[go: up one dir, main page]

CN103856058A - Voltage conversion circuit and voltage conversion controller - Google Patents

Voltage conversion circuit and voltage conversion controller Download PDF

Info

Publication number
CN103856058A
CN103856058A CN201310178681.6A CN201310178681A CN103856058A CN 103856058 A CN103856058 A CN 103856058A CN 201310178681 A CN201310178681 A CN 201310178681A CN 103856058 A CN103856058 A CN 103856058A
Authority
CN
China
Prior art keywords
voltage
current
feedback
output
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310178681.6A
Other languages
Chinese (zh)
Other versions
CN103856058B (en
Inventor
林昆余
纪志伟
林梓诚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Richtek Technology Corp
Original Assignee
Richtek Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Richtek Technology Corp filed Critical Richtek Technology Corp
Publication of CN103856058A publication Critical patent/CN103856058A/en
Application granted granted Critical
Publication of CN103856058B publication Critical patent/CN103856058B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

本发明涉及一种电压转换电路,包含一应用电路及一电压转换控制器。应用电路包含一输出端、一回授端及耦接于回授端的一回授电容。输出端具有一输出电压,并耦接一电流负载。电压转换控制器具有一回授端针脚,耦接于所述回授端。电压转换控制器具有一第一模式以及一第二模式。于所述第一模式时,所述输出端提供受调节的输出电压并供应电流予电流负载,且回授端针脚接收一回授讯号。于所述第二模式时,所述输出电压不受调节,且所述回授端针脚提供固定周期性的一计数频率讯号,计数频率讯号的周期大小是由回授电容的电容值所决定。

The present invention relates to a voltage conversion circuit, comprising an application circuit and a voltage conversion controller. The application circuit comprises an output terminal, a feedback terminal and a feedback capacitor coupled to the feedback terminal. The output terminal has an output voltage and is coupled to a current load. The voltage conversion controller has a feedback terminal pin coupled to the feedback terminal. The voltage conversion controller has a first mode and a second mode. In the first mode, the output terminal provides a regulated output voltage and supplies current to the current load, and the feedback terminal pin receives a feedback signal. In the second mode, the output voltage is not regulated, and the feedback terminal pin provides a fixed periodic counting frequency signal, and the period size of the counting frequency signal is determined by the capacitance value of the feedback capacitor.

Description

电压转换电路以及电压转换控制器Voltage conversion circuit and voltage conversion controller

【技术领域】 【Technical field】

本发明关于一种电压转换电路,特别是一种包含多功能的单一针脚的电压转换控制器的电压转换电路。The present invention relates to a voltage conversion circuit, in particular to a voltage conversion circuit including a multi-functional single-pin voltage conversion controller.

【背景技术】 【Background technique】

请参考美国专利号US7,848,124。电压转换控制器是应用于一驰返式开关电源转换电路(fly-back switching power converter)之中。驰返式开关电源转换器为电压转换电路组态的一种,其目的在提供一稳定的输出电压。当所述驰返式开关电源转换电路处于稳态操作时,所述电压转换控制器通过负回授控制,针对其输出电压进行调节(regulation),以提供一稳定且额定的输出电压值以及输出电流予一电流负载。此时其负回授控制路径上的回授点IN3上具有一讯号,是为一与其输出电流大小线性相关的讯号,所述电压转换控制器即根据回授点IN3上的讯号进行负回授控制。而当所述驰返式开关电源转换电路处于非稳态操作时,例如当负载电流过大而进行负载电流过大保护操作,或是电路初始启动的软启动操作时,此时额定的输出电压值并未建立,而由于所述回授点IN3上的讯号与输出端的讯号相关,此时回授点IN3上的讯号在经历短暂的瞬时反应之后,最终为一连续的直流电压讯号,而且对于电路操作并未提供具有实质效益的功能。Please refer to US Patent No. US7,848,124. The voltage conversion controller is applied in a fly-back switching power converter. The flyback switching power converter is a kind of voltage conversion circuit configuration, and its purpose is to provide a stable output voltage. When the flyback switching power supply conversion circuit is in steady-state operation, the voltage conversion controller regulates its output voltage through negative feedback control to provide a stable and rated output voltage value and output The current is given to a current load. At this time, there is a signal on the feedback point IN3 on the negative feedback control path, which is a signal linearly related to the magnitude of its output current, and the voltage conversion controller performs negative feedback according to the signal on the feedback point IN3 control. And when the flyback switching power supply conversion circuit is in an unsteady state operation, for example, when the load current is too large and the load current is too large to protect the operation, or the soft start operation of the initial startup of the circuit, the rated output voltage at this time The value has not been established, and because the signal on the feedback point IN3 is related to the signal at the output terminal, the signal on the feedback point IN3 at this time is finally a continuous DC voltage signal after experiencing a short transient response, and for Circuit operation does not provide a function of substantial benefit.

在目前的主流应用上,电压转换控制器通常以集成电路实现,并配合外部的应用电路组成电压转换电路,以达到成本、电路体积、以及使用弹性上的优化。所述集成电路包含与外部电子组件电性相连的针脚(pins),而为求成本与体积的优化,在不影响使用弹性的前提下,集成电路的针脚数目可以愈少愈好。因此在设计上,若能让针脚在所有的电路使用状态之下,提供有实质效益的功能,即是对针脚的优化利用。以上述举例的先前技术而言,其代表回授点的针脚在电压转换控制器处于非稳态操作时,并未提供对于电路操作上具有实质效益的功能,此乃目前一般电压转换控制器集成电路的普遍现象。In the current mainstream applications, the voltage conversion controller is usually implemented by an integrated circuit, and cooperates with an external application circuit to form a voltage conversion circuit, so as to optimize cost, circuit size, and flexibility of use. The integrated circuit includes pins that are electrically connected to external electronic components. In order to optimize cost and volume, the number of pins of the integrated circuit can be as few as possible without affecting the flexibility of use. Therefore, in terms of design, if the pins can provide functions with substantial benefits under all circuit usage states, it is the optimal use of the pins. Taking the previous technology as an example above, the pin representing the feedback point does not provide a function that has substantial benefits for the circuit operation when the voltage conversion controller is in an unsteady state. This is the current integration of general voltage conversion controllers. common phenomenon in circuits.

【发明内容】 【Content of invention】

有鉴于此,本发明提供一种电压转换电路,包含一电压转换控制器,是一集成电路,且所述电压转换控制器能提供具有多功能的单一针脚,据以优化对针脚的利用。In view of this, the present invention provides a voltage conversion circuit, which includes a voltage conversion controller, which is an integrated circuit, and the voltage conversion controller can provide a single pin with multiple functions, so as to optimize the utilization of the pins.

本发明所揭露的电压转换电路,包含一应用电路及一电压转换控制器。应用电路包含一输出端、一回授端及耦接于回授端的一回授电容。输出端具有一输出电压,并耦接一电流负载。电压转换控制器具有一回授端针脚,耦接于所述回授端。电压转换控制器具有一第一模式以及一第二模式。于所述第一模式时,所述输出端提供受调节的输出电压并供应电流予电流负载,且回授端针脚接收一回授讯号。于所述第二模式时,所述输出电压不受调节,且所述回授端针脚提供固定周期性的一计数频率讯号,计数频率讯号的周期大小是由回授电容的电容值所决定。The voltage conversion circuit disclosed in the present invention includes an application circuit and a voltage conversion controller. The application circuit includes an output terminal, a feedback terminal and a feedback capacitor coupled to the feedback terminal. The output terminal has an output voltage and is coupled to a current load. The voltage conversion controller has a feedback terminal pin coupled to the feedback terminal. The voltage conversion controller has a first mode and a second mode. In the first mode, the output terminal provides a regulated output voltage and supplies current to a current load, and the feedback terminal pin receives a feedback signal. In the second mode, the output voltage is not adjusted, and the feedback terminal pin provides a counting frequency signal with a fixed period, and the period of the counting frequency signal is determined by the capacitance value of the feedback capacitor.

本发明的功效在于,本发明所揭露的技术特征能够节省集成电路针脚的使用量,因而能进一步节省成本;且同一设计的电压转换控制器能使用于各种不同的应用上,也因而减少集成电路组件因应各种不同应用所衍生的版本数量,而简化制造商生产、库存、管理的问题。The effect of the present invention is that the technical features disclosed in the present invention can save the use of integrated circuit pins, thereby further saving costs; and the voltage conversion controller of the same design can be used in various applications, thereby reducing integration The number of versions of circuit components derived from various applications simplifies production, inventory, and management issues for manufacturers.

有关本发明的特征、实作与功效,兹配合图式作最佳实施例详细说明如下。Regarding the features, implementation and effects of the present invention, the preferred embodiments are described in detail below in conjunction with the drawings.

【附图说明】 【Description of drawings】

图1为本发明的电压转换器的电路示意图。FIG. 1 is a schematic circuit diagram of a voltage converter of the present invention.

图2为本发明的电压转换控制器的组成功能方块示意图。FIG. 2 is a schematic functional block diagram of the voltage conversion controller of the present invention.

图3为本发明的电压转换控制器进行软启动操作时,各主要端点的电压波形示意图。FIG. 3 is a schematic diagram of the voltage waveforms of each main terminal when the voltage conversion controller of the present invention performs a soft start operation.

图4为图3中局部放大区域的电压波形示意图。FIG. 4 is a schematic diagram of a voltage waveform in a partially enlarged region in FIG. 3 .

图5为本发明的电压转换控制器进行输出过电流保护操作时,各主要端点的电压波形示意图。FIG. 5 is a schematic diagram of the voltage waveforms of each main terminal when the voltage conversion controller of the present invention performs an output overcurrent protection operation.

图6为本发明的电压转换控制器之中,振荡控制器的电路示意图。FIG. 6 is a schematic circuit diagram of an oscillation controller among the voltage conversion controllers of the present invention.

主要组件符号说明:Description of main component symbols:

100  电压转换器               151  光感测组件100 Voltage Converter 151 Light Sensing Component

110  电源供应单元             243  第二电流开关110 power supply unit 243 second current switch

111  桥式全波整流器           244  第二电流组件111 Bridge full-wave rectifier 244 Second current component

112  输入稳压电容             245  内部电压源112 Input Stabilizing Capacitor 245 Internal Voltage Source

113  一次侧线圈               251  计数器113 primary side coil 251 counter

130  输出单元                 252  软启动控制电路130 Output unit 252 Soft start control circuit

131  二次侧线圈               253  过载保护控制电路131 Secondary coil 253 Overload protection control circuit

132  输出端二极管             254  关闭逻辑电路132 Output diode 254 Shutdown logic circuit

133  输出稳压电容             255  振荡控制器133 Output Stabilizer Capacitor 255 Oscillation Controller

134  第一回授电阻             280  充放电电路134 The first feedback resistor 280 Charge and discharge circuit

135  第二回授电阻             310  输出电压波形135 Second feedback resistor 310 Output voltage waveform

136  限流电阻                 320  振荡控制器的输出波形136 Current limiting resistor 320 Output waveform of oscillation controller

137  发光二极管               330  回授端针脚的电压波形137 Light-emitting diode 330 Voltage waveform of the feedback terminal pin

138  三端并联稳压器           331  振荡控制器的第一比较电压值138 Three-terminal shunt regulator 331 The first comparison voltage value of the oscillation controller

150  回授电路单元             332  振荡控制器的第二比较电压值150 Feedback circuit unit 332 The second comparison voltage value of the oscillation controller

340  限电流控制级的输出波形   242  第一电流开关340 The output waveform of the current-limiting control stage 242 The first current switch

341  限电流控制级于稳态操作        等效限电流的电压值341 The voltage value of the equivalent current-limiting control stage for steady-state operation

下的350  感流电压脚的电压波形The voltage waveform of the sense voltage pin under 350

152  回授电容                 360  340与350局部放大波形的区域152 feedback capacitor 360 340 and 350 partially amplified waveform area

170  功率开关单元             510  过载保护控制电路的输出波形170 Power switch unit 510 Output waveform of overload protection control circuit

171  功率开关                 520  振荡控制器输出波形171 Power switch 520 Oscillation controller output waveform

172  感流电阻                 530  回授端针脚的电压波形172 Current sense resistor 530 Voltage waveform of feedback terminal pin

200  电压转换控制器           531  振荡控制器的第一比较电压值200 Voltage conversion controller 531 The first comparison voltage value of the oscillation controller

210  功率开关控制脚           532  振荡控制器的第二比较电压值210 Power switch control pin 532 The second comparison voltage value of the oscillation controller

211  功率开关驱动级           540  限电流控制级的输出波形211 Power switch driving stage 540 Output waveform of current limiting control stage

212  脉宽调变闩锁器           550  感流电压脚的电压波形212 Pulse Width Modulation Latch 550 Voltage Waveform of Current Sense Voltage Pin

213  内部振荡器               610  控制器输入端213 Internal Oscillator 610 Controller Input

214  脉宽调变比较器           620  控制器输出端214 PWM comparator 620 Controller output terminal

215  限电流控制级             630  第一比较器215 current limit control stage 630 first comparator

220  感流电压脚               640  第二比较器220 current sense voltage pin 640 second comparator

221  增益级                   650  第一比较电压221 Gain stage 650 First comparison voltage

230  接地脚                   660  第二比较电压230 ground pin 660 second comparison voltage

240  回授端针脚               670  设定重置闩锁器240 Feedback Pin 670 Set Reset Latch

241  第一电流组件241 The first current component

【具体实施方式】 【Detailed ways】

在说明书及后续的申请专利范围当中,"耦接"一词在此是包含任何直接及间接的电气连接手段。因此,若文中描述一第一装置耦接于一第二装置,则代表所述第一装置可直接电气连接于所述第二装置,或通过其它装置或连接手段间接地电气连接至所述第二装置。In the description and the scope of subsequent patent applications, the term "coupling" here includes any direct and indirect electrical connection means. Therefore, if it is described in the text that a first device is coupled to a second device, it means that the first device may be directly electrically connected to the second device, or indirectly electrically connected to the second device through other devices or connection means. Two devices.

图1为一电压转换电路100的电路示意图。电压转换电路100是为一驰返式开关电源转换电路的组态。电压转换电路100包含本发明的电压转换控制器200以及一应用电路。应用电路包含一输出端及一回授端COMP。输出端具有一输出电压,并耦接一电流负载。电压转换控制器200更包含一电源供应单元110、一输出单元130、一回授电路单元150以及一功率开关单元170。FIG. 1 is a schematic circuit diagram of a voltage conversion circuit 100 . The voltage conversion circuit 100 is configured as a flyback switching power conversion circuit. The voltage conversion circuit 100 includes the voltage conversion controller 200 of the present invention and an application circuit. The application circuit includes an output terminal and a feedback terminal COMP. The output terminal has an output voltage and is coupled to a current load. The voltage conversion controller 200 further includes a power supply unit 110 , an output unit 130 , a feedback circuit unit 150 and a power switch unit 170 .

如图1所示,电源供应单元110包括一桥式全波整流器111、一输入稳压电容112、以及一一次侧线圈113。As shown in FIG. 1 , the power supply unit 110 includes a bridge full-wave rectifier 111 , an input voltage stabilizing capacitor 112 , and a primary coil 113 .

桥式全波整流器111是将一输入的交流电源VAC进行全波整流并提供一全波整流结果于其输出。The bridge full-wave rectifier 111 performs full-wave rectification on an input AC power VAC and provides a full-wave rectification result at its output.

输入稳压电容112耦接于桥式全波整流器111的输出,并对全波整流结果进行稳压,以产生一输入电压VIN于输入稳压电容112上。The input stabilizing capacitor 112 is coupled to the output of the bridge full-wave rectifier 111 , and stabilizes the full-wave rectified result to generate an input voltage VIN on the input stabilizing capacitor 112 .

一次侧线圈113具有第一端点与第二端点,且第一端点耦接于输入稳压电容112。电源供应单元110主要功用在于提供输入电压VIN予一次侧线圈113。The primary side coil 113 has a first terminal and a second terminal, and the first terminal is coupled to the input stabilizing capacitor 112 . The main function of the power supply unit 110 is to provide the input voltage VIN to the primary coil 113 .

如图1所示,输出单元130包含一二次侧线圈131、一输出端二极管132、一输出稳压电容133、一第一回授电阻134、一第二回授电阻135、一限流电阻136、一发光二极管137、以及一三端并联稳压器138。As shown in FIG. 1 , the output unit 130 includes a secondary side coil 131, an output diode 132, an output voltage stabilizing capacitor 133, a first feedback resistor 134, a second feedback resistor 135, and a current limiting resistor. 136 , a light emitting diode 137 , and a three-terminal shunt regulator 138 .

二次侧线圈131具有第一端点与第二端点,且与一次侧线圈113具互感关是而形成一变压器组件。The secondary coil 131 has a first terminal and a second terminal, and has a mutual inductance relationship with the primary coil 113 to form a transformer assembly.

输出端二极管132的正极端耦接于二次侧线圈131的第一端点。输出端二极管132的负极端耦接于输出稳压电容133的一端,并形成一输出端的正端VOP。The anode terminal of the output diode 132 is coupled to the first terminal of the secondary coil 131 . The negative end of the output diode 132 is coupled to one end of the output voltage stabilizing capacitor 133 to form a positive output end VOP.

输出稳压电容133的另一端耦接于二次侧线圈131的第二端点,并形成一输出端的负端VON。其中输出端的正端VOP与输出端的负端VON之间提供一输出电压。The other terminal of the output voltage stabilizing capacitor 133 is coupled to the second terminal of the secondary side coil 131 and forms a negative terminal VON of an output terminal. An output voltage is provided between the positive terminal VOP of the output terminal and the negative terminal VON of the output terminal.

第一回授电阻134耦接于输出端的正端VOP与第二回授电阻135的一端之间。第二回授电阻135的另一端耦接于输出端的负端VON。第一回授电阻134与第二回授电阻135的连接点提供一输出电压分压VFB,并耦接于三端并联稳压器138的输入端。The first feedback resistor 134 is coupled between the positive terminal VOP of the output terminal and one end of the second feedback resistor 135 . The other end of the second feedback resistor 135 is coupled to the negative end VON of the output end. The connection point of the first feedback resistor 134 and the second feedback resistor 135 provides an output voltage divider VFB, and is coupled to the input terminal of the three-terminal shunt regulator 138 .

限流电阻136的一端耦接于输出端的正端VOP,另一端耦接于发光二极管137的正端。One terminal of the current limiting resistor 136 is coupled to the positive terminal VOP of the output terminal, and the other terminal is coupled to the positive terminal of the LED 137 .

发光二极管137的负端耦接于三端并联稳压器138的输出正端。三端并联稳压器138的输出负端耦接于输出端的负端VON。The negative terminal of the LED 137 is coupled to the positive output terminal of the three-terminal shunt regulator 138 . The negative output terminal of the three-terminal shunt regulator 138 is coupled to the negative terminal VON of the output terminal.

如图1所示,三端并联稳压器138包含一参考电压值,当输入端的电压大于所述参考电压值,三端并联稳压器138的输出正端与输出负端之间为一导通的状态。反的,当其输入端的电压小于所述参考电压值,三端并联稳压器138的输出正端与输出负端之间为一不导通的状态。因此,当输出电压分压VFB大于所述参考电压值时,三端并联稳压器138的输出导通,并在发光二极管137上形成电流,且电流大小受到限流电阻136的限制,此时发光二极管137形成一发光的光源;而当输出电压分压VFB小于所述参考电压值时,三端并联稳压器138的输出不导通,发光二极管137上不具电流,亦即发光二极管137不发光。As shown in Figure 1, the three-terminal shunt regulator 138 includes a reference voltage value, and when the voltage at the input terminal is greater than the reference voltage value, there is a lead between the output positive terminal and the output negative terminal of the three-terminal shunt regulator 138. pass status. Conversely, when the voltage at its input terminal is lower than the reference voltage value, the positive output terminal and the negative output terminal of the three-terminal shunt regulator 138 are in a non-conductive state. Therefore, when the output voltage divided voltage VFB is greater than the reference voltage value, the output of the three-terminal shunt regulator 138 is turned on, and a current is formed on the light-emitting diode 137, and the magnitude of the current is limited by the current limiting resistor 136. At this time The light emitting diode 137 forms a luminescent light source; and when the output voltage divided voltage VFB is less than the reference voltage value, the output of the three-terminal shunt regulator 138 is not conducted, and there is no current on the light emitting diode 137, that is, the light emitting diode 137 does not glow.

如图1所示,功率开关单元170包含一功率开关171以及一感流电阻172。功率开关171的输出与感流电阻172串联相接,并耦接于一次侧线圈113的第二端点与接地端之间。当功率开关171打开时,输入稳压电容112、一次侧线圈113、功率开关171以及感流电阻172即形成一电流回路。由于一次侧线圈113是一电感性的组件,因此所述电流回路的形成将储存能量于一次侧线圈113上。另外,感流电阻172将所述电流回路上的电流讯号转为一电压讯号VCS。当功率开关171关闭时,一次侧线圈113上的储存能量通过与二次侧线圈131所形成的变压器组件,释放至二次侧线圈131形成一其上的电流,并于电压转换电路100处于稳态操作时,在输出端的正端与负端之间建立一额定的输出电压VOUT,并提供电流予串接于输出端的正端与负端之间的一电流负载(图中未示)。As shown in FIG. 1 , the power switch unit 170 includes a power switch 171 and a current sensing resistor 172 . The output of the power switch 171 is connected in series with the sense resistor 172 and coupled between the second terminal of the primary coil 113 and the ground terminal. When the power switch 171 is turned on, the input voltage stabilizing capacitor 112 , the primary side coil 113 , the power switch 171 and the current sensing resistor 172 form a current loop. Since the primary coil 113 is an inductive component, the formation of the current loop will store energy on the primary coil 113 . In addition, the sense resistor 172 converts the current signal on the current loop into a voltage signal VCS. When the power switch 171 is turned off, the stored energy on the primary side coil 113 passes through the transformer assembly formed with the secondary side coil 131 and is released to the secondary side coil 131 to form a current on it, and the voltage conversion circuit 100 is in a steady state. In normal operation, a rated output voltage VOUT is established between the positive terminal and the negative terminal of the output terminal, and a current is provided to a current load (not shown) connected in series between the positive terminal and the negative terminal of the output terminal.

如图1所示,回授电路单元150包含一光感测组件151以及一回授电容152。光感测组件151与发光二极管137形成一光耦合器的组态,当发光二极管137形成一发光的光源,光感测组件151即侦测到所述光源而形成一电流于其上,且所述电流大小与所述光源的强度成正比关是。由此可知,利用所述变压器以及所述光耦合器,可以将输入交流电源的一侧与输出端的一侧完全作电性上的隔离。As shown in FIG. 1 , the feedback circuit unit 150 includes a light sensing element 151 and a feedback capacitor 152 . The photo-sensing element 151 and the light-emitting diode 137 form an optical coupler configuration. When the light-emitting diode 137 forms a light source, the light-sensing element 151 detects the light source and forms a current on it, and the resulting The magnitude of the current is directly proportional to the intensity of the light source. It can be seen that, by using the transformer and the optocoupler, the side of the input AC power supply and the side of the output terminal can be completely electrically isolated.

如图1所示,光感测组件151与回授电容152并联相接且耦接于应用电路的回授端COMP与接地端之间。所述电压转换控制器200是一集成电路单元,且具有多个针脚。针脚包含功率开关控制脚210、感流电压脚220、接地脚230以及回授端针脚240。功率开关控制脚210耦接于功率开关171的控制端,藉以控制功率开关171的开启与关闭。感流电压脚220是接受感流电阻172所产生的电压讯号VCS。接地脚230则耦接于接地端。回授端针脚240则耦接于回授端COMP。As shown in FIG. 1 , the light sensing component 151 is connected in parallel with the feedback capacitor 152 and is coupled between the feedback terminal COMP and the ground terminal of the application circuit. The voltage conversion controller 200 is an integrated circuit unit and has a plurality of pins. The pins include a power switch control pin 210 , a sense voltage pin 220 , a ground pin 230 and a feedback terminal pin 240 . The power switch control pin 210 is coupled to the control terminal of the power switch 171 to control the power switch 171 to be turned on and off. The sense voltage pin 220 receives the voltage signal VCS generated by the sense resistor 172 . The ground pin 230 is coupled to the ground terminal. The feedback terminal pin 240 is coupled to the feedback terminal COMP.

图2为电压转换控制器200的组成功能方块示意图。电压转换控制器200更包含一第一电流组件241、一第一电流开关242、一第二电流开关243、一第二电流组件244、一内部电压源245、一计数器251、一软启动控制电路252、一过载保护控制电路253、一关闭逻辑电路254、一振荡控制器255、一功率开关驱动级211、一脉宽调变闩锁器212、一内部振荡器213、一脉宽调变比较器214、一限电流控制级215、以及一增益级221。FIG. 2 is a schematic functional block diagram of the voltage conversion controller 200 . The voltage conversion controller 200 further includes a first current component 241, a first current switch 242, a second current switch 243, a second current component 244, an internal voltage source 245, a counter 251, and a soft-start control circuit 252, an overload protection control circuit 253, a shutdown logic circuit 254, an oscillation controller 255, a power switch drive stage 211, a pulse width modulation latch 212, an internal oscillator 213, a pulse width modulation comparison device 214, a current limit control stage 215, and a gain stage 221.

第一电流组件241耦接于内部电压源245与第一电流开关242的一端。The first current component 241 is coupled to the internal voltage source 245 and one end of the first current switch 242 .

第一电流开关242的另一端耦接于回授端针脚240。The other end of the first current switch 242 is coupled to the feedback pin 240 .

第一电流组件241与第一电流开关242的串接形成了一开关电流组件,其中第一电流组件241可为电阻组件或为电流源组件。The series connection of the first current component 241 and the first current switch 242 forms a switch current component, wherein the first current component 241 can be a resistor component or a current source component.

第二电流组件244耦接于接地脚230与第二电流开关243的一端。第二电流开关243的另一端耦接于回授端针脚240。The second current component 244 is coupled to the ground pin 230 and one end of the second current switch 243 . The other end of the second current switch 243 is coupled to the feedback pin 240 .

第二电流组件244与第二电流开关243的串接形成了另一开关电流组件,其中第二电流组件244可为电阻组件或为电流源组件。The series connection of the second current component 244 and the second current switch 243 forms another switch current component, wherein the second current component 244 can be a resistor component or a current source component.

振荡控制器255的输入耦接于回授端针脚240,并在电压转换电路100的非稳态操作时,产生一周期频率讯号于其输出端,藉以控制第一电流开关242以及第二电流开关243的开启以及关闭。The input of the oscillation controller 255 is coupled to the feedback terminal pin 240, and when the voltage conversion circuit 100 operates in an unsteady state, a periodic frequency signal is generated at its output terminal to control the first current switch 242 and the second current switch. 243 on and off.

振荡控制器255的输出端并耦接至计数器251。计数器251在电压转换电路100的非稳态操作时,输出一结果予软启动控制电路252、并输出另一结果予过载保护控制电路253。The output terminal of the oscillation controller 255 is coupled to the counter 251 . The counter 251 outputs a result to the soft-start control circuit 252 and outputs another result to the overload protection control circuit 253 when the voltage conversion circuit 100 operates in an unsteady state.

过载保护控制电路253则依据设定,控制关闭逻辑电路254,以决定是否暂时关闭电压转换控制器200。The overload protection control circuit 253 controls the shutdown logic circuit 254 according to the settings to determine whether to temporarily shut down the voltage conversion controller 200 .

脉宽调变比较器214具有一正端输入、一第一负端输入、一第二负端输入以及一输出。其第一负端输入耦接至回授端针脚240。其输出耦接至计数器251。The PWM comparator 214 has a positive input, a first negative input, a second negative input and an output. Its first negative terminal input is coupled to the feedback terminal pin 240 . Its output is coupled to a counter 251 .

增益级221的输入耦接至感流电压脚220,增益级221的输出耦接至脉宽调变比较器214的正端输入。增益级221乃将其输入讯号经适当的线性放大后再输出。限电流控制级215提供一等效限电流的电压值于其输出,并耦接至脉宽调变比较器214的第二负端输入。The input of the gain stage 221 is coupled to the sense voltage pin 220 , and the output of the gain stage 221 is coupled to the positive input of the PWM comparator 214 . The gain stage 221 outputs the input signal after proper linear amplification. The current-limit control stage 215 provides an equivalent current-limit voltage at its output, and is coupled to the second negative input of the PWM comparator 214 .

脉宽调变闩锁器212具有一设定输入端、一重置输入端以及一输出端。重置输入端耦接至脉宽调变比较器214的输出。内部振荡器213提供一脉宽调变操作频率,并耦接至脉宽调变闩锁器212的设定输入端。The PWM latch 212 has a set input terminal, a reset input terminal and an output terminal. The reset input terminal is coupled to the output of the PWM comparator 214 . The internal oscillator 213 provides a PWM operating frequency and is coupled to the setting input terminal of the PWM latch 212 .

功率开关驱动级211具有一输入端以及一输出端,其输入端耦接至脉宽调变闩锁器212的输出端,功率开关驱动级211的输出端耦接于功率开关控制脚210,并根据其输入端的输入讯号来驱动功率开关171控制端的电容性负载。The power switch driving stage 211 has an input terminal and an output terminal, the input terminal is coupled to the output terminal of the pulse width modulation latch 212, the output terminal of the power switch driving stage 211 is coupled to the power switch control pin 210, and The capacitive load at the control end of the power switch 171 is driven according to the input signal at its input end.

电压转换控制器200配合应用电路,以建立如图1所示的电压转换电路100。电压转换控制器200至少具有第一模式以及第二模式,例如稳态操作以及非稳态操作。且在第一模式下,回授端针脚240接收一回授讯号,而在第二模式下,回授端针脚240提供一计数频率讯号。所述回授讯号以及所述计数频率讯号不论在形成的方式以及操作上的作用皆有不同。The voltage conversion controller 200 cooperates with the application circuit to establish the voltage conversion circuit 100 shown in FIG. 1 . The voltage conversion controller 200 has at least a first mode and a second mode, such as a steady-state operation and an unsteady-state operation. And in the first mode, the feedback terminal pin 240 receives a feedback signal, and in the second mode, the feedback terminal pin 240 provides a counting frequency signal. The feedback signal and the counting frequency signal have different functions in terms of formation and operation.

在电压转换电路100的稳态操作时,电压转换控制器200回授控制调节输出端的正端VOP与负端VON之间的电流负载,并提供受调节的一额定输出电压VOUT于输出电压。所谓受调节者,是指当外部应用电路以及电流负载各参数产生处于规格范围内的变化时,电压转换控制器200皆能以其配合外部应用电路所建立的负回授控制机制进行反应,以使输出电压保持在一额定的VOUT。When the voltage conversion circuit 100 operates in a steady state, the voltage conversion controller 200 feedback controls to adjust the current load between the positive terminal VOP and the negative terminal VON of the output terminal, and provides a regulated rated output voltage VOUT as the output voltage. The so-called regulated person refers to that when the parameters of the external application circuit and the current load change within the specified range, the voltage conversion controller 200 can react with the negative feedback control mechanism established by the external application circuit, so as to Keep the output voltage at a rated VOUT.

在电压转换电路100处于非稳态操作时,电压转换控制器200配合应用电路,将进行必要的反应以保护电压转换控制器200、应用电路中的各组件、以及电流负载,使应用电路免于因为过电压或过电流的情形而导致组件损毁或其它误动作。常见的非稳态操作的反应包括软启动、输入电压不足锁定、输出电压过高保护、输出过电流保护等等。本发明的实施例将以电压转换电路100的稳态操作,以及软启动、输出过电流保护的非稳态操作进行技术特征的说明,兹说明如下。When the voltage conversion circuit 100 is in an unsteady state operation, the voltage conversion controller 200 cooperates with the application circuit, and will perform necessary reactions to protect the voltage conversion controller 200, each component in the application circuit, and the current load, so that the application circuit is free from Component damage or other malfunctions due to overvoltage or overcurrent conditions. Common unsteady operation responses include soft start, under-input voltage lockout, over-output over-voltage protection, over-current over-output protection, and more. Embodiments of the present invention will describe the technical features of the steady-state operation of the voltage conversion circuit 100 and the non-steady-state operation of soft start and output overcurrent protection, which are described below.

当电压转换电路100处于稳态操作时,输出电压为一涟波波形,且所述涟波波形的平均电压即为额定输出电压VOUT。试解释所述涟波波形的周期行为以及电压转换控制器200的调节动作如下。When the voltage conversion circuit 100 is in steady state operation, the output voltage is a ripple waveform, and the average voltage of the ripple waveform is the rated output voltage VOUT. The periodic behavior of the ripple waveform and the adjustment action of the voltage conversion controller 200 are explained as follows.

周期的一开始,电压转换控制器200的内部振荡器213输出脉波,以触发脉宽调变闩锁器212的设定输入端而产生讯号“1”于触发脉宽调变闩锁器212的输出端,此时功率开关驱动级211则驱动功率开关171的控制端以开启功率开关171,并形成一电流回路而储存能量于一次侧线圈113上。此时所述变压器则未提供电流于所述输出端,故输出端上的电流负载所需电荷是来自于输出稳压电容133,因此所述输出电压线性下降。而由于一次侧线圈113上的电流,亦即功率开关171上的电流持续上升,因此感流电压脚220上的电压讯号VCS亦持续上升,直到VCS大于回授端针脚240上的电压值,此频率宽调变比较器214输出讯号“1”至脉宽调变闩锁器212的重置输入端而产生讯号“0”于脉宽调变闩锁器212的输出端,功率开关驱动级211因此关闭功率开关171。一次侧线圈113上的储存能量则通过与二次侧线圈131所形成的变压器组件,释放至二次侧线圈131形成一其上的电流,并藉以提供电流予负载电流并对输出稳压电容133进行充电。此时所述输出电压线性上升,直到内部振荡器213产生下一个脉波,而开启功率开关171。电压转换电路100因此进行周期性的操作。At the beginning of the cycle, the internal oscillator 213 of the voltage conversion controller 200 outputs a pulse to trigger the setting input of the PWM latch 212 to generate a signal "1" to trigger the PWM latch 212 At this time, the power switch driving stage 211 drives the control terminal of the power switch 171 to turn on the power switch 171 , and forms a current loop to store energy in the primary side coil 113 . At this time, the transformer does not provide current to the output terminal, so the charge required by the current load on the output terminal comes from the output voltage stabilizing capacitor 133 , so the output voltage drops linearly. And because the current on the primary side coil 113, that is, the current on the power switch 171 continues to rise, so the voltage signal VCS on the sense voltage pin 220 also continues to rise until VCS is greater than the voltage value on the feedback terminal pin 240, thus The frequency width modulation comparator 214 outputs a signal "1" to the reset input terminal of the PWM latch 212 to generate a signal "0" at the output terminal of the PWM latch 212, and the power switch driving stage 211 The power switch 171 is thus turned off. The energy stored on the primary side coil 113 is released to the secondary side coil 131 through the transformer assembly formed with the secondary side coil 131 to form a current on it, thereby providing current to the load current and to the output voltage stabilizing capacitor 133 to charge. At this time, the output voltage rises linearly until the internal oscillator 213 generates a next pulse, and the power switch 171 is turned on. The voltage conversion circuit 100 therefore operates periodically.

而当负载电流的电流值增加,由于电压转换电路100暂时无法提供足够的电流予负载电流,故由输出稳压电容133提供所需的额外电荷,因而造成输出电压下降。此时输出电压的分压VFB小于三端并联稳压器138的参考电压时,三端并联檼压器138的输出正端与输出负端之间不导通,亦即发光二极管137的输出不具电流且不发光。光感测组件151则未侦测到光源,因而其上亦不具电流。而在稳态操作时,第一电流开关242开关导通,而第二电流开关243则开关截止。当光感测组件151不具电流时,第一电流组件241提供一电流对回授电容152充电,回授端针脚240上的电压值上升,而造成当一次侧线圈113进行储存能量时,其操作的电流上限提高,亦即能储存较多能量,因而于下半周期释放至二次侧线圈131时能提供一较大的电流以提供输出单元130所需,并对输出电压进行调节,以回复其额定电压VOUT。When the current value of the load current increases, because the voltage conversion circuit 100 cannot provide enough current for the load current temporarily, the output voltage stabilizing capacitor 133 provides the required extra charge, thereby causing the output voltage to drop. At this time, when the divided voltage VFB of the output voltage is less than the reference voltage of the three-terminal shunt regulator 138, the positive output terminal and the negative output terminal of the three-terminal shunt voltage regulator 138 are not conducting, that is, the output of the light-emitting diode 137 has no current and no light. The light-sensing element 151 does not detect the light source, and thus there is no current thereon. In steady state operation, the first current switch 242 is turned on, and the second current switch 243 is turned off. When the photo-sensing component 151 has no current, the first current component 241 provides a current to charge the feedback capacitor 152, and the voltage value on the feedback terminal pin 240 rises, so that when the primary side coil 113 stores energy, its operation The upper limit of the current is increased, that is, more energy can be stored, so when it is released to the secondary side coil 131 in the second half cycle, a larger current can be provided to supply the needs of the output unit 130, and the output voltage is adjusted to recover Its rated voltage VOUT.

反的,当负载电流的电流值减少,由于电压转换电路100提供过多电流予输出端,多余的电流即对输出稳压电容133充电,而造成输出电压上升。此时输出电压的分压VFB大于三端并联檼压器138的参考电压时,三端并联檼压器138的输出正端与输出负端之间导通,亦即发光二极管137形成电流而发光。光感测组件151侦测到光源,因而其上形成电流,并造成回授电容152放电。回授端针脚240上的电压值下降,亦即当一次侧线圈113进行储存能量时,其操作的电流上限下降,亦即储存较少能量,因而于下半周期释放至二次侧线圈131时提供一较小的电流予输出单元130,藉此对输出电压进行调节,以回复其额定电压VOUT。由以上负载电流变化所引起的瞬时行为,可观察到电压转换控制器200利用其与应用电路所建立的负回授控制机制,能作出对应的操作,而对输出电压进行调节,以使输出电压保持在一额定的电压VOUT。或称电压转换电路100此时处于一稳态操作的状态。另外,由上述操作可知,回授端针脚240上的电压值与所述负载电流的电流大小成线性相关,此即一电流模式控制(current-mode control)的电压转换器所具有的特性。然而在其它的电压转换器组态中,例如在一电压模式控制(voltage-mode control)的电压转换器中,回授端针脚240上的电压值则与输出电压大小成线性相关,此为先前技术已揭露的技术特征,在此不另赘述。On the contrary, when the current value of the load current decreases, because the voltage conversion circuit 100 provides too much current to the output terminal, the excess current charges the output voltage stabilizing capacitor 133 , causing the output voltage to rise. At this time, when the divided voltage VFB of the output voltage is greater than the reference voltage of the three-terminal parallel transformer 138, the positive output terminal and the output negative terminal of the three-terminal parallel transformer 138 are conducted, that is, the light-emitting diode 137 forms a current and emits light. . The light sensing element 151 detects the light source, thus forming a current thereon, and causing the feedback capacitor 152 to discharge. The voltage value on the feedback terminal pin 240 drops, that is, when the primary side coil 113 stores energy, the upper limit of its operating current drops, that is, less energy is stored, and thus released to the secondary side coil 131 in the second half cycle A smaller current is provided to the output unit 130 to adjust the output voltage to recover its rated voltage VOUT. From the transient behavior caused by the above load current change, it can be observed that the voltage conversion controller 200 can make corresponding operations by using the negative feedback control mechanism established with the application circuit to adjust the output voltage so that the output voltage maintain a rated voltage VOUT. Or the voltage conversion circuit 100 is in a steady state operation state at this time. In addition, it can be known from the above operations that the voltage on the feedback terminal pin 240 is linearly related to the magnitude of the load current, which is a characteristic of a current-mode control voltage converter. However, in other voltage converter configurations, such as a voltage-mode control voltage converter, the voltage value on the feedback terminal pin 240 is linearly related to the output voltage, which was previously The technical features that have been disclosed in the technology will not be repeated here.

而当所述电压转换控制器200刚开始启动时,输出电压的稳态操作尚未建立,亦即电压转换电路100处于一非稳态操作的状态。此时所述电压转换控制器200即进行软启动操作,并建立输出电压的稳态操作,以使电压转换电路100达到稳态操作的状态。软启动操作可以有效地避免电路刚开始启动时,电路中各组件操作于极限状况而降低其使用寿命,并能减少电路启动时于电源供应单元110所产生的突波。软启动操作允许的时间愈长,其所能达成的保护效果愈好,然而电路启动时间必须考虑应用上的系统规格而通常会有一最大值限制,因而形成设计上的取舍。电压转换控制器200的软启动操作将配合图3的波形图说明的。However, when the voltage conversion controller 200 starts up, the steady-state operation of the output voltage has not been established, that is, the voltage conversion circuit 100 is in an unsteady-state operation state. At this time, the voltage conversion controller 200 performs a soft start operation and establishes a steady-state operation of the output voltage, so that the voltage conversion circuit 100 reaches a state of steady-state operation. The soft-start operation can effectively prevent components in the circuit from being operated in extreme conditions at the beginning of the circuit and reduce their service life, and can reduce the surge generated in the power supply unit 110 when the circuit is started. The longer the soft-start operation is allowed, the better the protection effect it can achieve. However, the circuit start-up time must consider the application system specification and usually has a maximum limit, thus forming a design trade-off. The soft-start operation of the voltage conversion controller 200 will be described in conjunction with the waveform diagram of FIG. 3 .

图3为电压转换控制器200进行软启动操作时,各主要端点的电压波形示意图。其中310为输出电压波形,320为振荡控制器255的输出波形,330为回授端针脚240上的电压波形,331为振荡控制器255的一第一比较电压值,332为振荡控制器255的一第二比较电压值,340为限电流控制级215的输出波形,341为限电流控制级215在电压转换电路100处于稳态操作下的等效限电流的电压值,350为感流电压脚220上的电压波形,即VCS的电压波形,360为图4所示的340与350局部放大波形的区域。FIG. 3 is a schematic diagram of the voltage waveforms of each main terminal when the voltage conversion controller 200 performs a soft-start operation. Wherein 310 is the output voltage waveform, 320 is the output waveform of the oscillation controller 255, 330 is the voltage waveform on the feedback terminal pin 240, 331 is a first comparison voltage value of the oscillation controller 255, 332 is the oscillation controller 255 A second comparison voltage value, 340 is the output waveform of the current-limiting control stage 215, 341 is the equivalent current-limiting voltage value of the current-limiting control stage 215 when the voltage conversion circuit 100 is in steady-state operation, and 350 is the current-sensing voltage pin The voltage waveform at 220 , that is, the voltage waveform of VCS, 360 is the area of the partially enlarged waveforms at 340 and 350 shown in FIG. 4 .

如图3所示,由于振荡控制器255的输出是控制开启第一电流开关242以及第二电流开关243的两者的一,而当电压转换控制器200一开始启动时,回授端针脚240上的电压小于第一比较电压值331,因此第一电流开关242被开启,第一电流组件241提供一电流流入回授端针脚240的端点,再由于输出电压并未建立,反应至光感测组件151即其不具电流,因此第一电流组件241提供的电流即对回授电容152充电,因此回授端针脚240上的电压持续上升,直到大于第一比较电压值331,此时振荡控制器255的输出改变,第一电流开关242开关截止,且第二电流开关243开关导通。此时第二电流组件244提供一电流流出回授端针脚240的端点,造成回授电容152放电,因此回授端针脚240上的电压开始持续下降,直到小于第二比较电压值332,此时振荡控制器255的输出改变,第一电流开关242开关导通,且第二电流开关243开关截止,而回授端针脚240上的电压开始持续上升,最后形成如330所示的周期性波形部份。而振荡控制器255的输出亦形成如320所示的周期性波形部份。另外,所述周期的大小可直接由回授电容152的电容值来决定。As shown in FIG. 3 , since the output of the oscillation controller 255 controls one of the first current switch 242 and the second current switch 243 to be turned on, when the voltage conversion controller 200 starts to start, the feedback terminal pin 240 The voltage on is smaller than the first comparison voltage value 331, so the first current switch 242 is turned on, and the first current component 241 provides a current to flow into the terminal of the feedback terminal pin 240, and because the output voltage has not been established, it reacts to the light sensing The component 151 has no current, so the current provided by the first current component 241 charges the feedback capacitor 152, so the voltage on the feedback terminal pin 240 continues to rise until it is greater than the first comparison voltage value 331, at this time the oscillation controller The output of 255 changes, the first current switch 242 is switched off, and the second current switch 243 is switched on. At this time, the second current component 244 provides a current to flow out of the terminal of the feedback terminal pin 240, causing the feedback capacitor 152 to discharge, so the voltage on the feedback terminal pin 240 begins to drop continuously until it is less than the second comparison voltage value 332, at this time The output of the oscillation controller 255 changes, the first current switch 242 is turned on, and the second current switch 243 is turned off, and the voltage on the feedback terminal pin 240 starts to rise continuously, finally forming a periodic waveform part as shown in 330 share. The output of the oscillation controller 255 also forms a periodic waveform portion as shown at 320 . In addition, the size of the period can be directly determined by the capacitance of the feedback capacitor 152 .

进一步说明,振荡控制器255、第一电流组件241、第一电流开关242、第二电流开关243、以及第二电流组件244的组合形成一充放电电路280,如图2中所示。所述充放电电路280是于第二模式时,对所述回授电容152进行周期性的充放电,以形成前述的周期性波形。其中振荡控制器255分别于回授电容152的电压上升至第一比较电压值331和下降至第二比较电压值332时,改变振荡控制器255的输出位准。To further illustrate, the combination of the oscillation controller 255 , the first current component 241 , the first current switch 242 , the second current switch 243 , and the second current component 244 forms a charging and discharging circuit 280 , as shown in FIG. 2 . The charging and discharging circuit 280 periodically charges and discharges the feedback capacitor 152 in the second mode to form the aforementioned periodic waveform. The oscillation controller 255 changes the output level of the oscillation controller 255 when the voltage of the feedback capacitor 152 rises to the first comparison voltage value 331 and falls to the second comparison voltage value 332 respectively.

如图3所示,在软启动操作下,限电流控制级215的输出并非一开始即为如341所示的电压值,而是以分段递增的方式,来设定功率开关171的限电流大小,以达到软启动的保护电路组件以及减少电路突波的目的。图4所示为图3中340与350局部放大波形的区域360。当内部振荡器213发出脉波以开启功率开关171时,此时感流电压脚220上的电压波形350,即VCS,为一直线上升的波形,直到大于限电流控制级215所设定的值,亦即图中的340,使得脉宽调变比较器214输出“1”,而关闭所述功率开关171,直到下一次内部振荡器213发出脉波。因此形成了如图中的VCS的周期性讯号。As shown in FIG. 3 , under soft-start operation, the output of the current-limiting control stage 215 is not the voltage value shown at 341 at the beginning, but sets the current-limiting value of the power switch 171 in a step-by-step manner. Size, in order to achieve the purpose of soft start protection circuit components and reduce circuit surge. FIG. 4 shows a region 360 of partially enlarged waveforms of 340 and 350 in FIG. 3 . When the internal oscillator 213 sends out pulses to turn on the power switch 171, the voltage waveform 350 on the current-sensing voltage pin 220 at this time, that is, VCS, is a linearly rising waveform until it is greater than the value set by the current-limiting control stage 215 , that is, 340 in the figure, so that the PWM comparator 214 outputs "1", and the power switch 171 is turned off until the internal oscillator 213 sends out a pulse next time. Therefore, a periodic signal of VCS as shown in the figure is formed.

请回到图3。如图3所示,电压转换控制器200中的计数器251可以利用前述振荡控制器255的输出所形成的周期性波形,进行计数而并将结果输出至软启动控制电路252,软启动控制电路252即依计数的结果而逐步将限电流控制级215的输出增加,以达到软启动的操作。值得注意的是,振荡控制器255的输出的周期,将决定软启动操作的时间长度,因此在电路应用上,用户可通过直接改变电压转换控制器200外部的回授电容152的电容值,来设计软启动操作的时间,而使同一设计的电压转换控制器200能使用于各种不同的应用上,因而减少集成电路组件因应各种不同应用所衍生的版本数量,而简化制造商生产、库存、管理的问题。Please go back to Figure 3. As shown in FIG. 3, the counter 251 in the voltage conversion controller 200 can use the periodic waveform formed by the output of the aforementioned oscillation controller 255 to count and output the result to the soft-start control circuit 252. The soft-start control circuit 252 That is, the output of the current-limiting control stage 215 is gradually increased according to the counting result, so as to achieve the soft-start operation. It is worth noting that the period of the output of the oscillation controller 255 will determine the duration of the soft-start operation. Therefore, in circuit applications, the user can directly change the capacitance value of the feedback capacitor 152 outside the voltage conversion controller 200. Design the time of soft start operation, so that the voltage conversion controller 200 of the same design can be used in various applications, thereby reducing the number of versions of integrated circuit components derived from various applications, and simplifying the manufacturer's production and inventory , Management issues.

另外,在电压转换电路100处于稳态操作时,若负载电流增加,并大于电压转换电路100所能供应的输出电流,此时会触发电压转换控制器200进行输出过电流保护的非稳态操作。输出过电流保护的目的,在于防止电路组件一直处于过高的电流操作状况之下而损毁,甚至造成燃烧而导致使用上安全性的虞。电压转换控制器200的输出过电流保护操作将配合图5的波形图说明的。In addition, when the voltage conversion circuit 100 is operating in a steady state, if the load current increases and is greater than the output current that the voltage conversion circuit 100 can supply, the voltage conversion controller 200 will be triggered to perform an unsteady operation for output overcurrent protection. . The purpose of the output over-current protection is to prevent the circuit components from being damaged due to the over-current operating condition, or even burn, which may lead to safety hazards in use. The output overcurrent protection operation of the voltage conversion controller 200 will be described with the waveform diagram of FIG. 5 .

图5为电压转换控制器200进行输出过电流保护操作时,各主要端点的电压波形示意图。其中510为所述过载保护控制电路253的输出波形,520为振荡控制器255的输出波形,530为回授端针脚240上的电压波形,531为振荡控制器255的一第一比较电压值,532为振荡控制器255的一第二比较电压值,540为限电流控制级215的输出波形,550为感流电压脚220上的电压波形,即VCS的电压波形。FIG. 5 is a schematic diagram of the voltage waveforms of each main terminal when the voltage conversion controller 200 performs the output overcurrent protection operation. Wherein 510 is the output waveform of the overload protection control circuit 253, 520 is the output waveform of the oscillation controller 255, 530 is the voltage waveform on the feedback pin 240, 531 is a first comparison voltage value of the oscillation controller 255, 532 is a second comparison voltage value of the oscillation controller 255 , 540 is the output waveform of the current-limiting control stage 215 , and 550 is the voltage waveform of the current-sensing voltage pin 220 , that is, the voltage waveform of VCS.

如图5所示,电压转换电路100一开始处于稳态操作的状态。在一时间点t1时,其输出端的负载电流增加,并大于电压转换电路100所能供应的输出电流,此时由于电压转换电路100的供应电流能力不足,导致输出电压持续低于额定输出电压VOUT。反应至光感测组件151则是未侦测到光源,因而其上不具电流。第一电流组件241的电流因此对回授电容152持续充电,回授端针脚240上的电压持续上升,直到大于第一比较电压值531,此时振荡控制器255的输出改变,并关闭第一电流开关242,且开启第二电流开关243。As shown in FIG. 5 , the voltage conversion circuit 100 is initially in a steady-state operation state. At a time point t1, the load current at the output terminal increases and is greater than the output current that the voltage conversion circuit 100 can supply. At this time, due to the insufficient supply current capability of the voltage conversion circuit 100, the output voltage is continuously lower than the rated output voltage VOUT . In response to the light sensing element 151 , the light source is not detected, so there is no current thereon. Therefore, the current of the first current component 241 continues to charge the feedback capacitor 152, and the voltage on the feedback terminal pin 240 continues to rise until it is greater than the first comparison voltage value 531. At this time, the output of the oscillation controller 255 changes, and the first The current switch 242 is turned on, and the second current switch 243 is turned on.

此时第二电流组件244提供一电流流出回授端针脚240的端点,造成回授电容152放电,因此回授端针脚240上的电压开始持续下降,直到小于第二比较电压值532,此时振荡控制器255的输出改变,并开启第一电流开关242,且关闭第二电流开关243,而回授端针脚240上的电压开始持续上升,最后形成如530所示的周期性波形部份。而振荡控制器255的输出亦形成如520所示的周期性波形部份。另外,所述周期的大小可直接由回授电容152的电容值来决定。At this time, the second current component 244 provides a current to flow out of the terminal of the feedback terminal pin 240, causing the feedback capacitor 152 to discharge, so the voltage on the feedback terminal pin 240 begins to drop continuously until it is less than the second comparison voltage value 532, at this time The output of the oscillation controller 255 changes, and the first current switch 242 is turned on, and the second current switch 243 is turned off, and the voltage on the feedback terminal pin 240 starts to rise continuously, finally forming a periodic waveform part as shown in 530 . The output of the oscillation controller 255 also forms a periodic waveform portion as shown at 520 . In addition, the size of the period can be directly determined by the capacitance of the feedback capacitor 152 .

如图5所示,电压转换控制器200中的计数器251可以利用前述振荡控制器255的输出所形成的周期性波形进行计数,并在达到一预设计数值时发出讯号予过载保护控制电路253,进行输出过电流保护的动作,例如通知关闭逻辑电路254,以持续关闭功率开关171而不再输出电流。如图5中的t2时所示,此时过载保护控制电路253的输出波形510发出脉波,功率开关171截止,感流电压脚220上的电压波形550,即VCS的电压,则持续为0。As shown in Figure 5, the counter 251 in the voltage conversion controller 200 can use the periodic waveform formed by the output of the aforementioned oscillation controller 255 to count, and send a signal to the overload protection control circuit 253 when reaching a preset value, An action of output overcurrent protection is performed, such as notifying the shutdown logic circuit 254 to keep turning off the power switch 171 without outputting current. As shown at time t2 in FIG. 5 , at this time, the output waveform 510 of the overload protection control circuit 253 sends out a pulse wave, the power switch 171 is turned off, and the voltage waveform 550 on the current-sensing voltage pin 220 , that is, the voltage of VCS, continues to be 0. .

由本实施例的操作可知,在电压转换电路100处于稳态操作的状态时,所述回授讯号,亦即回授端针脚240上的电压讯号,线性相关于输出电流大小,以提供电压转换控制器200进行调节输出电压的负回授控制所需讯号,或亦可解释为回授端针脚240上的电压讯号是由所述负回授控制的回路及其相关组件所产生。而脉宽调变比较器214是接收回授端针脚240上的电压讯号,以进行动态操作。而在电压转换电路100处于非稳态操作的状态时,所述计数频率讯号,亦即回授端针脚240上的电压讯号,则为一周期性的讯号,且周期大小由外部的回授电容152的电容值决定,因而提供了一个频率大小相对精确而可供计数的频率讯号,以供非稳态操作的所需,或亦可解释为回授端针脚240上的电压讯号是由第一电流组件241、第一电流开关242、第二电流开关243、第二电流组件244、内部电压源245、振荡控制器255以及回授电容152所产生。而振荡控制器255是接收回授端针脚240上的电压,而进行动态操作。可知回授端针脚240上的电压讯号在电压转换电路100的两种操作状态下,是由所述电压转换控制器与所述应用电路的不同电路成份所产生,并分别提供了不同功能但又为电路操作所必需的讯号予电压转换控制器200中的两个子电路,即脉宽调变比较器214以及振荡控制器255。反观先前技术中电压转换控制器的回授端针脚上的电压则于任何状态下皆由相同电路成份所产生,且仅能于电压转换器在稳态操作时提供有意义的讯号以供利用。故本发明所揭露的技术特征能够节省集成电路针脚的使用量,因而能进一步节省成本;且同一设计的电压转换控制器能使用于各种不同的应用上,也因而减少集成电路组件因应各种不同应用所衍生的版本数量,而简化制造商生产、库存、管理的问题。It can be seen from the operation of this embodiment that when the voltage conversion circuit 100 is in a steady state operation state, the feedback signal, that is, the voltage signal on the feedback terminal pin 240, is linearly related to the magnitude of the output current to provide voltage conversion control The signal required for the negative feedback control of the regulator 200 to adjust the output voltage, or it can also be explained that the voltage signal on the feedback terminal pin 240 is generated by the loop of the negative feedback control and its related components. The PWM comparator 214 receives the voltage signal on the feedback terminal pin 240 for dynamic operation. When the voltage conversion circuit 100 is in the state of non-steady operation, the count frequency signal, that is, the voltage signal on the feedback terminal pin 240, is a periodic signal, and the cycle size is determined by the external feedback capacitor. The capacitance value of 152 is determined, thus providing a relatively accurate and countable frequency signal for the non-steady-state operation, or it can also be interpreted as the voltage signal on the feedback terminal pin 240 is generated by the first Generated by the current component 241 , the first current switch 242 , the second current switch 243 , the second current component 244 , the internal voltage source 245 , the oscillation controller 255 and the feedback capacitor 152 . The oscillation controller 255 receives the voltage on the feedback terminal pin 240 to perform dynamic operation. It can be seen that the voltage signal on the feedback terminal pin 240 is generated by different circuit components of the voltage conversion controller and the application circuit under the two operating states of the voltage conversion circuit 100, and provides different functions but is different. The signals necessary for the operation of the circuit are given to two sub-circuits in the voltage conversion controller 200 , the PWM comparator 214 and the oscillator controller 255 . In contrast, the voltage on the feedback terminal pin of the voltage conversion controller in the prior art is generated by the same circuit components in any state, and can only provide meaningful signals for use when the voltage converter is operating in a steady state. Therefore, the technical features disclosed in the present invention can save the use of integrated circuit pins, thereby further saving costs; and the voltage conversion controller of the same design can be used in various applications, thus reducing the number of integrated circuit components to respond to various The number of versions derived from different applications simplifies the production, inventory, and management issues of manufacturers.

图6所示为电压转换控制器200之中,所述荡控制器255的一电路实施例。振荡控制器255包含一控制器输入端610、一控制器输出端620、一第一比较器630、一第二比较器640、一第一比较电压650、一第二比较电压660、以及一设定重置闩锁器670。控制器输入端610耦接于回授端针脚240,且控制器输出端620的讯号用以控制第一电流开关242与第二电流开关243的导通或截止。第一比较器630具有一正输入端、一负输入端以及一输出端,其中所述正输入端耦接于控制器输入端610,且所述负输入端耦接于第一比较电压650。第二比较器640具有一正输入端、一负输入端以及一输出端,其中所述负输入端耦接于控制器输入端610,且所述正输入端耦接于第二比较电压660。设定重置闩锁器670具有一设定输入端、一重置输入端、以及一输出端,其中所述设定输入端耦接于第一比较器630的输出端,所述重置输入端耦接于第二比较器640的输出端,且设定重置闩锁器670的输出端耦接于控制器输出端620。FIG. 6 shows a circuit embodiment of the swing controller 255 in the voltage conversion controller 200 . The oscillation controller 255 includes a controller input 610, a controller output 620, a first comparator 630, a second comparator 640, a first comparison voltage 650, a second comparison voltage 660, and a set Set reset latch 670. The controller input terminal 610 is coupled to the feedback terminal pin 240 , and the signal of the controller output terminal 620 is used to control the first current switch 242 and the second current switch 243 to be turned on or off. The first comparator 630 has a positive input terminal, a negative input terminal and an output terminal, wherein the positive input terminal is coupled to the controller input terminal 610 , and the negative input terminal is coupled to the first comparison voltage 650 . The second comparator 640 has a positive input terminal, a negative input terminal and an output terminal, wherein the negative input terminal is coupled to the controller input terminal 610 , and the positive input terminal is coupled to the second comparison voltage 660 . The set-reset latch 670 has a set input, a reset input, and an output, wherein the set input is coupled to the output of the first comparator 630, and the reset input The terminal is coupled to the output terminal of the second comparator 640 , and the output terminal of the set reset latch 670 is coupled to the controller output terminal 620 .

如图6所示,通常设计上第一比较电压650大于第二比较电压660。当控制器输入端610的电压小于第二比较电压660时,第二比较器640输出“1”予设定重置闩锁器670的重置输入端,因而控制器输出端620的输出为“0”。当控制器输入端610的电压大于第一比较电压650时,第一比较器630输出“1”予设定重置闩锁器670的设定输入端,因而控制器输出端620的输出为“1”。当控制器输入端610的电压界于第一比较电压650与第二比较电压660之间时,第一比较器630与第二比较器640皆输出“0”,设定重置闩锁器670的输出,亦即控制器输出端620的输出则维持不变。As shown in FIG. 6 , the first comparison voltage 650 is generally designed to be greater than the second comparison voltage 660 . When the voltage of the controller input terminal 610 is less than the second comparison voltage 660, the second comparator 640 outputs "1" to set the reset input terminal of the reset latch 670, so the output of the controller output terminal 620 is " 0". When the voltage at the controller input terminal 610 is greater than the first comparison voltage 650, the first comparator 630 outputs "1" to set the reset latch 670's set input terminal, so the output of the controller output terminal 620 is " 1". When the voltage at the input terminal 610 of the controller is between the first comparison voltage 650 and the second comparison voltage 660, both the first comparator 630 and the second comparator 640 output "0", and the reset latch 670 is set. The output of , that is, the output of the controller output terminal 620 remains unchanged.

虽然本发明的实施例揭露如上所述,然并非用以限定本发明,任何熟习相关技艺者,在不脱离本发明的精神和范围内,举凡依本发明申请范围所述的形状、构造、特征及数量当可做些许的变更,因此本发明的专利保护范围须视本说明书所附的申请专利范围所界定者为准。Although the embodiments of the present invention are disclosed as above, they are not intended to limit the present invention. Anyone skilled in the relevant art can use the shapes, structures, and features described in the application scope of the present invention without departing from the spirit and scope of the present invention. and quantity can be slightly changed, so the scope of patent protection of the present invention must be defined by the scope of patent application attached to this specification.

Claims (12)

1.一种电压转换控制器,应用于一电压转换电路,所述电压转换电路操作其中的一功率开关,以将一输入电压转换为一输出电压于一输出端,并产生一回授讯号,所述回授讯号耦接于一回授电容,其特征在于,所述电压转换控制器包括:1. A voltage conversion controller, applied to a voltage conversion circuit, wherein the voltage conversion circuit operates a power switch to convert an input voltage into an output voltage at an output terminal, and generate a feedback signal, The feedback signal is coupled to a feedback capacitor, wherein the voltage conversion controller includes: 一回授端针脚,耦接于所述回授电容,并用于接收所述回授讯号或提供一计数频率讯号;以及a feedback pin, coupled to the feedback capacitor, and used to receive the feedback signal or provide a counting frequency signal; and 一功率开关控制脚,用以控制所述电压转换电路中所述功率开关的操作;a power switch control pin, used to control the operation of the power switch in the voltage conversion circuit; 其中所述电压转换控制器具有一第一模式及一第二模式;其中所述第一模式时,所述输出端提供受调节的所述输出电压并供应电流予一电流负载,且所述回授端针脚接收所述回授讯号,所述回授讯号与所述输出电压或所述电流负载的电流大小相关;所述第二模式时,所述输出电压不受调节,且所述回授端针脚提供固定周期性的所述计数频率讯号,所述计数频率讯号的周期大小是由所述回授电容的电容值所决定。Wherein the voltage conversion controller has a first mode and a second mode; wherein in the first mode, the output terminal provides the regulated output voltage and supplies current to a current load, and the feedback The terminal pin receives the feedback signal, and the feedback signal is related to the output voltage or the current magnitude of the current load; in the second mode, the output voltage is not regulated, and the feedback terminal The pins provide the counting frequency signal with a fixed period, and the period of the counting frequency signal is determined by the capacitance value of the feedback capacitor. 2.根据权利要求1所述的电压转换控制器,其特征在于,其中所述第二模式是为一软启动操作或为一负载电流过大的保护操作。2 . The voltage conversion controller according to claim 1 , wherein the second mode is a soft-start operation or a load current protection operation. 3 . 3.根据权利要求1所述的电压转换控制器,其特征在于,其中所述计数频率讯号是于一软启动操作或一负载电流过大的保护操作之中,作为计算时间长度的频率,以决定所述软启动操作或所述负载电流过大的保护操作的时间长度。3. The voltage conversion controller according to claim 1, wherein the counting frequency signal is used as a frequency for calculating the length of time in a soft-start operation or a protection operation for a load current overload. Determining the duration of the soft start operation or the protection operation for the excessive load current. 4.根据权利要求1所述的电压转换控制器,其特征在于,其中所述电压转换电路是为一驰返式开关电源转换器。4. The voltage conversion controller according to claim 1, wherein the voltage conversion circuit is a flyback switching power converter. 5.根据权利要求1所述的电压转换控制器,其特征在于,所述的电压转换控制器更包含一充放电电路,于所述第二模式时,对所述回授电容进行周期性的充放电。5. The voltage conversion controller according to claim 1, wherein the voltage conversion controller further comprises a charging and discharging circuit, and in the second mode, the feedback capacitor is periodically charged Discharge. 6.根据权利要求5所述的电压转换控制器,其特征在于,其中所述充放电电路更包含:6. The voltage conversion controller according to claim 5, wherein the charging and discharging circuit further comprises: 一第一开关电流,耦接于所述回授端针脚,且电流方向为流入所述回授端针脚;以及a first switch current, coupled to the feedback terminal pin, and the current direction is to flow into the feedback terminal pin; and 一第二开关电流,耦接于所述回授端针脚,且电流方向为流出所述回授端针脚。A second switch current is coupled to the feedback terminal pin, and the current direction is to flow out of the feedback terminal pin. 7.根据权利要求6所述的电压转换控制器,其特征在于,其中所述第一开关电流包含一开关组件,以及一电流源组件或一电阻组件,或所述第二开关电流包含一开关组件,以及一电流源组件或一电阻组件。7. The voltage conversion controller according to claim 6, wherein the first switch current comprises a switch component, and a current source component or a resistor component, or the second switch current comprises a switch component, and a current source component or a resistor component. 8.根据权利要求6所述的电压转换控制器,其特征在于,其中更包含一振荡控制器以及一计数器;当电压转换器工作于所述第二模式时,所述振荡控制器利用控制所述第一开关电流与所述第二开关电流的导通或截止,对所述回授电容进行周期性的充放电,而形成固定周期性的所述计数频率讯号,用以作为所述计数器的频率来源。8. The voltage conversion controller according to claim 6, further comprising an oscillation controller and a counter; when the voltage converter works in the second mode, the oscillation controller utilizes the control The first switching current and the second switching current are turned on or off, and the feedback capacitor is periodically charged and discharged to form a fixed periodic counting frequency signal, which is used as the counting frequency signal of the counter. frequency source. 9.根据权利要求5所述的电压转换控制器,其特征在于,其中所述充放电电路更包含一振荡控制器,所述振荡控制器分别于所述回授电容的电压上升至一第一比较电压值和下降至一第二比较电压值时,改变所述振荡控制器的输出位准。9. The voltage conversion controller according to claim 5, wherein the charging and discharging circuit further comprises an oscillation controller, and the oscillation controller rises to a first voltage when the voltage of the feedback capacitor is raised to a first When comparing the voltage value and dropping to a second comparison voltage value, the output level of the oscillation controller is changed. 10.根据权利要求8所述的电压转换控制器,其特征在于,其中所述振荡控制器包含:10. The voltage conversion controller according to claim 8, wherein said oscillation controller comprises: 一控制器输入端,耦接于所述回授端针脚;a controller input terminal coupled to the feedback terminal pin; 一控制器输出端,用以输出一讯号以控制所述第一开关电流与所述第二开关电流的导通或截止;a controller output terminal, used to output a signal to control the conduction or termination of the first switch current and the second switch current; 一第一比较器,具有两输入端以及一输出端,其两输入端分别耦接于所述控制器输入端以及所述第一比较电压;A first comparator having two input terminals and an output terminal, the two input terminals of which are respectively coupled to the controller input terminal and the first comparison voltage; 一第二比较器,具有两输入端以及一输出端,其两输入端分别耦接于所述控制器输入端以及所述第二比较电压;以及a second comparator having two input terminals and an output terminal, the two input terminals of which are respectively coupled to the controller input terminal and the second comparison voltage; and 一设定重置闩锁器,具有一设定输入端、一重置输入端、以及一输出端,其中所述设定输入端耦接于所述第一比较器的输出端,所述重置输入端耦接于所述第二比较器的输出端,且所述设定重置闩锁器的输出端耦接于所述控制器输出端。A set-reset latch has a set input, a reset input, and an output, wherein the set input is coupled to the output of the first comparator, and the reset The set input terminal is coupled to the output terminal of the second comparator, and the output terminal of the set reset latch is coupled to the controller output terminal. 11.一种电压转换电路,其特征在于,所述的电压转换电路包含:11. A voltage conversion circuit, characterized in that, the voltage conversion circuit comprises: 一应用电路,且所述应用电路包含一输出端、一回授端以及耦接于所述回授端的一回授电容;所述输出端具有一输出电压,并耦接一电流负载;以及An application circuit, and the application circuit includes an output terminal, a feedback terminal, and a feedback capacitor coupled to the feedback terminal; the output terminal has an output voltage and is coupled to a current load; and 一电压转换控制器,具有一回授端针脚,耦接于所述回授端;其中所述电压转换控制器具有一第一模式及一第二模式;A voltage conversion controller having a feedback terminal pin coupled to the feedback terminal; wherein the voltage conversion controller has a first mode and a second mode; 其中所述第一模式时,所述输出端提供受调节的所述输出电压并供应电流予所述电流负载,且所述回授端针脚提供一回授讯号,所述回授讯号与所述输出电压或所述电流负载的电流大小相关;所述第二模式时,所述输出电压不受调节,且所述回授端针脚接收固定周期性的一计数频率讯号,所述计数频率讯号的周期大小是由所述回授电容的电容值所决定。Wherein in the first mode, the output terminal provides the regulated output voltage and supplies current to the current load, and the feedback terminal pin provides a feedback signal, the feedback signal and the The output voltage or the current magnitude of the current load is related; in the second mode, the output voltage is not adjusted, and the feedback terminal pin receives a fixed periodic counting frequency signal, and the counting frequency signal The cycle size is determined by the capacitance of the feedback capacitor. 12.根据权利要求11所述的电压转换电路,其特征在于,所述电压转换电路是为一驰返式开关电源转换器。12. The voltage conversion circuit according to claim 11, wherein the voltage conversion circuit is a flyback switching power converter.
CN201310178681.6A 2012-12-05 2013-05-15 Voltage conversion circuit and voltage conversion controller Expired - Fee Related CN103856058B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW101145749 2012-12-05
TW101145749A TWI465015B (en) 2012-12-05 2012-12-05 Voltage converter circuit and voltage converter controller

Publications (2)

Publication Number Publication Date
CN103856058A true CN103856058A (en) 2014-06-11
CN103856058B CN103856058B (en) 2017-01-11

Family

ID=50863355

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310178681.6A Expired - Fee Related CN103856058B (en) 2012-12-05 2013-05-15 Voltage conversion circuit and voltage conversion controller

Country Status (2)

Country Link
CN (1) CN103856058B (en)
TW (1) TWI465015B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106329929A (en) * 2015-07-03 2017-01-11 立锜科技股份有限公司 Voltage conversion circuit and voltage conversion controller
CN109669061A (en) * 2019-01-31 2019-04-23 广州金升阳科技有限公司 A kind of current sample compensation circuit

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9774252B2 (en) * 2014-06-30 2017-09-26 Skyworks Solutions, Inc. Mode control device, voltage converter, and mode control method
TWI548186B (en) * 2014-08-15 2016-09-01 Richtek Technology Corp Quick Start Circuit and Method of Chi - back Power Supply
TWI549407B (en) 2014-09-09 2016-09-11 鴻海精密工業股份有限公司 Multiphase power circuit
TWI645657B (en) * 2017-09-29 2018-12-21 台達電子工業股份有限公司 Power conversion device and regulated feedback circuit
US10666233B1 (en) * 2019-02-14 2020-05-26 Winbond Electronics Corp. Power drop reset circuit for power supply chip and power drop reset signal generating method
TWI830355B (en) * 2022-08-31 2024-01-21 通嘉科技股份有限公司 Control methods for interleaved power converter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW432779B (en) * 1999-11-03 2001-05-01 Jang Wei Shiu Small-area and low-power low-frequency oscillator
CN101228685A (en) * 2005-03-18 2008-07-23 美国快捷半导体有限公司 Terminal for multiple functions in a power supply
US20080259659A1 (en) * 2007-04-23 2008-10-23 Hang-Seok Choi Overload and short protected soft-start converter
CN101582643A (en) * 2008-05-14 2009-11-18 富士电机电子技术株式会社 Switching power supply
CN101594064A (en) * 2009-05-31 2009-12-02 成都芯源系统有限公司 Switching power supply controller
CN101599701A (en) * 2009-07-02 2009-12-09 成都芯源系统有限公司 Switching power supply with fault protection function and control method thereof
TW201143247A (en) * 2010-05-18 2011-12-01 Leadtrend Tech Corp Control methods, power control methods, power supplies, controllers and power supply controllers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM441272U (en) * 2012-07-05 2012-11-11 Excelliance Mos Corp Fly-back power converting apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW432779B (en) * 1999-11-03 2001-05-01 Jang Wei Shiu Small-area and low-power low-frequency oscillator
CN101228685A (en) * 2005-03-18 2008-07-23 美国快捷半导体有限公司 Terminal for multiple functions in a power supply
US20080259659A1 (en) * 2007-04-23 2008-10-23 Hang-Seok Choi Overload and short protected soft-start converter
CN101582643A (en) * 2008-05-14 2009-11-18 富士电机电子技术株式会社 Switching power supply
CN101594064A (en) * 2009-05-31 2009-12-02 成都芯源系统有限公司 Switching power supply controller
CN101599701A (en) * 2009-07-02 2009-12-09 成都芯源系统有限公司 Switching power supply with fault protection function and control method thereof
TW201143247A (en) * 2010-05-18 2011-12-01 Leadtrend Tech Corp Control methods, power control methods, power supplies, controllers and power supply controllers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106329929A (en) * 2015-07-03 2017-01-11 立锜科技股份有限公司 Voltage conversion circuit and voltage conversion controller
CN106329929B (en) * 2015-07-03 2018-12-04 立锜科技股份有限公司 Voltage conversion circuit and voltage conversion controller
CN109669061A (en) * 2019-01-31 2019-04-23 广州金升阳科技有限公司 A kind of current sample compensation circuit

Also Published As

Publication number Publication date
TWI465015B (en) 2014-12-11
TW201424216A (en) 2014-06-16
CN103856058B (en) 2017-01-11

Similar Documents

Publication Publication Date Title
CN103856058B (en) Voltage conversion circuit and voltage conversion controller
US9337739B2 (en) Power controller with over power protection
JP5513829B2 (en) Current drive circuit
JP5960611B2 (en) Reduced power loss power system, electronic device and controller
JP5056055B2 (en) Integrated circuit for switching power supply control and switching power supply device
US8310169B2 (en) Power conversion driving circuit and fluorescent lamp driving circuit
TWI411202B (en) Controller for power converter and method for controlling power converter
TWI589106B (en) Switching power supplies and switch controllers
US20110025289A1 (en) Two-stage switching power supply
US20100020575A1 (en) Switching power supply device
WO2008132501A2 (en) Switching power converters
TWI451652B (en) Power controllers and power management control methods
CN101277057B (en) Overload protection delay circuit for switching power supply
KR101789799B1 (en) Feedback circuit and power supply device comprising the same
US20080037296A1 (en) Green-mode flyback pulse width modulation apparatus
US9318961B2 (en) Switching power-supply device
CN1703825B (en) Capacitively coupled power supply
US20140167720A1 (en) Power control device with snubber circuit
TW201505479A (en) Light emitting diode driving apparatus and light emitting diode driving method
US10587199B1 (en) Power supply circuit which reduces light-load power consumption while maintaining stable output
CN101945520A (en) Power conversion circuit and controller
KR20140021412A (en) Light source driving apparatus and light emitting apparatus including the same
JP6559343B2 (en) Switching power supply circuit
US8476883B2 (en) Compensation circuits and control methods of switched mode power supply
CN102237810B (en) Control method and compensation circuit of switch mode power supply

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170111

Termination date: 20210515