204(亦即,位于同一透光区120A内的非折射区1204)偏折。Furthermore, as shown in the phase retardation distribution 150 of FIG. 4B , due to the arrangement position of the above-mentioned electrodes and the design of the intensity change of the electric field in this embodiment, the first electrode layer 124 and the second electrode layer 128 are set as, in the barrier When the panel 120 is activated, the phase retardation of the optical anisotropic medium 130 in the refraction region 1202 is between the phase retardation in the light-shielding region 120B and the phase retardation in the non-refraction region 1204, so that the light emitted through each refraction region 1202 L is deflected toward the corresponding non-refractive region 1204 (ie, the non-refractive region 1204 located in the same light-transmitting region 120A).
在上述图1至图3B的实施例中是以在折射区1202内的第一电极层124为由遮光区120B延伸至折射区1202的一电极为例来说明,但本发明不限于此。在其他实施例中,亦可以是在各折射区1202内的至少一电极层包括相互绝缘的多个子电极。In the embodiments of FIGS. 1 to 3B , the first electrode layer 124 in the refraction region 1202 is taken as an electrode extending from the light shielding region 120B to the refraction region 1202 for illustration, but the present invention is not limited thereto. In other embodiments, at least one electrode layer in each refraction region 1202 may also include a plurality of sub-electrodes insulated from each other.
图5A为依照本发明的第三实施例的屏障面板的透光区的剖面示意图,而图5B为图5A的屏障面板被致能时的相位推迟分布的示意图。图5A至图5B的实施例与上述图1至图3B的实施例相似,因此相同或相似的元件以相同或相似的符号表示,且不再重复说明。图5A至图5B的实施例与上述图1至图3B的实施例的不同之处在于,在各折射区1202内的第一电极层124包括相互绝缘的多个子电极。5A is a schematic cross-sectional view of a light-transmitting region of a barrier panel according to a third embodiment of the present invention, and FIG. 5B is a schematic diagram of a phase retardation distribution when the barrier panel of FIG. 5A is activated. The embodiment in FIGS. 5A to 5B is similar to the embodiment in FIGS. 1 to 3B described above, so the same or similar elements are represented by the same or similar symbols, and the description will not be repeated. The difference between the embodiment of FIGS. 5A-5B and the embodiment of FIGS. 1-3B is that the first electrode layer 124 in each refraction region 1202 includes a plurality of sub-electrodes insulated from each other.
更详细来说,请参照图5A,各折射区1202包括并排的多个次折射区1202a。再者,在各折射区1202内的第一电极层124包括相互绝缘的多个第一子电极124a。在本实施例中,第一电极层124位于遮光区120B以及折射区1202中,上述第一子电极124a分别位于次折射区1202a内,而第二电极层128位于遮光区120B中。当屏障面板120被致能时,第一电极层124与第二电极层128分别在非折射区1204内提供第一电场,且在遮光区120B内提供第二电场。每一第一子电极124a在各次折射区1202a内提供次过渡电场。In more detail, please refer to FIG. 5A , each refraction region 1202 includes a plurality of secondary refraction regions 1202a arranged side by side. Moreover, the first electrode layer 124 in each refraction region 1202 includes a plurality of first sub-electrodes 124a insulated from each other. In this embodiment, the first electrode layer 124 is located in the light-shielding area 120B and the refraction area 1202 , the first sub-electrodes 124 a are respectively located in the sub-refraction area 1202 a , and the second electrode layer 128 is located in the light-shielding area 120B. When the barrier panel 120 is activated, the first electrode layer 124 and the second electrode layer 128 respectively provide the first electric field in the non-refractive region 1204 and provide the second electric field in the light-shielding region 120B. Each first sub-electrode 124a provides a sub-transition electric field in each sub-refraction region 1202a.
值得一提的是,在垂直于屏障面板120的方向(亦即,Z方向)上,多个次过渡电场的强度介于第一电场的强度与第二电场的强度之间,且多个次过渡电场的强度例如是沿第一电场朝向第二电场的方向渐进变化。如此一来,在本实施例中,可借由提供所述多个次过渡电场不同的电压差,以使得在折射区1202内的光学异向性介质130随着多个次过渡电场的电压分布而排列成具有渐进变化的相位推迟分布。举例来说,遮光区120B的第二电场的强度相对较大,非折射区1204的第一电场的强度相对较小,且从遮光区120B朝向非折射区1204的方向上,多个次折射区1202a的次过渡电场的强度逐渐减小(例如从10伏特逐渐减小至2伏特),以使得折射率逐渐减小。It is worth mentioning that, in the direction perpendicular to the barrier panel 120 (that is, the Z direction), the intensity of the multiple secondary transition electric fields is between the intensity of the first electric field and the intensity of the second electric field, and the multiple secondary transition electric fields The intensity of the transitional electric field, for example, gradually changes along the direction of the first electric field toward the second electric field. In this way, in this embodiment, by providing the multiple sub-transition electric fields with different voltage differences, the optical anisotropic medium 130 in the refraction region 1202 can be distributed along with the voltage distribution of the multiple sub-transition electric fields. Instead, they are arranged to have a gradually changing phase retardation distribution. For example, the intensity of the second electric field in the light-shielding region 120B is relatively large, and the intensity of the first electric field in the non-refractive region 1204 is relatively small, and in the direction from the light-shielding region 120B toward the non-refractive region 1204, a plurality of sub-refractive regions The intensity of the sub-transition electric field 1202a gradually decreases (for example, gradually decreases from 10 volts to 2 volts), so that the refractive index gradually decreases.
再者,如图5B的相位推迟分布150所示,由于本实施例的上述电极的配置位置以及电场的强度变化的设计,因此第一电极层124与第二电极层128被设置为,在屏障面板120被致能时光学异向性介质130在折射区1202的相位推迟介于在遮光区120B的相位推迟与在非折射区1204的相位推迟之间,以使得通过各折射区1202出射的光线L会朝向相应的非折射区1204(亦即,位于同一透光区120A内的非折射区1204)偏折。Furthermore, as shown in the phase retardation distribution 150 of FIG. 5B , due to the arrangement position of the above-mentioned electrodes and the design of the intensity change of the electric field in this embodiment, the first electrode layer 124 and the second electrode layer 128 are set as, in the barrier When the panel 120 is activated, the phase retardation of the optical anisotropic medium 130 in the refraction region 1202 is between the phase retardation in the light-shielding region 120B and the phase retardation in the non-refraction region 1204, so that the light emitted through each refraction region 1202 L is deflected toward the corresponding non-refractive region 1204 (ie, the non-refractive region 1204 located in the same light-transmitting region 120A).
在上述图1至图5B的实施例中是以在折射区1202内的电极层为单一层的电极层为例来说明,但本发明不限于此。在其他实施例中,亦可以是在折射区1202内的至少一电极层具有两层以上的电极图案层。In the above-mentioned embodiments of FIG. 1 to FIG. 5B , the electrode layer in the refraction region 1202 is taken as an example for illustration, but the present invention is not limited thereto. In other embodiments, at least one electrode layer in the refraction region 1202 may have more than two electrode pattern layers.
图6A为依照本发明的第四实施例的屏障面板的透光区的剖面示意图,而图6B为图6A的屏障面板被致能时的相位推迟分布的示意图。图6A至图6B的实施例与上述图5A至图5B的实施例相似,因此相同或相似的元件以相同或相似的符号表示,且不再重复说明。图6A至图6B的实施例与上述图5A至图5B的实施例的不同之处在于,在折射区1202内的第一电极层124具有两层的电极图案层。6A is a schematic cross-sectional view of a light-transmitting region of a barrier panel according to a fourth embodiment of the present invention, and FIG. 6B is a schematic diagram of a phase retardation distribution when the barrier panel of FIG. 6A is activated. The embodiment in FIGS. 6A to 6B is similar to the embodiment in FIGS. 5A to 5B described above, so the same or similar elements are denoted by the same or similar symbols and will not be described again. The difference between the embodiment of FIGS. 6A-6B and the embodiment of FIGS. 5A-5B is that the first electrode layer 124 in the refraction region 1202 has two electrode pattern layers.
更详细来说,请参照图6A,在各折射区1202内的第一电极层124还包括第一介电层124b,且第一子电极124a交替设置于第一介电层124b的上下两侧。也就是说,在折射区1202内的第一电极层124具有两层的电极图案层,其中所述两层的电极图案层包括下电极图案层1242以及上电极图案层1244。每一电极图案层包括位于各折射区1202内且相互绝缘的多个第一子电极124a。由于下电极图案层1242的第一子电极124a与上电极图案层1244的第一子电极124a彼此交错配置,因此可使分别属于不同膜层(包括下电极图案层1242以及上电极图案层1244)的第一子电极124a在空间上重叠。如此一来,可使下电极图案层1242以及上电极图案层1244得以紧密排列,进而可避免漏光与色偏且可具有较佳的立体显示效果。In more detail, please refer to FIG. 6A, the first electrode layer 124 in each refraction region 1202 further includes a first dielectric layer 124b, and the first sub-electrodes 124a are alternately arranged on the upper and lower sides of the first dielectric layer 124b . That is to say, the first electrode layer 124 in the refraction region 1202 has two electrode pattern layers, wherein the two electrode pattern layers include a lower electrode pattern layer 1242 and an upper electrode pattern layer 1244 . Each electrode pattern layer includes a plurality of first sub-electrodes 124a located in each refraction region 1202 and insulated from each other. Since the first sub-electrodes 124a of the lower electrode pattern layer 1242 and the first sub-electrodes 124a of the upper electrode pattern layer 1244 are arranged alternately, they can respectively belong to different film layers (including the lower electrode pattern layer 1242 and the upper electrode pattern layer 1244). The first sub-electrodes 124a are spatially overlapped. In this way, the lower electrode pattern layer 1242 and the upper electrode pattern layer 1244 can be closely arranged, thereby avoiding light leakage and color shift and having a better three-dimensional display effect.
此外,在本实施例中,第一介电层124b覆盖了下电极图案层1242,且上电极图案层1244位于第一介电层124b上。亦即,下电极图案层1242位于第一基板122与第一介电层124b之间,第一介电层124b位于下电极图案层1242与上电极图案层1244之间,且上电极图案层1244位于第一介电层124b与光学异向性介质130之间。在本实施例中,第一介电层124b例如是全面地覆盖第一基板122以及下电极图案层1242,但本发明不限于此。在其他实施例中,亦可以是第一介电层124b仅覆盖各折射区1202内的下电极图案层1242,只要第一介电层124b位于下电极图案层1242与上电极图案层1244之间以使此两者在各折射区1202内可电性绝缘即可。In addition, in this embodiment, the first dielectric layer 124b covers the lower electrode pattern layer 1242, and the upper electrode pattern layer 1244 is located on the first dielectric layer 124b. That is, the lower electrode pattern layer 1242 is located between the first substrate 122 and the first dielectric layer 124b, the first dielectric layer 124b is located between the lower electrode pattern layer 1242 and the upper electrode pattern layer 1244, and the upper electrode pattern layer 1244 Located between the first dielectric layer 124b and the optical anisotropic medium 130 . In this embodiment, for example, the first dielectric layer 124b completely covers the first substrate 122 and the lower electrode pattern layer 1242 , but the invention is not limited thereto. In other embodiments, the first dielectric layer 124b may only cover the lower electrode pattern layer 1242 in each refraction region 1202, as long as the first dielectric layer 124b is located between the lower electrode pattern layer 1242 and the upper electrode pattern layer 1244 It is sufficient to make the two electrically insulated in each refraction region 1202 .
再者,如图6B的相位推迟分布150所示,由于本实施例的上述电极的配置位置以及电场的强度变化的设计,因此第一电极层124与第二电极层128被设置为,在屏障面板120被致能时光学异向性介质130在折射区1202的相位推迟介于在遮光区120B的相位推迟与在非折射区1204的相位推迟之间,以使得通过各折射区1202出射的光线L会朝向相应的非折射区1204(亦即,位于同一透光区120A内的非折射区1204)偏折。Furthermore, as shown in the phase retardation distribution 150 of FIG. 6B , due to the arrangement position of the above-mentioned electrodes and the design of the intensity change of the electric field in this embodiment, the first electrode layer 124 and the second electrode layer 128 are set as, in the barrier When the panel 120 is activated, the phase retardation of the optical anisotropic medium 130 in the refraction region 1202 is between the phase retardation in the light-shielding region 120B and the phase retardation in the non-refraction region 1204, so that the light emitted through each refraction region 1202 L is deflected toward the corresponding non-refractive region 1204 (ie, the non-refractive region 1204 located in the same light-transmitting region 120A).
图7A为依照本发明的第五实施例的屏障面板的透光区的剖面示意图,而图7B为图7A的屏障面板被致能时的相位推迟分布的示意图。图7A至图7B的实施例与上述图6A至图6B的实施例相似,因此相同或相似的元件以相同或相似的符号表示,且不再重复说明。图7A至图7B的实施例与上述图6A至图6B的实施例的不同之处在于,不仅在折射区1202内的第一电极层124具有两层的电极图案层,而且在折射区1202内的第二电极层128亦具有两层的电极图案层。7A is a schematic cross-sectional view of a light-transmitting region of a barrier panel according to a fifth embodiment of the present invention, and FIG. 7B is a schematic diagram of a phase retardation distribution when the barrier panel of FIG. 7A is activated. The embodiment in FIGS. 7A to 7B is similar to the embodiment in FIGS. 6A to 6B described above, so the same or similar elements are denoted by the same or similar symbols, and the description will not be repeated. The difference between the embodiment of FIGS. 7A to 7B and the embodiment of FIGS. 6A to 6B is that not only the first electrode layer 124 in the refraction region 1202 has two electrode pattern layers, but also The second electrode layer 128 also has two electrode pattern layers.
更详细来说,请参照图7A,在各折射区1202内的第二电极层128还包括第二介电层128b,且第二子电极128a交替设置于第二介电层128b的上下两侧。也就是说,在折射区1202内的第二电极层128具有两层的电极图案层,其中所述两层的电极图案层包括下电极图案层1282以及上电极图案层1284。每一电极图案层包括位于各折射区1202内且相互绝缘的多个第二子电极128a,其中下电极图案层1282的第二子电极128a与上电极图案层1284的第二子电极128a彼此交错配置,因此可使分别属于不同膜层(包括下电极图案层1282以及上电极图案层1284)的第二子电极128a在空间上重叠。如此一来,可使下电极图案层1282以及上电极图案层1284得以紧密排列,进而可避免漏光与色偏且可具有较佳的立体显示效果。In more detail, please refer to FIG. 7A, the second electrode layer 128 in each refraction region 1202 further includes a second dielectric layer 128b, and the second sub-electrodes 128a are alternately arranged on the upper and lower sides of the second dielectric layer 128b . That is to say, the second electrode layer 128 in the refraction region 1202 has two electrode pattern layers, wherein the two electrode pattern layers include a lower electrode pattern layer 1282 and an upper electrode pattern layer 1284 . Each electrode pattern layer includes a plurality of second sub-electrodes 128a located in each refraction region 1202 and insulated from each other, wherein the second sub-electrodes 128a of the lower electrode pattern layer 1282 and the second sub-electrodes 128a of the upper electrode pattern layer 1284 are interlaced Therefore, the second sub-electrodes 128 a belonging to different film layers (including the lower electrode pattern layer 1282 and the upper electrode pattern layer 1284 ) can be spatially overlapped. In this way, the lower electrode pattern layer 1282 and the upper electrode pattern layer 1284 can be closely arranged, thereby avoiding light leakage and color shift and having a better three-dimensional display effect.
此外,在本实施例中,第二介电层128b覆盖了下电极图案层1282,且上电极图案层1284位于第二介电层128b上。亦即,下电极图案层1282位于第二基板126与第二介电层128b之间,第二介电层128b位于下电极图案层1282与上电极图案层1284之间,且上电极图案层1284位于第二介电层128b与光学异向性介质130之间。在本实施例中,第二介电层128b是全面地覆盖第二基板126以及下电极图案层1282,但本发明不限于此。在其他实施例中,亦可以是第二介电层128b仅覆盖各折射区1202内的下电极图案层1282,只要第二介电层128b位于下电极图案层1282与上电极图案层1284之间以使此两者在各折射区1202内可电性绝缘即可。In addition, in this embodiment, the second dielectric layer 128b covers the lower electrode pattern layer 1282, and the upper electrode pattern layer 1284 is located on the second dielectric layer 128b. That is, the lower electrode pattern layer 1282 is located between the second substrate 126 and the second dielectric layer 128b, the second dielectric layer 128b is located between the lower electrode pattern layer 1282 and the upper electrode pattern layer 1284, and the upper electrode pattern layer 1284 Located between the second dielectric layer 128b and the optical anisotropic medium 130 . In this embodiment, the second dielectric layer 128b completely covers the second substrate 126 and the lower electrode pattern layer 1282 , but the invention is not limited thereto. In other embodiments, the second dielectric layer 128b may only cover the lower electrode pattern layer 1282 in each refraction region 1202, as long as the second dielectric layer 128b is located between the lower electrode pattern layer 1282 and the upper electrode pattern layer 1284 It is sufficient to make the two electrically insulated in each refraction region 1202 .
再者,如图7B的相位推迟分布150所示,由于本实施例的上述电极的配置位置以及电场的强度变化的设计,因此第一电极层124与第二电极层128被设置为,在屏障面板120被致能时光学异向性介质130在折射区1202的相位推迟介于在遮光区120B的相位推迟与在非折射区1204的相位推迟之间,以使得通过各折射区1202出射的光线L会朝向相应的非折射区1204(亦即,位于同一透光区120A内的非折射区1204)偏折。Furthermore, as shown in the phase retardation distribution 150 of FIG. 7B , due to the arrangement position of the above-mentioned electrodes and the design of the intensity change of the electric field in this embodiment, the first electrode layer 124 and the second electrode layer 128 are set as, in the barrier When the panel 120 is activated, the phase retardation of the optical anisotropic medium 130 in the refraction region 1202 is between the phase retardation in the light-shielding region 120B and the phase retardation in the non-refraction region 1204, so that the light emitted through each refraction region 1202 L is deflected toward the corresponding non-refractive region 1204 (ie, the non-refractive region 1204 located in the same light-transmitting region 120A).
为了证明本发明的具有折射区1202的透光区120A的设计确实可以提高立体显示器100的亮度,并降低残影的程度,特以一模拟实验来做验证。此模拟实验的实验例是上述图1至图3B所示的具有折射区1202的立体显示器100,而比较例是不具有折射区的立体显示器。再者,在模拟实验中,实验例与比较例的立体显示器的开口率皆为33%(亦即,透光区120A与遮光区120B的比例分别为33%以及67%),且实验例的立体显示器的折射区1202与非折射区1204的比例分别为4.45%以及28.55%。实验例与比较例的立体显示器的其他相关实验条件包括光学异向性介质为扭转向列型液晶(TC-LC)、第二轴向折射率(ne)为1.711、第一轴向折射率(no)为1.510、液晶盒间隙(cell gap)为15μm、第一基板122的电压为7伏特、第二基板126的电压为0伏特以及光栅(barrier)的周期宽度为480μm。此外,外在环境设定为一周期下包括四个子像素,光栅的厚度为1800μm,且观赏距离为2200mm。In order to prove that the design of the transparent region 120A with the refraction region 1202 of the present invention can indeed increase the brightness of the three-dimensional display 100 and reduce the degree of image sticking, a simulation experiment is used for verification. The experimental example of this simulation experiment is the 3D display 100 with the refraction region 1202 shown in FIGS. 1 to 3B above, and the comparative example is the 3D display without the refraction region. Moreover, in the simulation experiment, the aperture ratios of the three-dimensional displays of the experimental example and the comparative example are both 33% (that is, the ratios of the light-transmitting region 120A and the light-shielding region 120B are respectively 33% and 67%), and the ratios of the experimental example and the comparative example are 33%. The proportions of the refraction area 1202 and the non-refraction area 1204 of the stereoscopic display are 4.45% and 28.55%, respectively. Other relevant experimental conditions of the stereoscopic display of the experimental example and the comparative example include that the optical anisotropy medium is a twisted nematic liquid crystal (TC-LC), the second axial refractive index (ne) is 1.711, the first axial refractive index ( no) is 1.510, the cell gap is 15 μm, the voltage of the first substrate 122 is 7 volts, the voltage of the second substrate 126 is 0 volts, and the period width of the barrier is 480 μm. In addition, the external environment is set to include four sub-pixels in one period, the thickness of the grating is 1800 μm, and the viewing distance is 2200 mm.
图8为以不同倾斜视角观看立体显示器时所呈现的显示亮度(单位为流明(lumen))对倾斜视角(单位为度)的关系曲线图。不同的倾斜视角是指以正视角(即0度)当基准线(即法线)时,使用者的观察方向与基准线间的夹角。在图8中,曲线210为实验例的立体显示器,而曲线220为比较例的立体显示器。如图8所示,在这些曲线的波峰处,曲线210(实验例)的亮度皆大于曲线220(比较例)的亮度。因此,由此图8可得知,实验例(具有折射区1202的立体显示器100)的亮度大于比较例(不具有折射区的立体显示器)的亮度,其中实验例的立体显示器的亮度相较于比较例的立体显示器的亮度增加5.13%。FIG. 8 is a graph showing the relationship between the display brightness (lumen in lumen) and the tilted viewing angle (degree) when viewing a stereoscopic display at different tilted viewing angles. Different oblique viewing angles refer to the angle between the user's observation direction and the reference line when the normal viewing angle (ie 0 degree) is used as the reference line (ie normal line). In FIG. 8 , the curve 210 is the stereoscopic display of the experimental example, and the curve 220 is the stereoscopic display of the comparative example. As shown in FIG. 8 , at the peaks of these curves, the brightness of the curve 210 (experimental example) is greater than the brightness of the curve 220 (comparative example). Therefore, it can be seen from FIG. 8 that the brightness of the experimental example (the stereoscopic display 100 with the refraction region 1202) is greater than the brightness of the comparative example (the stereoscopic display without the refraction region), wherein the brightness of the stereoscopic display of the experimental example is compared to The brightness of the stereoscopic display of the comparative example increased by 5.13%.
图9为以不同倾斜视角观看立体显示器时所呈现的残影(单位为%)对倾斜视角(单位为度)的关系曲线图。不同的倾斜视角是指以正视角(即0度)当基准线(即法线)时,使用者的观察方向与基准线间的夹角。在图9中,曲线310为实验例的立体显示器,而曲线320为比较例的立体显示器。如图9所示,在这些曲线的波谷处,曲线310(实验例)的残影皆小于曲线320(比较例)的残影。因此,由此图9可得知,实验例(具有折射区1202的立体显示器100)的残影小于比较例(不具有折射区的立体显示器)的残影,其中实验例的立体显示器的残影相较于比较例的立体显示器的残影减少10.94%。FIG. 9 is a graph showing the relationship between afterimages (unit: %) and oblique viewing angles (unit: degrees) when viewing a stereoscopic display at different oblique viewing angles. Different oblique viewing angles refer to the angle between the user's observation direction and the reference line when the normal viewing angle (ie 0 degree) is used as the reference line (ie normal line). In FIG. 9 , the curve 310 is the stereoscopic display of the experimental example, and the curve 320 is the stereoscopic display of the comparative example. As shown in FIG. 9 , at the troughs of these curves, the afterimage of the curve 310 (experimental example) is smaller than that of the curve 320 (comparative example). Therefore, it can be seen from FIG. 9 that the image sticking of the experimental example (the stereoscopic display 100 with the refraction region 1202) is smaller than that of the comparative example (the stereoscopic display without the refraction region), wherein the image sticking of the three-dimensional display of the experimental example Compared with the stereoscopic display of the comparative example, the residual image is reduced by 10.94%.
综上所述,在本发明的立体显示器中,第一电极层与第二电极层被设置为,在屏障面板被致能时(即被开启时)光学异向性介质在折射区的相位推迟介于在遮光区的相位推迟与在非折射区的相位推迟之间,使得通过各折射区出射的光线朝向相应的非折射区偏折。如此一来,在不改变开口率的情况下,由于每一透光区内具有折射区可使光线朝向非折射区集中,并使本发明的位于透光区内的光学异向性介质(亦即,液晶光栅)具有类似透镜或棱镜的效果,因此本发明可以维持或提高立体显示器的亮度,并可以有效地降低或调整残影的程度。To sum up, in the stereoscopic display of the present invention, the first electrode layer and the second electrode layer are configured such that when the barrier panel is enabled (that is, turned on), the phase of the optical anisotropic medium in the refraction region is retarded. Between the phase retardation in the light-shielding region and the phase retardation in the non-refractive region, the light emitted through each refraction region is deflected toward the corresponding non-refraction region. In this way, under the condition of not changing the aperture ratio, since each light-transmitting region has a refraction region, light can be concentrated toward the non-refraction region, and the optical anisotropic medium (also That is, the liquid crystal grating) has an effect similar to a lens or a prism, so the present invention can maintain or improve the brightness of a stereoscopic display, and can effectively reduce or adjust the degree of image sticking.
虽然本发明已以实施例揭示如上,然其并非用以限定本发明,任何本领域普通技术人员,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,故本发明的保护范围当视所附的权利要求所界定的范围为准。Although the present invention has been disclosed above with the embodiments, it is not intended to limit the present invention. Anyone skilled in the art can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection should be subject to the scope defined by the appended claims.
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103101702A TWI522651B (en) | 2014-01-17 | 2014-01-17 | Stereo display device |
TW103101702 | 2014-01-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103869488A CN103869488A (en) | 2014-06-18 |
CN103869488B true CN103869488B (en) | 2017-04-12 |
Family
ID=50908203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410136206.7A Active CN103869488B (en) | 2014-01-17 | 2014-04-04 | three-dimensional display |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103869488B (en) |
TW (1) | TWI522651B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106959557B (en) | 2017-04-11 | 2020-02-18 | 重庆京东方光电科技有限公司 | Display substrate, manufacturing method thereof and display device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011117910A1 (en) * | 2010-03-23 | 2011-09-29 | 株式会社 東芝 | Display device and driving method |
CN102200668B (en) * | 2010-03-23 | 2013-05-29 | 深圳华映显示科技有限公司 | Electric driving liquid crystal lens and three-dimensional display |
CN102062977A (en) * | 2010-11-09 | 2011-05-18 | 华映视讯(吴江)有限公司 | Parallax error grating, method for regulating light transmittance of same, and stereoscopic display |
JP2013101165A (en) * | 2011-05-03 | 2013-05-23 | Yong Tai Electronic (Dong Guan) Ltd | Single chip liquid crystal three-dimensional glasses |
CN202183000U (en) * | 2011-09-09 | 2012-04-04 | 北京京东方光电科技有限公司 | Liquid crystal display device |
CN102998729B (en) * | 2012-12-07 | 2015-11-25 | 深圳超多维光电子有限公司 | A kind of lenticulation and 3 d display device |
-
2014
- 2014-01-17 TW TW103101702A patent/TWI522651B/en active
- 2014-04-04 CN CN201410136206.7A patent/CN103869488B/en active Active
Also Published As
Publication number | Publication date |
---|---|
TW201530190A (en) | 2015-08-01 |
TWI522651B (en) | 2016-02-21 |
CN103869488A (en) | 2014-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101216768B1 (en) | Stereoscopic image display device | |
KR101698571B1 (en) | Display device using diffractive device | |
US20160054573A1 (en) | Image display apparatus | |
US20100157181A1 (en) | Lens array device and image display | |
TWI551930B (en) | Liquid crystal display with interleaved pixels | |
KR101915623B1 (en) | Liquid crytal lens panel, display device having the same | |
CN102445760A (en) | Image display apparatus | |
CN103257486B (en) | Display device | |
US9500874B2 (en) | Liquid crystal optical element and image display apparatus including the same | |
US8780287B2 (en) | Electrically-driven liquid crystal lens panel and stereoscopic display panel | |
US9030643B2 (en) | Liquid crystal optical element and image display apparatus including the same | |
US10551955B2 (en) | Touch display panel and touch display apparatus | |
JP2013205658A (en) | Image display device | |
US8891033B2 (en) | Display device | |
CN110955078B (en) | Display panel, driving method thereof and display device | |
US9182628B2 (en) | Two dimension/three dimension switchable liquid crystal lens assembly | |
TWI432782B (en) | Stereo display device and switching panel used in stereo display device | |
CN103869488B (en) | three-dimensional display | |
US9575326B2 (en) | Stereoscopic image display apparatus | |
JP5938647B2 (en) | Image display device | |
KR20100137725A (en) | Switching stereoscopic filter and switching stereoscopic image display device using the same | |
KR20150068528A (en) | Liquid crystal lens and display device including liquid crystal lens | |
US20140307213A1 (en) | Display device | |
US9256074B2 (en) | Liquid crystal optical element and stereoscopic image display device | |
JP2014215441A (en) | Image display device and image display apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |