CN103855071B - A kind of preparation method of semiconductor device - Google Patents
A kind of preparation method of semiconductor device Download PDFInfo
- Publication number
- CN103855071B CN103855071B CN201210513831.XA CN201210513831A CN103855071B CN 103855071 B CN103855071 B CN 103855071B CN 201210513831 A CN201210513831 A CN 201210513831A CN 103855071 B CN103855071 B CN 103855071B
- Authority
- CN
- China
- Prior art keywords
- shallow trench
- active area
- layer
- material layer
- surrounding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 24
- 238000002360 preparation method Methods 0.000 title claims description 3
- 239000000463 material Substances 0.000 claims abstract description 64
- 238000000034 method Methods 0.000 claims abstract description 46
- 238000005530 etching Methods 0.000 claims abstract description 37
- 239000000758 substrate Substances 0.000 claims abstract description 33
- 238000000151 deposition Methods 0.000 claims abstract description 9
- 238000002955 isolation Methods 0.000 claims description 34
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical class O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 15
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 15
- 238000001312 dry etching Methods 0.000 claims description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 229910003481 amorphous carbon Inorganic materials 0.000 claims description 3
- 239000002194 amorphous carbon material Substances 0.000 claims description 3
- 230000008021 deposition Effects 0.000 claims description 3
- 239000007769 metal material Substances 0.000 claims description 3
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 2
- 238000004528 spin coating Methods 0.000 claims description 2
- 238000001039 wet etching Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 238000000059 patterning Methods 0.000 abstract description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 7
- 239000012212 insulator Substances 0.000 description 7
- 239000003989 dielectric material Substances 0.000 description 6
- 238000005121 nitriding Methods 0.000 description 6
- 229920002120 photoresistant polymer Polymers 0.000 description 6
- 238000000231 atomic layer deposition Methods 0.000 description 5
- 150000004767 nitrides Chemical class 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- 229920005591 polysilicon Polymers 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- 229910000449 hafnium oxide Inorganic materials 0.000 description 2
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 238000000608 laser ablation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000004151 rapid thermal annealing Methods 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- CEPICIBPGDWCRU-UHFFFAOYSA-N [Si].[Hf] Chemical compound [Si].[Hf] CEPICIBPGDWCRU-UHFFFAOYSA-N 0.000 description 1
- ILCYGSITMBHYNK-UHFFFAOYSA-N [Si]=O.[Hf] Chemical compound [Si]=O.[Hf] ILCYGSITMBHYNK-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- VKJLWXGJGDEGSO-UHFFFAOYSA-N barium(2+);oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[O-2].[Ti+4].[Ba+2] VKJLWXGJGDEGSO-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- CZXRMHUWVGPWRM-UHFFFAOYSA-N strontium;barium(2+);oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[O-2].[O-2].[Ti+4].[Sr+2].[Ba+2] CZXRMHUWVGPWRM-UHFFFAOYSA-N 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
Landscapes
- Element Separation (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本发明涉及一种半导体器件的制备方法,包括:提供半导体衬底,所述衬底至少包含核心有源区以及周围有源区;在所述衬底上依次形成栅极介电层、栅极材料层以及硬掩膜层;图案化硬掩膜层和所述栅极材料层,以在核心有源区和所述周围有源区上形成开口;沉积牺牲材料层,以填充所述核心有源区中形成的开口;蚀刻去除周围有源区开口中的所述牺牲材料层;执行第一浅沟槽蚀刻,以在周围有源区中形成第一浅沟槽;去除所述核心有源区开口中的牺牲材料层;执行第二浅沟槽蚀刻,以在所述衬底中形成核心有源区浅沟槽,在所述周围有源区形成深度大于所述核心有源区浅沟槽隔离的周围有源区浅沟槽。本发明所述方法相对于现有技术更加容易控制,而且更加准确。
The invention relates to a method for manufacturing a semiconductor device, comprising: providing a semiconductor substrate, the substrate at least including a core active region and a surrounding active region; sequentially forming a gate dielectric layer, a gate a material layer and a hard mask layer; patterning the hard mask layer and the gate material layer to form openings on the core active area and the surrounding active area; depositing a sacrificial material layer to fill the core active area an opening formed in the source region; etching removes the sacrificial material layer in the opening of the surrounding active region; performing a first shallow trench etch to form a first shallow trench in the surrounding active region; removing the core active a layer of sacrificial material in the region opening; performing a second shallow trench etch to form a core active region shallow trench in the substrate, forming a shallow trench deeper than the core active region in the surrounding active region The trench isolates the surrounding active area with a shallow trench. Compared with the prior art, the method of the invention is easier to control and more accurate.
Description
技术领域technical field
本发明涉及半导体领域,具体地,本发明涉及一种半导体器件的制备方法。The invention relates to the field of semiconductors, and in particular, the invention relates to a method for preparing a semiconductor device.
背景技术Background technique
集成电路性能的提高主要是通过不断缩小集成电路器件的尺寸以提高它的速度来实现的。目前,由于在追求高器件密度、高性能和低成本中半导体工业已经进步到纳米技术工艺节点,特别是当半导体器件尺寸降到32nm或以下时,给器件的制造带来一系列的挑战。The improvement of integrated circuit performance is mainly achieved by continuously shrinking the size of integrated circuit devices to increase its speed. At present, due to the pursuit of high device density, high performance and low cost, the semiconductor industry has advanced to the nanotechnology process node, especially when the size of the semiconductor device is reduced to 32nm or below, it brings a series of challenges to the manufacture of the device.
随着器件尺寸的减小,在制备过程中由于空隙填充的限制,使得制备32nm及以下的器件时,特别是在密集区域,很难控制高宽比,例如在32nm闪存器件中的有源区以及周边区域需要制备具有不同深度的浅沟槽隔离(shallow trench isolation,STI),在所述有源区制备深度为1800埃的STI,在有源区周围制备深度为3000埃的STI,但是现有技术中很难实现该目的。As the device size decreases, it is difficult to control the aspect ratio when fabricating 32nm and below devices, especially in dense areas, such as the active area in 32nm flash memory devices, due to the limitation of void filling in the fabrication process And the surrounding area needs to prepare shallow trench isolation (shallow trench isolation, STI) with different depths, the STI with a depth of 1800 angstroms is prepared in the active area, and the STI with a depth of 3000 angstroms is prepared around the active area, but now It is difficult to achieve this purpose in existing technologies.
目前现有技术中通常是通过精确的控制STI的角度使所述蚀刻过程停止于1800埃,但是该深度和STI关键尺寸以及角度具有密切的关系,如果所述STI的关键尺寸和角度有稍微的偏移,则使得所述STI的深度变得不均一,如图1所示。In the current prior art, the etching process is usually stopped at 1800 angstroms by precisely controlling the angle of the STI, but this depth has a close relationship with the critical dimension and angle of the STI. The offset makes the depth of the STI non-uniform, as shown in FIG. 1 .
目前制备不同深度的浅沟槽隔离的方法如图2-6所示,首先提供半导体衬底101,在所述衬底上形成栅极氧化物层102、多晶硅层103、硬掩膜层104、第二先进图案层(advanced pattern film)、氮氧化物层、氧化物层以及第一先进图案层(advanced pattern film)106,其中所述硬掩膜层104可以为氧化物和氮化物复合叠层,如图2所示在所述衬底上形成图案化的光刻胶层,参照图3,以所述光刻胶为掩膜层图案化所述第一先进图案层106,接着在形成所述图案上沉积间隙壁材料层107,参照图4,图案化所述间隙壁材料层,以在所述第一先进图案层上形成间隙壁,然后去除剩余所述第一先进图案层,参照图5,首先在所述周围有源区域上形成图案化的光刻胶层,图案化所述氧化层、氮氧化物层、以及第二先进图案层,最后参照图6,以图5中得到的图案为掩膜进行蚀刻,蚀刻至所述半导体衬底101,以分别在有源区以及周围区域形成深度不同的浅沟槽隔离。The current method for preparing shallow trench isolations with different depths is shown in FIGS. a second advanced pattern film, an oxynitride layer, an oxide layer, and a first advanced pattern film 106, wherein the hard mask layer 104 may be a composite stack of oxide and nitride , form a patterned photoresist layer on the substrate as shown in Figure 2, with reference to Figure 3, use the photoresist as a mask layer to pattern the first advanced pattern layer 106, and then form the A spacer material layer 107 is deposited on the pattern, referring to FIG. 4, patterning the spacer material layer to form a spacer on the first advanced pattern layer, and then removing the remaining first advanced pattern layer, referring to FIG. 5. First, form a patterned photoresist layer on the surrounding active area, pattern the oxide layer, oxynitride layer, and the second advanced pattern layer, and finally refer to FIG. The pattern is etched as a mask, and etched to the semiconductor substrate 101 to form shallow trench isolations with different depths in the active area and the surrounding areas.
虽然现有技术中公开了在有源区以及有源区周围形成深度不同的浅沟槽隔离,但是现有方法都太依赖与所述浅沟槽隔离的关键尺寸以及角度,所述关键尺寸以及角度稍微偏移则造成深度不均一,整个过程非常繁琐,难以控制,产品的良率很低。Although the prior art discloses the formation of shallow trench isolations with different depths in and around the active region, the existing methods are too dependent on the critical dimensions and angles of the shallow trench isolations, the critical dimensions and A slight deviation of the angle will cause uneven depth, the whole process is very cumbersome and difficult to control, and the yield rate of the product is very low.
发明内容Contents of the invention
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。A series of concepts in simplified form are introduced in the Summary of the Invention, which will be further detailed in the Detailed Description. The summary of the invention in the present invention does not mean to limit the key features and essential technical features of the claimed technical solution, nor does it mean to try to determine the protection scope of the claimed technical solution.
本发明提供了一种半导体器件的制备方法,包括:The invention provides a method for preparing a semiconductor device, comprising:
提供半导体衬底,所述衬底至少包含核心有源区以及周围有源区;providing a semiconductor substrate comprising at least a core active region and a surrounding active region;
在所述衬底上依次形成栅极介电层、栅极材料层以及硬掩膜层;sequentially forming a gate dielectric layer, a gate material layer and a hard mask layer on the substrate;
图案化所述硬掩膜层和所述栅极材料层,以在所述核心有源区和所述周围有源区上形成开口;patterning the hard mask layer and the gate material layer to form openings in the core active area and the surrounding active area;
沉积牺牲材料层,以填充所述核心有源区中形成的开口;depositing a layer of sacrificial material to fill the opening formed in the core active region;
蚀刻去除周围有源区开口中的所述牺牲材料层;etching away the layer of sacrificial material in the surrounding active area opening;
执行第一浅沟槽蚀刻,以在所述周围有源区中形成第一浅沟槽;performing a first shallow trench etch to form a first shallow trench in the surrounding active region;
去除所述核心有源区开口中的牺牲材料层;removing the layer of sacrificial material in the core active area opening;
执行第二浅沟槽蚀刻,以在所述衬底中形成核心有源区浅沟槽,在所述周围有源区形成深度大于所述核心有源区浅沟槽的周围有源区浅沟槽。performing a second shallow trench etching to form a core active area shallow trench in the substrate, and forming a surrounding active area shallow trench with a depth greater than that of the core active area shallow trench in the surrounding active area groove.
作为优选,共形沉积牺牲材料层,以填充所述核心有源区中形成的开口。Advantageously, a layer of sacrificial material is conformally deposited to fill the opening formed in said core active region.
作为优选,所述硬掩膜层为依次沉积的氮化硅和氧化物。Preferably, the hard mask layer is silicon nitride and oxide deposited sequentially.
作为优选,所述牺牲材料层为介电质、无机物、无定形碳和金属材料层中的一种或者多种。Preferably, the sacrificial material layer is one or more of dielectric, inorganic, amorphous carbon and metal material layers.
作为优选,所述牺牲材料层的沉积方法为CVD、PVD、ALD或控制旋涂。Preferably, the deposition method of the sacrificial material layer is CVD, PVD, ALD or controlled spin coating.
作为优选,选用干法或者湿法蚀刻所述牺牲材料层,以去除所述周围有源区开口中的所述牺牲材料层。Preferably, the sacrificial material layer is etched by dry method or wet method, so as to remove the sacrificial material layer in the opening of the surrounding active region.
作为优选,所述干法蚀刻为各向同性蚀刻。Preferably, the dry etching is isotropic etching.
作为优选,所述第一浅沟槽蚀刻选用HBr、Cl2、O2、N2、NF3、Ar、He和CF4中的一种或多种。Preferably, the first shallow trench etching is selected from one or more of HBr, Cl 2 , O 2 , N 2 , NF 3 , Ar, He and CF 4 .
作为优选,所述第二浅沟槽蚀刻选用HBr、Cl2、O2、N2、NF3、Ar、He和CF4中的一种或多种。Preferably, the second shallow trench etching is selected from one or more of HBr, Cl 2 , O 2 , N 2 , NF 3 , Ar, He and CF 4 .
作为优选,所述栅极材料层为多晶硅层。Preferably, the gate material layer is a polysilicon layer.
作为优选,所述方法还包括进一步形成核心有源区浅沟槽隔离和周围有源区浅沟槽隔离的步骤。Preferably, the method further includes the step of further forming shallow trench isolation in the core active area and shallow trench isolation in the surrounding active area.
作为优选,在所述核心有源区浅沟槽内和所述周围有源区浅沟槽内形成氧化硅层,所述氧化硅层覆盖所述衬底,平坦化所述氧化硅层至所述衬底。Preferably, a silicon oxide layer is formed in the shallow trenches in the core active region and in the shallow trenches in the peripheral active region, the silicon oxide layer covers the substrate, and the silicon oxide layer is planarized to the the substrate.
在本发明中,通过两个浅沟槽蚀刻步骤,分别在核心有源区和周围有源区内形成深度不同的浅沟槽隔离,其中第一次浅沟槽蚀刻过程中仅在所述周围有源区内形成浅沟槽,而所述蚀刻在有源区内停止于所述牺牲材料层上,周围有源区中所述浅沟槽的深度即为有源区浅沟槽隔离和周围有源区浅沟槽隔离之间的深度差,然后执行第二次浅沟槽蚀刻至目标深度,通过控制该蚀刻过程来实现不同区域具有不同深度的浅沟槽隔离,相对于现有技术更加容易控制,而且更加准确。In the present invention, through two shallow trench etching steps, shallow trench isolations with different depths are formed in the core active region and the surrounding active region respectively, wherein only the surrounding A shallow trench is formed in the active area, and the etching stops on the sacrificial material layer in the active area, and the depth of the shallow trench in the surrounding active area is the active area shallow trench isolation and the surrounding area. The depth difference between the shallow trench isolations in the active area, and then perform the second shallow trench etching to the target depth. By controlling the etching process, different regions have different shallow trench isolations with different depths, which is more accurate than the existing technology. Easy to control and more accurate.
附图说明Description of drawings
本发明的下列附图在此作为本发明的一部分用于理解本发明。附图中示出了本发明的实施例及其描述,用来解释本发明的装置及原理。在附图中,The following drawings of the invention are hereby included as part of the invention for understanding the invention. Embodiments of the present invention and their descriptions are shown in the drawings to explain the device and principle of the present invention. In the attached picture,
图1为现有技术制备得到的浅沟槽隔离深度不均一的器件示意图;Fig. 1 is a schematic diagram of a device with non-uniform depth of shallow trench isolation prepared in the prior art;
图2-6为现有技术中含不同深度浅沟槽隔离器件的制备过程示意图;2-6 are schematic diagrams of the fabrication process of devices with different depths of shallow trench isolation in the prior art;
图7-12为本发明中含不同深度浅沟槽隔离器件的制备过程示意图;7-12 are schematic diagrams of the preparation process of devices with different depths of shallow trench isolation in the present invention;
图13为制备本发明中含不同深度浅沟槽隔离器件的工艺流程图。Fig. 13 is a flow chart of the process for preparing shallow trench isolation devices with different depths in the present invention.
具体实施方式detailed description
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。In the following description, numerous specific details are given in order to provide a more thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without one or more of these details. In other examples, some technical features known in the art are not described in order to avoid confusion with the present invention.
为了彻底理解本发明,将在下列的描述中提出详细的描述,以说明本发明所述含高度可控鳍片的半导体器件及其制备方法。显然,本发明的施行并不限于半导体领域的技术人员所熟习的特殊细节。本发明的较佳实施例详细描述如下,然而除了这些详细描述外,本发明还可以具有其他实施方式。In order to thoroughly understand the present invention, a detailed description will be provided in the following description to illustrate the semiconductor device with controllable height fins and the manufacturing method thereof of the present invention. Obviously, the practice of the invention is not limited to specific details familiar to those skilled in the semiconductor arts. Preferred embodiments of the present invention are described in detail below, however, the present invention may have other embodiments besides these detailed descriptions.
应予以注意的是,这里所使用的术语仅是为了描述具体实施例,而非意图限制根据本发明的示例性实施例。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式。此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在所述特征、整体、步骤、操作、元件和/或组件,但不排除存在或附加一个或多个其他特征、整体、步骤、操作、元件、组件和/或它们的组合。It should be noted that the terms used herein are for the purpose of describing specific embodiments only, and are not intended to limit exemplary embodiments according to the present invention. As used herein, singular forms are intended to include plural forms unless the context clearly dictates otherwise. In addition, it should also be understood that when the terms "comprising" and/or "comprising" are used in this specification, it indicates the presence of the features, integers, steps, operations, elements and/or components, but does not exclude the presence or One or more other features, integers, steps, operations, elements, components and/or combinations thereof are added.
现在,将参照附图更详细地描述根据本发明的示例性实施例。然而,这些示例性实施例可以多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施例。应当理解的是,提供这些实施例是为了使得本发明的公开彻底且完整,并且将这些示例性实施例的构思充分传达给本领域普通技术人员。在附图中,为了清楚起见,夸大了层和区域的厚度,并且使用相同的附图标记表示相同的元件,因而将省略对它们的描述。Now, exemplary embodiments according to the present invention will be described in more detail with reference to the accompanying drawings. These example embodiments may, however, be embodied in many different forms and should not be construed as limited to only the embodiments set forth herein. It should be understood that these embodiments are provided so that this disclosure will be thorough and complete and will fully convey the concept of these exemplary embodiments to those of ordinary skill in the art. In the drawings, the thicknesses of layers and regions are exaggerated for clarity, and the same reference numerals are used to designate the same elements, and thus their descriptions will be omitted.
下面结合图7-12对本发明所述含深度不同的浅沟槽隔离的半导体器件的制备方法做进一步的说明:The method for preparing a semiconductor device with shallow trench isolation with different depths according to the present invention will be further described below in conjunction with FIGS. 7-12 :
参照图7,首先提供半导体衬底201,所述衬底至少包含核心有源区(CoreActive Area,AA)以及周围有源区(Periphery Active Area,PAA),所述半导体衬底可以是以下所提到的材料中的至少一种:硅、绝缘体上硅(SOI)、绝缘体上层叠硅(SSOI)、绝缘体上层叠锗化硅(S-SiGeOI)、绝缘体上锗化硅(SiGeOI)以及绝缘体上锗(GeOI)等,在该半导体衬底中还可以形成其他有源器件。在本发明中优选绝缘体上硅(SOI),所述绝缘体上硅(SOI)包括从下往上依次为支撑衬底、氧化物绝缘层以及半导体材料层,其中所述顶部的半导体材料层为单晶硅层、多晶硅层、SiC或SiGe。Referring to FIG. 7, a semiconductor substrate 201 is first provided, the substrate at least includes a core active area (Core Active Area, AA) and a peripheral active area (Periphery Active Area, PAA), and the semiconductor substrate may be as mentioned below At least one of the available materials: silicon, silicon-on-insulator (SOI), silicon-on-insulator (SSOI), silicon-germanium-on-insulator (S-SiGeOI), silicon-germanium-on-insulator (SiGeOI), and germanium-on-insulator (GeOI), etc., other active devices can also be formed in the semiconductor substrate. In the present invention, silicon-on-insulator (SOI) is preferred, and the silicon-on-insulator (SOI) includes a support substrate, an oxide insulating layer, and a semiconductor material layer from bottom to top, wherein the top semiconductor material layer is a single Crystalline silicon layer, polysilicon layer, SiC or SiGe.
在半导体衬底上依次沉积栅极介电层202,其中所述栅极材料层可以是氧化硅(SiO2)或氮氧化硅(SiON)。可以采用本领域技术人员所习知的氧化工艺例如炉管氧化、快速热退火氧化(RTO)、原位水蒸气氧化(ISSG)等形成氧化硅材质的栅极介电层。对氧化硅执行氮化工艺可形成氮氧化硅,其中,所述氮化工艺可以是高温炉管氮化、快速热退火氮化或等离子体氮化,当然,还可以采用其它的氮化工艺,这里不再赘述。所述栅极介电层可以通过热氧化、氮化或氧氮化工艺形成。在形成栅极介电层时,也可以组合使用上述工艺。栅极介电层可以包括如下的任何传统电介质:SiO2、Si3N4、SiON、SiON2、诸如TiO2、Al2O3、ZrO2、HfO2、Ta2O5、La2O3的高k电介质以及包括钙钛矿型氧化物的其它类似氧化物,但不限于此。通常,高k电介质能经受高温(900℃)退火。栅极介电层也可以包括上述电介质材料的任何组合。A gate dielectric layer 202 is sequentially deposited on the semiconductor substrate, wherein the gate material layer may be silicon oxide (SiO2) or silicon oxynitride (SiON). The gate dielectric layer made of silicon oxide can be formed by an oxidation process known to those skilled in the art, such as furnace tube oxidation, rapid thermal annealing oxidation (RTO), in-situ steam oxidation (ISSG), and the like. Performing a nitriding process on silicon oxide can form silicon oxynitride, wherein the nitriding process can be high temperature furnace tube nitriding, rapid thermal annealing nitriding or plasma nitriding, of course, other nitriding processes can also be used, I won't go into details here. The gate dielectric layer can be formed by thermal oxidation, nitridation or oxynitride process. When forming the gate dielectric layer, the above processes may also be used in combination. The gate dielectric layer may comprise any conventional dielectric such as SiO 2 , Si 3 N 4 , SiON, SiON 2 , such as TiO 2 , Al 2 O 3 , ZrO 2 , HfO 2 , Ta 2 O 5 , La 2 O 3 high-k dielectrics and other similar oxides including, but not limited to, perovskite-type oxides. Typically, high-k dielectrics can withstand high temperature (900°C) annealing. The gate dielectric layer may also include any combination of the above dielectric materials.
栅极介电层可以包括传统的电介质材料诸如具有电介质常数从大约4到大约20(真空中测量)的硅的氧化物、氮化物和氮氧化物。或者,栅极介电层可以包括具有电介质常数从大约20到至少大约100的通常较高电介质常数电介质材料。栅极介电层优选高介电常数(高K)材料。所述高K材料包括氧化铪、氧化铪硅、氮氧化铪硅、氧化镧、氧化锆、氧化锆硅、氧化钛、氧化钽、氧化钡锶钛、氧化钡钛、氧化锶钛、氧化铝等。特别优选的是氧化铪、氧化锆和氧化铝。栅极介电层的形成工艺可以采用本领域技术人员熟知的任何现有技术,比较优选的为化学气相沉积法,栅极介电层的厚度为15到60埃。The gate dielectric layer may include conventional dielectric materials such as oxides, nitrides and oxynitrides of silicon having a dielectric constant from about 4 to about 20 (measured in vacuum). Alternatively, the gate dielectric layer may comprise a generally higher dielectric constant dielectric material having a dielectric constant of from about 20 to at least about 100. The gate dielectric layer is preferably a high dielectric constant (high K) material. The high-K materials include hafnium oxide, hafnium silicon oxide, hafnium silicon oxynitride, lanthanum oxide, zirconium oxide, zirconium silicon oxide, titanium oxide, tantalum oxide, barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide, aluminum oxide, etc. . Particularly preferred are hafnium oxide, zirconium oxide and aluminum oxide. The formation process of the gate dielectric layer can adopt any existing technology known to those skilled in the art, and chemical vapor deposition is preferred, and the thickness of the gate dielectric layer is 15 to 60 angstroms.
在所述栅极介电层上沉积栅极材料层203,所述栅极材料层优选Si、多晶硅、SiGe、Ge或者III-V材料,在本发明中优选为多晶硅层。A gate material layer 203 is deposited on the gate dielectric layer, the gate material layer is preferably Si, polysilicon, SiGe, Ge or III-V material, preferably a polysilicon layer in the present invention.
接着在所述栅极材料层上沉积硬掩膜层,所述硬掩膜层可以为氮化物、氧化物和/或金属硬掩膜层,例如SiN、A-C、SiO2、BN、SiON、TiN和Cu3N中的一种或者多种。在本发明的一具体实施方式中,所述硬掩膜层优选为氮化物层204和氧化物层205的组合,其中所述氮化物层可以为SiN,所述氧化物层可以为SiON或SiO2,但并不局限与该示例。Then deposit a hard mask layer on the gate material layer, the hard mask layer can be a nitride, oxide and/or metal hard mask layer, such as SiN, AC, SiO 2 , BN, SiON, TiN and one or more of Cu 3 N. In a specific embodiment of the present invention, the hard mask layer is preferably a combination of a nitride layer 204 and an oxide layer 205, wherein the nitride layer can be SiN, and the oxide layer can be SiON or SiO 2 , but not limited to this example.
在上述栅极材料层203、和所述硬掩膜层204、205的形成方法可以选用化学气相沉积(CVD)法、物理气相沉积(PVD)法或原子层沉积(ALD)法等形成的低压化学气相沉积(LPCVD)、激光烧蚀沉积(LAD)以及选择外延生长(SEG)中的一种。The method for forming the gate material layer 203 and the hard mask layers 204 and 205 can be a low-pressure method formed by chemical vapor deposition (CVD), physical vapor deposition (PVD) or atomic layer deposition (ALD). One of chemical vapor deposition (LPCVD), laser ablation deposition (LAD) and selective epitaxial growth (SEG).
参照图8,图案化所述硬掩膜层和所述栅极材料层,以在所述核心有源区和所述周围有源区上形成开口;Referring to FIG. 8 , patterning the hard mask layer and the gate material layer to form openings on the core active region and the surrounding active region;
具体地,首先在所述衬底上形成图案化的光刻胶层(图中未示出),其中所述光刻胶层定义了所要形成的浅沟槽隔离的关键尺寸以及数目,然后以所述光刻胶层为掩膜,蚀刻所述硬掩膜层和所述栅极材料层,停止于所述的栅极介电层,以保护所述衬底,分别在所述核心有源区和周围有源区内形成多个开口,作为优选所述周围有源区内开口的关键尺寸大于所述核心有源区中开口的尺寸。Specifically, firstly, a patterned photoresist layer (not shown in the figure) is formed on the substrate, wherein the photoresist layer defines the critical dimensions and number of shallow trench isolations to be formed, and then The photoresist layer is a mask, and the hard mask layer and the gate material layer are etched to stop at the gate dielectric layer to protect the substrate, and the core active A plurality of openings are formed in the surrounding active region and the surrounding active region, as preferably the critical dimensions of the openings in the surrounding active region are larger than the openings in the core active region.
参照图9,沉积牺牲材料层,以填充所述核心有源区中形成的开口;Referring to FIG. 9, depositing a sacrificial material layer to fill the opening formed in the core active region;
具体地,在所述衬底上共形沉积牺牲材料层,以完全填充所述核心有源区内形成的开口,而在所述周围有源区内,在所述开口的侧壁以及所述栅极介电层上形成一层牺牲材料层,并不完全密封所述开口,如图9所示。Specifically, a layer of sacrificial material is conformally deposited on the substrate to completely fill the opening formed in the core active region, and in the surrounding active region, on the sidewalls of the opening and the A sacrificial material layer is formed on the gate dielectric layer, which does not completely seal the opening, as shown in FIG. 9 .
作为优选,所述牺牲材料层为介电层、无机材料层、无定形碳或者金属材料层中的一种或者多种,所述牺牲材料层的形成方法为化学气相沉积(CVD)法、物理气相沉积(PVD)法或原子层沉积(ALD)法等形成的低压化学气相沉积(LPCVD)、激光烧蚀沉积(LAD)或者控制旋涂(controlledspin-on)中的一种。Preferably, the sacrificial material layer is one or more of dielectric layer, inorganic material layer, amorphous carbon or metal material layer, and the formation method of the sacrificial material layer is chemical vapor deposition (CVD), physical One of low-pressure chemical vapor deposition (LPCVD), laser ablation deposition (LAD) or controlled spin-on formed by vapor phase deposition (PVD) or atomic layer deposition (ALD).
参照图10,蚀刻去除周围有源区开口中的所述牺牲材料层;Referring to FIG. 10 , etching removes the sacrificial material layer in the opening of the surrounding active region;
具体地,蚀刻所述牺牲材料层,去除周围有源区内的全部牺牲材料层,以打开所述周围有源区,而在所述核心有源区内仅仅去除了部分所述牺牲材料层,作为优选,在该步骤中可以选用干法蚀刻或者湿法蚀刻以实现上述目的,其中当选用干法蚀刻时,所述干法蚀刻控制为各向同性蚀刻。Specifically, etching the sacrificial material layer to remove all the sacrificial material layer in the surrounding active area to open the surrounding active area, while only part of the sacrificial material layer is removed in the core active area, Preferably, dry etching or wet etching can be selected in this step to achieve the above purpose, wherein when dry etching is selected, the dry etching is controlled to be isotropic etching.
参照图11,执行第一浅沟槽蚀刻,以在所述周围有源区中形成第一浅沟槽;Referring to FIG. 11 , performing a first shallow trench etch to form a first shallow trench in the surrounding active region;
具体地,在该步骤可以选用常规的蚀刻方法,在核心有源区内蚀刻去除部分所述牺牲材料层和所述硬掩膜层,而在所述周围有源区内首先蚀刻以打开所述栅极介电层,然后蚀刻所述半导体材料层,形成第一浅沟槽。Specifically, in this step, a conventional etching method can be selected to etch and remove part of the sacrificial material layer and the hard mask layer in the core active area, and first etch in the surrounding active area to open the gate dielectric layer, and then etch the semiconductor material layer to form a first shallow trench.
在本发明的一具体实施方式中可以选用HBr、Cl2、O2、N2、NF3、Ar、He和CF4中的一种或多种作为蚀刻气体,作为优选,所述蚀刻中选用CF4、NF3气体,另外还可以加上N2、O2中的一种作为蚀刻气氛,其中所述气体的流量为20-100sccm,优选为50-80sccm,所述蚀刻压力为30-150mTorr,蚀刻时间为5-120s,优选为5-60s,更优选为5-30s,此外所述干法蚀刻选用Ar作为稀释气体。In a specific embodiment of the present invention, one or more of HBr, Cl 2 , O 2 , N 2 , NF 3 , Ar, He and CF 4 can be selected as the etching gas. CF 4 , NF 3 gas, and one of N 2 and O 2 can also be added as an etching atmosphere, wherein the flow rate of the gas is 20-100 sccm, preferably 50-80 sccm, and the etching pressure is 30-150 mTorr , the etching time is 5-120s, preferably 5-60s, more preferably 5-30s, in addition, Ar is selected as the diluent gas for the dry etching.
在该步骤中,所述蚀刻在核心有源区内停止于所述牺牲材料层上,而在周围有源区内在所述衬底中形成了具有一定深度的第一浅沟槽,所述浅沟槽的深度即为核心有源区浅沟槽隔离和周围有源区浅沟槽隔离之间的深度差,因此通过控制该步骤的蚀刻过程来实现不同区域具有不同深度的浅沟槽隔离,该步骤相对于现有技术更加容易控制,而且更加准确。In this step, the etching stops on the layer of sacrificial material in the core active area, and a first shallow trench with a certain depth is formed in the substrate in the surrounding active area, the shallow The depth of the trench is the depth difference between the shallow trench isolation in the core active area and the shallow trench isolation in the surrounding active area. Therefore, the shallow trench isolation with different depths in different regions can be realized by controlling the etching process in this step. This step is easier to control and more accurate than the prior art.
参照图12,去除所述核心有源区开口中的牺牲材料层,执行第二浅沟槽蚀刻,以在所述衬底中形成核心有源区浅沟槽,在所述周围有源区形成深度大于所述核心有源区浅沟槽隔离的周围有源区浅沟槽。Referring to FIG. 12 , the sacrificial material layer in the opening of the core active area is removed, and a second shallow trench etch is performed to form a shallow trench in the core active area in the substrate, and a shallow trench in the surrounding active area is formed. The surrounding active area shallow trench is deeper than the core active area shallow trench isolation.
具体地,在该步骤中同时对所述核心有源区和所述周围有源区进行蚀刻,在所述核心有源区内去除剩余的牺牲材料层,然后蚀刻至目的深度,而在周围区有源区内在所述第一浅沟槽隔离的基础上继续进行蚀刻,以得到更深的周围有源区浅沟槽,至所需的目标深度。Specifically, in this step, the core active area and the surrounding active area are etched simultaneously, the remaining sacrificial material layer is removed in the core active area, and then etched to a target depth, while the surrounding area Continue etching in the active region on the basis of the first shallow trench isolation to obtain deeper shallow trenches around the active region to a desired target depth.
在该步骤中可以选用HBr、Cl2、O2、N2、NF3、Ar、He和CF4中的一种或多种作为蚀刻气体,具体的蚀刻条件可以参照第一浅沟槽隔离蚀刻,也可以根据需要进行调整,在此不再赘述。In this step, one or more of HBr, Cl 2 , O 2 , N 2 , NF 3 , Ar, He, and CF 4 can be selected as the etching gas, and the specific etching conditions can refer to the first shallow trench isolation etching , and can also be adjusted as needed, and will not be repeated here.
在形成所述浅沟槽后,所述方法还包括进一步形成核心有源区浅沟槽隔离和周围有源区浅沟槽隔离的步骤,具体地,在所述核心有源区浅沟槽内和所述周围有源区浅沟槽内形成氧化硅层,所述氧化硅层覆盖所述衬底;平坦化所述氧化硅层至所述衬底。After forming the shallow trenches, the method further includes the step of further forming shallow trench isolations in the core active area and shallow trench isolations in the surrounding active areas, specifically, in the shallow trenches in the core active area forming a silicon oxide layer in the shallow trenches of the surrounding active region, the silicon oxide layer covering the substrate; and planarizing the silicon oxide layer to the substrate.
在本发明中,通过两个浅沟槽蚀刻步骤,分别在核心有源区和周围有源区内形成深度不同的浅沟槽隔离,其中第一次浅沟槽蚀刻过程中仅在所述周围有源区内形成浅沟槽,而所述蚀刻在核心有源区内停止于所述牺牲材料层上,周围有源区中所述浅沟槽的深度即为核心有源区浅沟槽隔离和周围有源区浅沟槽隔离之间的深度差,然后执行第二次浅沟槽蚀刻至目标深度,通过控制该蚀刻过程来实现不同区域具有不同深度的浅沟槽隔离,相对于现有技术更加容易控制,而且更加准确。In the present invention, through two shallow trench etching steps, shallow trench isolations with different depths are formed in the core active region and the surrounding active region respectively, wherein only the surrounding A shallow trench is formed in the active area, and the etching stops on the sacrificial material layer in the core active area, and the depth of the shallow trench in the surrounding active area is the core active area shallow trench isolation The depth difference between the shallow trench isolation and the surrounding active area, and then perform the second shallow trench etching to the target depth. By controlling the etching process, different regions have different shallow trench isolations with different depths. Compared with the existing Technology is easier to control and more accurate.
图13为制备本发明所述半导体器件的工艺流程图,包括以下步骤:Figure 13 is a process flow chart for preparing the semiconductor device of the present invention, comprising the following steps:
步骤201提供半导体衬底,所述衬底至少包含核心有源区以及周围有源区;Step 201 provides a semiconductor substrate, the substrate includes at least a core active region and a surrounding active region;
步骤202在所述衬底上依次形成栅极介电层、栅极材料层以及硬掩膜层;Step 202 sequentially forming a gate dielectric layer, a gate material layer and a hard mask layer on the substrate;
步骤203图案化所述硬掩膜层和所述栅极材料层,以在所述核心有源区和所述周围有源区上形成开口;Step 203 patterning the hard mask layer and the gate material layer to form openings on the core active region and the surrounding active region;
步骤204沉积牺牲材料层,以填充所述核心有源区中形成的开口;Step 204 depositing a layer of sacrificial material to fill the opening formed in the core active region;
步骤205蚀刻去除周围有源区开口中的所述牺牲材料层;Step 205 etching and removing the sacrificial material layer in the opening of the surrounding active region;
步骤206执行第一浅沟槽蚀刻,以在所述周围有源区中形成第一浅沟槽;Step 206 performing a first shallow trench etch to form a first shallow trench in the surrounding active region;
步骤207去除所述核心有源区开口中的牺牲材料层;Step 207 removing the sacrificial material layer in the opening of the core active region;
步骤208执行第二浅沟槽蚀刻,以在所述衬底中形成核心有源区浅沟槽,在所述周围有源区形成深度大于所述核心有源区浅沟槽隔离的周围有源区浅沟槽。Step 208 performs second shallow trench etching to form core active area shallow trenches in the substrate, and forms surrounding active area in the surrounding active area with a depth greater than that of the core active area shallow trench isolation. shallow grooves.
本发明已经通过上述实施例进行了说明,但应当理解的是,上述实施例只是用于举例和说明的目的,而非意在将本发明限制于所描述的实施例范围内。此外本领域技术人员可以理解的是,本发明并不局限于上述实施例,根据本发明的教导还可以做出更多种的变型和修改,这些变型和修改均落在本发明所要求保护的范围以内。本发明的保护范围由附属的权利要求书及其等效范围所界定。The present invention has been described through the above-mentioned embodiments, but it should be understood that the above-mentioned embodiments are only for the purpose of illustration and description, and are not intended to limit the present invention to the scope of the described embodiments. In addition, those skilled in the art can understand that the present invention is not limited to the above-mentioned embodiments, and more variations and modifications can be made according to the teachings of the present invention, and these variations and modifications all fall within the claimed scope of the present invention. within the range. The protection scope of the present invention is defined by the appended claims and their equivalent scope.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210513831.XA CN103855071B (en) | 2012-12-04 | 2012-12-04 | A kind of preparation method of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210513831.XA CN103855071B (en) | 2012-12-04 | 2012-12-04 | A kind of preparation method of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103855071A CN103855071A (en) | 2014-06-11 |
CN103855071B true CN103855071B (en) | 2016-08-31 |
Family
ID=50862558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210513831.XA Active CN103855071B (en) | 2012-12-04 | 2012-12-04 | A kind of preparation method of semiconductor device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103855071B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107464781B (en) * | 2016-06-03 | 2020-09-11 | 中芯国际集成电路制造(上海)有限公司 | A kind of semiconductor device and its manufacturing method, electronic device |
CN107665822B (en) * | 2016-07-28 | 2021-08-17 | 中芯国际集成电路制造(上海)有限公司 | A kind of semiconductor device and its manufacturing method, electronic device |
CN113506776B (en) * | 2021-07-12 | 2023-09-26 | 长鑫存储技术有限公司 | Method for manufacturing semiconductor structure |
CN119018846B (en) * | 2024-10-09 | 2025-03-25 | 广东润宇传感器股份有限公司 | Method for preparing special-shaped cavity and method for preparing sensor |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100580902C (en) * | 2003-12-26 | 2010-01-13 | 恩益禧电子股份有限公司 | Manufacturing method of semiconductor device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100389031B1 (en) * | 2001-06-19 | 2003-06-25 | 삼성전자주식회사 | Method of fabricating semiconductor device having trench isolation structure |
KR20070052919A (en) * | 2005-11-18 | 2007-05-23 | 주식회사 하이닉스반도체 | Device Separator Formation Method of Semiconductor Device |
-
2012
- 2012-12-04 CN CN201210513831.XA patent/CN103855071B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100580902C (en) * | 2003-12-26 | 2010-01-13 | 恩益禧电子股份有限公司 | Manufacturing method of semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
CN103855071A (en) | 2014-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI511234B (en) | Semiconductor structure and method for forming isolation between fin structures of fin field effect transistor devices | |
TWI621266B (en) | Semiconductor component and method of manufacturing same | |
CN102479693B (en) | Gate forming method | |
CN104347502A (en) | Semiconductor Device and Fabricating Same | |
US20140361353A1 (en) | Semiconductor device and method for manufacturing the same | |
TW201330255A (en) | Capacitor dielectric structure of transistor gate | |
US8772148B1 (en) | Metal gate transistors and fabrication method thereof | |
TWI693703B (en) | Three dimension memory device and manufacturing method thereof | |
TW201626563A (en) | Semiconductor structure and method of manufacturing same | |
WO2022205693A1 (en) | Preparation method for mask structure, and semiconductor structure and preparation method therefor | |
CN103855071B (en) | A kind of preparation method of semiconductor device | |
CN103117216A (en) | Manufacture method for semiconductor component preventing unfilled corner from being generated in shallow groove isolation structure | |
CN101980358B (en) | How to make an isolation structure | |
CN106601812A (en) | Semiconductor device and manufacturing method thereof | |
CN104517888B (en) | A kind of method for making semiconductor devices | |
CN104681440A (en) | Semiconductor device and preparation method thereof | |
US10170330B2 (en) | Method for recessing a carbon-doped layer of a semiconductor structure | |
US10784148B2 (en) | Forming uniform fin height on oxide substrate | |
CN108288648B (en) | Semiconductor device and manufacturing method thereof | |
CN104517900B (en) | A kind of manufacturing method of semiconductor devices | |
CN103531476B (en) | Semiconductor device manufacturing method | |
TW202008434A (en) | Semiconductor device and method of fabricating the same | |
CN105633004A (en) | Self-Aligned Contact Fabrication Method | |
CN113675143B (en) | Preparation method of buried word line structure | |
CN104217951B (en) | A kind of semiconductor devices and its manufacture method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |