CN103866379A - Method of preparing GaP film material - Google Patents
Method of preparing GaP film material Download PDFInfo
- Publication number
- CN103866379A CN103866379A CN201310750279.0A CN201310750279A CN103866379A CN 103866379 A CN103866379 A CN 103866379A CN 201310750279 A CN201310750279 A CN 201310750279A CN 103866379 A CN103866379 A CN 103866379A
- Authority
- CN
- China
- Prior art keywords
- thin film
- film material
- gap
- preparing
- mixed gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims abstract description 26
- 239000000758 substrate Substances 0.000 claims abstract description 24
- 238000006243 chemical reaction Methods 0.000 claims abstract description 23
- 239000007789 gas Substances 0.000 claims abstract description 23
- 238000000151 deposition Methods 0.000 claims abstract description 19
- 239000003708 ampul Substances 0.000 claims abstract description 15
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 10
- 238000000605 extraction Methods 0.000 claims abstract description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052786 argon Inorganic materials 0.000 claims abstract description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 6
- 239000007787 solid Substances 0.000 claims abstract description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 4
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 4
- 239000001257 hydrogen Substances 0.000 claims abstract description 4
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract 2
- 239000010409 thin film Substances 0.000 claims description 33
- 230000008021 deposition Effects 0.000 claims description 18
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 claims description 11
- 238000000427 thin-film deposition Methods 0.000 claims description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 239000002994 raw material Substances 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 239000010431 corundum Substances 0.000 claims description 3
- 229910052593 corundum Inorganic materials 0.000 claims description 3
- 239000010453 quartz Substances 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 150000002431 hydrogen Chemical class 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 abstract description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 11
- 239000012071 phase Substances 0.000 abstract description 11
- 239000000203 mixture Substances 0.000 abstract description 6
- 238000011065 in-situ storage Methods 0.000 abstract description 3
- 238000007789 sealing Methods 0.000 abstract description 3
- 229910052710 silicon Inorganic materials 0.000 abstract description 3
- 239000000919 ceramic Substances 0.000 abstract description 2
- 229910052732 germanium Inorganic materials 0.000 abstract description 2
- 239000011521 glass Substances 0.000 abstract description 2
- 238000002156 mixing Methods 0.000 abstract description 2
- 231100000252 nontoxic Toxicity 0.000 abstract description 2
- 230000003000 nontoxic effect Effects 0.000 abstract description 2
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 2
- 239000010935 stainless steel Substances 0.000 abstract description 2
- 239000007858 starting material Substances 0.000 abstract description 2
- 239000002341 toxic gas Substances 0.000 abstract description 2
- QZQVBEXLDFYHSR-UHFFFAOYSA-N gallium(III) oxide Inorganic materials O=[Ga]O[Ga]=O QZQVBEXLDFYHSR-UHFFFAOYSA-N 0.000 abstract 2
- 230000006978 adaptation Effects 0.000 abstract 1
- 229910052799 carbon Inorganic materials 0.000 abstract 1
- 229910000154 gallium phosphate Inorganic materials 0.000 abstract 1
- 238000002414 normal-phase solid-phase extraction Methods 0.000 abstract 1
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 47
- 229910005540 GaP Inorganic materials 0.000 description 42
- 239000013078 crystal Substances 0.000 description 10
- 239000010408 film Substances 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 238000009833 condensation Methods 0.000 description 5
- 230000005494 condensation Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000004943 liquid phase epitaxy Methods 0.000 description 2
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 2
- 238000000053 physical method Methods 0.000 description 2
- 238000004549 pulsed laser deposition Methods 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 238000002294 plasma sputter deposition Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- WGPCGCOKHWGKJJ-UHFFFAOYSA-N sulfanylidenezinc Chemical group [Zn]=S WGPCGCOKHWGKJJ-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
技术领域technical field
本发明属于薄膜材料的制备领域,具体涉及一种制备GaP薄膜材料的方法。The invention belongs to the field of preparation of thin film materials, and in particular relates to a method for preparing GaP thin film materials.
背景技术Background technique
GaP是一种人工合成的III-V族化合物型半导体材料,高纯GaP是一种橙红色透明晶体。磷化镓(GaP)单晶材料的熔点为1467℃,磷化镓(GaP)的晶体为闪锌矿型结构,晶格常数为0.5447±0.006nm,其化学键是以共价键为主的混合键,其离子键成分约为20%,300K时带隙(Eg)宽度为2.26eV,属直接跃迁型半导体。磷化镓(GaP)与其他大带隙Ⅲ-Ⅴ族化合物半导体相同,可以通过引入深中心使费米能级接近带隙中部,如掺入铬、铁、氧等杂质元素可成为半绝缘材料。磷化镓(GaP)分为单晶材料和外延材料。工业生产的衬底单晶均为掺入硫、硅杂质的N型半导体。GaP is a synthetic III-V compound semiconductor material, and high-purity GaP is an orange-red transparent crystal. The melting point of gallium phosphide (GaP) single crystal material is 1467°C, the crystal of gallium phosphide (GaP) is a zinc blende structure, the lattice constant is 0.5447±0.006nm, and its chemical bond is mainly a mixture of covalent bonds Bond, its ionic bond composition is about 20%, and the band gap (Eg) width is 2.26eV at 300K, which is a direct transition semiconductor. Gallium phosphide (GaP) is the same as other large band gap III-V compound semiconductors. It can make the Fermi level close to the middle of the band gap by introducing a deep center. For example, doping impurity elements such as chromium, iron, and oxygen can become a semi-insulating material. . Gallium phosphide (GaP) is divided into single crystal material and epitaxial material. Industrially produced substrate single crystals are all N-type semiconductors doped with sulfur and silicon impurities.
GaP单晶早期通过液相法在常压下制备,后采用液体覆盖直拉法制备。现代半导体工业生产的磷化镓(GaP)单晶都是在高压合成炉中,采用定向凝固工艺合成磷化镓多晶,进行适当处理后装入高压单晶炉进行单晶拉制而得。磷化镓外延材料是在磷化镓单晶衬底上通过液相外延或气相外延加扩散生长的方法制得。多用于制造发光二极管(LED)。液相外延材料可制造红色光、黄绿色光、纯绿色光的发光二极管,气相外延加扩散生长的材料,可制造黄色光、黄绿色光的发光二极管。GaP single crystal was prepared by liquid phase method at normal pressure in the early stage, and then prepared by liquid-covered Czochralski method. The gallium phosphide (GaP) single crystals produced in the modern semiconductor industry are all synthesized in high-pressure synthesis furnaces by directional solidification technology, and after appropriate treatment, they are loaded into high-pressure single crystal furnaces for single crystal pulling. Gallium phosphide epitaxial materials are produced on gallium phosphide single crystal substrates by liquid phase epitaxy or gas phase epitaxy plus diffusion growth. It is mostly used in the manufacture of light-emitting diodes (LEDs). Liquid phase epitaxy materials can produce red light, yellow-green light, and pure green light-emitting diodes, and gas-phase epitaxy plus diffusion growth materials can produce yellow light, yellow-green light light-emitting diodes.
III-V族化合物型半导体GaP薄膜材料通常的制备方法除了上述传统方法外,主要还是采用昂贵苛刻的物理方法或复杂昂贵的MOCVD方法。传统方法采用高纯金属Ga和高纯非金属P反应得到GaP,其化学反应式如式(1);物理方法为等离子体溅射法,分子束外延法(MBE),电子束蒸发法,脉冲激光沉积法(PLD),磁控溅射法(MSD)等,MOCVD方法中采用镓的昂贵金属有机化合物液态三甲基镓和磷的剧毒化合物(如气态磷烷PH3)反应制备得到GaP,其化学反应式如式(2)。这些制备方法都对设备要求极高,且设备昂贵、工艺复杂。In addition to the above-mentioned traditional methods, the usual preparation methods of III-V compound semiconductor GaP thin film materials mainly use expensive and harsh physical methods or complex and expensive MOCVD methods. The traditional method uses high-purity metallic Ga and high-purity non-metallic P to react to obtain GaP, and its chemical reaction formula is as shown in formula (1); physical methods include plasma sputtering, molecular beam epitaxy (MBE), electron beam evaporation, and pulsed laser deposition. (PLD), magnetron sputtering (MSD), etc. In the MOCVD method, GaP is prepared by reacting liquid trimethylgallium, an expensive metal-organic compound of gallium, and a highly toxic compound of phosphorus (such as gaseous phosphine PH 3 ). The chemical reaction formula is as formula (2). These preparation methods all require extremely high equipment, and the equipment is expensive and the process is complicated.
本发明人在公开号为CN103173715A、公开日为2013.06.26的发明专利中公开了一种制备GaP薄膜材料的方法。该制备方法使用本发明人在公开号为CN102517562A的发明专利中公开的垂直梯度冷凝薄膜沉积装置上,以Ga2O3、P2O5及还原萃取剂为原料,反应沉积得GaP薄膜,其化学反应如反应式(3)、(4)。该制备方法采用设备简单,使用原料简单、价廉易得;但其制备工艺有待改进,制备得GaP薄膜材料纯度与结晶度都有待进一步提高。The present inventor disclosed a method for preparing a GaP thin film material in the invention patent with the publication number CN103173715A and the publication date of 2013.06.26. The preparation method uses the vertical gradient condensation thin film deposition device disclosed by the inventor in the invention patent with the publication number of CN102517562A, using Ga 2 O 3 , P 2 O 5 and reducing extraction agent as raw materials, and reacts and deposits GaP thin film. Chemical reactions such as reaction formula (3), (4). The preparation method adopts simple equipment, uses simple raw materials, and is cheap and easy to obtain; however, the preparation process needs to be improved, and the purity and crystallinity of the prepared GaP thin film material need to be further improved.
Ga+P→GaP→GaP/substrate (1)Ga+P→GaP→GaP/subst rate (1)
Ga(CH3)3+PH3→GaP+3CH4↑ (2)Ga(CH 3 ) 3 +PH 3 →GaP+3CH 4 ↑ (2)
Ga2O3+P2O5+8H2→2GaP+8H2O (3)Ga 2 O 3 +P 2 O 5 +8H 2 →2GaP+8H 2 O (3)
Ga2O3+P2O5+8C→2GaP+8CO (4)Ga 2 O 3 +P 2 O 5 +8C→2GaP+8CO (4)
发明内容Contents of the invention
本发明的目的在于提供一种制备GaP薄膜材料的方法,进一步优化GaP薄膜材料制备工艺,提高GaP薄膜材料的纯度与结晶度。The purpose of the present invention is to provide a method for preparing GaP thin film material, further optimize the preparation process of GaP thin film material, and improve the purity and crystallinity of GaP thin film material.
本发明的技术方案为:一种制备GaP薄膜材料的方法,其特征在于,包括以下步骤:The technical scheme of the present invention is: a kind of method for preparing GaP thin film material, it is characterized in that, comprises the following steps:
步骤1.将Ga2O3与P2O5按摩尔比Ga:P=1:1混合后研磨均匀,加入与固体原料质量50%~100%的无水乙醇,再次研磨均匀后干燥,用10~15MPa的压力将其压成片材,然后将其密封于真空安瓶中,将安瓶放置于反应器刚玉坩埚中,在管式电炉中加热到500℃~600℃,恒温2~4h,自然冷却得GaPO4;Step 1. Mix Ga 2 O 3 and P 2 O 5 at a molar ratio of Ga:P=1:1, grind them evenly, add anhydrous ethanol with a mass of 50% to 100% of the solid raw material, grind them evenly, and dry them with Press it into a sheet under a pressure of 10-15MPa, then seal it in a vacuum ampoule, place the ampoule in the corundum crucible of the reactor, heat it to 500°C-600°C in a tubular electric furnace, and keep the temperature constant for 2-4 hours , naturally cooled to GaPO 4 ;
步骤2.将真空石英安瓶打碎,放置GaPO4于薄膜沉积装置内反应区,基片放置于薄膜沉积装置内沉积区,用高纯氮气抽真空置换到氧气浓度为ppm级,然后用Ar+H2混合气体抽真空置换1~2次,然再抽真空至7~13Pa,控制升温速度为5~10℃/min,反应区加热升温至1200℃~1250℃,沉积区加热升温至600℃~800℃,通入氢气、作为还原萃取剂,恒温3~4h,其间保持真空度≥-0.08Mpa;然后自然降温至室温,充入高纯Ar+H2混合气体至常压,基片表面沉积得GaP薄膜材料。Step 2. Break the vacuum quartz ampoule, place GaPO 4 in the reaction area of the thin film deposition device, place the substrate in the deposition area of the thin film deposition device, use high-purity nitrogen to evacuate and replace the oxygen concentration to the ppm level, and then use Ar +H 2 mixed gas is evacuated for 1-2 times, then evacuated to 7-13Pa, the temperature rise rate is controlled at 5-10°C/min, the reaction zone is heated to 1200°C-1250°C, and the deposition area is heated to 600°C ℃~800℃, pass hydrogen gas as a reducing extraction agent, keep the temperature for 3~4h, keep the vacuum degree ≥-0.08Mpa; then cool down to room temperature naturally, fill high-purity Ar+H 2 mixed gas to normal pressure, the substrate The GaP thin film material is deposited on the surface.
优选的,所述片材厚度为1~10mm。所述Ar、H2混合气体中H2体积占混合气体总体积的10%~30%。Preferably, the thickness of the sheet is 1-10 mm. The volume of H 2 in the Ar and H 2 mixed gas accounts for 10%-30% of the total volume of the mixed gas.
优选的,步骤2中所述还原萃取剂还可以采用氢-氩混合气、活性炭(C)或碳氢化合物。进一步,当采用活性炭作为还原萃取剂时,应将固态活性炭放置于薄膜沉积装置反应区。Preferably, the reducing extraction agent in step 2 can also use hydrogen-argon mixed gas, activated carbon (C) or hydrocarbons. Further, when activated carbon is used as the reduction extraction agent, solid activated carbon should be placed in the reaction zone of the thin film deposition device.
本发明的原理和化学反应如反应式(5)、(6):Principle of the present invention and chemical reaction are as reaction formula (5), (6):
Ga2O3+P2O5→2GaPO4 (5)Ga 2 O 3 +P 2 O 5 →2GaPO 4 (5)
2GaPO4+8H2→2GaP+8H2O↑ (6)2GaPO 4 +8H 2 →2GaP+8H 2 O↑ (6)
本发明提供一种制备GaP薄膜材料的方法,以Ga2O3、P2O5为起始原料,将Ga2O3与P2O5进行等摩尔比混合,密封于真空安瓶中,在500℃~600℃条件下反应,生成GaPO4;然后打碎安瓶,以氢气、氢气-氩气混合气、活性炭及碳氢化合物等为还原萃取剂,采用自创的高温原位固相类萃取反应气相沉积法(High-temperature in-situ solid-state extract-like vapordeposition method),在垂直梯度冷凝薄膜沉积装置中,在较低真空条件下、在Si、Ge、不锈钢、导电玻璃、导电陶瓷等不同衬底(基片)上成功制备得厚度可控的、灰黑色的、具有较高结晶度、高纯度单一物相的GaP薄膜材料。本发明使用的原料简单,价廉易得,均为固体或无毒气体,对环境无污染,对操作人员无安全威胁;制备设备简单,制备周期短,对衬底(基片)材料适应性强,制备成本较低,可实现较大规模的GaP薄膜材料制备。The invention provides a method for preparing a GaP thin film material, using Ga 2 O 3 and P 2 O 5 as starting materials, mixing Ga 2 O 3 and P 2 O 5 in an equimolar ratio, sealing them in a vacuum ampoule, React at 500℃~600℃ to generate GaPO 4 ; then break the ampoule, use hydrogen, hydrogen-argon mixed gas, activated carbon and hydrocarbons as reducing and extracting agents, and use self-created high-temperature in-situ solid phase High-temperature in-situ solid-state extract-like vapor deposition method, in a vertical gradient condensation thin film deposition device, under low vacuum conditions, on Si, Ge, stainless steel, conductive glass, conductive GaP film materials with controllable thickness, gray black, high crystallinity and high purity single phase have been successfully prepared on different substrates (substrates) such as ceramics. The raw materials used in the invention are simple, cheap and easy to obtain, all of which are solid or non-toxic gas, have no pollution to the environment, and have no safety threat to operators; the preparation equipment is simple, the preparation cycle is short, and the substrate (substrate) material is adaptable Strong, low preparation cost, and large-scale GaP thin film material preparation can be realized.
本发明制备得GaP薄膜材料纯度更高、结晶度更好;制备工艺中采用密封体系,避免因原料升华造成损失,可按化学计量比生成GaPO4;工艺可控性高;且制备温度更低,节约能耗。The GaP thin film material prepared by the invention has higher purity and better crystallinity; a sealing system is adopted in the preparation process to avoid losses caused by sublimation of raw materials, and GaPO 4 can be generated according to the stoichiometric ratio; the process is highly controllable; and the preparation temperature is lower , save energy consumption.
附图说明Description of drawings
图1为实施例1步骤1反应得GaPO4XRD衍射谱图。FIG. 1 is the XRD diffraction spectrum of GaPO 4 obtained from the reaction in Step 1 of Example 1.
图2为实施例1制备得GaP薄膜材料XRD衍射谱图。FIG. 2 is an XRD diffraction spectrum of the GaP thin film material prepared in Example 1.
图3为实施例2步骤1反应得GaPO4XRD衍射谱图。Fig. 3 is the XRD diffraction spectrum of GaPO 4 obtained from the reaction in Step 1 of Example 2.
图4为实施例2制备得GaP薄膜材料XRD衍射谱图。FIG. 4 is the XRD diffraction spectrum of the GaP thin film material prepared in Example 2.
图5为实施例3制备得GaP薄膜材料XRD衍射谱图。FIG. 5 is an XRD diffraction spectrum of the GaP thin film material prepared in Example 3.
具体实施方式Detailed ways
下面结合具体实施例与附图,对本发明做进一步说明。The present invention will be further described below in conjunction with specific embodiments and accompanying drawings.
实施例1Example 1
制备GaP薄膜材料的方法,包括以下步骤:The method for preparing GaP thin film material, comprises the following steps:
步骤1.用万分之一电子天平准确称取Ga2O3,P2O5,按摩尔比Ga/P=1.0/1.0的比例混合后研磨均匀,加入与固体原料质量50%相当的无水乙醇,再次仔细研磨均匀后,干燥除去溶剂,用12MPa的压力将其压成厚度为3mm的圆片或方片,然后将其密封于真空安瓶中,将安瓶放置于反应器刚玉坩埚中,在管式电炉中加热到500℃,恒温2h,自然冷却后得到GaPO4固体材料(其XRD衍射谱图如图1所示);Step 1. Accurately weigh Ga 2 O 3 and P 2 O 5 with an electronic balance of 1/10,000, mix them according to the ratio of molar ratio Ga/P=1.0/1.0 and grind them evenly. Water and ethanol, after careful grinding again, dry to remove the solvent, press it into a disc or square with a thickness of 3mm with a pressure of 12MPa, then seal it in a vacuum ampoule, and place the ampoule in the corundum crucible of the reactor , heated to 500°C in a tube electric furnace, kept at a constant temperature for 2 hours, and obtained GaPO 4 solid material after natural cooling (its XRD diffraction pattern is shown in Figure 1);
步骤2.将安瓶打破,放置GaPO4于垂直梯度冷凝薄膜沉积装置内反应区,基片放置于薄膜沉积装置内沉积区内指定位置,用高纯氮气抽真空置换到氧气浓度为ppm级,然后再用Ar+H2混合气体(含H2体积百分比为10%~30%)抽真空置换2次,然后抽真空至1mmHg左右,控制升温速度为5℃/min,反应区加热升温至1250℃,沉积区加热升温至800℃;当反应区温度达到预定温度后,开启基片旋转装置,设定转速5转/分;通入氢气、作为还原萃取剂,恒温4h,其间保持真空度不小于-0.08Mpa;最后自然降温至室温,充入高纯Ar+H2混合气体至常压后打开尾气阀门,再打开沉积装置,取出沉积基片,即得到橙红色的GaP/substrate薄膜。Step 2. Break the ampoule, place GaPO 4 in the reaction area of the vertical gradient condensation thin film deposition device, place the substrate in the designated position in the deposition area of the thin film deposition device, and replace it with high-purity nitrogen to oxygen concentration of ppm level. Then use Ar+H 2 mixed gas (containing H 2 volume percentage of 10% to 30%) to vacuumize and replace twice, then vacuumize to about 1mmHg, control the heating rate to 5°C/min, and heat the reaction zone to 1250 ℃, the deposition area was heated to 800 °C; when the temperature in the reaction area reached the predetermined temperature, the substrate rotation device was turned on, and the rotation speed was set at 5 rpm; hydrogen gas was introduced as a reducing and extracting agent, and the temperature was kept constant for 4 hours, during which the vacuum degree was kept constant. Less than -0.08Mpa; finally cool down to room temperature naturally, fill high-purity Ar+H 2 mixed gas to normal pressure, open the tail gas valve, then open the deposition device, take out the deposition substrate, and obtain an orange-red GaP/substrate thin film.
制备得GaP薄膜材料经过日本理学D/max XRD检测分析,其XRD衍射谱图如图2所示。分析显示GaP薄膜材料为高结晶度、高纯度的纯相GaP单一物相。薄膜经过台阶测厚仪测量与计算值相当,误差较小,厚度约在2~20μm之间。The prepared GaP thin film material was detected and analyzed by Rigaku D/max XRD, and its XRD diffraction pattern is shown in Figure 2. The analysis shows that the GaP thin film material is a single phase of pure phase GaP with high crystallinity and high purity. The film measured by the step thickness gauge is equivalent to the calculated value, the error is small, and the thickness is about 2-20 μm.
实施例2Example 2
制备GaP薄膜材料的方法,包括以下步骤:The method for preparing GaP thin film material, comprises the following steps:
步骤1.用万分之一电子天平准确称取Ga2O3,P2O5,按摩尔比Ga/P=1.0/1.0的比例混合后研磨均匀,加入与固体原料质量50%相当的无水乙醇,再次仔细研磨均匀后,干燥除去溶剂,用12MPa的压力将其压制成厚度为3mm的圆片或方片,然后将其密封于真空安瓶中,放置于石英舟反应器中,在管式电炉中加热至500℃,恒温2h,自然冷却至室温后得到GaPO4固体材料(其XRD衍射谱图如图3所示);Step 1. Accurately weigh Ga 2 O 3 and P 2 O 5 with an electronic balance of 1/10,000, mix them according to the ratio of molar ratio Ga/P=1.0/1.0 and grind them evenly. Water ethanol, after careful grinding again, dry to remove the solvent, press it into a disc or square sheet with a thickness of 3mm with a pressure of 12MPa, then seal it in a vacuum ampoule and place it in a quartz boat reactor. Heated to 500°C in a tubular electric furnace, kept at a constant temperature for 2 hours, and cooled naturally to room temperature to obtain a GaPO 4 solid material (its XRD diffraction pattern is shown in Figure 3);
步骤2.然后将安瓶打碎,放置GaPO4于垂直梯度冷凝薄膜沉积装置内反应区,基片放置于薄膜沉积装置内沉积区内指定位置,用高纯氮气抽真空置换到氧气浓度为ppm级,然后再用Ar+H2混合气体(含H2体积百分比为10%~30%)抽真空置换2次,然后抽真空至1mmHg左右;控制升温速度为10℃/min,反应区加热升温至反应区1250℃,沉积区加热升温至800℃;当反应区、沉积区温度达到预定温度后,开启基片旋转装置,转速5转/分;通入氢气、作为还原萃取剂,恒温4h,其间保持真空度不小于-0.08Mpa;最后自然降温至室温,充入高纯Ar+H2混合气体至常压后打开尾气阀门,再打开沉积装置,取出沉积基片,即得到橙红色的GaP/substrate薄膜。Step 2. Then break the ampoule, place GaPO 4 in the reaction area of the vertical gradient condensation thin film deposition device, place the substrate in the designated position in the deposition area of the thin film deposition device, and replace it with high-purity nitrogen to an oxygen concentration of ppm level, and then use Ar+H 2 mixed gas (containing H 2 volume percentage of 10% to 30%) to vacuumize and replace twice, and then vacuumize to about 1mmHg; control the temperature rise rate to 10°C/min, and heat up the reaction zone When the reaction zone reaches 1250°C, the deposition zone is heated to 800°C; when the temperature of the reaction zone and the deposition zone reaches the predetermined temperature, the substrate rotation device is turned on at a speed of 5 rpm; hydrogen gas is introduced as a reducing extraction agent, and the temperature is kept constant for 4 hours. Keep the vacuum degree not less than -0.08Mpa; finally cool down to room temperature naturally, fill high-purity Ar+H 2 mixed gas to normal pressure, open the tail gas valve, then open the deposition device, take out the deposition substrate, and obtain orange-red GaP /substrate membrane.
制备得GaP薄膜材料经过日本理学D/max XRD检测分析,其XRD衍射谱图如图4所示。分析显示GaP薄膜材料为高结晶度、高纯度的纯相GaP单一物相。薄膜经过台阶测厚仪测量与计算值相当,误差较小,厚度约在2~20μm之间。薄膜经过台阶测厚仪测量与计算值相当,误差较小,厚度约在2~20μm之间。The prepared GaP thin film material was detected and analyzed by Rigaku D/max XRD, and its XRD diffraction spectrum is shown in Figure 4. The analysis shows that the GaP thin film material is a single phase of pure phase GaP with high crystallinity and high purity. The film measured by the step thickness gauge is equivalent to the calculated value, the error is small, and the thickness is about 2-20 μm. The film measured by the step thickness gauge is equivalent to the calculated value, the error is small, and the thickness is about 2-20 μm.
实施例3Example 3
制备GaP薄膜材料的方法,包括以下步骤:The method for preparing GaP thin film material, comprises the following steps:
步骤1.用万分之一电子分析天平准确称取Ga2O3、P2O5、活性炭C,按摩尔比Ga/P/C=1.0/1.0/8.0的比例均匀混合研磨,加入与固体原料质量50%~100%相当的无水乙醇,仔细研磨均匀后,用12MPa的压力将其压成厚度为3mm的圆片或方片;Step 1. Accurately weigh Ga 2 O 3 , P 2 O 5 , and activated carbon C with an electronic analytical balance of 1/10,000, mix and grind evenly according to the molar ratio Ga/P/C=1.0/1.0/8.0, add and solid 50% to 100% equivalent absolute ethanol as raw material, after careful grinding and uniformity, press it into a disc or square sheet with a thickness of 3mm with a pressure of 12MPa;
步骤2.然后将片材放置于垂直梯度冷凝薄膜沉积装置内反应区;用高纯氮气抽真空置换到氧气浓度为ppm级,然后再用Ar+H2混合气体(含H2体积百分比为10%~30%)抽真空置换1~2次,沉积所需基片经过处理后预先放置于沉积装置内指定位置;然后抽真空至1mmHg左右,控制升温速度为10℃/min,反应区加热升温至1250℃,沉积区加热升温至800℃;恒温4h,其间保持真空度不小于-0.08Mpa;最后自然降温至室温,充入高纯Ar+H2混合气体至常压后打开尾气阀门,打开反应器,取出沉积基片,然后再在流动纯氢气或高纯Ar+H2混合气体气氛下还原纯化4h,即得到GaP/substrate薄膜。Step 2. Then place the sheet in the reaction zone of the vertical gradient condensation film deposition device; use high-purity nitrogen to evacuate and replace the oxygen concentration to the ppm level, and then use Ar+H 2 mixed gas (containing H 2 volume percentage of 10 % to 30%) vacuum replacement 1 to 2 times, the substrate required for deposition is placed in the designated position in the deposition device after treatment; then the vacuum is pumped to about 1mmHg, the temperature rise rate is controlled to 10°C/min, and the reaction zone is heated up to 1250°C, the deposition area was heated to 800°C; the temperature was kept constant for 4 hours, and the vacuum degree was kept at not less than -0.08Mpa; finally, the temperature was naturally cooled to room temperature, and the exhaust gas valve was opened after filling high-purity Ar+H 2 mixed gas to normal pressure. Take out the deposition substrate from the reactor, and then reduce and purify it for 4 hours under the atmosphere of flowing pure hydrogen or high-purity Ar+H 2 mixed gas to obtain the GaP/substrate thin film.
制备得GaP薄膜材料经过日本理学D/max XRD检测分析,其XRD衍射谱图如图5所示。分析显示GaP薄膜材料为高结晶度、高纯度的纯相GaP单一物相。薄膜经过台阶测厚仪测量与计算值相当,误差较小,厚度约在2~20μm之间。The prepared GaP thin film material was detected and analyzed by Rigaku D/max XRD, and its XRD diffraction pattern is shown in Figure 5. The analysis shows that the GaP thin film material is a single phase of pure phase GaP with high crystallinity and high purity. The film measured by the step thickness gauge is equivalent to the calculated value, the error is small, and the thickness is about 2-20 μm.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310750279.0A CN103866379B (en) | 2013-12-31 | 2013-12-31 | A kind of method preparing GaP thin-film material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310750279.0A CN103866379B (en) | 2013-12-31 | 2013-12-31 | A kind of method preparing GaP thin-film material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103866379A true CN103866379A (en) | 2014-06-18 |
CN103866379B CN103866379B (en) | 2016-08-17 |
Family
ID=50905373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310750279.0A Expired - Fee Related CN103866379B (en) | 2013-12-31 | 2013-12-31 | A kind of method preparing GaP thin-film material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103866379B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104498896A (en) * | 2014-12-26 | 2015-04-08 | 电子科技大学 | Preparation method of film material for compound semiconductor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN86108965A (en) * | 1985-12-20 | 1987-12-09 | 联合碳化公司 | Crystalline gallophosphate compositions |
CN103147038A (en) * | 2012-12-19 | 2013-06-12 | 常州星海电子有限公司 | Method of preparing GaAs thin-film material |
CN103159193A (en) * | 2012-12-19 | 2013-06-19 | 常州星海电子有限公司 | Preparation method of InP film material |
CN103173715A (en) * | 2012-12-19 | 2013-06-26 | 常州星海电子有限公司 | Preparation method of GaP film material |
CN103352214A (en) * | 2012-12-19 | 2013-10-16 | 常州星海电子有限公司 | Preparation method of In1-xGaxP(x is not lower than 0 and not greater than 1)/Substrate film material |
-
2013
- 2013-12-31 CN CN201310750279.0A patent/CN103866379B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN86108965A (en) * | 1985-12-20 | 1987-12-09 | 联合碳化公司 | Crystalline gallophosphate compositions |
CN103147038A (en) * | 2012-12-19 | 2013-06-12 | 常州星海电子有限公司 | Method of preparing GaAs thin-film material |
CN103159193A (en) * | 2012-12-19 | 2013-06-19 | 常州星海电子有限公司 | Preparation method of InP film material |
CN103173715A (en) * | 2012-12-19 | 2013-06-26 | 常州星海电子有限公司 | Preparation method of GaP film material |
CN103352214A (en) * | 2012-12-19 | 2013-10-16 | 常州星海电子有限公司 | Preparation method of In1-xGaxP(x is not lower than 0 and not greater than 1)/Substrate film material |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104498896A (en) * | 2014-12-26 | 2015-04-08 | 电子科技大学 | Preparation method of film material for compound semiconductor |
WO2016101388A1 (en) * | 2014-12-26 | 2016-06-30 | 电子科技大学 | Preparation method of compound semiconductor thin-film material |
Also Published As
Publication number | Publication date |
---|---|
CN103866379B (en) | 2016-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Galazka | β-Ga2O3 for wide-bandgap electronics and optoelectronics | |
Stepanov et al. | Gallium OXIDE: Properties and applica 498 a review | |
Ashraf et al. | MOCVD of vertically aligned ZnO nanowires using bidentate ether adducts of dimethylzinc | |
CN102383181B (en) | Method for preparing n-type group III nitride single crystal, said single crystal, and crystal substrate | |
JP4083449B2 (en) | CdTe single crystal manufacturing method | |
CN108193282B (en) | A kind of synthetic method and its application of high-purity silicon carbide raw material | |
US20120171848A1 (en) | Method and System for Manufacturing Silicon and Silicon Carbide | |
WO2007108338A1 (en) | Process and apparatus for producing nitride single crystal | |
CN109183143B (en) | Method for improving AlN single crystal purity by using reducing gas | |
CN103173715B (en) | Preparation method of GaP film material | |
CN110203933B (en) | Method for reducing nitrogen impurity content in silicon carbide powder | |
CN103866379B (en) | A kind of method preparing GaP thin-film material | |
US9447517B2 (en) | Seed material for liquid phase epitaxial growth of monocrystalline silicon carbide, and method for liquid phase epitaxial growth of monocrystalline silicon | |
CN103911600B (en) | A kind of method preparing InP thin-film material | |
Santailler et al. | Chemically assisted vapour transport for bulk ZnO crystal growth | |
CN103820771B (en) | A kind of method of preparing GaAs thin-film material | |
CN103147038B (en) | Method of preparing GaAs thin-film material | |
CN103159193B (en) | Preparation method of InP film material | |
CN104828791B (en) | Preparation method of rare earth element Ce doped GaN nanowire | |
CN104498896A (en) | Preparation method of film material for compound semiconductor | |
Richman | Vapor phase growth and properties of aluminum phosphide | |
CN102703973A (en) | Method for growing zinc oxide crystal | |
CN103352214B (en) | Preparation method of In1-xGaxP(x is not lower than 0 and not greater than 1)/Substrate film material | |
JP2006027988A (en) | Method for producing nitride single crystal | |
JPS6115150B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160817 Termination date: 20191231 |