CN103854297A - 利用紧框架学习的动态图像重建 - Google Patents
利用紧框架学习的动态图像重建 Download PDFInfo
- Publication number
- CN103854297A CN103854297A CN201310753741.2A CN201310753741A CN103854297A CN 103854297 A CN103854297 A CN 103854297A CN 201310753741 A CN201310753741 A CN 201310753741A CN 103854297 A CN103854297 A CN 103854297A
- Authority
- CN
- China
- Prior art keywords
- tight frame
- sampling
- spatial data
- reference picture
- operational symbol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 claims abstract description 77
- 230000008569 process Effects 0.000 claims abstract description 33
- 239000013598 vector Substances 0.000 claims description 38
- 238000005070 sampling Methods 0.000 claims description 23
- 238000003384 imaging method Methods 0.000 claims description 9
- 238000012804 iterative process Methods 0.000 claims description 8
- 230000001052 transient effect Effects 0.000 claims 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 10
- 238000004891 communication Methods 0.000 description 7
- 238000012549 training Methods 0.000 description 7
- 238000013459 approach Methods 0.000 description 5
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002610 neuroimaging Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/4818—MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/561—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
- G01R33/5611—Parallel magnetic resonance imaging, e.g. sensitivity encoding [SENSE], simultaneous acquisition of spatial harmonics [SMASH], unaliasing by Fourier encoding of the overlaps using the temporal dimension [UNFOLD], k-t-broad-use linear acquisition speed-up technique [k-t-BLAST], k-t-SENSE
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/50—Image enhancement or restoration using two or more images, e.g. averaging or subtraction
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- High Energy & Nuclear Physics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Theoretical Computer Science (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (20)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261710162P | 2012-10-05 | 2012-10-05 | |
US61/710162 | 2012-10-05 | ||
US14/027,451 US9453895B2 (en) | 2012-10-05 | 2013-09-16 | Dynamic image reconstruction with tight frame learning |
US14/027451 | 2013-09-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103854297A true CN103854297A (zh) | 2014-06-11 |
CN103854297B CN103854297B (zh) | 2018-11-27 |
Family
ID=50432216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310753741.2A Active CN103854297B (zh) | 2012-10-05 | 2013-09-30 | 利用紧框架学习的动态图像重建 |
Country Status (2)
Country | Link |
---|---|
US (1) | US9453895B2 (zh) |
CN (1) | CN103854297B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106618571A (zh) * | 2016-11-16 | 2017-05-10 | 深圳先进技术研究院 | 一种磁共振成像方法和系统 |
CN108283495A (zh) * | 2017-12-14 | 2018-07-17 | 中国科学院深圳先进技术研究院 | 基于两层紧框架稀疏模型的并行磁共振成像方法、装置及计算机可读介质 |
CN108474755A (zh) * | 2015-11-20 | 2018-08-31 | 集成动态电子解决方案公司 | 时间压缩感测系统 |
WO2021046989A1 (zh) * | 2019-09-10 | 2021-03-18 | 深圳大学 | 一种磁共振成像方法、系统及相关装置 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9329251B2 (en) * | 2012-05-04 | 2016-05-03 | National Taiwan University | System and method for magnetic resonance imaging using multiple spatial encoding magnetic fields |
US9689947B2 (en) * | 2013-10-21 | 2017-06-27 | Siemens Healthcare Gmbh | Sampling strategies for sparse magnetic resonance image reconstruction |
KR102302196B1 (ko) * | 2013-11-11 | 2021-09-16 | 삼성전자주식회사 | 자기 공명 영상 장치 및 그 동작방법 |
US9846214B2 (en) * | 2014-12-29 | 2017-12-19 | Toshiba Medical Systems Corporation | Magnetic resonance image reconstruction for undersampled data acquisitions |
CN109978809B (zh) * | 2017-12-26 | 2022-02-22 | 同方威视技术股份有限公司 | 图像处理方法、装置及计算机可读存储介质 |
US11288820B2 (en) * | 2018-06-09 | 2022-03-29 | Lot Spot Inc. | System and method for transforming video data into directional object count |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0919955A2 (en) * | 1997-11-26 | 1999-06-02 | Picker International, Inc. | Image reconstruction using backprojection |
EP1087339A1 (en) * | 1999-09-24 | 2001-03-28 | Ge Medical Systems Sa | Method of reconstruction of a three-dimensional image of an element of interest |
US6351514B1 (en) * | 2000-06-22 | 2002-02-26 | Ge Medical Systems Global Technology Company, Llc | Slice-adaptive multislice helical weighting for computed tomography imaging |
US6574356B1 (en) * | 2000-04-19 | 2003-06-03 | National Science Council | Method for three-dimensional image reconstruction of basal ganglion |
CN1877638A (zh) * | 2006-06-22 | 2006-12-13 | 上海交通大学 | 用动态胸部数字仿真模型检测图像重建算法性能的方法 |
CN1996391A (zh) * | 2005-12-31 | 2007-07-11 | 清华大学 | Ct投影数据三维解析模拟方法 |
CN101051388A (zh) * | 2007-05-15 | 2007-10-10 | 骆建华 | 基于复二维奇异谱分析的磁共振部分k数据图像重建方法 |
EP2306402A1 (en) * | 2009-08-25 | 2011-04-06 | Soemar Emid | Exact image reconstruction method |
CA2737822A1 (en) * | 2010-08-31 | 2012-02-29 | Mirza F. Beg | System and method for rapid oct image acquisition using compressive sampling |
WO2012028955A2 (en) * | 2010-09-01 | 2012-03-08 | Commissariat A L Energie Atomique Et Aux Énergies Alternatives | Method for performing parallel magnetic resonance imaging |
CN102737392A (zh) * | 2012-06-07 | 2012-10-17 | 南方医科大学 | 一种低剂量x线ct图像的非局部正则化先验重建方法 |
-
2013
- 2013-09-16 US US14/027,451 patent/US9453895B2/en active Active
- 2013-09-30 CN CN201310753741.2A patent/CN103854297B/zh active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0919955A2 (en) * | 1997-11-26 | 1999-06-02 | Picker International, Inc. | Image reconstruction using backprojection |
EP1087339A1 (en) * | 1999-09-24 | 2001-03-28 | Ge Medical Systems Sa | Method of reconstruction of a three-dimensional image of an element of interest |
US6574356B1 (en) * | 2000-04-19 | 2003-06-03 | National Science Council | Method for three-dimensional image reconstruction of basal ganglion |
US6351514B1 (en) * | 2000-06-22 | 2002-02-26 | Ge Medical Systems Global Technology Company, Llc | Slice-adaptive multislice helical weighting for computed tomography imaging |
CN1996391A (zh) * | 2005-12-31 | 2007-07-11 | 清华大学 | Ct投影数据三维解析模拟方法 |
CN1877638A (zh) * | 2006-06-22 | 2006-12-13 | 上海交通大学 | 用动态胸部数字仿真模型检测图像重建算法性能的方法 |
CN101051388A (zh) * | 2007-05-15 | 2007-10-10 | 骆建华 | 基于复二维奇异谱分析的磁共振部分k数据图像重建方法 |
EP2306402A1 (en) * | 2009-08-25 | 2011-04-06 | Soemar Emid | Exact image reconstruction method |
CA2737822A1 (en) * | 2010-08-31 | 2012-02-29 | Mirza F. Beg | System and method for rapid oct image acquisition using compressive sampling |
WO2012028955A2 (en) * | 2010-09-01 | 2012-03-08 | Commissariat A L Energie Atomique Et Aux Énergies Alternatives | Method for performing parallel magnetic resonance imaging |
CN102737392A (zh) * | 2012-06-07 | 2012-10-17 | 南方医科大学 | 一种低剂量x线ct图像的非局部正则化先验重建方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108474755A (zh) * | 2015-11-20 | 2018-08-31 | 集成动态电子解决方案公司 | 时间压缩感测系统 |
CN108474755B (zh) * | 2015-11-20 | 2021-11-26 | 集成动态电子解决方案公司 | 时间压缩感测系统 |
CN106618571A (zh) * | 2016-11-16 | 2017-05-10 | 深圳先进技术研究院 | 一种磁共振成像方法和系统 |
CN108283495A (zh) * | 2017-12-14 | 2018-07-17 | 中国科学院深圳先进技术研究院 | 基于两层紧框架稀疏模型的并行磁共振成像方法、装置及计算机可读介质 |
WO2021046989A1 (zh) * | 2019-09-10 | 2021-03-18 | 深圳大学 | 一种磁共振成像方法、系统及相关装置 |
Also Published As
Publication number | Publication date |
---|---|
CN103854297B (zh) | 2018-11-27 |
US20140097845A1 (en) | 2014-04-10 |
US9453895B2 (en) | 2016-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103854297B (zh) | 利用紧框架学习的动态图像重建 | |
US9569843B1 (en) | Parameter-free denoising of complex MR images by iterative multi-wavelet thresholding | |
US9542761B2 (en) | Generalized approximate message passing algorithms for sparse magnetic resonance imaging reconstruction | |
US9633455B1 (en) | Dictionary-free MR parameter inference for fingerprinting reconstruction | |
US10061004B2 (en) | Memory efficiency of parallel magnetic resonance imaging reconstruction | |
US9858689B1 (en) | Fast and memory efficient redundant wavelet regularization with sequential cycle spinning | |
CN103876739B (zh) | 用于并行成像应用的多阶段磁共振重建 | |
US20210150783A1 (en) | Unsupervised learning-based magnetic resonance reconstruction | |
US9945919B2 (en) | Systems and methods for real time gradient timing modification | |
US11062488B2 (en) | Magnetic resonance fingerprinting based on bloch manifold and spatial regularizations in parallel | |
EP3026452B1 (en) | Compressed sensing reconstruction for mri multi-slab acquisitions | |
US20160306019A1 (en) | Spatially Varying Coil Compression in Magnetic Resonance Image Reconstruction | |
US11426094B2 (en) | Methods for iterative reconstruction of medical images using primal-dual optimization with stochastic dual variable updating | |
US10126397B2 (en) | Systems and methods for fast magnetic resonance image reconstruction using a heirarchically semiseparable solver | |
US12182998B2 (en) | Self-supervised machine learning for medical image reconstruction | |
KR20240099328A (ko) | 측정치의 희소 표현 | |
US10054653B2 (en) | Magnetic resonance method and apparatus for quantitative simultaneous multi-slice assessment of tissue displacement, deformation, and related biomarker parameters | |
US10866298B2 (en) | Low rank and spatial regularization model for magnetic resonance fingerprinting | |
US20150108978A1 (en) | Sampling strategies for sparse magnetic resonance image reconstruction | |
US10459051B2 (en) | Field of view increase in magnetic resonance imaging using nonlinear gradients and generalized iterative reconstruction | |
US10354416B2 (en) | Non-contrast MR angiography with variable slice resolution 3D time-of-flight | |
US10324155B2 (en) | Sparse recovery of fiber orientations using multidimensional Prony method | |
US11782114B1 (en) | Reducing artifact generation echo in stimulated-echo-based strain imaging | |
US20250052842A1 (en) | System and method for super-resolution of magnetic resonance images using slice-profile-transformation and neural networks | |
Miller | Methods for Reducing 3D Non-Cartesian Reconstruction Time |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220119 Address after: Erlangen Patentee after: Siemens Healthineers AG Address before: Munich, Germany Patentee before: SIEMENS AG |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240902 Address after: German Phu F Haim Patentee after: Siemens Medical AG Country or region after: Germany Address before: Erlangen Patentee before: Siemens Healthineers AG Country or region before: Germany |
|
TR01 | Transfer of patent right |