CN103856058A - Voltage conversion circuit and voltage conversion controller - Google Patents
Voltage conversion circuit and voltage conversion controller Download PDFInfo
- Publication number
- CN103856058A CN103856058A CN201310178681.6A CN201310178681A CN103856058A CN 103856058 A CN103856058 A CN 103856058A CN 201310178681 A CN201310178681 A CN 201310178681A CN 103856058 A CN103856058 A CN 103856058A
- Authority
- CN
- China
- Prior art keywords
- voltage
- current
- feedback
- output
- terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Dc-Dc Converters (AREA)
Abstract
本发明涉及一种电压转换电路,包含一应用电路及一电压转换控制器。应用电路包含一输出端、一回授端及耦接于回授端的一回授电容。输出端具有一输出电压,并耦接一电流负载。电压转换控制器具有一回授端针脚,耦接于所述回授端。电压转换控制器具有一第一模式以及一第二模式。于所述第一模式时,所述输出端提供受调节的输出电压并供应电流予电流负载,且回授端针脚接收一回授讯号。于所述第二模式时,所述输出电压不受调节,且所述回授端针脚提供固定周期性的一计数频率讯号,计数频率讯号的周期大小是由回授电容的电容值所决定。
The present invention relates to a voltage conversion circuit, comprising an application circuit and a voltage conversion controller. The application circuit comprises an output terminal, a feedback terminal and a feedback capacitor coupled to the feedback terminal. The output terminal has an output voltage and is coupled to a current load. The voltage conversion controller has a feedback terminal pin coupled to the feedback terminal. The voltage conversion controller has a first mode and a second mode. In the first mode, the output terminal provides a regulated output voltage and supplies current to the current load, and the feedback terminal pin receives a feedback signal. In the second mode, the output voltage is not regulated, and the feedback terminal pin provides a fixed periodic counting frequency signal, and the period size of the counting frequency signal is determined by the capacitance value of the feedback capacitor.
Description
【技术领域】 【Technical field】
本发明关于一种电压转换电路,特别是一种包含多功能的单一针脚的电压转换控制器的电压转换电路。The present invention relates to a voltage conversion circuit, in particular to a voltage conversion circuit including a multi-functional single-pin voltage conversion controller.
【背景技术】 【Background technique】
请参考美国专利号US7,848,124。电压转换控制器是应用于一驰返式开关电源转换电路(fly-back switching power converter)之中。驰返式开关电源转换器为电压转换电路组态的一种,其目的在提供一稳定的输出电压。当所述驰返式开关电源转换电路处于稳态操作时,所述电压转换控制器通过负回授控制,针对其输出电压进行调节(regulation),以提供一稳定且额定的输出电压值以及输出电流予一电流负载。此时其负回授控制路径上的回授点IN3上具有一讯号,是为一与其输出电流大小线性相关的讯号,所述电压转换控制器即根据回授点IN3上的讯号进行负回授控制。而当所述驰返式开关电源转换电路处于非稳态操作时,例如当负载电流过大而进行负载电流过大保护操作,或是电路初始启动的软启动操作时,此时额定的输出电压值并未建立,而由于所述回授点IN3上的讯号与输出端的讯号相关,此时回授点IN3上的讯号在经历短暂的瞬时反应之后,最终为一连续的直流电压讯号,而且对于电路操作并未提供具有实质效益的功能。Please refer to US Patent No. US7,848,124. The voltage conversion controller is applied in a fly-back switching power converter. The flyback switching power converter is a kind of voltage conversion circuit configuration, and its purpose is to provide a stable output voltage. When the flyback switching power supply conversion circuit is in steady-state operation, the voltage conversion controller regulates its output voltage through negative feedback control to provide a stable and rated output voltage value and output The current is given to a current load. At this time, there is a signal on the feedback point IN3 on the negative feedback control path, which is a signal linearly related to the magnitude of its output current, and the voltage conversion controller performs negative feedback according to the signal on the feedback point IN3 control. And when the flyback switching power supply conversion circuit is in an unsteady state operation, for example, when the load current is too large and the load current is too large to protect the operation, or the soft start operation of the initial startup of the circuit, the rated output voltage at this time The value has not been established, and because the signal on the feedback point IN3 is related to the signal at the output terminal, the signal on the feedback point IN3 at this time is finally a continuous DC voltage signal after experiencing a short transient response, and for Circuit operation does not provide a function of substantial benefit.
在目前的主流应用上,电压转换控制器通常以集成电路实现,并配合外部的应用电路组成电压转换电路,以达到成本、电路体积、以及使用弹性上的优化。所述集成电路包含与外部电子组件电性相连的针脚(pins),而为求成本与体积的优化,在不影响使用弹性的前提下,集成电路的针脚数目可以愈少愈好。因此在设计上,若能让针脚在所有的电路使用状态之下,提供有实质效益的功能,即是对针脚的优化利用。以上述举例的先前技术而言,其代表回授点的针脚在电压转换控制器处于非稳态操作时,并未提供对于电路操作上具有实质效益的功能,此乃目前一般电压转换控制器集成电路的普遍现象。In the current mainstream applications, the voltage conversion controller is usually implemented by an integrated circuit, and cooperates with an external application circuit to form a voltage conversion circuit, so as to optimize cost, circuit size, and flexibility of use. The integrated circuit includes pins that are electrically connected to external electronic components. In order to optimize cost and volume, the number of pins of the integrated circuit can be as few as possible without affecting the flexibility of use. Therefore, in terms of design, if the pins can provide functions with substantial benefits under all circuit usage states, it is the optimal use of the pins. Taking the previous technology as an example above, the pin representing the feedback point does not provide a function that has substantial benefits for the circuit operation when the voltage conversion controller is in an unsteady state. This is the current integration of general voltage conversion controllers. common phenomenon in circuits.
【发明内容】 【Content of invention】
有鉴于此,本发明提供一种电压转换电路,包含一电压转换控制器,是一集成电路,且所述电压转换控制器能提供具有多功能的单一针脚,据以优化对针脚的利用。In view of this, the present invention provides a voltage conversion circuit, which includes a voltage conversion controller, which is an integrated circuit, and the voltage conversion controller can provide a single pin with multiple functions, so as to optimize the utilization of the pins.
本发明所揭露的电压转换电路,包含一应用电路及一电压转换控制器。应用电路包含一输出端、一回授端及耦接于回授端的一回授电容。输出端具有一输出电压,并耦接一电流负载。电压转换控制器具有一回授端针脚,耦接于所述回授端。电压转换控制器具有一第一模式以及一第二模式。于所述第一模式时,所述输出端提供受调节的输出电压并供应电流予电流负载,且回授端针脚接收一回授讯号。于所述第二模式时,所述输出电压不受调节,且所述回授端针脚提供固定周期性的一计数频率讯号,计数频率讯号的周期大小是由回授电容的电容值所决定。The voltage conversion circuit disclosed in the present invention includes an application circuit and a voltage conversion controller. The application circuit includes an output terminal, a feedback terminal and a feedback capacitor coupled to the feedback terminal. The output terminal has an output voltage and is coupled to a current load. The voltage conversion controller has a feedback terminal pin coupled to the feedback terminal. The voltage conversion controller has a first mode and a second mode. In the first mode, the output terminal provides a regulated output voltage and supplies current to a current load, and the feedback terminal pin receives a feedback signal. In the second mode, the output voltage is not adjusted, and the feedback terminal pin provides a counting frequency signal with a fixed period, and the period of the counting frequency signal is determined by the capacitance value of the feedback capacitor.
本发明的功效在于,本发明所揭露的技术特征能够节省集成电路针脚的使用量,因而能进一步节省成本;且同一设计的电压转换控制器能使用于各种不同的应用上,也因而减少集成电路组件因应各种不同应用所衍生的版本数量,而简化制造商生产、库存、管理的问题。The effect of the present invention is that the technical features disclosed in the present invention can save the use of integrated circuit pins, thereby further saving costs; and the voltage conversion controller of the same design can be used in various applications, thereby reducing integration The number of versions of circuit components derived from various applications simplifies production, inventory, and management issues for manufacturers.
有关本发明的特征、实作与功效,兹配合图式作最佳实施例详细说明如下。Regarding the features, implementation and effects of the present invention, the preferred embodiments are described in detail below in conjunction with the drawings.
【附图说明】 【Description of drawings】
图1为本发明的电压转换器的电路示意图。FIG. 1 is a schematic circuit diagram of a voltage converter of the present invention.
图2为本发明的电压转换控制器的组成功能方块示意图。FIG. 2 is a schematic functional block diagram of the voltage conversion controller of the present invention.
图3为本发明的电压转换控制器进行软启动操作时,各主要端点的电压波形示意图。FIG. 3 is a schematic diagram of the voltage waveforms of each main terminal when the voltage conversion controller of the present invention performs a soft start operation.
图4为图3中局部放大区域的电压波形示意图。FIG. 4 is a schematic diagram of a voltage waveform in a partially enlarged region in FIG. 3 .
图5为本发明的电压转换控制器进行输出过电流保护操作时,各主要端点的电压波形示意图。FIG. 5 is a schematic diagram of the voltage waveforms of each main terminal when the voltage conversion controller of the present invention performs an output overcurrent protection operation.
图6为本发明的电压转换控制器之中,振荡控制器的电路示意图。FIG. 6 is a schematic circuit diagram of an oscillation controller among the voltage conversion controllers of the present invention.
主要组件符号说明:Description of main component symbols:
100 电压转换器 151 光感测组件100 Voltage Converter 151 Light Sensing Component
110 电源供应单元 243 第二电流开关110
111 桥式全波整流器 244 第二电流组件111 Bridge full-
112 输入稳压电容 245 内部电压源112
113 一次侧线圈 251 计数器113
130 输出单元 252 软启动控制电路130
131 二次侧线圈 253 过载保护控制电路131
132 输出端二极管 254 关闭逻辑电路132
133 输出稳压电容 255 振荡控制器133
134 第一回授电阻 280 充放电电路134 The
135 第二回授电阻 310 输出电压波形135
136 限流电阻 320 振荡控制器的输出波形136 Current limiting
137 发光二极管 330 回授端针脚的电压波形137 Light-
138 三端并联稳压器 331 振荡控制器的第一比较电压值138 Three-
150 回授电路单元 332 振荡控制器的第二比较电压值150
340 限电流控制级的输出波形 242 第一电流开关340 The output waveform of the current-limiting
341 限电流控制级于稳态操作 等效限电流的电压值341 The voltage value of the equivalent current-limiting control stage for steady-state operation
下的350 感流电压脚的电压波形The voltage waveform of the sense voltage pin under 350
152 回授电容 360 340与350局部放大波形的区域152
170 功率开关单元 510 过载保护控制电路的输出波形170
171 功率开关 520 振荡控制器输出波形171
172 感流电阻 530 回授端针脚的电压波形172
200 电压转换控制器 531 振荡控制器的第一比较电压值200
210 功率开关控制脚 532 振荡控制器的第二比较电压值210 Power
211 功率开关驱动级 540 限电流控制级的输出波形211 Power
212 脉宽调变闩锁器 550 感流电压脚的电压波形212 Pulse
213 内部振荡器 610 控制器输入端213
214 脉宽调变比较器 620 控制器输出端214
215 限电流控制级 630 第一比较器215 current
220 感流电压脚 640 第二比较器220 current
221 增益级 650 第一比较电压221
230 接地脚 660 第二比较电压230
240 回授端针脚 670 设定重置闩锁器240
241 第一电流组件241 The first current component
【具体实施方式】 【Detailed ways】
在说明书及后续的申请专利范围当中,"耦接"一词在此是包含任何直接及间接的电气连接手段。因此,若文中描述一第一装置耦接于一第二装置,则代表所述第一装置可直接电气连接于所述第二装置,或通过其它装置或连接手段间接地电气连接至所述第二装置。In the description and the scope of subsequent patent applications, the term "coupling" here includes any direct and indirect electrical connection means. Therefore, if it is described in the text that a first device is coupled to a second device, it means that the first device may be directly electrically connected to the second device, or indirectly electrically connected to the second device through other devices or connection means. Two devices.
图1为一电压转换电路100的电路示意图。电压转换电路100是为一驰返式开关电源转换电路的组态。电压转换电路100包含本发明的电压转换控制器200以及一应用电路。应用电路包含一输出端及一回授端COMP。输出端具有一输出电压,并耦接一电流负载。电压转换控制器200更包含一电源供应单元110、一输出单元130、一回授电路单元150以及一功率开关单元170。FIG. 1 is a schematic circuit diagram of a voltage conversion circuit 100 . The voltage conversion circuit 100 is configured as a flyback switching power conversion circuit. The voltage conversion circuit 100 includes the
如图1所示,电源供应单元110包括一桥式全波整流器111、一输入稳压电容112、以及一一次侧线圈113。As shown in FIG. 1 , the power supply unit 110 includes a bridge full-wave rectifier 111 , an input voltage stabilizing capacitor 112 , and a primary coil 113 .
桥式全波整流器111是将一输入的交流电源VAC进行全波整流并提供一全波整流结果于其输出。The bridge full-wave rectifier 111 performs full-wave rectification on an input AC power VAC and provides a full-wave rectification result at its output.
输入稳压电容112耦接于桥式全波整流器111的输出,并对全波整流结果进行稳压,以产生一输入电压VIN于输入稳压电容112上。The input stabilizing capacitor 112 is coupled to the output of the bridge full-wave rectifier 111 , and stabilizes the full-wave rectified result to generate an input voltage VIN on the input stabilizing capacitor 112 .
一次侧线圈113具有第一端点与第二端点,且第一端点耦接于输入稳压电容112。电源供应单元110主要功用在于提供输入电压VIN予一次侧线圈113。The primary side coil 113 has a first terminal and a second terminal, and the first terminal is coupled to the input stabilizing capacitor 112 . The main function of the power supply unit 110 is to provide the input voltage VIN to the primary coil 113 .
如图1所示,输出单元130包含一二次侧线圈131、一输出端二极管132、一输出稳压电容133、一第一回授电阻134、一第二回授电阻135、一限流电阻136、一发光二极管137、以及一三端并联稳压器138。As shown in FIG. 1 , the output unit 130 includes a secondary side coil 131, an output diode 132, an output voltage stabilizing capacitor 133, a first feedback resistor 134, a second feedback resistor 135, and a current limiting resistor. 136 , a light emitting diode 137 , and a three-terminal shunt regulator 138 .
二次侧线圈131具有第一端点与第二端点,且与一次侧线圈113具互感关是而形成一变压器组件。The secondary coil 131 has a first terminal and a second terminal, and has a mutual inductance relationship with the primary coil 113 to form a transformer assembly.
输出端二极管132的正极端耦接于二次侧线圈131的第一端点。输出端二极管132的负极端耦接于输出稳压电容133的一端,并形成一输出端的正端VOP。The anode terminal of the output diode 132 is coupled to the first terminal of the secondary coil 131 . The negative end of the output diode 132 is coupled to one end of the output voltage stabilizing capacitor 133 to form a positive output end VOP.
输出稳压电容133的另一端耦接于二次侧线圈131的第二端点,并形成一输出端的负端VON。其中输出端的正端VOP与输出端的负端VON之间提供一输出电压。The other terminal of the output voltage stabilizing capacitor 133 is coupled to the second terminal of the secondary side coil 131 and forms a negative terminal VON of an output terminal. An output voltage is provided between the positive terminal VOP of the output terminal and the negative terminal VON of the output terminal.
第一回授电阻134耦接于输出端的正端VOP与第二回授电阻135的一端之间。第二回授电阻135的另一端耦接于输出端的负端VON。第一回授电阻134与第二回授电阻135的连接点提供一输出电压分压VFB,并耦接于三端并联稳压器138的输入端。The first feedback resistor 134 is coupled between the positive terminal VOP of the output terminal and one end of the second feedback resistor 135 . The other end of the second feedback resistor 135 is coupled to the negative end VON of the output end. The connection point of the first feedback resistor 134 and the second feedback resistor 135 provides an output voltage divider VFB, and is coupled to the input terminal of the three-terminal shunt regulator 138 .
限流电阻136的一端耦接于输出端的正端VOP,另一端耦接于发光二极管137的正端。One terminal of the current limiting resistor 136 is coupled to the positive terminal VOP of the output terminal, and the other terminal is coupled to the positive terminal of the LED 137 .
发光二极管137的负端耦接于三端并联稳压器138的输出正端。三端并联稳压器138的输出负端耦接于输出端的负端VON。The negative terminal of the LED 137 is coupled to the positive output terminal of the three-terminal shunt regulator 138 . The negative output terminal of the three-terminal shunt regulator 138 is coupled to the negative terminal VON of the output terminal.
如图1所示,三端并联稳压器138包含一参考电压值,当输入端的电压大于所述参考电压值,三端并联稳压器138的输出正端与输出负端之间为一导通的状态。反的,当其输入端的电压小于所述参考电压值,三端并联稳压器138的输出正端与输出负端之间为一不导通的状态。因此,当输出电压分压VFB大于所述参考电压值时,三端并联稳压器138的输出导通,并在发光二极管137上形成电流,且电流大小受到限流电阻136的限制,此时发光二极管137形成一发光的光源;而当输出电压分压VFB小于所述参考电压值时,三端并联稳压器138的输出不导通,发光二极管137上不具电流,亦即发光二极管137不发光。As shown in Figure 1, the three-terminal shunt regulator 138 includes a reference voltage value, and when the voltage at the input terminal is greater than the reference voltage value, there is a lead between the output positive terminal and the output negative terminal of the three-terminal shunt regulator 138. pass status. Conversely, when the voltage at its input terminal is lower than the reference voltage value, the positive output terminal and the negative output terminal of the three-terminal shunt regulator 138 are in a non-conductive state. Therefore, when the output voltage divided voltage VFB is greater than the reference voltage value, the output of the three-terminal shunt regulator 138 is turned on, and a current is formed on the light-emitting diode 137, and the magnitude of the current is limited by the current limiting resistor 136. At this time The light emitting diode 137 forms a luminescent light source; and when the output voltage divided voltage VFB is less than the reference voltage value, the output of the three-terminal shunt regulator 138 is not conducted, and there is no current on the light emitting diode 137, that is, the light emitting diode 137 does not glow.
如图1所示,功率开关单元170包含一功率开关171以及一感流电阻172。功率开关171的输出与感流电阻172串联相接,并耦接于一次侧线圈113的第二端点与接地端之间。当功率开关171打开时,输入稳压电容112、一次侧线圈113、功率开关171以及感流电阻172即形成一电流回路。由于一次侧线圈113是一电感性的组件,因此所述电流回路的形成将储存能量于一次侧线圈113上。另外,感流电阻172将所述电流回路上的电流讯号转为一电压讯号VCS。当功率开关171关闭时,一次侧线圈113上的储存能量通过与二次侧线圈131所形成的变压器组件,释放至二次侧线圈131形成一其上的电流,并于电压转换电路100处于稳态操作时,在输出端的正端与负端之间建立一额定的输出电压VOUT,并提供电流予串接于输出端的正端与负端之间的一电流负载(图中未示)。As shown in FIG. 1 , the power switch unit 170 includes a power switch 171 and a current sensing resistor 172 . The output of the power switch 171 is connected in series with the sense resistor 172 and coupled between the second terminal of the primary coil 113 and the ground terminal. When the power switch 171 is turned on, the input voltage stabilizing capacitor 112 , the primary side coil 113 , the power switch 171 and the current sensing resistor 172 form a current loop. Since the primary coil 113 is an inductive component, the formation of the current loop will store energy on the primary coil 113 . In addition, the sense resistor 172 converts the current signal on the current loop into a voltage signal VCS. When the power switch 171 is turned off, the stored energy on the primary side coil 113 passes through the transformer assembly formed with the secondary side coil 131 and is released to the secondary side coil 131 to form a current on it, and the voltage conversion circuit 100 is in a steady state. In normal operation, a rated output voltage VOUT is established between the positive terminal and the negative terminal of the output terminal, and a current is provided to a current load (not shown) connected in series between the positive terminal and the negative terminal of the output terminal.
如图1所示,回授电路单元150包含一光感测组件151以及一回授电容152。光感测组件151与发光二极管137形成一光耦合器的组态,当发光二极管137形成一发光的光源,光感测组件151即侦测到所述光源而形成一电流于其上,且所述电流大小与所述光源的强度成正比关是。由此可知,利用所述变压器以及所述光耦合器,可以将输入交流电源的一侧与输出端的一侧完全作电性上的隔离。As shown in FIG. 1 , the feedback circuit unit 150 includes a light sensing element 151 and a feedback capacitor 152 . The photo-sensing element 151 and the light-emitting diode 137 form an optical coupler configuration. When the light-emitting diode 137 forms a light source, the light-sensing element 151 detects the light source and forms a current on it, and the resulting The magnitude of the current is directly proportional to the intensity of the light source. It can be seen that, by using the transformer and the optocoupler, the side of the input AC power supply and the side of the output terminal can be completely electrically isolated.
如图1所示,光感测组件151与回授电容152并联相接且耦接于应用电路的回授端COMP与接地端之间。所述电压转换控制器200是一集成电路单元,且具有多个针脚。针脚包含功率开关控制脚210、感流电压脚220、接地脚230以及回授端针脚240。功率开关控制脚210耦接于功率开关171的控制端,藉以控制功率开关171的开启与关闭。感流电压脚220是接受感流电阻172所产生的电压讯号VCS。接地脚230则耦接于接地端。回授端针脚240则耦接于回授端COMP。As shown in FIG. 1 , the light sensing component 151 is connected in parallel with the feedback capacitor 152 and is coupled between the feedback terminal COMP and the ground terminal of the application circuit. The
图2为电压转换控制器200的组成功能方块示意图。电压转换控制器200更包含一第一电流组件241、一第一电流开关242、一第二电流开关243、一第二电流组件244、一内部电压源245、一计数器251、一软启动控制电路252、一过载保护控制电路253、一关闭逻辑电路254、一振荡控制器255、一功率开关驱动级211、一脉宽调变闩锁器212、一内部振荡器213、一脉宽调变比较器214、一限电流控制级215、以及一增益级221。FIG. 2 is a schematic functional block diagram of the
第一电流组件241耦接于内部电压源245与第一电流开关242的一端。The first
第一电流开关242的另一端耦接于回授端针脚240。The other end of the first
第一电流组件241与第一电流开关242的串接形成了一开关电流组件,其中第一电流组件241可为电阻组件或为电流源组件。The series connection of the first
第二电流组件244耦接于接地脚230与第二电流开关243的一端。第二电流开关243的另一端耦接于回授端针脚240。The second
第二电流组件244与第二电流开关243的串接形成了另一开关电流组件,其中第二电流组件244可为电阻组件或为电流源组件。The series connection of the second
振荡控制器255的输入耦接于回授端针脚240,并在电压转换电路100的非稳态操作时,产生一周期频率讯号于其输出端,藉以控制第一电流开关242以及第二电流开关243的开启以及关闭。The input of the
振荡控制器255的输出端并耦接至计数器251。计数器251在电压转换电路100的非稳态操作时,输出一结果予软启动控制电路252、并输出另一结果予过载保护控制电路253。The output terminal of the
过载保护控制电路253则依据设定,控制关闭逻辑电路254,以决定是否暂时关闭电压转换控制器200。The overload
脉宽调变比较器214具有一正端输入、一第一负端输入、一第二负端输入以及一输出。其第一负端输入耦接至回授端针脚240。其输出耦接至计数器251。The
增益级221的输入耦接至感流电压脚220,增益级221的输出耦接至脉宽调变比较器214的正端输入。增益级221乃将其输入讯号经适当的线性放大后再输出。限电流控制级215提供一等效限电流的电压值于其输出,并耦接至脉宽调变比较器214的第二负端输入。The input of the
脉宽调变闩锁器212具有一设定输入端、一重置输入端以及一输出端。重置输入端耦接至脉宽调变比较器214的输出。内部振荡器213提供一脉宽调变操作频率,并耦接至脉宽调变闩锁器212的设定输入端。The
功率开关驱动级211具有一输入端以及一输出端,其输入端耦接至脉宽调变闩锁器212的输出端,功率开关驱动级211的输出端耦接于功率开关控制脚210,并根据其输入端的输入讯号来驱动功率开关171控制端的电容性负载。The power
电压转换控制器200配合应用电路,以建立如图1所示的电压转换电路100。电压转换控制器200至少具有第一模式以及第二模式,例如稳态操作以及非稳态操作。且在第一模式下,回授端针脚240接收一回授讯号,而在第二模式下,回授端针脚240提供一计数频率讯号。所述回授讯号以及所述计数频率讯号不论在形成的方式以及操作上的作用皆有不同。The
在电压转换电路100的稳态操作时,电压转换控制器200回授控制调节输出端的正端VOP与负端VON之间的电流负载,并提供受调节的一额定输出电压VOUT于输出电压。所谓受调节者,是指当外部应用电路以及电流负载各参数产生处于规格范围内的变化时,电压转换控制器200皆能以其配合外部应用电路所建立的负回授控制机制进行反应,以使输出电压保持在一额定的VOUT。When the voltage conversion circuit 100 operates in a steady state, the
在电压转换电路100处于非稳态操作时,电压转换控制器200配合应用电路,将进行必要的反应以保护电压转换控制器200、应用电路中的各组件、以及电流负载,使应用电路免于因为过电压或过电流的情形而导致组件损毁或其它误动作。常见的非稳态操作的反应包括软启动、输入电压不足锁定、输出电压过高保护、输出过电流保护等等。本发明的实施例将以电压转换电路100的稳态操作,以及软启动、输出过电流保护的非稳态操作进行技术特征的说明,兹说明如下。When the voltage conversion circuit 100 is in an unsteady state operation, the
当电压转换电路100处于稳态操作时,输出电压为一涟波波形,且所述涟波波形的平均电压即为额定输出电压VOUT。试解释所述涟波波形的周期行为以及电压转换控制器200的调节动作如下。When the voltage conversion circuit 100 is in steady state operation, the output voltage is a ripple waveform, and the average voltage of the ripple waveform is the rated output voltage VOUT. The periodic behavior of the ripple waveform and the adjustment action of the
周期的一开始,电压转换控制器200的内部振荡器213输出脉波,以触发脉宽调变闩锁器212的设定输入端而产生讯号“1”于触发脉宽调变闩锁器212的输出端,此时功率开关驱动级211则驱动功率开关171的控制端以开启功率开关171,并形成一电流回路而储存能量于一次侧线圈113上。此时所述变压器则未提供电流于所述输出端,故输出端上的电流负载所需电荷是来自于输出稳压电容133,因此所述输出电压线性下降。而由于一次侧线圈113上的电流,亦即功率开关171上的电流持续上升,因此感流电压脚220上的电压讯号VCS亦持续上升,直到VCS大于回授端针脚240上的电压值,此频率宽调变比较器214输出讯号“1”至脉宽调变闩锁器212的重置输入端而产生讯号“0”于脉宽调变闩锁器212的输出端,功率开关驱动级211因此关闭功率开关171。一次侧线圈113上的储存能量则通过与二次侧线圈131所形成的变压器组件,释放至二次侧线圈131形成一其上的电流,并藉以提供电流予负载电流并对输出稳压电容133进行充电。此时所述输出电压线性上升,直到内部振荡器213产生下一个脉波,而开启功率开关171。电压转换电路100因此进行周期性的操作。At the beginning of the cycle, the
而当负载电流的电流值增加,由于电压转换电路100暂时无法提供足够的电流予负载电流,故由输出稳压电容133提供所需的额外电荷,因而造成输出电压下降。此时输出电压的分压VFB小于三端并联稳压器138的参考电压时,三端并联檼压器138的输出正端与输出负端之间不导通,亦即发光二极管137的输出不具电流且不发光。光感测组件151则未侦测到光源,因而其上亦不具电流。而在稳态操作时,第一电流开关242开关导通,而第二电流开关243则开关截止。当光感测组件151不具电流时,第一电流组件241提供一电流对回授电容152充电,回授端针脚240上的电压值上升,而造成当一次侧线圈113进行储存能量时,其操作的电流上限提高,亦即能储存较多能量,因而于下半周期释放至二次侧线圈131时能提供一较大的电流以提供输出单元130所需,并对输出电压进行调节,以回复其额定电压VOUT。When the current value of the load current increases, because the voltage conversion circuit 100 cannot provide enough current for the load current temporarily, the output voltage stabilizing capacitor 133 provides the required extra charge, thereby causing the output voltage to drop. At this time, when the divided voltage VFB of the output voltage is less than the reference voltage of the three-terminal shunt regulator 138, the positive output terminal and the negative output terminal of the three-terminal shunt voltage regulator 138 are not conducting, that is, the output of the light-emitting diode 137 has no current and no light. The light-sensing element 151 does not detect the light source, and thus there is no current thereon. In steady state operation, the first
反的,当负载电流的电流值减少,由于电压转换电路100提供过多电流予输出端,多余的电流即对输出稳压电容133充电,而造成输出电压上升。此时输出电压的分压VFB大于三端并联檼压器138的参考电压时,三端并联檼压器138的输出正端与输出负端之间导通,亦即发光二极管137形成电流而发光。光感测组件151侦测到光源,因而其上形成电流,并造成回授电容152放电。回授端针脚240上的电压值下降,亦即当一次侧线圈113进行储存能量时,其操作的电流上限下降,亦即储存较少能量,因而于下半周期释放至二次侧线圈131时提供一较小的电流予输出单元130,藉此对输出电压进行调节,以回复其额定电压VOUT。由以上负载电流变化所引起的瞬时行为,可观察到电压转换控制器200利用其与应用电路所建立的负回授控制机制,能作出对应的操作,而对输出电压进行调节,以使输出电压保持在一额定的电压VOUT。或称电压转换电路100此时处于一稳态操作的状态。另外,由上述操作可知,回授端针脚240上的电压值与所述负载电流的电流大小成线性相关,此即一电流模式控制(current-mode control)的电压转换器所具有的特性。然而在其它的电压转换器组态中,例如在一电压模式控制(voltage-mode control)的电压转换器中,回授端针脚240上的电压值则与输出电压大小成线性相关,此为先前技术已揭露的技术特征,在此不另赘述。On the contrary, when the current value of the load current decreases, because the voltage conversion circuit 100 provides too much current to the output terminal, the excess current charges the output voltage stabilizing capacitor 133 , causing the output voltage to rise. At this time, when the divided voltage VFB of the output voltage is greater than the reference voltage of the three-terminal parallel transformer 138, the positive output terminal and the output negative terminal of the three-terminal parallel transformer 138 are conducted, that is, the light-emitting diode 137 forms a current and emits light. . The light sensing element 151 detects the light source, thus forming a current thereon, and causing the feedback capacitor 152 to discharge. The voltage value on the
而当所述电压转换控制器200刚开始启动时,输出电压的稳态操作尚未建立,亦即电压转换电路100处于一非稳态操作的状态。此时所述电压转换控制器200即进行软启动操作,并建立输出电压的稳态操作,以使电压转换电路100达到稳态操作的状态。软启动操作可以有效地避免电路刚开始启动时,电路中各组件操作于极限状况而降低其使用寿命,并能减少电路启动时于电源供应单元110所产生的突波。软启动操作允许的时间愈长,其所能达成的保护效果愈好,然而电路启动时间必须考虑应用上的系统规格而通常会有一最大值限制,因而形成设计上的取舍。电压转换控制器200的软启动操作将配合图3的波形图说明的。However, when the
图3为电压转换控制器200进行软启动操作时,各主要端点的电压波形示意图。其中310为输出电压波形,320为振荡控制器255的输出波形,330为回授端针脚240上的电压波形,331为振荡控制器255的一第一比较电压值,332为振荡控制器255的一第二比较电压值,340为限电流控制级215的输出波形,341为限电流控制级215在电压转换电路100处于稳态操作下的等效限电流的电压值,350为感流电压脚220上的电压波形,即VCS的电压波形,360为图4所示的340与350局部放大波形的区域。FIG. 3 is a schematic diagram of the voltage waveforms of each main terminal when the
如图3所示,由于振荡控制器255的输出是控制开启第一电流开关242以及第二电流开关243的两者的一,而当电压转换控制器200一开始启动时,回授端针脚240上的电压小于第一比较电压值331,因此第一电流开关242被开启,第一电流组件241提供一电流流入回授端针脚240的端点,再由于输出电压并未建立,反应至光感测组件151即其不具电流,因此第一电流组件241提供的电流即对回授电容152充电,因此回授端针脚240上的电压持续上升,直到大于第一比较电压值331,此时振荡控制器255的输出改变,第一电流开关242开关截止,且第二电流开关243开关导通。此时第二电流组件244提供一电流流出回授端针脚240的端点,造成回授电容152放电,因此回授端针脚240上的电压开始持续下降,直到小于第二比较电压值332,此时振荡控制器255的输出改变,第一电流开关242开关导通,且第二电流开关243开关截止,而回授端针脚240上的电压开始持续上升,最后形成如330所示的周期性波形部份。而振荡控制器255的输出亦形成如320所示的周期性波形部份。另外,所述周期的大小可直接由回授电容152的电容值来决定。As shown in FIG. 3 , since the output of the
进一步说明,振荡控制器255、第一电流组件241、第一电流开关242、第二电流开关243、以及第二电流组件244的组合形成一充放电电路280,如图2中所示。所述充放电电路280是于第二模式时,对所述回授电容152进行周期性的充放电,以形成前述的周期性波形。其中振荡控制器255分别于回授电容152的电压上升至第一比较电压值331和下降至第二比较电压值332时,改变振荡控制器255的输出位准。To further illustrate, the combination of the
如图3所示,在软启动操作下,限电流控制级215的输出并非一开始即为如341所示的电压值,而是以分段递增的方式,来设定功率开关171的限电流大小,以达到软启动的保护电路组件以及减少电路突波的目的。图4所示为图3中340与350局部放大波形的区域360。当内部振荡器213发出脉波以开启功率开关171时,此时感流电压脚220上的电压波形350,即VCS,为一直线上升的波形,直到大于限电流控制级215所设定的值,亦即图中的340,使得脉宽调变比较器214输出“1”,而关闭所述功率开关171,直到下一次内部振荡器213发出脉波。因此形成了如图中的VCS的周期性讯号。As shown in FIG. 3 , under soft-start operation, the output of the current-limiting
请回到图3。如图3所示,电压转换控制器200中的计数器251可以利用前述振荡控制器255的输出所形成的周期性波形,进行计数而并将结果输出至软启动控制电路252,软启动控制电路252即依计数的结果而逐步将限电流控制级215的输出增加,以达到软启动的操作。值得注意的是,振荡控制器255的输出的周期,将决定软启动操作的时间长度,因此在电路应用上,用户可通过直接改变电压转换控制器200外部的回授电容152的电容值,来设计软启动操作的时间,而使同一设计的电压转换控制器200能使用于各种不同的应用上,因而减少集成电路组件因应各种不同应用所衍生的版本数量,而简化制造商生产、库存、管理的问题。Please go back to Figure 3. As shown in FIG. 3, the
另外,在电压转换电路100处于稳态操作时,若负载电流增加,并大于电压转换电路100所能供应的输出电流,此时会触发电压转换控制器200进行输出过电流保护的非稳态操作。输出过电流保护的目的,在于防止电路组件一直处于过高的电流操作状况之下而损毁,甚至造成燃烧而导致使用上安全性的虞。电压转换控制器200的输出过电流保护操作将配合图5的波形图说明的。In addition, when the voltage conversion circuit 100 is operating in a steady state, if the load current increases and is greater than the output current that the voltage conversion circuit 100 can supply, the
图5为电压转换控制器200进行输出过电流保护操作时,各主要端点的电压波形示意图。其中510为所述过载保护控制电路253的输出波形,520为振荡控制器255的输出波形,530为回授端针脚240上的电压波形,531为振荡控制器255的一第一比较电压值,532为振荡控制器255的一第二比较电压值,540为限电流控制级215的输出波形,550为感流电压脚220上的电压波形,即VCS的电压波形。FIG. 5 is a schematic diagram of the voltage waveforms of each main terminal when the
如图5所示,电压转换电路100一开始处于稳态操作的状态。在一时间点t1时,其输出端的负载电流增加,并大于电压转换电路100所能供应的输出电流,此时由于电压转换电路100的供应电流能力不足,导致输出电压持续低于额定输出电压VOUT。反应至光感测组件151则是未侦测到光源,因而其上不具电流。第一电流组件241的电流因此对回授电容152持续充电,回授端针脚240上的电压持续上升,直到大于第一比较电压值531,此时振荡控制器255的输出改变,并关闭第一电流开关242,且开启第二电流开关243。As shown in FIG. 5 , the voltage conversion circuit 100 is initially in a steady-state operation state. At a time point t1, the load current at the output terminal increases and is greater than the output current that the voltage conversion circuit 100 can supply. At this time, due to the insufficient supply current capability of the voltage conversion circuit 100, the output voltage is continuously lower than the rated output voltage VOUT . In response to the light sensing element 151 , the light source is not detected, so there is no current thereon. Therefore, the current of the first
此时第二电流组件244提供一电流流出回授端针脚240的端点,造成回授电容152放电,因此回授端针脚240上的电压开始持续下降,直到小于第二比较电压值532,此时振荡控制器255的输出改变,并开启第一电流开关242,且关闭第二电流开关243,而回授端针脚240上的电压开始持续上升,最后形成如530所示的周期性波形部份。而振荡控制器255的输出亦形成如520所示的周期性波形部份。另外,所述周期的大小可直接由回授电容152的电容值来决定。At this time, the second
如图5所示,电压转换控制器200中的计数器251可以利用前述振荡控制器255的输出所形成的周期性波形进行计数,并在达到一预设计数值时发出讯号予过载保护控制电路253,进行输出过电流保护的动作,例如通知关闭逻辑电路254,以持续关闭功率开关171而不再输出电流。如图5中的t2时所示,此时过载保护控制电路253的输出波形510发出脉波,功率开关171截止,感流电压脚220上的电压波形550,即VCS的电压,则持续为0。As shown in Figure 5, the
由本实施例的操作可知,在电压转换电路100处于稳态操作的状态时,所述回授讯号,亦即回授端针脚240上的电压讯号,线性相关于输出电流大小,以提供电压转换控制器200进行调节输出电压的负回授控制所需讯号,或亦可解释为回授端针脚240上的电压讯号是由所述负回授控制的回路及其相关组件所产生。而脉宽调变比较器214是接收回授端针脚240上的电压讯号,以进行动态操作。而在电压转换电路100处于非稳态操作的状态时,所述计数频率讯号,亦即回授端针脚240上的电压讯号,则为一周期性的讯号,且周期大小由外部的回授电容152的电容值决定,因而提供了一个频率大小相对精确而可供计数的频率讯号,以供非稳态操作的所需,或亦可解释为回授端针脚240上的电压讯号是由第一电流组件241、第一电流开关242、第二电流开关243、第二电流组件244、内部电压源245、振荡控制器255以及回授电容152所产生。而振荡控制器255是接收回授端针脚240上的电压,而进行动态操作。可知回授端针脚240上的电压讯号在电压转换电路100的两种操作状态下,是由所述电压转换控制器与所述应用电路的不同电路成份所产生,并分别提供了不同功能但又为电路操作所必需的讯号予电压转换控制器200中的两个子电路,即脉宽调变比较器214以及振荡控制器255。反观先前技术中电压转换控制器的回授端针脚上的电压则于任何状态下皆由相同电路成份所产生,且仅能于电压转换器在稳态操作时提供有意义的讯号以供利用。故本发明所揭露的技术特征能够节省集成电路针脚的使用量,因而能进一步节省成本;且同一设计的电压转换控制器能使用于各种不同的应用上,也因而减少集成电路组件因应各种不同应用所衍生的版本数量,而简化制造商生产、库存、管理的问题。It can be seen from the operation of this embodiment that when the voltage conversion circuit 100 is in a steady state operation state, the feedback signal, that is, the voltage signal on the
图6所示为电压转换控制器200之中,所述荡控制器255的一电路实施例。振荡控制器255包含一控制器输入端610、一控制器输出端620、一第一比较器630、一第二比较器640、一第一比较电压650、一第二比较电压660、以及一设定重置闩锁器670。控制器输入端610耦接于回授端针脚240,且控制器输出端620的讯号用以控制第一电流开关242与第二电流开关243的导通或截止。第一比较器630具有一正输入端、一负输入端以及一输出端,其中所述正输入端耦接于控制器输入端610,且所述负输入端耦接于第一比较电压650。第二比较器640具有一正输入端、一负输入端以及一输出端,其中所述负输入端耦接于控制器输入端610,且所述正输入端耦接于第二比较电压660。设定重置闩锁器670具有一设定输入端、一重置输入端、以及一输出端,其中所述设定输入端耦接于第一比较器630的输出端,所述重置输入端耦接于第二比较器640的输出端,且设定重置闩锁器670的输出端耦接于控制器输出端620。FIG. 6 shows a circuit embodiment of the
如图6所示,通常设计上第一比较电压650大于第二比较电压660。当控制器输入端610的电压小于第二比较电压660时,第二比较器640输出“1”予设定重置闩锁器670的重置输入端,因而控制器输出端620的输出为“0”。当控制器输入端610的电压大于第一比较电压650时,第一比较器630输出“1”予设定重置闩锁器670的设定输入端,因而控制器输出端620的输出为“1”。当控制器输入端610的电压界于第一比较电压650与第二比较电压660之间时,第一比较器630与第二比较器640皆输出“0”,设定重置闩锁器670的输出,亦即控制器输出端620的输出则维持不变。As shown in FIG. 6 , the
虽然本发明的实施例揭露如上所述,然并非用以限定本发明,任何熟习相关技艺者,在不脱离本发明的精神和范围内,举凡依本发明申请范围所述的形状、构造、特征及数量当可做些许的变更,因此本发明的专利保护范围须视本说明书所附的申请专利范围所界定者为准。Although the embodiments of the present invention are disclosed as above, they are not intended to limit the present invention. Anyone skilled in the relevant art can use the shapes, structures, and features described in the application scope of the present invention without departing from the spirit and scope of the present invention. and quantity can be slightly changed, so the scope of patent protection of the present invention must be defined by the scope of patent application attached to this specification.
Claims (12)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101145749 | 2012-12-05 | ||
TW101145749A TWI465015B (en) | 2012-12-05 | 2012-12-05 | Voltage converter circuit and voltage converter controller |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103856058A true CN103856058A (en) | 2014-06-11 |
CN103856058B CN103856058B (en) | 2017-01-11 |
Family
ID=50863355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310178681.6A Expired - Fee Related CN103856058B (en) | 2012-12-05 | 2013-05-15 | Voltage conversion circuit and voltage conversion controller |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103856058B (en) |
TW (1) | TWI465015B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106329929A (en) * | 2015-07-03 | 2017-01-11 | 立锜科技股份有限公司 | Voltage conversion circuit and voltage conversion controller |
CN109669061A (en) * | 2019-01-31 | 2019-04-23 | 广州金升阳科技有限公司 | A kind of current sample compensation circuit |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9774252B2 (en) * | 2014-06-30 | 2017-09-26 | Skyworks Solutions, Inc. | Mode control device, voltage converter, and mode control method |
TWI548186B (en) * | 2014-08-15 | 2016-09-01 | Richtek Technology Corp | Quick Start Circuit and Method of Chi - back Power Supply |
TWI549407B (en) | 2014-09-09 | 2016-09-11 | 鴻海精密工業股份有限公司 | Multiphase power circuit |
TWI645657B (en) * | 2017-09-29 | 2018-12-21 | 台達電子工業股份有限公司 | Power conversion device and regulated feedback circuit |
US10666233B1 (en) * | 2019-02-14 | 2020-05-26 | Winbond Electronics Corp. | Power drop reset circuit for power supply chip and power drop reset signal generating method |
TWI830355B (en) * | 2022-08-31 | 2024-01-21 | 通嘉科技股份有限公司 | Control methods for interleaved power converter |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW432779B (en) * | 1999-11-03 | 2001-05-01 | Jang Wei Shiu | Small-area and low-power low-frequency oscillator |
CN101228685A (en) * | 2005-03-18 | 2008-07-23 | 美国快捷半导体有限公司 | Terminal for multiple functions in a power supply |
US20080259659A1 (en) * | 2007-04-23 | 2008-10-23 | Hang-Seok Choi | Overload and short protected soft-start converter |
CN101582643A (en) * | 2008-05-14 | 2009-11-18 | 富士电机电子技术株式会社 | Switching power supply |
CN101594064A (en) * | 2009-05-31 | 2009-12-02 | 成都芯源系统有限公司 | Switching power supply controller |
CN101599701A (en) * | 2009-07-02 | 2009-12-09 | 成都芯源系统有限公司 | Switching power supply with fault protection function and control method thereof |
TW201143247A (en) * | 2010-05-18 | 2011-12-01 | Leadtrend Tech Corp | Control methods, power control methods, power supplies, controllers and power supply controllers |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWM441272U (en) * | 2012-07-05 | 2012-11-11 | Excelliance Mos Corp | Fly-back power converting apparatus |
-
2012
- 2012-12-05 TW TW101145749A patent/TWI465015B/en not_active IP Right Cessation
-
2013
- 2013-05-15 CN CN201310178681.6A patent/CN103856058B/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW432779B (en) * | 1999-11-03 | 2001-05-01 | Jang Wei Shiu | Small-area and low-power low-frequency oscillator |
CN101228685A (en) * | 2005-03-18 | 2008-07-23 | 美国快捷半导体有限公司 | Terminal for multiple functions in a power supply |
US20080259659A1 (en) * | 2007-04-23 | 2008-10-23 | Hang-Seok Choi | Overload and short protected soft-start converter |
CN101582643A (en) * | 2008-05-14 | 2009-11-18 | 富士电机电子技术株式会社 | Switching power supply |
CN101594064A (en) * | 2009-05-31 | 2009-12-02 | 成都芯源系统有限公司 | Switching power supply controller |
CN101599701A (en) * | 2009-07-02 | 2009-12-09 | 成都芯源系统有限公司 | Switching power supply with fault protection function and control method thereof |
TW201143247A (en) * | 2010-05-18 | 2011-12-01 | Leadtrend Tech Corp | Control methods, power control methods, power supplies, controllers and power supply controllers |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106329929A (en) * | 2015-07-03 | 2017-01-11 | 立锜科技股份有限公司 | Voltage conversion circuit and voltage conversion controller |
CN106329929B (en) * | 2015-07-03 | 2018-12-04 | 立锜科技股份有限公司 | Voltage conversion circuit and voltage conversion controller |
CN109669061A (en) * | 2019-01-31 | 2019-04-23 | 广州金升阳科技有限公司 | A kind of current sample compensation circuit |
Also Published As
Publication number | Publication date |
---|---|
TWI465015B (en) | 2014-12-11 |
TW201424216A (en) | 2014-06-16 |
CN103856058B (en) | 2017-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103856058B (en) | Voltage conversion circuit and voltage conversion controller | |
US9337739B2 (en) | Power controller with over power protection | |
JP5513829B2 (en) | Current drive circuit | |
JP5960611B2 (en) | Reduced power loss power system, electronic device and controller | |
JP5056055B2 (en) | Integrated circuit for switching power supply control and switching power supply device | |
US8310169B2 (en) | Power conversion driving circuit and fluorescent lamp driving circuit | |
TWI411202B (en) | Controller for power converter and method for controlling power converter | |
TWI589106B (en) | Switching power supplies and switch controllers | |
US20110025289A1 (en) | Two-stage switching power supply | |
US20100020575A1 (en) | Switching power supply device | |
WO2008132501A2 (en) | Switching power converters | |
TWI451652B (en) | Power controllers and power management control methods | |
CN101277057B (en) | Overload protection delay circuit for switching power supply | |
KR101789799B1 (en) | Feedback circuit and power supply device comprising the same | |
US20080037296A1 (en) | Green-mode flyback pulse width modulation apparatus | |
US9318961B2 (en) | Switching power-supply device | |
CN1703825B (en) | Capacitively coupled power supply | |
US20140167720A1 (en) | Power control device with snubber circuit | |
TW201505479A (en) | Light emitting diode driving apparatus and light emitting diode driving method | |
US10587199B1 (en) | Power supply circuit which reduces light-load power consumption while maintaining stable output | |
CN101945520A (en) | Power conversion circuit and controller | |
KR20140021412A (en) | Light source driving apparatus and light emitting apparatus including the same | |
JP6559343B2 (en) | Switching power supply circuit | |
US8476883B2 (en) | Compensation circuits and control methods of switched mode power supply | |
CN102237810B (en) | Control method and compensation circuit of switch mode power supply |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170111 Termination date: 20210515 |