CN103849637B - The acidproof mutant strain of O type foot and mouth disease virus, its capsid protein carried and encoding gene thereof and application - Google Patents
The acidproof mutant strain of O type foot and mouth disease virus, its capsid protein carried and encoding gene thereof and application Download PDFInfo
- Publication number
- CN103849637B CN103849637B CN201210499507.7A CN201210499507A CN103849637B CN 103849637 B CN103849637 B CN 103849637B CN 201210499507 A CN201210499507 A CN 201210499507A CN 103849637 B CN103849637 B CN 103849637B
- Authority
- CN
- China
- Prior art keywords
- acid
- mouth disease
- virus
- disease virus
- mutant strain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
本发明公开了O型口蹄疫病毒耐酸突变株、其携带的衣壳蛋白及其编码基因,本发明还公开了决定O型口蹄疫病毒耐酸特性的关键氨基酸位点及应用。本发明将O型口蹄疫病毒亲本株在酸压力下进行连续传代筛选,获得了一株具有较强耐酸能力的突变株,分析发现决定O型口蹄疫病毒耐酸特性的关键氨基酸为VP1?N17D突变,仅携带有该位点突变的口蹄疫病毒具有与突变株相似的耐酸能力,且具有良好的复制能力和免疫原性。本发明发现的耐酸性决定位点可应用于口蹄疫疫苗种毒的耐酸性改造以及新一代口蹄疫基因工程疫苗的开发。本发明耐酸突变株rN17D可作为优质灭活疫苗生产种毒,能够提高灭活疫苗中146S有效抗原的含量,增加疫苗的免疫效力。
The invention discloses the acid-resistant mutant strain of O-type foot-and-mouth disease virus, the capsid protein carried by it and its coding gene, and the invention also discloses the key amino acid site and application for determining the acid-resistant characteristic of O-type foot-and-mouth disease virus. In the present invention, the parent strain of O-type foot-and-mouth disease virus is screened by continuous passage under acid pressure, and a mutant strain with strong acid resistance is obtained. The analysis finds that the key amino acid determining the acid-resistant property of O-type foot-and-mouth disease virus is VP1? N17D mutation, the foot-and-mouth disease virus that only carries the mutation of this site has similar acid resistance to the mutant strain, and has good replication ability and immunogenicity. The acid-resistant determinant site found in the invention can be applied to the acid-resistant transformation of the foot-and-mouth disease vaccine seed virus and the development of a new generation of foot-and-mouth disease genetic engineering vaccine. The acid-resistant mutant strain rN17D of the invention can be used as a high-quality inactivated vaccine to produce seed virus, can increase the content of 146S effective antigen in the inactivated vaccine, and increase the immune efficacy of the vaccine.
Description
技术领域technical field
本发明涉及口蹄疫病毒耐酸突变株及其携带的衣壳蛋白和编码基因,尤其涉及O型口蹄疫病毒耐酸突变株感染性cDNA质粒克隆以及用该O型口蹄疫病毒耐酸突变株感染性cDNA质粒克隆所拯救的O型口蹄疫病毒耐酸突变株,本发明还涉及决定O型口蹄疫病毒耐酸毒株耐酸特性的VP1N17D突变位点及应用,属于口蹄疫病毒防治领域。The invention relates to an acid-resistant mutant strain of foot-and-mouth disease virus and the capsid protein and coding gene carried by it, in particular to an infectious cDNA plasmid clone of an acid-resistant mutant strain of an O-type foot-and-mouth disease virus and rescue of the infectious cDNA plasmid clone of an acid-resistant mutant strain of an O-type foot-and-mouth disease virus The acid-resistant mutant strain of O-type foot-and-mouth disease virus, and the invention also relates to the VP1N17D mutation site and application for determining the acid-resistant property of the O-type foot-and-mouth disease virus acid-resistant strain, belonging to the field of foot-and-mouth disease virus prevention and control.
背景技术Background technique
口蹄疫(FootandMouthDisease,FMD)是由口蹄疫病毒(FootandMouthDiseaseVirus,FMDV)引起的,主要侵害偶蹄动物的一种急性、热性、高度接触性传染病。该病一旦爆发会对社会经济造成严重影响,因此在国际上被称为政治经济病,历来受到各国政府的高度重视。Foot-and-mouth disease (Foot and Mouth Disease, FMD) is caused by Foot and Mouth Disease Virus (Foot and Mouth Disease Virus, FMDV), an acute, febrile, highly contagious infectious disease that mainly affects cloven-hoofed animals. Once the disease breaks out, it will have a serious impact on the social economy, so it is called a political and economic disease in the world, and has always been highly valued by governments.
FMDV是微RNA病毒科口蹄疫病毒属成员,属于单股正链RNA病毒。FMDV对酸高度敏感,最适PH值为7.4-7.6,在PH值略低于中性条件下衣壳即会解聚。FMDV的酸敏感性是病毒衣壳裂解所必需的,病毒进入细胞后内体的酸性环境诱导衣壳分解,从而使RNA基因组在感染的细胞中释放(Carrilloetal.,1985)。FMDV利用内体酸化作用进行脱壳的现象虽然很早就被发现,但是酸介导FMDV脱壳的分子机制至今尚不清楚。FMDV is a member of the foot-and-mouth disease virus genus of the Picornaviridae family and belongs to single-stranded positive-sense RNA viruses. FMDV is highly sensitive to acid, the optimum pH value is 7.4-7.6, and the capsid will depolymerize when the pH value is slightly lower than neutral conditions. The acid sensitivity of FMDV is necessary for the cleavage of the viral capsid. After the virus enters the cell, the acidic environment of the endosome induces the capsid to disintegrate, so that the RNA genome is released in the infected cell (Carrillo et al., 1985). Although the phenomenon that FMDV uses endosome acidification to uncoat has been discovered very early, the molecular mechanism of acid-mediated FMDV uncoating is still unclear.
口蹄疫病毒对酸敏感的特性一直是灭活疫苗生产中的技术难题。对于口蹄疫疫苗来说,146S病毒粒子是灭活疫苗诱导中和抗体的最有效抗原。然而,由于FMDV对酸性环境极其敏感,在体外繁殖FMDV时,细胞代谢产酸很容易使得FMDV培养环境的pH下降,当pH值略低于中性条件时,FMDV的衣壳就会裂解,导致FMDV的有效抗原量降低,由此制备的灭活疫苗其免疫效力就会下降(Doel,T.R.,andW.K.Chong.1982.Comparativeimmunogenicityof146S,75Sand12Sparticlesoffoot-and-mouthdiseasevirus.ArchVirol73:185-191.)。此外,FMDV衣壳对温度也比较敏感,造成FMDV灭活疫苗运输和储存过程中需要完善的冷链系统,导致成本大幅上升。因此,开发高度耐酸的口蹄疫疫苗株对提高灭活疫苗免疫效力具有重要意义。The acid sensitivity of foot-and-mouth disease virus has always been a technical problem in the production of inactivated vaccines. For FMD vaccines, 146S virion was the most effective antigen for inactivated vaccines to induce neutralizing antibodies. However, because FMDV is extremely sensitive to an acidic environment, when FMDV is propagated in vitro, acid production by cell metabolism can easily reduce the pH of the FMDV culture environment. When the pH value is slightly lower than neutral conditions, the capsid of FMDV will be cleaved, resulting in The effective antigenicity of FMDV is reduced, and its immune efficacy of the inactivated vaccine thus prepared will decrease (Doel, T.R., and W.K.Chong.1982.Comparativeimmunogenicityof146S,75Sand12Sparticlesoffoot-and-mouthdiseasevirus.ArchVirol73:185-191.). In addition, the FMDV capsid is also sensitive to temperature, which requires a complete cold chain system during the transportation and storage of FMDV inactivated vaccines, resulting in a substantial increase in costs. Therefore, the development of highly acid-resistant foot-and-mouth disease vaccine strains is of great significance for improving the immune efficacy of inactivated vaccines.
发明内容Contents of the invention
本发明目的之一是构建O型FMDV耐酸突变株感染性cDNA质粒克隆;One of the objects of the present invention is to construct the infectious cDNA plasmid clone of O-type FMDV acid-resistant mutant strain;
本发明目的之二是提供用所述O型FMDV耐酸突变株感染性cDNA质粒克隆拯救的O型口蹄疫病毒耐酸突变株病毒;Two of the purpose of the present invention is to provide the O-type foot-and-mouth disease virus acid-resistant mutant virus rescued by the O-type FMDV acid-resistant mutant strain infectious cDNA plasmid clone;
本发明目的之三是提供决定O型口蹄疫病毒耐酸特性的关键氨基酸;The third object of the present invention is to provide the key amino acid that determines the acid-resistant characteristic of O-type foot-and-mouth disease virus;
本发明目的之四是将所述的O型FMDV耐酸突变株感染性cDNA质粒及所拯救的耐酸突变株病毒应用于预防或治疗口蹄疫领域。The fourth object of the present invention is to apply the infectious cDNA plasmid of the O-type FMDV acid-resistant mutant strain and the rescued acid-resistant mutant strain virus to the field of preventing or treating foot-and-mouth disease.
本发明目的之五是将决定O型口蹄疫病毒耐酸特性的关键氨基酸应用于预防或治疗口蹄疫领域。The fifth object of the present invention is to apply the key amino acid that determines the acid resistance of Type O foot-and-mouth disease virus to the field of prevention or treatment of foot-and-mouth disease.
本发明的上述目的是通过以下技术方案来实现的:Above-mentioned purpose of the present invention is achieved through the following technical solutions:
一种O型FMDV耐酸突变株感染性cDNA质粒克隆(pYS-N17D),所述O型FMDV耐酸突变株感染性cDNA质粒克隆的核苷酸全长序列为SEQIDNo.1所示;其微生物保藏编号为:CGMCCNO.6868;保藏时间为:2012年11月22日;该重组质粒的分类命名为:O型FMDV耐酸突变株感染性cDNA克隆质粒pYS-N17D;保藏单位:中国微生物保藏管理委员会普通微生物中心;保藏地址:中国北京朝阳区北辰西路1号院3号,中国科学院微生物研究所。An infectious cDNA plasmid clone (pYS-N17D) of the O-type FMDV acid-resistant mutant strain, the full-length nucleotide sequence of the O-type FMDV acid-resistant mutant strain infectious cDNA plasmid clone is shown in SEQ ID No. 1; its microbial deposit number Is: CGMCCNO.6868; storage time: November 22, 2012; the classification of the recombinant plasmid is named: O-type FMDV acid-resistant mutant strain infectious cDNA clone plasmid pYS-N17D; depository unit: China Microorganism Collection Management Committee Common Microorganisms Center; Deposit Address: Institute of Microbiology, Chinese Academy of Sciences, No. 3, Yard No. 1, Beichen West Road, Chaoyang District, Beijing, China.
本发明首先将O型FMDVO/YS/CHA/05株在酸压力下进行传代连续传15代,筛选获得一株具有高度耐酸特性的O型FMDV突变株,将其命名为O-AR株,该突变株所携带的衣壳蛋白的氨基酸序列为SEQIDNo.3所示,其编码基因为SEQIDNo.2所示。本发明分别提取酸压力筛选获得的O型口蹄疫病毒P5、P10和P15三个代次的病毒RNA,对这三个代次病毒的耐酸性进行比较。试验结果发现,P5、P10和P15毒株均为O型FMDV耐酸毒株且具有相似的耐酸特性,这表明亲本毒株在体外筛选至第5代即获得耐酸表型,并且这种耐酸表型稳定存在至第15代。In the present invention, firstly, the O-type FMDVO/YS/CHA/05 strain is continuously passed down for 15 generations under acid pressure, and an O-type FMDV mutant strain with high acid resistance is obtained by screening, which is named O-AR strain. The amino acid sequence of the capsid protein carried by the mutant strain is shown in SEQ ID No.3, and its coding gene is shown in SEQ ID No.2. The invention extracts respectively the virus RNAs of three generations of O-type foot-and-mouth disease virus P5, P10 and P15 obtained by acid pressure screening, and compares the acid resistance of the three generations of viruses. The test results found that the P5, P10 and P15 strains were all acid-resistant strains of O-type FMDV and had similar acid-resistant characteristics, which indicated that the parental strains obtained the acid-resistant phenotype after screening in vitro to the fifth generation, and this acid-resistant phenotype Stable until the 15th generation.
为分析决定FMDV耐酸特性的氨基酸位点,对P5、P10、P15三个代次毒株及其亲本株的基因组序列进行测定并比较结构蛋白编码区序列。序列比对分析发现,P5耐酸毒株结构蛋白基因拥有三个点突变分别是G218A、A512C、A1618G,这些核苷酸突变导致3个氨基酸突变,分别是衣壳蛋白VP4的第73位丝氨酸突变为天冬酰胺(S73N)、衣壳蛋白VP2的第80位天冬氨酸突变为丙氨酸(D86A)以及衣壳蛋白VP1的第17位天冬酰胺突变为天冬氨酸(N17D)。P10和P15耐酸毒株也仅存在这三个变异位点,并没有因酸压力筛选代次的增加而增加其它氨基酸突变。另外,第5代耐酸毒株在没有酸压力的条件下,连续传10代后经测序分析这三个突变的氨基酸同样能够稳定存在,且该毒株的耐酸能力不变。这些结果表明,上述三个变异氨基酸,可能与O型FMDV的耐酸特性有关。In order to analyze the amino acid sites that determine the acid-resistant characteristics of FMDV, the genome sequences of P5, P10, P15 strains and their parent strains were determined and the sequences of the structural protein coding regions were compared. Sequence comparison analysis found that the structural protein gene of the P5 acid-resistant strain had three point mutations: G218A, A512C, and A1618G. Asparagine (S73N), aspartic acid at position 80 of capsid protein VP2 was mutated to alanine (D86A), and asparagine at position 17 of capsid protein VP1 was mutated to aspartic acid (N17D). P10 and P15 acid-resistant strains also only have these three mutation sites, and no other amino acid mutations have been increased due to the increase of acid stress screening generations. In addition, the 5th-generation acid-resistant strain can also stably exist after 10 generations of continuous passage without acid stress, and the acid-resistant ability of the strain remains unchanged. These results indicated that the above-mentioned three mutated amino acids may be related to the acid-resistant properties of O-type FMDV.
根据耐酸毒株结构基因序列比对分析获悉其氨基酸残基的变异,本发明利用定点突变技术分别构建与S73N、D86A以及VP1N17D这三个突变位点相对应的单位点和组合位点突变的感染性cDNA克隆质粒pS73N、pD86A、pN17D、pS73N/D86A、pS73N/N17D、pD86A/N17D和pS73N+D86A+N17D,并成功拯救了这7个突变株病毒。在BHK-21细胞上连续传5代稳定后,经全基因组测序验证突变位点正确,然后对这些拯救的突变株病毒及其亲本病毒的耐酸性进行比较分析。试验结果发现,含有N17D突变的病毒株(rN17D、rS73N/N17D、rD86A/N17D和rS73N+D86A+N17D)在pH6.0与pH7.4条件下处理30min后病毒滴度没有明显变化,且这些病毒与P5毒株具有相似的耐酸能力。而rS73N、rD86A、rS73N/D86A突变株在pH6.0条件下处理30min后比在pH7.4条件下处理的病毒滴度下降10000倍,与亲本毒在此条件下处理后下降的滴度相近。以上试验结果表明,仅有VP1N17D突变(VP1蛋白的第17位氨基酸由天冬酰胺突变为天冬氨酸)是决定O型FMDV耐酸表型的分子因素,突变后的VP1蛋白(VP1N17D)的氨基酸序列如SEQIDNo.5所示,其编码基因如SEQIDNo.4所示。According to the comparison and analysis of the structural gene sequence of acid-resistant strains, the variation of its amino acid residues is known, and the present invention utilizes the site-directed mutagenesis technique to respectively construct the infection of single-site and combined-site mutations corresponding to the three mutation sites of S73N, D86A and VP1N17D. The cloned plasmids pS73N, pD86A, pN17D, pS73N/D86A, pS73N/N17D, pD86A/N17D and pS73N+D86A+N17D were successfully rescued from these 7 mutant strains. After 5 generations of continuous passage on BHK-21 cells, the mutation sites were verified to be correct by whole-genome sequencing, and then the acid resistance of these rescued mutant viruses and their parental viruses were compared and analyzed. The test results found that the virus titers of the virus strains containing the N17D mutation (rN17D, rS73N/N17D, rD86A/N17D and rS73N+D86A+N17D) did not change significantly after being treated for 30 minutes at pH 6.0 and pH 7.4, and these viruses It has similar acid resistance to the P5 strain. The titers of rS73N, rD86A and rS73N/D86A mutants were 10,000 times lower than those treated at pH 7.4 after treatment at pH 6.0 for 30 minutes, which was similar to the titer of the parental virus after treatment at this condition. The above test results show that only the VP1N17D mutation (the 17th amino acid of VP1 protein is mutated from asparagine to aspartic acid) is the molecular factor that determines the acid-resistant phenotype of O-type FMDV, and the amino acid of the mutated VP1 protein (VP1N17D) The sequence is shown in SEQIDNo.5, and its coding gene is shown in SEQIDNo.4.
仅携带有VP1N17D突变(VP1N17D)的口蹄疫突变株病毒(N17D)与亲本毒O/YS/CHA/05在中性(pH7.4)环境中作用后具有相似的免疫原性,但是在酸(pH6.0)环境下处理30min后N17D突变病毒的免疫原性明显优于亲本毒O/YS/CHA/05。上述实验结果表明,VP1蛋白的第17位氨基酸由天冬酰胺突变为天冬氨酸(N17D突变)不但不影响病毒的抗原性,反而赋予病毒及其抗原的抗酸能力,使其在酸环境中仍然具有良好的免疫原性。鉴于口蹄疫病毒对酸的敏感特性,在微酸环境下146S病毒粒子的衣壳就会裂解、导致FMDV的有效抗原量降低、制备的灭活疫苗免疫效力下降。本发明通过O型口蹄疫病毒耐酸株的制备及其分子决定因素的确定,为其作为O型口蹄疫病毒灭活疫苗的生产种毒提供了理论和实验依据、为解决口蹄疫灭活疫苗生产中有效抗原酸性灭活的技术难题打下物质基础。The FMD mutant strain virus (N17D) carrying only the VP1N17D mutation (VP1N17D) had similar immunogenicity to the parental virus O/YS/CHA/05 after acting in a neutral (pH 7.4) environment, but in acid (pH 6 .0) The immunogenicity of the N17D mutant virus was significantly better than that of the parent virus O/YS/CHA/05 after being treated for 30 minutes in the environment. The above experimental results show that the mutation of the 17th amino acid of the VP1 protein from asparagine to aspartic acid (N17D mutation) not only does not affect the antigenicity of the virus, but endows the virus and its antigen with acid resistance, making it resistant to acid in an acid environment. still have good immunogenicity. In view of the sensitivity of foot-and-mouth disease virus to acid, the capsid of 146S virion will be cracked in a slightly acidic environment, resulting in a decrease in the effective antigenic amount of FMDV and a decrease in the immune efficacy of the prepared inactivated vaccine. The present invention provides a theoretical and experimental basis for the production of O-type foot-and-mouth disease virus inactivated vaccine by preparing the acid-resistant strain of O-type foot-and-mouth disease virus and determining its molecular determinants. The technical problem of acid inactivation lays a material foundation.
附图说明Description of drawings
图1O型口蹄疫病毒酸压力筛选不同代次毒株的耐酸能力的比较。Fig. 1 Comparison of the acid tolerance of strains of different generations of O-type foot-and-mouth disease virus acid stress screening.
图2pH6.0酸性环境预处理的O型口蹄疫FMDV突变株感染BHK-21细胞的免疫荧光检测。Fig. 2 Immunofluorescence detection of BHK-21 cells infected by the O-type foot-and-mouth disease FMDV mutant strain pretreated in an acidic environment at pH 6.0.
图3突变株病毒在不同pH环境下作用30min的病毒滴度。Fig. 3 Virus titers of the mutant strain virus in different pH environments for 30 minutes.
图4突变株病毒rN17D与亲本毒复制能力的比较。Figure 4 Comparison of the replication ability of the mutant strain virus rN17D with that of the parental virus.
具体实施方式Detailed ways
下面结合具体实施例来进一步描述本发明,本发明的优点和特点将会随着描述而更为清楚。但这些实施例仅是范例性的,并不对本发明的范围构成任何限制。本领域技术人员应该理解的是,在不偏离本发明的精神和范围下可以对本发明技术方案的细节和形式进行修改或替换,但这些修改和替换均落入本发明的保护范围内。The present invention will be further described below in conjunction with specific embodiments, and the advantages and characteristics of the present invention will become clearer along with the description. However, these embodiments are only exemplary and do not constitute any limitation to the scope of the present invention. Those skilled in the art should understand that the details and forms of the technical solutions of the present invention can be modified or replaced without departing from the spirit and scope of the present invention, but these modifications and replacements all fall within the protection scope of the present invention.
实验材料Experimental Materials
1.细胞、病毒和质粒1. Cells, viruses and plasmids
BHK-21细胞(美国ATCC菌种保藏中心,ATCCNumber:CCL-10);O型FMDVO/YS/CHA/05毒株(GenBank登录号:HM008917)及该病毒的感染性cDNA克隆可按照文献所公开的方法进行构建(中国发明专利公开号:CN101838658A;发明名称:O型口蹄疫病毒变异株及其编码基因和应用);pOK-12载体由Messing(1991)惠赠(pOK-12载体的GenBank登录号:AF223639)。BHK-21 cell (ATCC Culture Collection Center, ATCCNumber: CCL-10); O-type FMDVO/YS/CHA/05 strain (GenBank accession number: HM008917) and the infectious cDNA clone of the virus can be published according to the literature (Chinese Invention Patent Publication No.: CN101838658A; Invention Name: Type O Foot-and-Mouth Disease Virus Variant Strain and Its Encoding Gene and Application); The pOK-12 vector was donated by Messing (1991) (GenBank accession number of the pOK-12 vector: AF223639).
2.试剂2. Reagents
PrimeSTARDNA聚合酶、PrimerscriptII反转录酶、各种限制性内切酶,均购自TaKaRa公司。T4DNA连接酶购自NEB公司。SimplyPTotalRNAExtractionkit提RNA试剂盒购自BioFlux公司。体外转录采用Promega公司的RiboMAXTMLargeScaleRNAProductionSystems-T7试剂盒。转染试剂采用QIAGEN公司的TransfectionReagent转染试剂盒。羊抗鼠IgG荧光抗体购自Sigma公司。PrimeSTAR DNA polymerase, PrimerscriptII reverse transcriptase, and various restriction endonucleases were all purchased from TaKaRa Company. T4 DNA ligase was purchased from NEB Company. SimplyPTotalRNAExtractionkit RNA extraction kit was purchased from BioFlux Company. In vitro transcription was performed using the RiboMAXTM LargeScaleRNAProductionSystems-T7 kit from Promega. The transfection reagent was QIAGEN's TransfectionReagent Transfection Kit. Goat anti-mouse IgG fluorescent antibody was purchased from Sigma.
3.不同pH值PBS的配制3. Preparation of PBS with different pH values
PBS的配方是50mMNaH2PO4、100mMNaCl,用浓盐酸调节缓冲液的pH值分别至7.4、6.0和5.0。The formula of PBS was 50mM NaH 2 PO 4 , 100mM NaCl, and the pH values of the buffer were adjusted to 7.4, 6.0 and 5.0 with concentrated hydrochloric acid.
实施例1O型口蹄疫病毒耐酸突变株的筛选及鉴定Screening and identification of embodiment 1O type foot-and-mouth disease virus acid-resistant mutant
1.O型口蹄疫病毒耐酸突变株的筛选1. Screening of O-type foot-and-mouth disease virus acid-resistant mutants
取10μL(106TCID50/100ul)O型FMDVO/YS/CHA/05株加入到300μLPBS(pH6.0)室温作用1h,用100μL1MTris(pH7.4)中和后接种BHK-21细胞,待80%细胞出现CPE后反复冻融三次收毒并测病毒滴度。以此病毒作为种子进行下一轮酸压力筛选直至第15代。亲本毒用pH7.4的PBS以相同方式处理,连续传15代。在pH6.0条件下筛选15代后,取第5代(P5)、第10代(P10)和15代(P15)病毒,检测其对pH6.0和pH7.4酸度的耐受性。Take 10 μL (10 6 TCID 50 /100ul) of the O-type FMDVO/YS/CHA/05 strain and add it to 300 μL PBS (pH6.0) for 1 hour at room temperature, neutralize it with 100 μL 1MTris (pH7.4) and inoculate BHK-21 cells, and wait for 80 After the cells appeared CPE, the cells were repeatedly frozen and thawed three times to collect the virus and measure the virus titer. The virus was used as the seed for the next round of acid stress selection until the 15th generation. Parents were treated in the same way with PBS of pH 7.4, and continuously passed for 15 generations. After 15 passages were screened at pH 6.0, the 5th passage (P5), 10th passage (P10) and 15th passage (P15) viruses were selected to test their tolerance to pH 6.0 and pH 7.4 acidity.
2.耐酸突变株的间接免疫荧光分析2. Indirect Immunofluorescence Analysis of Acid-resistant Mutants
取10μL拯救的突变株病毒加入到300μLPBS(pH6.0)于室温作用1h后,用100μLTris-HCL(pH7.6)中和。将BHK-21细胞接种96孔板,生长到90%单层时接种经pH6.0酸性条件处理好的病毒,12h后,将感染BHK-21细胞用预冷的无水乙醇固定15min,加入O型FMDV特异性单克隆抗体8E8,37℃作用1h,PBST洗涤,加入荧光标记羊抗鼠IgG(Sigma)于37℃作用45min,PBST洗涤后,用70%甘油封片,在荧光显微镜下观察。Take 10 μL of the rescued mutant virus and add it to 300 μL PBS (pH 6.0) for 1 hour at room temperature, then neutralize it with 100 μL Tris-HCL (pH 7.6). BHK-21 cells were inoculated into 96-well plates, and when they grew to 90% monolayer, they were inoculated with the virus treated under acidic conditions at pH 6.0. After 12 hours, the infected BHK-21 cells were fixed with pre-cooled absolute ethanol for 15 minutes, and added O Type FMDV-specific monoclonal antibody 8E8, reacted at 37°C for 1 hour, washed with PBST, added fluorescently labeled goat anti-mouse IgG (Sigma) and reacted at 37°C for 45 minutes, washed with PBST, sealed with 70% glycerol, and observed under a fluorescent microscope.
实验结果如图1所示,pH7.4处理条件下处理30min,亲本毒(O型FMDVO/YS/CHA/05株)、P5、P10和P15病毒滴度均为105.75TCID50/100uL。pH6.0处理条件下处理30min,P5、P10和P15的病毒滴度与pH7.4处理条件下相同,仍为105.75TCID50/100uL,而亲本毒O/YS/CHA/05株在此处理条件下病毒滴度仅为101.75TCID50/100uL,相比pH7.4条件下处理降低10000倍。间接免疫荧光试验也进一步证实了此结果(图2)。以上试验结果表明,P5、P10和P15毒株均为O型FMDV耐酸毒株,亲本毒株在体外筛选至第5代即获得耐酸表型,并且这种耐酸表型稳定存在直至实验的终点第15代。The experimental results are shown in Figure 1. After treatment at pH 7.4 for 30 minutes, the titers of the parent virus (type O FMDVO/YS/CHA/05 strain), P5, P10 and P15 viruses were all 10 5.75 TCID 50 /100uL. Treated at pH6.0 for 30min, the virus titers of P5, P10, and P15 were the same as those at pH7.4, still 10 5.75 TCID 50 /100uL, while the parent virus O/YS/CHA/05 strain was treated here The virus titer under the condition is only 10 1.75 TCID 50 /100uL, which is 10000 times lower than that under the condition of pH7.4. Indirect immunofluorescence test also further confirmed this result (Figure 2). The above test results show that the P5, P10 and P15 strains are all O-type FMDV acid-resistant strains, and the parental strains obtained the acid-resistant phenotype after screening in vitro to the fifth generation, and this acid-resistant phenotype existed stably until the end of the experiment. 15 generations.
本发明将所筛选得到的具有高度耐酸特性的O型FMDV命名为O-AR株,该O-AR株所携带的衣壳蛋白的氨基酸序列为SEQIDNo.3所示,其编码基因为SEQIDNo.2所示。In the present invention, the screened O-type FMDV with high acid resistance is named O-AR strain, the amino acid sequence of the capsid protein carried by the O-AR strain is shown in SEQ ID No.3, and its coding gene is SEQ ID No.2 shown.
实施例2O型FMDV耐酸突变株感染性cDNA克隆质粒pYS-N17D的构建及O型口蹄疫病毒耐酸突变株病毒的拯救及耐酸特性分析Example 2 Construction of infectious cDNA clone plasmid pYS-N17D of O-type FMDV acid-resistant mutant strain and rescue of O-type foot-and-mouth disease virus acid-resistant mutant strain virus and analysis of acid-resistant characteristics
1.病毒RNA的提取、cDNA合成以及DNA序列比对1. Viral RNA extraction, cDNA synthesis and DNA sequence alignment
为分析决定FMDV耐酸特性的氨基酸位点,对P5、P10、P15三个代次毒株及其亲本株的基因组序列进行测定并比较结构蛋白编码区序列。In order to analyze the amino acid sites that determine the acid-resistant characteristics of FMDV, the genome sequences of P5, P10, P15 strains and their parent strains were determined and the sequences of the structural protein coding regions were compared.
按SimplyPTotalRNAExtractionkit说明书分别提取实施例1酸压力筛选获得的O型口蹄疫病毒P5、P10和P15三个代次的病毒RNA,用26μL的DEPC水溶解提取的RNA。According to the instructions of the SimplyPTotalRNAExtraction kit, the viral RNAs of three passages of O-type foot-and-mouth disease virus P5, P10 and P15 obtained by the acid pressure screening in Example 1 were respectively extracted, and the extracted RNA was dissolved with 26 μL of DEPC water.
以提取的病毒RNA为模板、O1igo-dT(15T)为反转录引物,在反转录酶PrimeScript作用下合成cDNA。反应条件是:25℃10min,42℃60min,4℃20min。反应体系为50μL,包括:病毒RNA26μL;dNTP(25mM)6μL;PrimeScript反转录酶1μL;5×PSRT-Buffer10μL;Oligo-dT6μL;RNAInhibitor1μL。以反转录产物为模板,用O型FMDV结构蛋白区的一对引物扩增病毒结构蛋白编码区。这一对引物是pU(5'ACCCCAGCACGGCAACTTTAT3')和pL(5'CCCAGGTCATCCATTACTACAAC3')。PCR反应体系为50μL,包括:ddH2O28μL;5×PSbuffer10μL;dNTP4μL;PU(10pmol/μL)2μL;PL(10pmol/μL)2μL;模板3μL;PrimeSTARHSDNA聚合酶1μL。PCR的反应条件是:94℃预变性2min;94℃变性30s,53℃退火30s,72℃延伸1.5min,共30个循环;最后72℃延伸10min。PCR扩增产物经胶回收纯化后进行序列测定,测序所用引物为PCR引物PU和PL以及p2297L5'CCGTTGAACTGATTCCCCACT3',p2129U5'TGTGCAGGCAGAGCGGTTCTT3',p3575L5'GCCGTTGGATTGGTGGTGTTG3'和p3335U5'TGGTGAGACACAGGTCCAGAG3'。测得的序列与亲本株O/YS/CHA/05的相应序列进行比对分析。Using the extracted viral RNA as a template and O1igo-dT (15T) as a reverse transcription primer, cDNA was synthesized under the action of reverse transcriptase PrimeScript. The reaction conditions are: 25°C for 10 minutes, 42°C for 60 minutes, and 4°C for 20 minutes. The reaction system is 50 μL, including: viral RNA 26 μL; dNTP (25 mM) 6 μL; PrimeScript reverse transcriptase 1 μL; 5×PSRT-Buffer 10 μL; Oligo-dT 6 μL; RNA Inhibitor 1 μL. Using the reverse transcription product as a template, a pair of primers for the O-type FMDV structural protein region was used to amplify the viral structural protein coding region. This pair of primers is pU (5'ACCCCAGCACGGCAACTTTAT3') and pL (5'CCCAGGTCATCCATTACTACAAC3'). The PCR reaction system was 50 μL, including: ddH 2 O 28 μL; 5×PSbuffer 10 μL; dNTP 4 μL; PU (10 pmol/μL) 2 μL; PL (10 pmol/μL) 2 μL; template 3 μL; PrimeSTAR HS DNA polymerase 1 μL. The reaction conditions of PCR were: pre-denaturation at 94°C for 2 min; denaturation at 94°C for 30 s, annealing at 53°C for 30 s, and extension at 72°C for 1.5 min, a total of 30 cycles; finally, extension at 72°C for 10 min. The PCR amplification products were recovered and purified by gel and sequenced. The primers used for sequencing were PCR primers PU and PL, p2297L5'CCGTTGAACTGATTCCCCACT3', p2129U5'TGTGCAGGCAGAGCGGTTCTT3', p3575L5'GCCGTTGGATTGGTGGTGTTG3'and p3335U5'TGGTGAGACACAGGTCCAGAG3'. The measured sequence was compared with the corresponding sequence of the parent strain O/YS/CHA/05.
序列比对分析发现,P5耐酸毒株结构蛋白基因拥有三个点突变分别是G218A、A512C、A1618G,这些核苷酸突变导致3个氨基酸突变,分别是衣壳蛋白VP4(GenBank登录号:HM008917)的第73位丝氨酸突变为天冬酰胺(S73N突变)、衣壳蛋白VP2(GenBank登录号:HM008917)的第80位天冬氨酸突变为丙氨酸(D86A突变)以及衣壳蛋白VP1(GenBank登录号:HM008917)的第17位天冬酰胺突变为天冬氨酸(N17D突变)。Sequence comparison analysis found that the P5 acid-resistant strain structural protein gene has three point mutations, namely G218A, A512C, and A1618G. These nucleotide mutations lead to three amino acid mutations, which are capsid protein VP4 (GenBank accession number: HM008917) The mutation of the 73rd serine to asparagine (S73N mutation), the 80th aspartic acid mutation of capsid protein VP2 (GenBank accession number: HM008917) to alanine (D86A mutation) and the capsid protein VP1 (GenBank accession number: HM008917) Accession number: HM008917) the 17th asparagine was mutated to aspartic acid (N17D mutation).
P10和P15耐酸毒株也仅存在这三个变异位点,并没有因酸压力筛选代次的增加而增加其它氨基酸突变。另外,第5代耐酸毒株在没有酸压力的条件下,连续传10代后经测序分析这三个突变的氨基酸同样能够稳定存在,且该毒株的耐酸能力不变。这些结果表明,上述三个变异氨基酸,可能与O型FMDV的耐酸特性有关。P10 and P15 acid-resistant strains also only have these three mutation sites, and no other amino acid mutations have been increased due to the increase of acid stress screening generations. In addition, the 5th-generation acid-resistant strain can also stably exist after 10 generations of continuous passage without acid stress, and the acid-resistant ability of the strain remains unchanged. These results indicated that the above-mentioned three mutated amino acids may be related to the acid-resistant properties of O-type FMDV.
根据耐酸毒株结构基因序列比对分析获悉其氨基酸残基的变异,利用定点突变技术分别构建单位点和组合位点突变的感染性cDNA克隆质粒pS73N、pD86A、pN17D、pS73N/D86A、pS73N/N17D、pD86A/N17D和pS73N+D86A+N17D,并成功拯救了这7个突变株病毒。在BHK-21细胞上连续传5代后稳定,经全基因组测序验证突变位点正确,然后对这些拯救的突变株病毒及其亲本病毒的耐酸性进行比较分析。结果如图3所示,含有N17D突变的病毒株(rN17D、rS73N/N17D、rD86A/N17D和rS73N+D86A+N17D)在pH6.0与pH7.4条件下处理30min后病毒滴度没有明显变化,且这些病毒与P5毒株具有相似的耐酸能力。而rS73N、rD86A、rS73N/D86A突变株在pH6.0条件下处理30min后比在pH7.4条件下处理的病毒滴度下降10000倍,与亲本毒在此条件下处理后下降的滴度相近。以上试验结果表明,仅有VP1N17D突变是决定O型FMDV耐酸表型的分子因素。According to the comparison and analysis of the structural gene sequence of acid-resistant strains, the variation of its amino acid residues was known, and the infectious cDNA clone plasmids pS73N, pD86A, pN17D, pS73N/D86A, pS73N/N17D were constructed by site-directed mutagenesis technology, respectively. , pD86A/N17D and pS73N+D86A+N17D, and successfully rescued the seven mutant viruses. It was stable after 5 consecutive passages on BHK-21 cells, and the mutation sites were verified to be correct by whole genome sequencing, and then the acid resistance of these rescued mutant viruses and their parental viruses were compared and analyzed. The results are shown in Figure 3. Virus strains containing N17D mutations (rN17D, rS73N/N17D, rD86A/N17D and rS73N+D86A+N17D) had no significant change in virus titer after treatment at pH 6.0 and pH 7.4 for 30 minutes. And these viruses have similar acid tolerance with P5 strain. The titers of rS73N, rD86A and rS73N/D86A mutants were 10,000 times lower than those treated at pH 7.4 after treatment at pH 6.0 for 30 minutes, which was similar to the titer of the parental virus after treatment at this condition. The above test results showed that only the VP1N17D mutation was the molecular factor determining the acid-resistant phenotype of O-type FMDV.
2.定点突变2. Site-directed mutagenesis
按QuikSite-DirectedMutagenesisKit说明书,用PrimeSTARDNAPolymerase通过PCR的方法在感染性cDNA克隆上利用引物(S73N-UP-5'ACGACTGGTTTTCAAAGCTAGCCAATTCTGCTTTTAGCGGTCTTTTCGG3',S73N-Low-5'CCGAAAAGACCGCTAAAAGCAGAATTGGCTAGCTTTGAAAACCAGTCGT3';D86A-UP-5'TGCTACCTGCTGGAACTCCCAACTGCCCACAAAGGTGTCTACGGTAGCC3',D86A-Low-5'ACCGTAGACACCTTTGTGGGCAGTTGGGAGTTCCAGCAGGTAGCACCGT3';N17D-UP-5'GTAACTGCCACCGTTGAGGACTACGGTGGTGAGACACAGGTCCAGAG3',N17D-Low-5'ACCTGTGTCTCACCACCGTAGTCCTCAACGGTGGCAGTTACGGGGTCAGC3')分别引入点突变。在感染性cDNA克隆上进行单位点突变和组合位点突变,获得的克隆分别命名为pS73N、pD86A、pN17D、pS73N+D86A、pS73N+N17D、pD86A+N17D、pS73N+D86A+N17D。PCR程序是:95℃5min;95℃30s,68℃9min,18个循环;72℃10min。然后用DpnI降解PCR产物中被甲基化的模板pOK-C(37℃,1h),将处理过的PCR产物转化感受态细胞DH5a,提取并鉴定阳性质粒。经测序鉴定正确后,用于拯救突变株病毒。Press Quik Site-DirectedMutagenesisKit说明书,用PrimeSTARDNAPolymerase通过PCR的方法在感染性cDNA克隆上利用引物(S73N-UP-5'ACGACTGGTTTTCAAAGCTAGCCAATTCTGCTTTTAGCGGTCTTTTCGG3',S73N-Low-5'CCGAAAAGACCGCTAAAAGCAGAATTGGCTAGCTTTGAAAACCAGTCGT3';D86A-UP-5'TGCTACCTGCTGGAACTCCCAACTGCCCACAAAGGTGTCTACGGTAGCC3',D86A-Low -5'ACCGTAGACACCTTTGTGGGCAGTTGGGAGTTCCAGCAGGTAGCACCGT3';N17D-UP-5'GTAACTGCCACCGTTGAGGACTACGGTGGTGAGACACAGGTCCAGAG3',N17D-Low-5'ACCTGTGTCTCACCACCGTAGTCCTCAACGGTGGCAGTTACGGGGTCAGC3') introduced point mutations respectively. Single point mutations and combined site mutations were carried out on the infectious cDNA clones, and the obtained clones were named pS73N, pD86A, pN17D, pS73N+D86A, pS73N+N17D, pD86A+N17D, pS73N+D86A+N17D. The PCR program is: 95°C for 5min; 95°C for 30s, 68°C for 9min, 18 cycles; 72°C for 10min. Then the methylated template pOK-C in the PCR product was degraded with DpnI (37°C, 1h), the treated PCR product was transformed into competent cell DH5a, and the positive plasmid was extracted and identified. After being identified correctly by sequencing, it is used to rescue the mutant virus.
3.突变株病毒的拯救3. Rescue of Mutant Virus
重组质粒pS73N,pD86A,pN17D,pS73N+D86A,pS73N+N17D,pD86A+N17D,pS73N+D86A+N17D用限制性内切酶EcoRV酶切线性化后,按照RiboMAXTMLargeScaleRNAProductionSystems-T7系统说明书胞外转录,反应体系为:25mmol/LrNTP6μL,5×缓冲液4μL,T7RNA聚合酶混合液2μL,EcoRV线性化并进行相应定点突变的pOKT7-O/YS/CHA/05重组质粒8μL(2μg),总体积为20μL。将反应物充分混匀后,于37℃温育2.5h,用RNase-FreeDNase消化15min,除去DNA模板,按酚氯仿抽提方法纯化转录产物。当6孔板中的BHK-21细胞生长至60%~90%单层时,用PBS洗2遍细胞,加1.5mL含2%胎牛血清的DMEM细胞培养液。将细胞外转录获得的RNA按QIAGEN公司的EffecteneRTransfectionReagent转染试剂盒说明书转染BHK-21细胞,进行病毒拯救。转染的细胞在5%CO2于37℃培养,观察细胞病变,大约3d左右收获病毒,反复冻融3次后传代接种BHK-21细胞,直到病毒能产生稳定的CPE。Recombinant plasmids pS73N, pD86A, pN17D, pS73N+D86A, pS73N+N17D, pD86A+N17D, pS73N+D86A+N17D were digested and linearized with restriction endonuclease EcoRV, followed by RiboMAXTM LargeScaleRNAProductionSystems-T7 system instructions for extracellular transcription and reaction system It is: 25mmol/LrNTP6μL, 5× buffer 4μL, T7RNA polymerase mixture 2μL, EcoRV linearized and corresponding site-directed mutation pOKT7-O/YS/CHA/05 recombinant plasmid 8μL (2μg), the total volume is 20μL. After the reaction was well mixed, it was incubated at 37°C for 2.5h, digested with RNase-FreeDNase for 15min, the DNA template was removed, and the transcription product was purified by phenol-chloroform extraction. When the BHK-21 cells in the 6-well plate grow to 60%-90% monolayer, wash the cells twice with PBS, and add 1.5 mL of DMEM cell culture medium containing 2% fetal bovine serum. The RNA obtained by extracellular transcription was transfected into BHK-21 cells according to the instruction of QIAGEN's EffecteneR Transfection Reagent Transfection Kit for virus rescue. The transfected cells were cultured at 37°C in 5% CO 2 , and the cytopathic changes were observed. The virus was harvested in about 3 days, and the BHK-21 cells were subcultured after repeated freezing and thawing 3 times until the virus could produce stable CPE.
4.病毒滴度的测定4. Determination of Virus Titer
用TCID50(组织半数感染量)方法测定病毒滴度。首先选择生长状态良好、形态正常的BHK-21细胞,胰酶消化后,按每毫升培养液中含5-8×105个细胞的量加入2%的DMEM,用吸管吹散细胞,加到96孔板中,每个孔100μL。然后,用无血清的DMEM按10倍系列稀释病毒。取出96孔板培养细胞加入上述病毒稀释液,每孔50μL,每个稀释度做4个重复孔。然后将96孔板放在CO2培养箱中于37℃培养,3d后显微镜下观察细胞病变情况,依据Karber法计算TCID50/100μL。Virus titers were determined by the TCID 50 (tissue half infectious dose) method. First, select BHK-21 cells with good growth status and normal shape. After trypsinization, add 2% DMEM according to the amount of 5-8×10 5 cells per ml of culture medium, blow off the cells with a pipette, and add to In a 96-well plate, 100 μL per well. Viruses were then serially diluted 10-fold in serum-free DMEM. Remove the cultured cells from the 96-well plate and add the above virus dilution, 50 μL per well, and make 4 replicate wells for each dilution. Then, the 96-well plate was cultured in a CO 2 incubator at 37°C. After 3 days, the cell lesion was observed under a microscope, and the TCID 50 /100 μL was calculated according to the Karber method.
在测定病毒的酸敏感性时,病毒滴度也是通过TCID50测定的,在稀释病毒之前先将病毒用不同pH值的PBS处理。将30μL病毒液加入到600μL的不同pH值的PBS(加入病毒后的pH值为最终pH值)中,1h后加入120μLTris-HCL(pH7.6)中和,此时病毒稀释倍数为25倍;将此管中100μL病毒液加入有300μL无血清的DMEM培养液中上下吹打混匀,此时病毒稀释100倍,然后10倍系列稀释,稀释至10-7。按上述方法测定酸处理后病毒的滴度。When determining the acid sensitivity of the virus, the virus titer was also determined by TCID50 by treating the virus with PBS at different pH values before diluting the virus. Add 30 μL of virus liquid to 600 μL of PBS with different pH values (the pH value after adding the virus is the final pH value), and add 120 μL Tris-HCL (pH 7.6) to neutralize after 1 hour, and the virus dilution factor is 25 times at this time; Add 100 μL of the virus solution in this tube to 300 μL of serum-free DMEM culture solution and mix by pipetting up and down. At this time, the virus is diluted 100 times, and then serially diluted 10 times to 10 -7 . Virus titers after acid treatment were determined as described above.
所拯救的突变株病毒滴度测定结果如图3所示,含有N17D突变的病毒株(rN17D、rS73N/N17D、rD86A/N17D和rS73N+D86A+N17D)在pH6.0与pH7.4条件下处理30min后病毒滴度没有明显变化,且这些病毒与P5毒株具有相似的耐酸能力。而rS73N、rD86A、rS73N/D86A突变株在pH6.0条件下处理30min后比在pH7.4条件下处理的病毒滴度下降10000倍,与亲本毒在此条件下处理后下降的滴度相近。以上试验结果表明,仅有VP1N17D突变是决定O型FMDV耐酸表型的分子因素。The virus titer determination results of the rescued mutant strains are shown in Figure 3. Virus strains containing N17D mutations (rN17D, rS73N/N17D, rD86A/N17D and rS73N+D86A+N17D) were treated at pH 6.0 and pH 7.4 After 30 minutes, the virus titers did not change significantly, and these viruses had similar acid resistance to the P5 strain. The titers of rS73N, rD86A and rS73N/D86A mutants were 10,000 times lower than those treated at pH 7.4 after treatment at pH 6.0 for 30 minutes, which was similar to the titer of the parental virus after treatment at this condition. The above test results showed that only the VP1N17D mutation was the molecular factor determining the acid-resistant phenotype of O-type FMDV.
5.一步生长曲线绘制5. One-step growth curve drawing
为了分析VP1N17D突变是否影响O型FMDV的生长复制能力,本实验绘制用O型FMDV耐酸突变株感染性cDNA质粒pYS-N17D所拯救的耐酸突变毒株病毒(以下简称“rN17D突变株病毒”)和亲本毒O/YS/CHA/05株的一步生长曲线。In order to analyze whether the VP1N17D mutation affects the growth and replication ability of O-type FMDV, the acid-resistant mutant strain virus rescued by the infectious cDNA plasmid pYS-N17D of the O-type FMDV acid-resistant mutant strain (hereinafter referred to as "rN17D mutant strain virus") and parent The one-step growth curve of this virus O/YS/CHA/05 strain.
按5MOI接种量将亲本毒与拯救病毒(rN17D突变株病毒)分别接种对数生长期的单层BHK-21细胞,37℃条件下吸附1h后用PBS洗去未吸附的病毒,加2%FBSDMEM维持培养,在2h、4h、6h、8h、10h、12h、14h、16h时间点收获病毒,测定不同时间点收获病毒的TCID50,每个时间点重复3次。以病毒生长时间为横坐标、以病毒在不同时间点的TCID50平均值为纵坐标,绘制病毒的一步生长曲线。Inoculate the parental virus and the rescued virus (rN17D mutant strain virus) into monolayer BHK-21 cells in the logarithmic growth phase according to the inoculum amount of 5MOI, absorb at 37°C for 1 hour, wash off the unadsorbed virus with PBS, add 2% FBSDMEM The culture was maintained, and the virus was harvested at 2h, 4h, 6h, 8h, 10h, 12h, 14h, and 16h, and the TCID 50 of the virus harvested at different time points was measured, and each time point was repeated 3 times. Taking the virus growth time as the abscissa and the average TCID 50 of the virus at different time points as the ordinate, draw a one-step growth curve of the virus.
所绘制得病毒的一步生长曲线的结果如图4所示,rN17D突变株病毒与O/YS/CHA/05病毒具有相似的复制能力,这表明,VP1N17D突变不影响O型FMDV的体外复制能力。The results of the one-step growth curve of the virus drawn are shown in Figure 4. The rN17D mutant virus has similar replication ability to the O/YS/CHA/05 virus, which shows that the VP1N17D mutation does not affect the in vitro replication ability of O-type FMDV.
试验例1O型FMDV耐酸突变株感染性cDNA质粒pYS-N17D所拯救的耐酸突变毒株的免疫原性分析Test Example 1: Immunogenicity analysis of the acid-resistant mutant strain rescued by the infectious cDNA plasmid pYS-N17D of O-type FMDV acid-resistant mutant strain
决定O型FMDV耐酸表型的关键氨基酸N17D位于VP1蛋白的N末端,该位点位于O型FMDV5个抗原位点之外。因此,推测N17D突变不会影响病毒的抗原性。为证实这一推测,本试验将实施例2用O型FMDV耐酸突变株感染性cDNA质粒pYS-N17D所拯救的仅携带有N17D位点突变的口蹄疫突变株病毒(以下称“rN17D突变株病毒”)和口蹄疫病毒亲本毒的全病毒灭活抗原分别在pH7.4和pH6.0环境中处理30min后,免疫Babl/c鼠,定期采集血清,用中和试验检测抗体滴度。The key amino acid N17D that determines the acid-resistant phenotype of O-type FMDV is located at the N-terminal of VP1 protein, which is located outside the five antigenic sites of O-type FMDV. Therefore, it is speculated that the N17D mutation will not affect the antigenicity of the virus. In order to confirm this speculation, the foot-and-mouth disease mutant strain virus (hereinafter referred to as "rN17D mutant strain virus" that only carries the N17D site mutation) rescued by the infectious cDNA plasmid pYS-N17D of the O-type FMDV acid-resistant mutant strain was used in this test. ) and the whole virus inactivated antigen of FMD virus parental virus were treated for 30 minutes in the environment of pH7.4 and pH6.0, respectively, and Babl/c mice were immunized, serum was collected regularly, and the antibody titer was detected by neutralization test.
1、试验方法1. Test method
(1)、灭活疫苗免疫程序(1), inactivated vaccine immunization procedures
选用6周龄SPF级BALB/c鼠75只(购自于中国农业科学院哈尔滨兽医研究所实验动物中心),将其随机分成A-E5个组,每组15只。A和B组每只小鼠分别免疫20μg经过提纯并且在200μlpH7.4PBS处理30分钟的rN17D突变株病毒或亲本毒株的病毒蛋白。C和D组每只小鼠分别免疫20μg经过提纯并且在200μlPBS(pH6.0)处理30分钟的上述两种病毒。E组则免疫200μlPBS(pH7.4)作为对照。在第一次免疫后4周以相同剂量加强免疫,并分别在一免后第3周、6周、9周、12周,对免疫小鼠进行尾静脉采血并测定血清中和效价。Seventy-five 6-week-old SPF BALB/c mice (purchased from the Experimental Animal Center of Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences) were selected and randomly divided into 5 groups A-E, with 15 mice in each group. Each mouse in groups A and B was immunized with 20 μg of purified rN17D mutant virus or virus protein of the parental strain in 200 μl pH 7.4 PBS for 30 minutes, respectively. Each mouse in groups C and D was immunized with 20 μg of the above two viruses that had been purified and treated in 200 μl PBS (pH 6.0) for 30 minutes. Group E was immunized with 200 μl PBS (pH7.4) as a control. Four weeks after the first immunization, the same dose was used to boost the immunization, and at the 3rd, 6th, 9th, and 12th week after the first immunization, blood was collected from the tail vein of the immunized mice to determine the serum neutralization titer.
(2)、微量细胞中和试验(2), micro-cell neutralization test
按常规方法使用BHK-21细胞测定FMDVO/YS/CHA/05病毒的TCID50;然后,采用固定病毒稀释抗体方法进行微量细胞中和试验:首先抗体经56℃灭活30min后,用PBS做倍比稀释;然后,用200TCID50的病毒分别与等体积不同稀释度的抗体混合,37℃温箱中抚育1h;然后在上述抗体-病毒混合液分别接种BHK-21细胞,每孔100μL,每滴度设8孔重复,于37℃5%CO2培养箱中培养,每日观察细胞,72h后做最终判断。另外,设病毒阳性血清和正常细胞对照,根据细胞病变效应(CPE)情况按Reed-Muench方法计算抗体中和滴度,即能保护50%BHK-21细胞不出现CPE的血清抗体的稀释浓度。Use BHK-21 cells to measure the TCID 50 of FMDVO/YS/CHA/05 virus according to conventional method; Ratio dilution; then, mix 200 TCID 50 of virus with equal volumes of different dilutions of antibodies, and incubate in a 37°C incubator for 1 hour; then inoculate BHK-21 cells in the above antibody-virus mixture, 100 μL per well, each drop Repeatedly set 8 wells, culture in 5% CO 2 incubator at 37°C, observe the cells every day, and make the final judgment after 72 hours. In addition, the virus-positive serum and normal cells were set as controls, and the antibody neutralization titer was calculated according to the Reed-Muench method according to the cytopathic effect (CPE), that is, the dilution concentration of the serum antibody that can protect 50% of BHK-21 cells from CPE.
2、试验结果2. Test results
试验结果如表1所示,rN17D突变株病毒与亲本毒O/YS/CHA/05在中性(pH7.4)环境中作用后具有相似的免疫原性,但是在酸(pH6.0)环境下处理30min后,rN17D突变株病毒的免疫原性明显优于亲本毒O/YS/CHA/05。The test results are shown in Table 1. The rN17D mutant virus and the parent virus O/YS/CHA/05 have similar immunogenicity after acting in a neutral (pH 7.4) environment, but in an acid (pH 6.0) environment After treatment for 30min, the immunogenicity of the rN17D mutant virus was significantly better than that of the parent virus O/YS/CHA/05.
表1O型口蹄疫病毒耐酸突变毒株灭活抗原在小鼠体内诱导的中和抗体滴度Table 1 O type foot-and-mouth disease virus acid-resistant mutant strain inactivated antigen induced neutralizing antibody titer in mice
<110>中国农业科学院哈尔滨兽医研究所 <110> Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences
<120>O型口蹄疫病毒耐酸突变株、其携带的衣壳蛋白及其编码基因和应用 <120> O-type foot-and-mouth disease virus acid-resistant mutant strain, its capsid protein and its encoding gene and application
<130>DQXL-0886 <130>DQXL-0886
<160>5 <160>5
<170>PatentInversion3.5 <170>PatentInversion3.5
<210>1 <210>1
<211>8262 <211>8262
<212>DNA <212>DNA
<213>artificalsequence <213>artificial sequence
<400>1 <400>1
ttgaaagggggcgttagggtctcatccctaacacgccaacgacagctcctgcgctgcact60 ttgaaagggggcgttagggtctcatccctaacacgccaacgacagctcctgcgctgcact60
ctacactcacgtctgtgtgcgcgcggggaccgttggactaccgttcacccacctacggtt120 ctacactcacgtctgtgtgcgcgcggggaccgttggactaccgttcacccacctacggtt120
ggactcacggcaccgcgcggccattttagctggattgtgtggacgaacgccacttgcgca180 ggactcacggcaccgcgcggccattttagctggattgtgtggacgaacgccacttgcgca180
ctccgcgtgactggttaatactcttaccactttccgcctacctggtcgttggcgctgtcc240 ctccgcgtgactggttaatactcttaccactttccgcctacctggtcgttggcgctgtcc240
tgggcactcccgttgggggccgtccggtgctccacggtttccacgcgtgacaaactacgg300 tgggcactcccgttgggggccgtccggtgctccacggtttccacgcgtgacaaactacgg300
tgatggagccgcttcgtgcgagttgatcgcctggtgtgtttcggctgtcacccgaagtcc360 tgatggagccgcttcgtgcgagttgatcgcctggtgtgtttcggctgtcacccgaagtcc360
acctttcacccccccccccccccccccccacctctcacaagtttttaccgcctttcccag420 acctttcaccccccccccccccccccccccctctcacaagtttttaccgcctttcccag420
cgttaaagggaggtaaccacaagcttgcgtctgtcttgctcgacgataaagggctgtgac480 cgttaaaggggaggtaaccacaagcttgcgtctgtcttgctcgacgataaagggctgtgac480
cgcaagatgataccgcctttcccggcgttaattggatgtaaccataagacgaaccttcac540 cgcaagatgataccgcctttcccggcgttaattggatgtaaccataagacgaaccttcac540
ccggaagtaaaacggcaaattcgcatagttttgcccgttttcaggagaaacgggacgtct600 ccggaagtaaaacggcaaattcgcatagttttgcccgttttcaggagaaacgggacgtct600
gcgcacgaaacgcgccgtcgcttgaggaggacttgtacaaacacggtccattcaggtttc660 gcgcacgaaacgcgccgtcgcttgaggaggacttgtacaaacacggtccattcaggtttc660
cacaaccgacacaaaccgtgcaacttggaactccgcctggtctttccaggtctagagggg720 cacaaccgacacaaaccgtgcaacttggaactccgcctggtctttccaggtctagagggg720
tgacattttgtactgtgcttgactccacgctcggtccactggcgagtgctagtaacagca780 tgacattttgtactgtgcttgactccacgctcggtccactggcgagtgctagtaacagca780
ctgttgcttcgtagcggagcatggtggccgcgggaactcctccttggtaacagggacccg840 ctgttgcttcgtagcggagcatggtggccgcgggaactcctccttggtaacagggacccg840
cggggccgaaagccacgtcctcacggacccaccatgtgtgcaaccccagcacggcaactt900 cggggccgaaagccacgtcctcacggacccaccacatgtgtgcaacccccagcacggcaactt900
tattgtgaaaaccactttaaggtgacactgatactggtactcaaccactggtgacaggct960 tattgtgaaaaccactttaaggtgacactgatactggtactcaaccactggtgacaggct960
aaggatgcccttcaggtaccccgaggtaacacgcgacactcgggatctgagaaggggact1020 aaggatgcccttcaggtaccccgaggtaacacgcgacactcgggatctgagaaggggact1020
ggggcttctttaaaagcgcctggtttaaaaagcttctacgcctgaataggtgaccggagg1080 ggggcttctttaaaagcgcctggtttaaaaagcttctacgcctgaataggtgaccggagg1080
ccggcacctttccttcgaacaactgtctttaaatgagcacaactgactgtttcatcgctt1140 ccggcacctttccttcgaacaactgtctttaaatgagcacaactgactgtttcatcgctt1140
tgttgtacgctttcagagagatcaaaacactgtttttatcacgaacgcgaggaaagatgg1200 tgttgtacgctttcagagagatcaaaacactgtttttatcacgaacgcgaggaaagatgg1200
agttcacacttcacaacggtgagaagaaaacattctactccagacccaacaaccacgaca1260 agttcacacttcacaacggtgagaagaaaacattctactccagacccaacaaccacgaca1260
actgctggttgaacgccatcctccagctgtttaggtacgttgatgaacctttcttcgact1320 actgctggttgaacgccatcctccagctgtttaggtacgttgatgaacctttcttcgact1320
gggtctactgttcacacgagaacctcacactcaatgctataaaacaattggaagaaatta1380 gggtctactgttcacacgagaacctcacactcaatgctataaaacaattggaagaaatta1380
ctggtctcgagctccacgagggtggaccacccgctctcgttatttggaacatcaaacacc1440 ctggtctcgagctccacgagggtggaccacccgctctcgttatttggaacatcaaacacc1440
tgctcaacaccggaataggcaccgcttcgcgacccagcgaagtgtgcatggtagacggga1500 tgctcaacaccggaataggcaccgcttcgcgacccagcgaagtgtgcatggtagacggga1500
cggacatgtgcttggctgacttccatgctggcatcttcctgcaaggacaggaacacgctg1560 cggacatgtgcttggctgacttccatgctggcatcttcctgcaaggacaggaacacgctg1560
tgttcgcctgcgtcacctccaacgggtggtacgcaatcgatgacgaggacttttacccct1620 tgttcgcctgcgtcacctccaacgggtggtacgcaatcgatgacgaggacttttacccct1620
ggacgccggacccgtccgacgttctggtgttcgtcccgtacgaccaagaaccgctcaacg1680 ggacgccggacccgtccgacgttctggtgttcgtcccgtacgaccaagaaccgctcaacg1680
gagaatggaaaacaaaggttcagaaacgactcagaggtgccgggcaatccagcccggcga1740 gagaatggaaaacaaaggttcagaaacgactcagaggtgccgggcaatccagcccggcga1740
ctgggtcgcagaaccagtcaggtaacactggaagcattatcaacaattactacatgcagc1800 ctgggtcgcagaaccagtcaggtaacactggaagcattatcaacaattactacatgcagc1800
agtaccagaactccatggacacacaacttggtgacaacgctattagtggaggctccaacg1860 agtaccagaactccatggacacacaacttggtgacaacgctattagtggaggctccaacg1860
aggggtccacggacaccacctccacccacacaaccaacacccaaaacaacgactggtttt1920 aggggtccacggaccacctccaccccacacaaccaacacccaaaacaacgactggtttt1920
caaagctagccagttctgcttttagcggtcttttcggcgctcttctcgctgacaagaaaa1980 caaagctagccagttctgcttttagcggtcttttcggcgctcttctcgctgacaagaaaa1980
ccgaggagaccactcttcttgaggaccgcatcctcactacccgcaacgggcacacgacct2040 ccgaggagaccactcttcttgaggaccgcatcctcactacccgcaacgggcacacgacct2040
cgacaacccagtcaagcgttggagtcacttacgggtacgcgacagctgaggactttgtga2100 cgacaacccagtcaagcgttggagtcacttacgggtacgcgacagctgaggactttgtga2100
gcggaccgaacacgtctgggcttgagaccagggttgtgcaggcagagcggttcttcaaaa2160 gcggaccgaacacgtctgggcttgagaccagggttgtgcaggcagagcggttcttcaaaa2160
cccacttgttcgactgggtcaccagtgacccgttcggacggtgctacctgctggaactcc2220 cccacttgttcgactgggtcaccagtgacccgttcggacggtgctacctgctggaactcc2220
caactgaccacaaaggtgtctacggtagcctaactgactcttatgcttacatgagaaacg2280 caactgaccacaaaggtgtctacggtagcctaactgactcttatgcttacatgagaaacg2280
gttgggatgtagaggttactgcagtggggaatcagttcaacggaggatgtctgttggtgg2340 gttggggatgtagagggttactgcagtggggaatcagttcaacggggatgtctgttggtgg2340
ctatggtaccagaactttgctctattgacaagagagggctttaccaactcacgctcttcc2400 ctatggtaccagaactttgctctattgacaagagaggggctttaccaactcacgctcttcc2400
cccaccagttcatcaacccccggacgaacatgacggcgcacatcactgtgccttttgttg2460 cccaccagttcatcaacccccggacgaacatgacggcgcacatcactgtgccttttgttg2460
gcgtcaaccgctacgaccagtacaaggtacacagaccttggactctcgtggtcatggttg2520 gcgtcaaccgctacgaccagtacaaggtacacagaccttggactctcgtggtcatggttg2520
tggccccgctgactgtcaacactgaaggtgccccacagatcaaggtttacgccaacatcg2580 tggccccgctgactgtcaacactgaaggtgccccacagatcaaggtttacgccaacatcg2580
cccctactaacgtgcacgtcgcgggtgagctcccttctaaggaagggatcttccccgtgg2640 cccctactaacgtgcacgtcgcgggtgagctcccttctaaggaagggatcttccccgtgg2640
catgtagcgacggttacggtggcctggtgaccactgacccaaagacggctgaccccgcct2700 catgtagcgacggttacggtggcctggtgaccactgacccaaagacggctgaccccgcct2700
acgggaaagtgttcaatccacctcgcaacatgttgccggggcggttcaccaacttccttg2760 acgggaaagtgttcaatccacctcgcaacatgttgccggggcggttcaccaacttccttg2760
atgtggctgaggcgtgtcctacgtttctgcattttgagggtgacgtaccgtacgtgacca2820 atgtggctgaggcgtgtcctacgtttctgcattttgagggtgacgtaccgtacgtgacca2820
caaagacggactcagacagggtgctcgcccagtttgacttgtctctggcagcaaaacaca2880 caaagacggactcagacagggtgctcgcccagtttgacttgtctctggcagcaaaacaca2880
tgtcaaacaccttcctggcaggtctcgcccagtattacacacagtacagcggcaccatca2940 tgtcaaacaccttcctggcaggtctcgcccagtattacacacagtacagcggcaccatca2940
acctgcacttcatgttcactggacccactgacgcgaaagcgcgttacatgattgcatacg3000 acctgcacttcatgttcactggacccactgacgcgaaagcgcgttacatgattgcatacg3000
ccccccctggcatggagccgcccaaaacacccgaggcggccgctcactgcattcatgcgg3060 ccccccctggcatggagccgcccaaaacacccgaggcggccgctcactgcattcatgcgg3060
agtgggacacagggttgaactcaaaattcacattttcaatcccttacctttcggcggctg3120 agtgggacacagggttgaactcaaaattcacattttcaatcccttacctttcggcggctg3120
actacgcgtacaccgcgtctgactccgcggagaccacaaacgtgcagggatgggtttgcc3180 actacgcgtacaccgcgtctgactccgcggagaccacaaacgtgcagggatgggtttgcc3180
tgtttcaaatcacacacgggaaggctgacggcgacgcgctggtcgttctagctagtgccg3240 tgtttcaaatcacacacgggaaggctgacggcgacgcgctggtcgttctagtgccg3240
gtaaggactttgaactgcgtttgccagttgatgctcgcacgcagaccacctctacaggtg3300 gtaaggactttgaactgcgtttgccagttgatgctcgcacgcagaccacctctacaggtg3300
agtcggctgaccccgtaactgccaccgttgaggactacggtggtgagacacaggtccaga3360 agtcggctgaccccgtaactgccaccgttgaggactacggtggtgagacacaggtccaga3360
gacgccagcacacggatgtctcgttcatactagacagatttgtgaaagtaacaccaaaag3420 gacgccagcacacggatgtctcgttcatactagacagatttgtgaaagtaacaccaaaag3420
accaaatcaatgtgttggacctgatgcaaacccctgcacacactttggtaggcgcgctcc3480 accaaatcaatgtgttggacctgatgcaaacccctgcacacactttggtaggcgcgctcc3480
tccgtactgccacttactactttgcagatctagaagtggcagtgaaacacgaggggaacc3540 tccgtactgccacttactactttgcagatctagaagtggcagtgaaacacgagggggaacc3540
ttacctgggtcccgaatggggcgcccgaggcagcattggacaacaccaccaatccaacgg3600 ttacctgggtcccgaatggggcgcccgaggcagcattggacaacaccaccaatccaacgg3600
cctaccacaaggcgccgctcacccggcttgcactgccttacacggcaccacaccgtgtct3660 cctaccacaaggcgccgctcacccggcttgcactgccttacacggcaccacaccgtgtct3660
tggctactgtttacaacgggaactgtaagtacggcaagagccccgtggccaacgcgagag3720 tggctactgtttacaacgggaactgtaagtacggcaagagccccgtggccaacgcgagag3720
gtgacctgcaagtgttgaccccgaaggcggcaagaacgctgcctacctccttcaattacg3780 gtgacctgcaagtgttgaccccgaaggcggcaagaacgctgcctacctccttcaattacg3780
gcgccatcaaagccactcgggtgactgaactgctttaccgcatgaagagggccgaaacgt3840 gcgccatcaaagccactcgggtgactgaactgctttaccgcatgaagagggccgaaacgt3840
actgcccccggcctcttttggctattcacccgagcgaaactagacacaaacaaaagattg3900 actgcccccggcctcttttggctattcacccgagcgaaactagacacaaacaaaagattg3900
tggcgcctgtgaagcagcttttgaattttgatctgctcaagctggcaggagacgttgagt3960 tggcgcctgtgaagcagcttttgaattttgatctgctcaagctggcaggagacgttgagt3960
ccaaccctggacccttcttcttcgctgacgtcaggtcaaatttttccaagctggttgaga4020 ccaaccctggacccttcttcttcgctgacgtcaggtcaaatttttccaagctggttgaga4020
ccatcaaccaaatgcaggaggacatgtcaacaaaacacggacccgactttaaccggttgg4080 ccatcaaccaaatgcaggaggacatgtcaacaaaacacggacccgactttaaccggttgg4080
tgtctgcgtttgaggaactggccgctggagtgagggctatcaggactggtctcgacgagg4140 tgtctgcgtttgaggaactggccgctggagtgagggctatcaggactggtctcgacgagg4140
ccaaaccctggtacaagctcatcaagctactgagccgcctgtcatgcatggccgctgtag4200 ccaaaccctggtacaagctcatcaagctactgagccgcctgtcatgcatggccgctgtag4200
cagcacggtcaaaggacccagtccttgtggccatcatgctggctgacaccggtctcgaga4260 cagcacggtcaaaggacccagtccttgtggccatcatgctggctgacaccggtctcgaga4260
tcctggacagtacctttgtcgtgaagaagatctccgactcgctctccagtctctttcacg4320 tcctggacagtacctttgtcgtgaagaagatctccgactcgctctccagtctctttcacg4320
tgccggcccccgtcttcagtttcggagccccgattttgttggccgggttggtcaaggtcg4380 tgccggccccccgtcttcagtttcggagccccgattttgttggccgggttggtcaaggtcg4380
cctcgagtttcttccggtccacgcccgaagaccttgagagagcggagaaacagctcaaag4440 cctcgagtttcttccggtccacgcccgaagaccttgagagagcggagaaacagctcaaag4440
cacgtgacatcaatgacatattcgccattctcaagaacggcgagtggctggtcaagctga4500 cacgtgacatcaatgacatattcgccattctcaagaacggcgagtggctggtcaagctga4500
tccttgccatccgcgactggatcaaggcatggatcgcctcagaggaaaagtttgtcacca4560 tccttgccatccgcgactggatcaaggcatggatcgcctcagaggaaaagtttgtcacca4560
tgacagacctggtgcccggtatccttgaaaagcagcgggatctcaacgacccaagcaagt4620 tgacagacctggtgcccggtatccttgaaaagcagcgggatctcaacgacccaagcaagt4620
acgaggaggccaaggagtggctcgacaacgcgcgccaagcgtgtttgaagagcgggaaca4680 acgaggaggccaaggagtggctcgacaacgcgcgccaagcgtgtttgaagagcgggaaca4680
tccacatcgcaaacctttgcaaagtggctgccccagcacccagcaggtcgaggcccgaac4740 tccacatcgcaaacctttgcaaagtggctgccccagcacccagcaggtcgaggcccgaac4740
ccgtggtcgtttgccttcgtggcaaatcaggccagggcaagagtttccttgcgaacgtgc4800 ccgtggtcgtttgccttcgtggcaaatcaggccagggcaagagtttccttgcgaacgtgc4800
ttgcacaagcaatttcaacccacttcactggcagaaccgattcagtttggtactgcccac4860 ttgcacaagcaatttcaacccacttcactggcagaaccgattcagtttggtactgcccac4860
ctgaccctgaccacttcgacggttacaaccagcagaccgttgtagtaatggatgacctgg4920 ctgaccctgaccacttcgacggttacaaccagcagaccgttgtagtaatggatgacctgg4920
gccagaaccccgacgggaaggactttaagtacttcgcccaaatggtttcaactacggggt4980 gccagaaccccgacgggaaggactttaagtacttcgcccaaatggtttcaactacggggt4980
ttatcccgcccatggcttcacttgaggacaaaggcaaacctttcaacagcaaggtcatca5040 ttatcccgcccatggcttcacttgaggacaaaggcaaacctttcaacagcaaggtcatca5040
tcgccaccaccaacctgtactcgggcttcaccccgagaactatggtgtgccctgatgcgc5100 tcgccaccaccaacctgtactcgggcttcaccccgagaactatggtgtgccctgatgcgc5100
tgaaccggaggttccactttgacatcgacgtgagcgctaaggacggatacaaaattaaca5160 tgaaccggaggttccactttgacatcgacgtgagcgctaaggacggatacaaaattaaca5160
acaaattggacatcatcaaagctcttgaagacacccacaccaacccagtggcaatgtttc5220 acaaattggacatcatcaaagctcttgaagacaccaccaccaacccagtggcaatgtttc5220
aatacgactgtgcccttctcaacggcatggccgttgaaatgaagagaatgcaacaagaca5280 aatacgactgtgcccttctcaacggcatggccgttgaaatgaagagaatgcaacaagaca5280
tgttcaagcctcaaccgcccctccagaacgtctaccagcttgttcaggaggtgattgacc5340 tgttcaagcctcaaccgcccctccagaacgtctaccagcttgttcaggaggtgattgacc5340
gggtcgagctccacgaaaaggtgtcgaaccacccgatcttcaagcagatctcaattcctt5400 gggtcgagctccacgaaaaggtgtcgaaccacccgatcttcaagcagatctcaattcctt5400
cccaaaaggctgtgctgtactttctcattgagaagggccagcacgaagcagcaattgaat5460 cccaaaaggctgtgctgtactttctcattgagaagggccagcacgaagcagcaattgaat5460
tctttgaggggatggtgtgtgactccattaaggaggagctccggcccctaatccaacaga5520 tctttgaggggatggtgtgtgactccattaaggaggagctccggcccctaatccaacaga5520
cctcatttgtgaagcgcgcttttaagcgcctgaaggaaaactttgagattgtcgctctgt5580 cctcatttgtgaagcgcgcttttaagcgcctgaaggaaaactttgagattgtcgctctgt5580
gtttgacccttttggcgaacatagtgatcatgatccgcgggactcgcaagagacagcaga5640 gtttgacccttttggcgaacatagtgatcatgatccgcgggactcgcaagagacagcaga5640
tagtggacgatgtagtggacgagtacactgagaaggcaaacatcgccacggatgacaaga5700 tagtggacgatgtagtggacgagtacactgagaaggcaaacatcgccacggatgacaaga5700
ctcttgacgaggcggaaaagaaccctctggaggccagtggtgccaccactgttggtttca5760 ctcttgacgaggcggaaaagaaccctctggaggccagtggtgccaccactgttggtttca5760
gagagaaaactctcccgggacacaaggcgggtgatgacgtgagctctgagcccgccgaac5820 gagagaaaactctcccgggacacaaggcgggtgatgacgtgagctctgagcccgccgaac5820
ccgtggaagggcaaccacaggctgaaggaccctacaccggtccactcgagcgtcaaaaac5880 ccgtggaagggcaaccacaggctgaaggaccttacaccggtccactcgagcgtcaaaaac5880
ctctgaaagtgagagccaggctcccacagcaggaggggccctacgctggcccgatggaga5940 ctctgaaagtgagagccaggctcccacagcaggaggggccctacgctggcccgatggaga5940
gacagaaaccgctgaaagtgaaagtgaaagccccggtcgttaaggaaggaccttacgaag6000 gacagaaaccgctgaaagtgaaagtgaaagccccggtcgttaaggaaggaccttacgaag6000
gaccggtgaagaaacctgtcgctctgaaagtgaaagcaaagaacttgattgtcactgaga6060 gaccggtgaagaaacctgtcgctctgaaagtgaaagcaaagaacttgattgtcactgaga6060
gtggtgctcccccgactgacttgcaaaagatggtcatgggcaacaccaagcctgttgagc6120 gtggtgctcccccgactgacttgcaaaagatggtcatgggcaacaccaagcctgttgagc6120
tcatcctcgacgggaagacggtggccatctgctgcgccaccggagtgtttggtaccgcct6180 tcatcctcgacgggaagacggtggccatctgctgcgccaccggagtgtttggtaccgcct6180
accttgttcctcgccatcttttcgcagagaagtacgacaagatcatgttggacggcagag6240 accttgttcctcgccatcttttcgcagagaagtacgacaagatcatgttggacggcagag6240
ccatgacagacagtgactacagagtgtttgagtttgagattaaagtgaaagggcaggaca6300 ccatgacagacagtgactacagagtgtttgagtttgagattaaagtgaaagggcaggaca6300
tgctctcggacgccgcgctcatggtgctccaccgtgggaatcgcgtgcgggacatcacga6360 tgctctcggacgccgcgctcatggtgctccaccgtgggaatcgcgtgcgggacatcacga6360
agcacttccgtgatgtggcaagaatgaagaaaggcacccccgtcgtcggcgtggtcaaca6420 agcacttccgtgatgtggcaagaatgaagaaaggcacccccgtcgtcggcgtggtcaaca6420
acgctgatgttgggagactgatcttctctggtgaggcccttacctacaaggacattgtag6480 acgctgatgttgggagactgatcttctctggtgaggcccttacctacaaggacattgtag6480
tgtgcatggacggagacaccatgcccggtctcttcgcctacaaagccgccaccaaggcgg6540 tgtgcatggacggagacaccatgcccggtctcttcgcctacaaagccgccaccaaggcgg6540
gttactgtggaggagccgttcttgcaaaggacggagccgagactttcatcgtcggcactc6600 gttactgtggaggagccgttcttgcaaaggacggagccgagactttcatcgtcggcactc6600
actccgcaggcggcaacggagttggctactgctcgtgcgtttccaggtctatgctgctaa6660 actccgcaggcggcaacggagttggctactgctcgtgcgtttccaggtctatgctgctaa6660
aaatgaaggcacacatcgatcccgaaccacaccacgagggattgatagttgacaccagag6720 aaatgaaggcacacatcgatcccgaaccacaccacgagggattgatagttgacaccagag6720
atgttgaggagcgcgtacatgtcatgcgcaaaaccaagctcgcacccaccgtggcatacg6780 atgttgaggagcgcgtacatgtcatgcgcaaaaccaagctcgcacccaccgtggcatacg6780
gtgtattcaaccccgaatttgggcctgccgccttgtccaaccaggacccgcgcctgaatg6840 gtgtattcaaccccgaatttggcctgccgccttgtccaaccaggacccgcgcctgaatg6840
aaggggttgtcctcgatgaagttatcttctctaaacacaaggaaaacacaaagatgtctg6900 aaggggttgtcctcgatgaagttatcttctctaaacacaaggaaaacacaaagatgtctg6900
aggaggacaaagcgctgttccgccgctgtgctgctgactacgcgtcccgcctgcacagcg6960 aggaggacaaagcgctgttccgccgctgtgctgctgactacgcgtcccgcctgcacagcg6960
tgctgggtacggcaaacgccccactgagcatttacgaggcaattaagggtgtcgacggac7020 tgctgggtacggcaaacgccccactgagcatttacgaggcaattaagggtgtcgacggac7020
ttgacgccatggaaccagacaccgcgcctggcctcccctgggccctccaggggaaacgcc7080 ttgacgccatggaaccagacaccgcgcctggcctcccctgggccctccaggggaaacgcc7080
gtggtgcgctcattgacttcgagaacggcactgtcggacccgaggttgaggctgctttga7140 gtggtgcgctcattgacttcgagaacggcactgtcggacccgaggttgaggctgctttga7140
agctcatggagaaaagagagtacaagtttgtatgccagacctttctgaaggacgagatcc7200 agctcatggagaaaagagagtacaagtttgtatgccagacctttctgaaggacgagatcc7200
gtccgatggaaaaggtacgtgccggtaagactcgcattgtcgacgtcctgcctgttgaac7260 gtccgatggaaaaggtacgtgccggtaagactcgcattgtcgacgtcctgcctgttgaac7260
acattctttacaccaggatgatgattggtagattttgcgctcaaatgcactcaaacaacg7320 acattctttacaccaggatgatgattggtagattttgcgctcaaatgcactcaaacaacg7320
gaccgcaaattggttcggcggttggttgtaatcctgatgttgattggcaaagatttggca7380 gaccgcaaattggttcggcggttggttgtaatcctgatgttgattggcaaagatttggca7380
cgcactttgctcagtacaaaaacgtgtgggatgtggactattcggcctttgacgccaacc7440 cgcactttgctcagtacaaaaacgtgtgggatgtggactattcggcctttgacgccaacc7440
actgtagtgatgcaatgaacatcatgtttgaggaggtgttcaacacggatttcggtttcc7500 actgtagtgatgcaatgaacatcatgtttgaggaggtgttcaacacggatttcggtttcc7500
acccaaacgctgagtggatcttgaaaactctcgtggacactgaacacgcctatgagaaca7560 acccaaacgctgagtggatcttgaaaactctcgtggacactgaacacgcctatgagaaca7560
aacgcatcactgttgaaggcgggatgccgtctggttgttccgcgacaagcatcatcaaca7620 aacgcatcactgttgaaggcgggatgccgtctggttgttccgcgacaagcatcatcaaca7620
caattttgaacaacatctacgtgctctacgccttgcgcagacactatgagggagttgagc7680 caattttgaacaacatctacgtgctctacgccttgcgcagacactatgagggagttgagc7680
tggactcttacaccatgatctcctacggagacgacatcgtggttgcaagtgatcacgatc7740 tggactcttacaccatgatctcctacggagacgacatcgtggttgcaagtgatcacgatc7740
tggactttgaggccctcaagcctcacttcaaatcccttggtcaaaccatcactccagctg7800 tggactttgaggccctcaagcctcacttcaaatcccttggtcaaaccatcactccagctg7800
acaaaagtgacaaaggttttgttcttggtcactccattaccgatgtcactttcctcaaaa7860 acaaaagtgacaaaggttttgttcttggtcactccattaccgatgtcactttcctcaaaa7860
gacacttccacatggactatggaactgggttttacaaacctgtgatggcttcgaagaccc7920 gacacttccacatggactatggaactgggttttacaaacctgtgatggcttcgaagaccc7920
tcgaggctatcctctcctttgcacgtcgtgggaccatacaggagaagttgatctccgtgg7980 tcgaggctatcctctcctttgcacgtcgtgggaccatacaggagaagttgatctccgtgg7980
caggactcgccgtccactctggacctgatgagtaccggcgtctctttgagcctttccagg8040 caggactcgccgtccactctggacctgatgagtaccggcgtctctttgagcctttccagg8040
gcctcttcgagattccaagctacagatcactttacctgcgttgggtgaacgccgtgtgcg8100 gcctcttcgagattccaagctacagatcactttacctgcgttgggtgaacgccgtgtgcg8100
gtgacgcataatccctcagatgtcacaactggcagaaagacgttgaggcgagcgacgccg8160 gtgacgcataatccctcagatgtcacaactggcagaaagacgttgaggcgagcgacgccg8160
taggagtgaaaagtccgaaagggcttttcccgcttcctatttcaaaaaaaaaaaaaaaaa8220 taggagtgaaaagtccgaaagggcttttcccgcttcctatttcaaaaaaaaaaaaaaaaaa8220
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa8262 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa8262
<210>2 <210>2
<211>2208 <211>2208
<212>DNA <212>DNA
<213>artificalsequence <213>artificial sequence
<400>2 <400>2
ggtgccgggcaatccagcccggcgactgggtcgcagaaccagtcaggtaacactggaagc60 ggtgccgggcaatccagcccggcgactgggtcgcagaaccagtcaggtaacactggaagc60
attatcaacaattactacatgcagcagtaccagaactccatggacacacaacttggtgac120 attatcaacaattactacatgcagcagtaccagaactccatggacacacaacttggtgac120
aacgctattagtggaggctccaacgaggggtccacggacaccacctccacccacacaacc180 aacgctattagtggaggctccaacgaggggtccacggaccaccacctccaccacacaacc180
aacacccaaaacaacgactggttttcaaagctagccaattctgcttttagcggtcttttc240 aacacccaaaacaacgactggttttcaaagctagccaattctgcttttagcggtcttttc240
ggcgctcttctcgctgacaagaaaaccgaggagaccactcttcttgaggaccgcatcctc300 ggcgctcttctcgctgacaagaaaaccgaggagaccactcttcttgaggaccgcatcctc300
actacccgcaacgggcacacgacctcgacaacccagtcaagcgttggagtcacttacggg360 actacccgcaacgggcacacgacctcgacaacccagtcaagcgttggagtcacttacggg360
tacgcgacagctgaggactttgtgagcggaccgaacacgtctgggcttgagaccagggtt420 tacgcgacagctgaggactttgtgagcggaccgaacacgtctgggcttgagaccagggtt420
gtgcaggcagagcggttcttcaaaacccacttgttcgactgggtcaccagtgacccgttc480 gtgcaggcagagcggttcttcaaaacccacttgttcgactgggtcaccagtgacccgttc480
ggacggtgctacctgctggaactcccaactgcccacaaaggtgtctacggtagcctaact540 ggacggtgctacctgctggaactcccaactgcccacaaaggtgtctacggtagcctaact540
gactcttatgcttacatgagaaacggttgggatgtagaggttactgcagtggggaatcag600 gactcttatgcttacatgagaaacggttgggatgtagaggttactgcagtggggaatcag600
ttcaacggaggatgtctgttggtggctatggtaccagaactttgctctattgacaagaga660 ttcaacggaggatgtctgttggtggctatggtaccagaactttgctctattgacaagaga660
gggctttaccaactcacgctcttcccccaccagttcatcaacccccggacgaacatgacg720 gggctttaccaactcacgctcttcccccaccagttcatcaacccccggacgaacatgacg720
gcgcacatcactgtgccttttgttggcgtcaaccgctacgaccagtacaaggtacacaga780 gcgcacatcactgtgccttttgttggcgtcaaccgctacgaccagtacaaggtacacaga780
ccttggactctcgtggtcatggttgtggccccgctgactgtcaacactgaaggtgcccca840 ccttggactctcgtggtcatggttgtggccccgctgactgtcaacactgaaggtgcccca840
cagatcaaggtttacgccaacatcgcccctactaacgtgcacgtcgcgggtgagctccct900 cagatcaaggtttacgccaacatcgcccctactaacgtgcacgtcgcgggtgagctccct900
tctaaggaagggatcttccccgtggcatgtagcgacggttacggtggcctggtgaccact960 tctaaggaagggatcttccccgtggcatgtagcgacggttacggtggcctggtgaccact960
gacccaaagacggctgaccccgcctacgggaaagtgttcaatccacctcgcaacatgttg1020 gacccaaagacggctgaccccgcctacgggaaagtgttcaatccacctcgcaacatgttg1020
ccggggcggttcaccaacttccttgatgtggctgaggcgtgtcctacgtttctgcatttt1080 ccggggcggttcaccaacttccttgatgtggctgaggcgtgtcctacgtttctgcatttt1080
gagggtgacgtaccgtacgtgaccacaaagacggactcagacagggtgctcgcccagttt1140 gagggtgacgtaccgtacgtgaccacaaagacggactcagacagggtgctcgcccagttt1140
gacttgtctctggcagcaaaacacatgtcaaacaccttcctggcaggtctcgcccagtat1200 gacttgtctctggcagcaaaacacatgtcaaacaccttcctggcaggtctcgcccagtat1200
tacacacagtacagcggcaccatcaacctgcacttcatgttcactggacccactgacgcg1260 tacacacagtacagcggcaccatcaacctgcacttcatgttcactggacccactgacgcg1260
aaagcgcgttacatgattgcatacgccccccctggcatggagccgcccaaaacacccgag1320 aaagcgcgttacatgattgcatacgccccccctggcatggagccgcccaaaacacccgag1320
gcggccgctcactgcattcatgcggagtgggacacagggttgaactcaaaattcacattt1380 gcggccgctcactgcattcatgcggagtgggacacagggttgaactcaaaattcacattt1380
tcaatcccttacctttcggcggctgactacgcgtacaccgcgtctgactccgcggagacc1440 tcaatcccttacctttcggcggctgactacgcgtacaccgcgtctgactccgcggagacc1440
acaaacgtgcagggatgggtttgcctgtttcaaatcacacacgggaaggctgacggcgac1500 acaaacgtgcagggatgggtttgcctgtttcaaatcacacacgggaaggctgacggcgac1500
gcgctggtcgttctagctagtgccggtaaggactttgaactgcgtttgccagttgatgct1560 gcgctggtcgttctagtgccggtaaggactttgaactgcgtttgccagttgatgct1560
cgcacgcagaccacctctacaggtgagtcggctgaccccgtaactgccaccgttgaggac1620 cgcacgcagaccacctctacaggtgagtcggctgaccccgtaactgccaccgttgaggac1620
tacggtggtgagacacaggtccagagacgccagcacacggatgtctcgttcatactagac1680 tacggtggtgagacacaggtccagagacgccagcacacggatgtctcgttcatactagac1680
agatttgtgaaagtaacaccaaaagaccaaatcaatgtgttggacctgatgcaaacccct1740 agatttgtgaaagtaacaccaaaagaccaaatcaatgtgttggacctgatgcaaacccct1740
gcacacactttggtaggcgcgctcctccgtactgccacttactactttgcagatctagaa1800 gcacacactttggtaggcgcgctcctccgtactgccacttactactttgcagatctagaa1800
gtggcagtgaaacacgaggggaaccttacctgggtcccgaatggggcgcccgaggcagca1860 gtggcagtgaaacacgagggggaaccttacctgggtcccgaatggggcgcccgaggcagca1860
ttggacaacaccaccaatccaacggcctaccacaaggcgccgctcacccggcttgcactg1920 ttggacaacacccaccaatccaacggcctaccacaaggcgccgctcacccggcttgcactg1920
ccttacacggcaccacaccgtgtcttggctactgtttacaacgggaactgtaagtacggc1980 ccttacacggcaccacaccgtgtcttggctactgtttacaacgggaactgtaagtacggc1980
aagagccccgtggccaacgcgagaggtgacctgcaagtgttgaccccgaaggcggcaaga2040 aagagccccgtggccaacgcgagaggtgacctgcaagtgttgaccccgaaggcggcaaga2040
acgctgcctacctccttcaattacggcgccatcaaagccactcgggtgactgaactgctt2100 acgctgcctacctccttcaattacggcgccatcaaagccactcgggtgactgaactgctt2100
taccgcatgaagagggccgaaacgtactgcccccggcctcttttggctattcacccgagc2160 taccgcatgaagagggccgaaacgtactgcccccggcctcttttggctattcacccgagc2160
gaaactagacacaaacaaaagattgtggcgcctgtgaagcagcttttg2208 gaaactagacacaaacaaaagattgtggcgcctgtgaagcagcttttg2208
<210>3 <210>3
<211>736 <211>736
<212>PRT <212>PRT
<213>artificalsequence <213>artificial sequence
<400>3 <400>3
GlyAlaGlyGlnSerSerProAlaThrGlySerGlnAsnGlnSerGly GlyAlaGlyGlnSerSerProAlaThrGlySerGlnAsnGlnSerGly
151015 151015
AsnThrGlySerIleIleAsnAsnTyrTyrMetGlnGlnTyrGlnAsn AsnThrGlySerIleIleAsnAsnTyrTyrMetGlnGlnTyrGlnAsn
202530 202530
SerMetAspThrGlnLeuGlyAspAsnAlaIleSerGlyGlySerAsn SerMetAspThrGlnLeuGlyAspAsnAlaIleSerGlyGlySerAsn
354045 354045
GluGlySerThrAspThrThrSerThrHisThrThrAsnThrGlnAsn GluGlySerThrAspThrThrSerThrHisThrThrAsnThrGlnAsn
505560 505560
AsnAspTrpPheSerLysLeuAlaAsnSerAlaPheSerGlyLeuPhe AsnAspTrpPheSerLysLeuAlaAsnSerAlaPheSerGlyLeuPhe
65707580 65707580
GlyAlaLeuLeuAlaAspLysLysThrGluGluThrThrLeuLeuGlu GlyAlaLeuLeuAlaAspLysLysThrGluGluThrThrLeuLeuGlu
859095 859095
AspArgIleLeuThrThrArgAsnGlyHisThrThrSerThrThrGln AspArgIleLeuThrThrThrArgAsnGlyHisThrThrSerThrThrGln
100105110 100105110
SerSerValGlyValThrTyrGlyTyrAlaThrAlaGluAspPheVal SerSerValGlyValThrTyrGlyTyrAlaThrAlaGluAspPheVal
115120125 115120125
SerGlyProAsnThrSerGlyLeuGluThrArgValValGlnAlaGlu SerGlyProAsnThrSerGlyLeuGluThrArgValValGlnAlaGlu
130135140 130135140
ArgPhePheLysThrHisLeuPheAspTrpValThrSerAspProPhe ArgPhePheLysThrHisLeuPheAspTrpValThrSerAspProPhe
145150155160 145150155160
GlyArgCysTyrLeuLeuGluLeuProThrAlaHisLysGlyValTyr GlyArgCysTyrLeuLeuGluLeuProThrAlaHisLysGlyValTyr
165170175 165170175
GlySerLeuThrAspSerTyrAlaTyrMetArgAsnGlyTrpAspVal GlySerLeuThrAspSerTyrAlaTyrMetArgAsnGlyTrpAspVal
180185190 180185190
GluValThrAlaValGlyAsnGlnPheAsnGlyGlyCysLeuLeuVal GluValThrAlaValGlyAsnGlnPheAsnGlyGlyCysLeuLeuVal
195200205 195200205
AlaMetValProGluLeuCysSerIleAspLysArgGlyLeuTyrGln AlaMetValProGluLeuCysSerIleAspLysArgGlyLeuTyrGln
210215220 210215220
LeuThrLeuPheProHisGlnPheIleAsnProArgThrAsnMetThr LeuThrLeuPheProHisGlnPheIleAsnProArgThrAsnMetThr
225230235240 225230235240
AlaHisIleThrValProPheValGlyValAsnArgTyrAspGlnTyr AlaHisIleThrValProPheValGlyValAsnArgTyrAspGlnTyr
245250255 245250255
LysValHisArgProTrpThrLeuValValMetValValAlaProLeu LysValHisArgProTrpThrLeuValValMetValValAlaProLeu
260265270 260265270
ThrValAsnThrGluGlyAlaProGlnIleLysValTyrAlaAsnIle ThrValAsnThrGluGlyAlaProGlnIleLysValTyrAlaAsnIle
275280285 275280285
AlaProThrAsnValHisValAlaGlyGluLeuProSerLysGluGly AlaProThrAsnValHisValAlaGlyGluLeuProSerLysGluGly
290295300 290295300
IlePheProValAlaCysSerAspGlyTyrGlyGlyLeuValThrThr IlePheProValAlaCysSerAspGlyTyrGlyGlyLeuValThrThr
305310315320 305310315320
AspProLysThrAlaAspProAlaTyrGlyLysValPheAsnProPro AspProLysThrAlaAspProAlaTyrGlyLysValPheAsnProPro
325330335 325330335
ArgAsnMetLeuProGlyArgPheThrAsnPheLeuAspValAlaGlu ArgAsnMetLeuProGlyArgPheThrAsnPheLeuAspValAlaGlu
340345350 340345350
AlaCysProThrPheLeuHisPheGluGlyAspValProTyrValThr AlaCysProThrPheLeuHisPheGluGlyAspValProTyrValThr
355360365 355360365
ThrLysThrAspSerAspArgValLeuAlaGlnPheAspLeuSerLeu ThrLysThrAspSerAspArgValLeuAlaGlnPheAspLeuSerLeu
370375380 370375380
AlaAlaLysHisMetSerAsnThrPheLeuAlaGlyLeuAlaGlnTyr AlaAlaLysHisMetSerAsnThrPheLeuAlaGlyLeuAlaGlnTyr
385390395400 385390395400
TyrThrGlnTyrSerGlyThrIleAsnLeuHisPheMetPheThrGly TyrThrGlnTyrSerGlyThrIleAsnLeuHisPheMetPheThrGly
405410415 405410415
ProThrAspAlaLysAlaArgTyrMetIleAlaTyrAlaProProGly ProThrAspAlaLysAlaArgTyrMetIleAlaTyrAlaProProGly
420425430 420425430
MetGluProProLysThrProGluAlaAlaAlaHisCysIleHisAla MetGluProProLysThrProGluAlaAlaAlaHisCysIleHisAla
435440445 435440445
GluTrpAspThrGlyLeuAsnSerLysPheThrPheSerIleProTyr GluTrpAspThrGlyLeuAsnSerLysPheThrPheSerIleProTyr
450455460 450455460
LeuSerAlaAlaAspTyrAlaTyrThrAlaSerAspSerAlaGluThr LeuSerAlaAlaAspTyrAlaTyrThrAlaSerAspSerAlaGluThr
465470475480 465470475480
ThrAsnValGlnGlyTrpValCysLeuPheGlnIleThrHisGlyLys ThrAsnValGlnGlyTrpValCysLeuPheGlnIleThrHisGlyLys
485490495 485490495
AlaAspGlyAspAlaLeuValValLeuAlaSerAlaGlyLysAspPhe AlaAspGlyAspAlaLeuValValLeuAlaSerAlaGlyLysAspPhe
500505510 500505510
GluLeuArgLeuProValAspAlaArgThrGlnThrThrSerThrGly GluLeuArgLeuProValAspAlaArgThrGlnThrThrSerThrGly
515520525 515520525
GluSerAlaAspProValThrAlaThrValGluAspTyrGlyGlyGlu GluSerAlaAspProValThrAlaThrValGluAspTyrGlyGlyGlu
530535540 530535540
ThrGlnValGlnArgArgGlnHisThrAspValSerPheIleLeuAsp ThrGlnValGlnArgArgGlnHisThrAspValSerPheIleLeuAsp
545550555560 545550555560
ArgPheValLysValThrProLysAspGlnIleAsnValLeuAspLeu ArgPheValLysValThrProLysAspGlnIleAsnValLeuAspLeu
565570575 565570575
MetGlnThrProAlaHisThrLeuValGlyAlaLeuLeuArgThrAla MetGlnThrProAlaHisThrLeuValGlyAlaLeuLeuArgThrAla
580585590 580585590
ThrTyrTyrPheAlaAspLeuGluValAlaValLysHisGluGlyAsn ThrTyrTyrPheAlaAspLeuGluValAlaValLysHisGluGlyAsn
595600605 595600605
LeuThrTrpValProAsnGlyAlaProGluAlaAlaLeuAspAsnThr LeuThrTrpValProAsnGlyAlaProGluAlaAlaLeuAspAsnThr
610615620 610615620
ThrAsnProThrAlaTyrHisLysAlaProLeuThrArgLeuAlaLeu ThrAsnProThrAlaTyrHisLysAlaProLeuThrArgLeuAlaLeu
625630635640 625630635640
ProTyrThrAlaProHisArgValLeuAlaThrValTyrAsnGlyAsn ProTyrThrAlaProHisArgValLeuAlaThrValTyrAsnGlyAsn
645650655 645650655
CysLysTyrGlyLysSerProValAlaAsnAlaArgGlyAspLeuGln CysLysTyrGlyLysSerProValAlaAsnAlaArgGlyAspLeuGln
660665670 660665670
ValLeuThrProLysAlaAlaArgThrLeuProThrSerPheAsnTyr ValLeuThrProLysAlaAlaArgThrLeuProThrSerPheAsnTyr
675680685 675680685
GlyAlaIleLysAlaThrArgValThrGluLeuLeuTyrArgMetLys GlyAlaIleLysAlaThrArgValThrGluLeuLeuTyrArgMetLys
690695700 690695700
ArgAlaGluThrTyrCysProArgProLeuLeuAlaIleHisProSer ArgAlaGluThrTyrCysProArgProLeuLeuAlaIleHisProSer
705710715720 705710715720
GluThrArgHisLysGlnLysIleValAlaProValLysGlnLeuLeu GluThrArgHisLysGlnLysIleValAlaProValLysGlnLeuLeu
725730735 725730735
<210>4 <210>4
<211>639 <211>639
<212>DNA <212>DNA
<213>FootandMouthDiseaseVirus <213> Foot and Mouth Disease Virus
<400>4 <400>4
accacctctacaggtgagtcggctgaccccgtaactgccaccgttgaggactacggtggt60 accacctctacaggtgagtcggctgaccccgtaactgccaccgttgaggactacggtggt60
gagacacaggtccagagacgccagcacacggatgtctcgttcatactagacagatttgtg120 gagacacaggtccagagacgccagcacacggatgtctcgttcatactagacagatttgtg120
aaagtaacaccaaaagaccaaatcaatgtgttggacctgatgcaaacccctgcacacact180 aaagtaacaccaaaagaccaaatcaatgtgttggacctgatgcaaacccctgcacacact180
ttggtaggcgcgctcctccgtactgccacttactactttgcagatctagaagtggcagtg240 ttggtaggcgcgctcctccgtactgccacttactactttgcagatctagaagtggcagtg240
aaacacgaggggaaccttacctgggtcccgaatggggcgcccgaggcagcattggacaac300 aaacacgagggggaaccttacctgggtcccgaatggggcgcccgaggcagcattggacaac300
accaccaatccaacggcctaccacaaggcgccgctcacccggcttgcactgccttacacg360 accaccaatccaacggcctaccacaaggcgccgctcacccggcttgcactgccttacacg360
gcaccacaccgtgtcttggctactgtttacaacgggaactgtaagtacggcaagagcccc420 gcaccacaccgtgtcttggctactgtttacaacgggaactgtaagtacggcaagagcccc420
gtggccaacgcgagaggtgacctgcaagtgttgaccccgaaggcggcaagaacgctgcct480 gtggccaacgcgagaggtgacctgcaagtgttgaccccgaaggcggcaagaacgctgcct480
acctccttcaattacggcgccatcaaagccactcgggtgactgaactgctttaccgcatg540 acctccttcaattacggcgccatcaaagccactcgggtgactgaactgctttaccgcatg540
aagagggccgaaacgtactgcccccggcctcttttggctattcacccgagcgaaactaga600 aagagggccgaaacgtactgcccccggcctcttttggctattcacccgagcgaaactaga600
cacaaacaaaagattgtggcgcctgtgaagcagcttttg639 cacaaacaaaagattgtggcgcctgtgaagcagcttttg639
<210>5 <210>5
<211>213 <211>213
<212>PRT <212>PRT
<213>FootandMouthDiseaseVirus <213> Foot and Mouth Disease Virus
<400>5 <400>5
ThrThrSerThrGlyGluSerAlaAspProValThrAlaThrValGlu ThrThrSerThrGlyGluSerAlaAspProValThrAlaThrValGlu
151015 151015
AspTyrGlyGlyGluThrGlnValGlnArgArgGlnHisThrAspVal AspTyrGlyGlyGluThrGlnValGlnArgArgGlnHisThrAspVal
202530 202530
SerPheIleLeuAspArgPheValLysValThrProLysAspGlnIle SerPheIleLeuAspArgPheValLysValThrProLysAspGlnIle
354045 354045
AsnValLeuAspLeuMetGlnThrProAlaHisThrLeuValGlyAla AsnValLeuAspLeuMetGlnThrProAlaHisThrLeuValGlyAla
505560 505560
LeuLeuArgThrAlaThrTyrTyrPheAlaAspLeuGluValAlaVal LeuLeuArgThrAlaThrTyrTyrPheAlaAspLeuGluValAlaVal
65707580 65707580
LysHisGluGlyAsnLeuThrTrpValProAsnGlyAlaProGluAla LysHisGluGlyAsnLeuThrTrpValProAsnGlyAlaProGluAla
859095 859095
AlaLeuAspAsnThrThrAsnProThrAlaTyrHisLysAlaProLeu AlaLeuAspAsnThrThrAsnProThrAlaTyrHisLysAlaProLeu
100105110 100105110
ThrArgLeuAlaLeuProTyrThrAlaProHisArgValLeuAlaThr ThrArgLeuAlaLeuProTyrThrAlaProHisArgValLeuAlaThr
115120125 115120125
ValTyrAsnGlyAsnCysLysTyrGlyLysSerProValAlaAsnAla ValTyrAsnGlyAsnCysLysTyrGlyLysSerProValAlaAsnAla
130135140 130135140
ArgGlyAspLeuGlnValLeuThrProLysAlaAlaArgThrLeuPro ArgGlyAspLeuGlnValLeuThrProLysAlaAlaArgThrLeuPro
145150155160 145150155160
ThrSerPheAsnTyrGlyAlaIleLysAlaThrArgValThrGluLeu ThrSerPheAsnTyrGlyAlaIleLysAlaThrArgValThrGluLeu
165170175 165170175
LeuTyrArgMetLysArgAlaGluThrTyrCysProArgProLeuLeu LeuTyrArgMetLysArgAlaGluThrTyrCysProArgProLeuLeu
180185190 180185190
AlaIleHisProSerGluThrArgHisLysGlnLysIleValAlaPro AlaIleHisProSerGluThrArgHisLysGlnLysIleValAlaPro
195200205 195200205
ValLysGlnLeuLeu ValLysGlnLeuLeu
210 210
Claims (10)
- The acidproof mutant infection cDNA cloned plasmids of 1.O type foot and mouth disease virus, is characterized in that: its Nucleotide full length sequence is for shown in SEQIDNo.1.
- 2., according to the acidproof mutant infection cDNA cloned plasmids of O type foot and mouth disease virus according to claim 1, it is characterized in that: its deposit number is: CGMCCNO.6868.
- 3. with the O type foot and mouth disease virus mutant strain that the acidproof mutant infection cDNA cloned plasmids of O type foot and mouth disease virus described in claim 1 or 2 is saved.
- The acidproof mutant strain of 4.O type foot and mouth disease virus, is characterized in that: the aminoacid sequence of the capsid protein VP1 that it carries is for shown in SEQIDNo.5, and the nucleotides sequence of the described capsid protein VP1 that encodes is classified as shown in SEQIDNo.4.
- The acidproof mutant strain of 5.O type foot and mouth disease virus, is characterized in that: the aminoacid sequence of its capsid protein carried is for shown in SEQIDNo.3, and the nucleotides sequence of described capsid protein of encoding is classified as shown in SEQIDNo.2.
- 6.O type foot and mouth disease virus acidproof mutant strain capsid protein VP1, is characterized in that: its aminoacid sequence is for shown in SEQIDNo.5, and the nucleotides sequence of the described capsid protein VP1 that encodes is classified as shown in SEQIDNo.4.
- 7. the purposes of the acidproof mutant infection cDNA cloned plasmids of O type foot and mouth disease virus described in claim 1 or 2 in preparation prevention or treatment aftosa vaccine or medicine.
- 8. the purposes of O type foot and mouth disease virus mutant strain according to claim 3 in preparation prevention or treatment aftosa vaccine or medicine.
- 9. the purposes of the acidproof mutant strain of O type foot and mouth disease virus according to claim 5 in preparation prevention or treatment aftosa vaccine or medicine.
- 10. the purposes of O type foot and mouth disease virus acidproof mutant strain capsid protein VP1 described in claim 6 in preparation control aftosa vaccine or medicine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210499507.7A CN103849637B (en) | 2012-11-29 | 2012-11-29 | The acidproof mutant strain of O type foot and mouth disease virus, its capsid protein carried and encoding gene thereof and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210499507.7A CN103849637B (en) | 2012-11-29 | 2012-11-29 | The acidproof mutant strain of O type foot and mouth disease virus, its capsid protein carried and encoding gene thereof and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103849637A CN103849637A (en) | 2014-06-11 |
CN103849637B true CN103849637B (en) | 2015-12-23 |
Family
ID=50857760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210499507.7A Expired - Fee Related CN103849637B (en) | 2012-11-29 | 2012-11-29 | The acidproof mutant strain of O type foot and mouth disease virus, its capsid protein carried and encoding gene thereof and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103849637B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104388437B (en) * | 2014-10-28 | 2017-12-19 | 中国农业科学院哈尔滨兽医研究所 | Express recombinant defective type adenovirus and its construction method and the application of O-shaped foot and mouth disease virus hollow capsid |
CN108085302B (en) * | 2016-11-21 | 2020-02-14 | 中国农业科学院哈尔滨兽医研究所 | Foot-and-mouth disease virus temperature sensitive attenuated strain and construction method and application thereof |
CN107881153A (en) * | 2017-11-24 | 2018-04-06 | 中国农业科学院兰州兽医研究所 | A kind of acidproof vaccine strain of O-shaped aftosa and its construction method |
CN111961654B (en) * | 2020-08-05 | 2022-03-04 | 中国农业科学院哈尔滨兽医研究所(中国动物卫生与流行病学中心哈尔滨分中心) | Stable inheritance of heat-resistant phenotype, negative marker-carrying recombinant foot-and-mouth disease virus avirulent strain and O/A foot-and-mouth disease bivalent inactivated vaccine |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101293098A (en) * | 2007-04-28 | 2008-10-29 | 北京迪威华宇生物技术有限公司 | Recombined cattle O type foot and mouth disease virus amalgamation protein vaccine |
CN101948811A (en) * | 2010-08-18 | 2011-01-19 | 中国农业科学院兰州兽医研究所 | Method for expanding antigen spectrum of foot-and-mouth disease vaccine strain by reverse genetic operation and preparation method of vaccine |
CN102747092A (en) * | 2012-02-10 | 2012-10-24 | 中国农业科学院哈尔滨兽医研究所 | Recombinant defective adenoviruses expressing O type foot and mouth disease virus empty capsid, and applications thereof |
-
2012
- 2012-11-29 CN CN201210499507.7A patent/CN103849637B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101293098A (en) * | 2007-04-28 | 2008-10-29 | 北京迪威华宇生物技术有限公司 | Recombined cattle O type foot and mouth disease virus amalgamation protein vaccine |
CN101948811A (en) * | 2010-08-18 | 2011-01-19 | 中国农业科学院兰州兽医研究所 | Method for expanding antigen spectrum of foot-and-mouth disease vaccine strain by reverse genetic operation and preparation method of vaccine |
CN102747092A (en) * | 2012-02-10 | 2012-10-24 | 中国农业科学院哈尔滨兽医研究所 | Recombinant defective adenoviruses expressing O type foot and mouth disease virus empty capsid, and applications thereof |
Non-Patent Citations (1)
Title |
---|
A Single Amino Acid Substitution in the Capsid of Foot-and-Mouth Disease Virus Can Increase Acid Resistance;Miguel等;《Journal of Virology》;20110331;第85卷(第6期);第2733-2740页 * |
Also Published As
Publication number | Publication date |
---|---|
CN103849637A (en) | 2014-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108085302B (en) | Foot-and-mouth disease virus temperature sensitive attenuated strain and construction method and application thereof | |
CN103266091B (en) | A type foot-and-mouth disease recombinant vaccine strains and preparation method and application thereof | |
CN102614507B (en) | Type O foot-and-mouth disease virus molecular marker vaccine and preparation method thereof | |
CN101695569A (en) | Univalent and bivalent gene engineered subunit vaccine for hand-foot-and-mouth disease and preparation method thereof | |
CN103849637B (en) | The acidproof mutant strain of O type foot and mouth disease virus, its capsid protein carried and encoding gene thereof and application | |
CN103374580B (en) | Enterovirus 71 (EV 71) Fuyang strain and cDNA (deoxyribonucleic acid) infectious clone of attenuated strain of enterovirus 71 (EV 71) Fuyang strain as well as application of enterovirus 71 (EV 71) Fuyang strain | |
CN102559615B (en) | EV71 vaccine preparation method and the vaccine prepared by the method | |
CN107201346B (en) | Foot-and-mouth disease marker vaccine strain lacking dominant epitope of 3B protein and its construction method and application | |
CN101948811A (en) | Method for expanding antigen spectrum of foot-and-mouth disease vaccine strain by reverse genetic operation and preparation method of vaccine | |
CN111744000A (en) | Foot-and-mouth disease recombinant virus with reduced immunosuppressive function and preparation method and application thereof | |
CN103695465A (en) | CDNA (Complementary Deoxyribonucleic Acid) infectious clone of porcine reproductive and respiratory syndrome virus vaccine strain and application thereof | |
CN102212554A (en) | Enterovirus type 71 (EV71) infectious clone and construction method | |
CN104694488A (en) | Avian infectious bronchitis virus attenuated virus strain rH120-YZ and construction method thereof | |
CN116200348A (en) | A construction method and application of Coxsackievirus A10 strain adapted to Vero cells | |
CN113583980B (en) | Porcine reproductive and respiratory syndrome mutant virus and construction method and application thereof | |
CN100572541C (en) | Dual-purpose vaccine carrier for foot and mouth disease virus, its preparation method and application | |
CN102604969A (en) | Enterovirus 71 cDNA (complementary deoxyribose nucleic acid) infectious clone as well as construction method and application of enterovirus 71 cDNA infectious clone | |
CN103391788A (en) | Inactivated poliovaccine | |
CN102600481A (en) | Adenovirus (rAdV)/Japanese encephalitis virus (JEV) replicon embedding carrier hog cholera vaccine and application of rAdV/ JEV replicon embedding carrier hog cholera vaccine | |
CN111334528B (en) | Mink enteritis parvovirus whole genome infectious clone and construction method and application thereof | |
CN102703475B (en) | Toxicity weakened NSP4 mutant gene, recombinant plasmid and recombinant bovine rotavirus | |
WO2022027749A1 (en) | Recombinant foot-and-mouth disease virus nontoxic strain with heat-resistant phenotypic stable inheritance and negative marker, and o/a type foot-and-mouth disease bivalent inactivated vaccine | |
CN107881153A (en) | A kind of acidproof vaccine strain of O-shaped aftosa and its construction method | |
CN103305475B (en) | Establishment method and application of enterovirus (EV) 71-gene modification system | |
CN118006687A (en) | Preparation method and application of porcine epidemic diarrhea virus recombinant virus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20180109 Address after: 150069 Heilongjiang Province, Harbin city Xiangfang District haping Road No. 678 Patentee after: HARBIN VETERINARY Research Institute CHINESE ACADEMY OF AGRICULTURE SCIENCE Address before: 150001 Harbin, Nangang, Ma Ma Street District, No. 427 Co-patentee before: Yang Decheng Patentee before: Yu Li |
|
TR01 | Transfer of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20151223 |
|
CF01 | Termination of patent right due to non-payment of annual fee |