CN103866380B - A kind ofly use graphical annealing loose structure to carry out the method for GaN crystal growth - Google Patents
A kind ofly use graphical annealing loose structure to carry out the method for GaN crystal growth Download PDFInfo
- Publication number
- CN103866380B CN103866380B CN201410114052.1A CN201410114052A CN103866380B CN 103866380 B CN103866380 B CN 103866380B CN 201410114052 A CN201410114052 A CN 201410114052A CN 103866380 B CN103866380 B CN 103866380B
- Authority
- CN
- China
- Prior art keywords
- gan
- sio
- annealing
- minutes
- epitaxial wafer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种通过退火工艺制备图形化多孔结构GaN生长衬底,然后利用HVPE(氢化物气相外延)法生长GaN单晶的方法,属于GaN单晶生长技术领域。The invention relates to a method for preparing a GaN growth substrate with a patterned porous structure through an annealing process, and then using a HVPE (Hydride Vapor Phase Epitaxy) method to grow a GaN single crystal, belonging to the technical field of GaN single crystal growth.
背景技术Background technique
随着电子信息行业的飞速发展,现代电子技术对半导体材料高温、高频、高压等情况下的性能提出了新的要求,以GaN为代表的第三代半导体材料具有禁带宽度大、击穿电场高、热导率大、饱和电子漂移速度高、介电常数小、抗辐射能力强、良好的化学稳定性等性质,在发光二极管(LED)、激光二极管(LD)等领域有着广泛的应用。With the rapid development of the electronic information industry, modern electronic technology puts forward new requirements for the performance of semiconductor materials under high temperature, high frequency, and high voltage conditions. The third-generation semiconductor materials represented by GaN have a large High electric field, high thermal conductivity, high drift velocity of saturated electrons, small dielectric constant, strong radiation resistance, good chemical stability and other properties, it has been widely used in light-emitting diodes (LEDs), laser diodes (LDs) and other fields .
由于缺乏GaN体单晶,目前商业化的GaN基器件基本都是采用异质外延,但由于与异质衬底存在着较大的热膨胀系数和晶格常数的失配,导致外延生长的器件存在较高的位错密度,从而严重制约了器件性能的提高。制备自支撑的GaN衬底,然后在同质衬底上制备GaN基器件成为一种公认的提高器件性能的方法。目前主要使用的方法是先得到较好的体块或准体块晶体,然后进一步加工得到质量较好的晶体切片(自支撑衬底)以进行器件的同质生长。Due to the lack of GaN bulk single crystals, the current commercialized GaN-based devices basically use hetero-epitaxy, but due to the large thermal expansion coefficient and lattice constant mismatch with the heterogeneous substrate, the epitaxially grown devices have The high dislocation density seriously restricts the improvement of device performance. Fabrication of self-supporting GaN substrates followed by fabrication of GaN-based devices on homogenous substrates has become a well-recognized approach to improve device performance. At present, the main method used is to first obtain better bulk or quasi-bulk crystals, and then further process to obtain better quality crystal slices (self-supporting substrates) for homogeneous growth of devices.
氢化物气相外延(HydrideVapor-PhaseEpitaxy,HVPE)方法被认为是最有潜力得到自支撑衬底的方法之一,这种方法最早可以追溯到1970年左右,其过程主要是在异质衬底上沉积厚度较大的GaN外延层,采用激光剥离或者自剥离的技术得到块体晶体。这种方法存在着生长速度快、成本较低的优点,由于使用的异质衬底外延,衬底和生长层之间存在着晶格失配和热失配,所以在生长过程以及降温过程中会产生各种各样的缺陷,位错密度会比较大。The Hydride Vapor-Phase Epitaxy (HVPE) method is considered to be one of the most potential methods to obtain a self-supporting substrate. This method can be traced back to around 1970, and its process is mainly deposited on a heterogeneous substrate. For thicker GaN epitaxial layers, bulk crystals are obtained by laser lift-off or self-lift-off techniques. This method has the advantages of fast growth and low cost. Due to the use of heterogeneous substrate epitaxy, there is lattice mismatch and thermal mismatch between the substrate and the growth layer, so during the growth process and cooling process Various defects will be generated, and the dislocation density will be relatively large.
目前HVPE提高晶体质量的方法是使用缓冲层和插入层,减小GaN层与衬底由于晶格失配和热失配产生的应力。最成功的研究之一是Hitachi公司使用空位辅助分离技术(void-assistedseparation,VAS)[参见Y.Oshima,etal,phys.stat.sol.(a),194(2002)554-558],获得了2-3英寸直径600μm左右厚的纯GaN层。这种方法是在MOCVD方法得到的衬底上覆盖一层Ti的纳米网络,经过高温退火和氨化形成TiN插入层,形成具有空位的多孔结构,在此衬底上进行生长,既可以达到减小失配应力效果,又可以实现衬底的自剥离。多孔结构在制备自剥离GaN单晶中起着至关重要的作用,国外研究者采用了多种方法引入空位从而提高晶体质量[Y.Fu,etal,AppliedPhysicsLetters86(4),043108(2005),C.Hennig,JournalofCrystalGrowth310(5),911-915(2008)]。但是这些方法的工艺复杂,现在迫切的需要一种自主的简单的新方法来制备出多孔衬底,从而提高HVPE生长GaN的质量。The current method for HVPE to improve crystal quality is to use buffer layers and insertion layers to reduce the stress caused by lattice mismatch and thermal mismatch between the GaN layer and the substrate. One of the most successful studies is Hitachi's use of void-assisted separation (void-assistedseparation, VAS) [see Y.Oshima, etal, phys.stat.sol. (a), 194 (2002) 554-558], obtained 2-3 inches thick pure GaN layer around 600μm in diameter. This method is to cover a layer of Ti nano-network on the substrate obtained by the MOCVD method, and form a TiN insertion layer after high-temperature annealing and ammoniation to form a porous structure with vacancies. The small mismatch stress effect can realize the self-stripping of the substrate. The porous structure plays a vital role in the preparation of self-stripping GaN single crystals. Foreign researchers have adopted various methods to introduce vacancies to improve the crystal quality [Y.Fu, et al, Applied Physics Letters 86 (4), 043108 (2005), C . Hennig, Journal of Crystal Growth 310(5), 911-915 (2008)]. However, the processes of these methods are complicated, and an independent and simple new method is urgently needed to prepare porous substrates, so as to improve the quality of GaN grown by HVPE.
发明内容Contents of the invention
本发明针对多孔结构衬底对GaN单晶生长的重要作用以及现有GaN单晶生长技术存在的不足,提供一种简单高效的使用图形化退火多孔结构进行GaN单晶生长的方法,该方法能够提高外延生长GaN单晶的质量,有利于实现GaN单晶与异质衬底的自剥离。Aiming at the important role of the porous structure substrate on the growth of GaN single crystal and the shortcomings of the existing GaN single crystal growth technology, the present invention provides a simple and efficient method for GaN single crystal growth using a patterned annealed porous structure, which can Improving the quality of epitaxially grown GaN single crystal is beneficial to realize the self-exfoliation of GaN single crystal and heterogeneous substrate.
本发明的使用图形化退火多孔结构进行GaN单晶生长的方法,包括以下步骤:The method for growing a GaN single crystal using a patterned annealed porous structure of the present invention comprises the following steps:
(1)在GaN外延片上制备SiO2图形掩膜,GaN外延片的厚度为2μm-5μm,SiO2掩膜为四方排列的开孔或者六方排列的开孔,SiO2掩膜厚度为50nm-100nm,开孔周期为60μm-150μm,开孔直径为10μm-15μm;(1) Prepare a SiO 2 pattern mask on the GaN epitaxial wafer. The thickness of the GaN epitaxial wafer is 2 μm-5 μm. The SiO 2 mask has openings arranged in a square or hexagonal arrangement. The thickness of the SiO 2 mask is 50nm-100nm , the opening period is 60μm-150μm, and the opening diameter is 10μm-15μm;
(2)将带有SiO2图形掩膜的GaN外延片在真空炉内,1200-1300℃下高温退火60分钟-90分钟;(2) Anneal the GaN epitaxial wafer with a SiO 2 pattern mask in a vacuum furnace at 1200-1300°C for 60-90 minutes at high temperature;
(3)将退火后的带有SiO2图形掩膜的GaN外延片在去离子水中超声清洗5分钟,然后在浓磷酸(质量比80%以上的磷酸)中漂洗1分钟-5分钟,用去离子水冲洗干净;然后在25℃-53℃丙酮和25℃-73℃乙醇溶液中分别清洗1分钟-5分钟,用去离子水冲洗干净,再用氢氟酸(质量比40%)漂洗20秒-5分钟去除SiO2层,用去离子水冲洗干净,氮气烘干,形成多孔GaN衬底;(3) Ultrasonic clean the annealed GaN epitaxial wafer with a SiO 2 pattern mask in deionized water for 5 minutes, and then rinse it in concentrated phosphoric acid (phosphoric acid with a mass ratio of more than 80%) for 1 to 5 minutes. Rinse with deionized water; then wash in acetone at 25°C-53°C and ethanol at 25°C-73°C for 1 minute to 5 minutes, rinse with deionized water, and rinse with hydrofluoric acid (mass ratio 40%) for 20 Seconds to 5 minutes to remove the SiO 2 layer, rinse it with deionized water, and dry it with nitrogen to form a porous GaN substrate;
(4)将多孔GaN衬底通过HVPE外延生长,得到GaN单晶。(4) The porous GaN substrate is grown by HVPE epitaxy to obtain a GaN single crystal.
本发明通过GaN外延片图形掩膜制备、高温退火、清洗干燥以及HVPE法生长,最后得到了高质量的GaN单晶,并有利于外延生长的GaN单晶自剥离形成自支撑衬底,这种方法制作简单、工艺成熟,能够提高外延生长GaN单晶的质量,有利于实现GaN单晶与异质衬底的自剥离,适合批量生产。The present invention obtains a high-quality GaN single crystal through the preparation of a GaN epitaxial wafer pattern mask, high-temperature annealing, cleaning and drying, and HVPE growth, and is conducive to the self-exfoliation of the epitaxially grown GaN single crystal to form a self-supporting substrate. The method is simple to manufacture and has a mature process, can improve the quality of epitaxially grown GaN single crystals, is beneficial to realizing self-stripping of GaN single crystals and heterogeneous substrates, and is suitable for mass production.
附图说明Description of drawings
图1是本发明使用图形化退火获得多孔结构进行GaN单晶生长方法的流程图。FIG. 1 is a flow chart of the method for GaN single crystal growth using patterned annealing to obtain a porous structure in the present invention.
图2是蓝宝石衬底上制备的多孔结构衬底的断面SEM(扫描电子显微镜)图。Fig. 2 is a cross-sectional SEM (scanning electron microscope) image of a porous structure substrate prepared on a sapphire substrate.
图3是使用多孔结构衬底进行HVPE生长的GaN单晶的断面SEM(扫描电子显微镜)图。Fig. 3 is a cross-sectional SEM (scanning electron microscope) image of a GaN single crystal grown by HVPE using a porous structure substrate.
图4是本发明使用图形退火多孔结构GaN基片与使用MOCVD方法生长的GaN基片所制备的样品的PL(光致发光)光谱。Fig. 4 is the PL (photoluminescence) spectrum of the sample prepared by using pattern annealed GaN substrate with porous structure and GaN substrate grown by MOCVD method in the present invention.
图5是本发明制备的自剥离衬底的背面显微照片(×200)。Fig. 5 is a photomicrograph (×200) of the back side of the self-peeling substrate prepared in the present invention.
具体实施方式detailed description
实施例1Example 1
图1给出了本发明使用图形化退火多孔结构进行GaN单晶生长的流程,生长过程包括:SiO2图形掩膜制备、高温退火及清洗和HVPE生长GaN单晶三个阶段。具体步骤如下:Figure 1 shows the process of GaN single crystal growth using a patterned annealed porous structure in the present invention. The growth process includes three stages: SiO 2 pattern mask preparation, high temperature annealing and cleaning, and HVPE growth of GaN single crystal. Specific steps are as follows:
(1)在MOCVD(金属有机化合物化学气相沉淀)方法制备的GaN外延片上,利用光刻工艺和湿法腐蚀的方法制备SiO2图形掩膜,SiO2图形为四方排列的开孔,GaN外延片的厚度为2μm,SiO2掩膜厚度为50nm,开孔周期为60μm,开孔直径为10μm;(1) On the GaN epitaxial wafer prepared by MOCVD (metal organic compound chemical vapor deposition), the SiO 2 pattern mask is prepared by photolithography and wet etching. The SiO 2 pattern is a square arrangement of openings, and the GaN epitaxial wafer The thickness of the SiO2 mask is 2 μm, the thickness of the SiO 2 mask is 50 nm, the opening period is 60 μm, and the opening diameter is 10 μm;
(2)将带有SiO2图形掩膜的GaN外延片在真空炉内,1200℃下高温退火90min;(2) Anneal the GaN epitaxial wafer with a SiO 2 pattern mask in a vacuum furnace at a high temperature of 1200 ° C for 90 min;
(3)将退火后的带有SiO2图形掩膜的GaN外延片在去离子水中超声5min,然后在浓磷酸(质量比80%以上的磷酸)中漂洗5min,去离子水冲洗干净,然后在50℃丙酮和50℃乙醇溶液中分别清洗2min,去离子水冲洗干净,再用氢氟酸(市售的质量比40%的氢氟酸)漂洗1分钟去除SiO2层,去离子水冲洗干净,氮气烘干,形成多孔GaN衬底;(3) Ultrasonic the annealed GaN epitaxial wafer with a SiO 2 pattern mask in deionized water for 5 minutes, then rinse it in concentrated phosphoric acid (phosphoric acid with a mass ratio of more than 80%) for 5 minutes, rinse it with deionized water, and then in Wash in 50°C acetone and 50°C ethanol solutions for 2 minutes, rinse with deionized water, then rinse with hydrofluoric acid (commercially available hydrofluoric acid with a mass ratio of 40%) for 1 minute to remove the SiO 2 layer, and rinse with deionized water , nitrogen drying to form a porous GaN substrate;
(4)将清洗后的多孔GaN衬底放入HVPE(氢化物气相外延)生长系统中外延生长,得到GaN单晶。(4) Put the cleaned porous GaN substrate into a HVPE (Hydride Vapor Phase Epitaxy) growth system for epitaxial growth to obtain a GaN single crystal.
图2是蓝宝石衬底上制备的多孔结构衬底的断面SEM(扫描电子显微镜)图。图3是使用多孔结构衬底进行HVPE生长所制备的GaN单晶的断面SEM(扫描电子显微镜)图。从图中可以看出在生长的界面处存在所谓的空位(void),这些空位有效阻止了位错的向上延伸,提高了晶体质量,同时有利于由于热失配引起的应力释放产生自剥离。Fig. 2 is a cross-sectional SEM (scanning electron microscope) image of a porous structure substrate prepared on a sapphire substrate. Figure 3 is a cross-sectional SEM (scanning electron microscope) image of a GaN single crystal prepared by HVPE growth using a porous substrate. It can be seen from the figure that there are so-called vacancies (voids) at the growth interface. These vacancies effectively prevent the upward extension of dislocations, improve the crystal quality, and at the same time facilitate the stress release caused by thermal mismatch to produce self-stripping.
图4是本发明制备的使用图形化退火多孔结构GaN基片与使用MOCVD方法生长的GaN基片所制备的GaN单晶的PL(光致发光)光谱。可以看出使用图形退火多孔GaN基片和普通的MOCVD方法生长的GaN基片都存在363nm的发光峰,在同样测试条件下,使用多孔基片制备的GaN单晶发光更强,同时在500nm-600nm的黄光区域无发光峰,这表明使用图形退火多孔结构可以有效的提高GaN单晶的质量;图5是本发明制备的自剥离衬底的背面显微照片(×200),在剥离衬底的背面存在明显图形结构,说明本发明使用的图形化退火多孔结构在自剥离过程中起到了很好作用。Fig. 4 is the PL (photoluminescence) spectrum of GaN single crystal prepared by using patterned annealed GaN substrate with porous structure and GaN substrate grown by MOCVD method prepared by the present invention. It can be seen that both the pattern annealed porous GaN substrate and the GaN substrate grown by the ordinary MOCVD method have a luminescence peak at 363nm. Under the same test conditions, the GaN single crystal prepared using the porous substrate emits stronger. There is no luminescence peak in the yellow region of 600nm, which shows that the use of pattern annealing porous structure can effectively improve the quality of GaN single crystal; There is an obvious pattern structure on the back of the bottom, which shows that the patterned annealed porous structure used in the present invention plays a very good role in the self-stripping process.
实施例2Example 2
本实施例与实施例1的区别在于:The difference between this embodiment and embodiment 1 is:
步骤(1)中GaN外延片的厚度为3μm,SiO2图形掩膜图形为六方排列的开孔,SiO2掩膜厚度为100nm,开孔周期为150μm,开孔直径为12μm;In step (1), the thickness of the GaN epitaxial wafer is 3 μm, the pattern of the SiO 2 pattern mask is a hexagonal arrangement of openings, the thickness of the SiO 2 mask is 100 nm, the opening period is 150 μm, and the opening diameter is 12 μm;
步骤(2)中高温退火温度为1300℃,退火时间为70min;The high-temperature annealing temperature in step (2) is 1300°C, and the annealing time is 70 minutes;
步骤(3)中浓磷酸漂洗时间为1min;在53℃丙酮和73℃乙醇溶液中分别清洗1min;氢氟酸漂洗时间为20秒。In step (3), the rinsing time of concentrated phosphoric acid is 1 min; the rinsing time is 1 min in 53°C acetone and 73°C ethanol solutions respectively; the rinsing time of hydrofluoric acid is 20 seconds.
实施例3Example 3
本实施例与实施例1的区别在于:The difference between this embodiment and embodiment 1 is:
步骤(1)中GaN外延片的厚度为5μm,SiO2图形掩膜厚度为60nm,开孔周期为120μm,开孔直径为15μm;In step (1), the thickness of the GaN epitaxial wafer is 5 μm, the thickness of the SiO 2 pattern mask is 60 nm, the opening period is 120 μm, and the opening diameter is 15 μm;
步骤(2)中高温退火温度为1250℃,退火时间为80min;The high-temperature annealing temperature in step (2) is 1250°C, and the annealing time is 80 minutes;
步骤(3)中浓磷酸漂洗时间为4min;在25℃丙酮和25℃乙醇溶液中分别清洗5min;氢氟酸漂洗时间为5分钟。In step (3), the rinsing time of concentrated phosphoric acid is 4 minutes; the rinsing time is 5 minutes respectively in 25°C acetone and 25°C ethanol solutions; the rinsing time of hydrofluoric acid is 5 minutes.
实施例4Example 4
本实施例与实施例1的区别在于:The difference between this embodiment and embodiment 1 is:
步骤(1)中GaN外延片的厚度为4μm,SiO2图形掩膜图形为六方排列的开孔,SiO2掩膜厚度为85nm,开孔周期为80μm,开孔直径为13μm;In step (1), the thickness of the GaN epitaxial wafer is 4 μm, the pattern of the SiO 2 pattern mask is a hexagonal arrangement of openings, the thickness of the SiO 2 mask is 85 nm, the opening period is 80 μm, and the opening diameter is 13 μm;
步骤(2)中高温退火温度为1300℃,退火时间为60min;The high-temperature annealing temperature in step (2) is 1300°C, and the annealing time is 60 minutes;
步骤(3)中浓磷酸漂洗时间为2min;在35℃丙酮和40℃乙醇溶液中分别清洗3min;氢氟酸漂洗时间为3分钟。In step (3), the rinsing time of concentrated phosphoric acid is 2 minutes; the rinsing time is 3 minutes in 35°C acetone and 40°C ethanol solutions respectively; the rinsing time of hydrofluoric acid is 3 minutes.
在本发明给出的各参数的范围内,通过改变各参数的具体值均可以获得不同图形化退火多孔结构的GaN单晶基片,对获得的各种图形化退火结构GaN基片利用HVPE方法进行外延生长,都能够得到高质量GaN单晶,且生长出的GaN能够与衬底之间发生自剥离。Within the scope of each parameter given by the present invention, GaN single crystal substrates with different patterned annealed porous structures can be obtained by changing the specific values of each parameter, and the various patterned annealed structure GaN substrates obtained are utilized HVPE method High-quality GaN single crystal can be obtained by epitaxial growth, and the grown GaN can be self-exfoliated from the substrate.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410114052.1A CN103866380B (en) | 2014-03-25 | 2014-03-25 | A kind ofly use graphical annealing loose structure to carry out the method for GaN crystal growth |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410114052.1A CN103866380B (en) | 2014-03-25 | 2014-03-25 | A kind ofly use graphical annealing loose structure to carry out the method for GaN crystal growth |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103866380A CN103866380A (en) | 2014-06-18 |
CN103866380B true CN103866380B (en) | 2016-05-11 |
Family
ID=50905374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410114052.1A Active CN103866380B (en) | 2014-03-25 | 2014-03-25 | A kind ofly use graphical annealing loose structure to carry out the method for GaN crystal growth |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103866380B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107123589B (en) * | 2017-06-26 | 2020-01-07 | 镓特半导体科技(上海)有限公司 | Semiconductor structure, self-supporting gallium nitride layer and preparation method thereof |
CN107123590B (en) * | 2017-06-26 | 2020-01-07 | 镓特半导体科技(上海)有限公司 | Semiconductor structure, self-supporting gallium nitride layer and preparation method thereof |
CN109728139A (en) * | 2019-02-20 | 2019-05-07 | 江苏晶曌半导体有限公司 | A kind of GaN epitaxy film and Sapphire Substrate are from stripping means |
CN113832546A (en) * | 2021-09-26 | 2021-12-24 | 齐鲁工业大学 | Method for growing gallium nitride single crystal by high-temperature heat treatment assisted two-dimensional coating mask substrate |
CN115148579A (en) * | 2022-06-24 | 2022-10-04 | 东莞市中镓半导体科技有限公司 | Preparation method of single crystal substrate |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101685768A (en) * | 2008-09-23 | 2010-03-31 | 北京大学 | Method for preparing self-supporting mono-crystal gallium nitride substrate |
CN102239283A (en) * | 2008-12-02 | 2011-11-09 | 住友电气工业株式会社 | Method of growing gallium nitride crystals and process for producing gallium nitride crystals |
CN102409406A (en) * | 2011-10-28 | 2012-04-11 | 中国科学院半导体研究所 | Growth method of low dislocation gallium nitride |
CN102418143A (en) * | 2011-11-17 | 2012-04-18 | 山东大学 | A method of preparing self-stripping GaN single crystal by corroding substrate with H3PO4 |
CN103647008A (en) * | 2013-12-31 | 2014-03-19 | 中国科学院半导体研究所 | Method for growing semi-polarity GaN (gallium nitride) thick film |
-
2014
- 2014-03-25 CN CN201410114052.1A patent/CN103866380B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101685768A (en) * | 2008-09-23 | 2010-03-31 | 北京大学 | Method for preparing self-supporting mono-crystal gallium nitride substrate |
CN102239283A (en) * | 2008-12-02 | 2011-11-09 | 住友电气工业株式会社 | Method of growing gallium nitride crystals and process for producing gallium nitride crystals |
CN102409406A (en) * | 2011-10-28 | 2012-04-11 | 中国科学院半导体研究所 | Growth method of low dislocation gallium nitride |
CN102418143A (en) * | 2011-11-17 | 2012-04-18 | 山东大学 | A method of preparing self-stripping GaN single crystal by corroding substrate with H3PO4 |
CN103647008A (en) * | 2013-12-31 | 2014-03-19 | 中国科学院半导体研究所 | Method for growing semi-polarity GaN (gallium nitride) thick film |
Also Published As
Publication number | Publication date |
---|---|
CN103866380A (en) | 2014-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100587919C (en) | Fabrication method of nanoscale pattern substrate for nitride epitaxial growth | |
JP5135501B2 (en) | Manufacturing method of nitride single crystal substrate and manufacturing method of nitride semiconductor light emitting device using the same | |
US6274518B1 (en) | Method for producing a group III nitride compound semiconductor substrate | |
CN106128937B (en) | A kind of high quality AlN film of epitaxial growth on a si substrate and preparation method thereof | |
JP4231189B2 (en) | Method for producing group III nitride compound semiconductor substrate | |
CN103866380B (en) | A kind ofly use graphical annealing loose structure to carry out the method for GaN crystal growth | |
KR100981008B1 (en) | Method of forming a group III nitride semiconductor layer on a semiconductor substrate | |
US20090291523A1 (en) | Method of Manufacturing High Quality ZnO Monocrystal Film on Silicon(111) Substrate | |
CN104018214B (en) | A kind of rectangular graph Si substrate AlN template for GaN epitaxial growth of semiconductor material and preparation method thereof | |
CN104037293B (en) | Light-emitting diode (LED) epitaxial wafer growing on Si patterned substrate and preparation process of LED epitaxial wafer | |
TWI721107B (en) | Compound semiconductor substrate, film film and manufacturing method of compound semiconductor substrate | |
CN107180747B (en) | Semiconductor structure, self-supporting gallium nitride layer and preparation method thereof | |
WO2019137059A1 (en) | Indium nitride nanopillar epitaxial wafer grown on aluminum foil substrate and preparation method of indium nitride nanopillar epitaxial wafer | |
CN102386246A (en) | P-type conductive zinc oxide film material and preparation method thereof | |
CN103114332A (en) | Method for preparing gallium nitride monocrystal substrate by surface modification auto-separation | |
CN102286777B (en) | H3PO4 corrosive seed crystal for growing GaN (Gallium Nitride) single crystal by using HVPE (Hydride Vapor Phase Epitaxial) and preparation method thereof | |
CN108699687A (en) | Compound semiconductor substrate, surface film, and manufacturing method of compound semiconductor substrate | |
TWI725418B (en) | Structure of epitaxial on heterogeneous substrate and preparation method | |
JP2002050585A (en) | Semiconductor crystal growth method | |
CN103996610A (en) | AlN thin film growing on metal aluminum substrate and preparing method and application thereof | |
CN102560676B (en) | Method for performing GaN single crystal growth by using thinned and bonded structure | |
CN105755536A (en) | Nitride epitaxial growth technology adopting AlON buffer layer | |
JP2012054427A (en) | Method of manufacturing compound semiconductor | |
JP2009227545A (en) | Substrate for optical device and method for producing the same | |
CN105762063B (en) | A kind of method of silica-based nitride epitaxial growth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20140618 Assignee: Shandong Jia Rui Jing Xin new material Limited by Share Ltd Assignor: Shandong University Contract record no.: 2018370000043 Denomination of invention: Method for carrying out GaN single crystal growth by using graphic annealing porous structure Granted publication date: 20160511 License type: Exclusive License Record date: 20181011 |