CN103848906A - Rice high-temperature-resistant related gene OsZFP, selection marker and separating method of related gene - Google Patents
Rice high-temperature-resistant related gene OsZFP, selection marker and separating method of related gene Download PDFInfo
- Publication number
- CN103848906A CN103848906A CN201210515449.2A CN201210515449A CN103848906A CN 103848906 A CN103848906 A CN 103848906A CN 201210515449 A CN201210515449 A CN 201210515449A CN 103848906 A CN103848906 A CN 103848906A
- Authority
- CN
- China
- Prior art keywords
- high temperature
- rice
- gene
- seq
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H1/00—Processes for modifying genotypes ; Plants characterised by associated natural traits
- A01H1/04—Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection
- A01H1/045—Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection using molecular markers
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/6895—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/13—Plant traits
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Botany (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Immunology (AREA)
- Plant Pathology (AREA)
- Developmental Biology & Embryology (AREA)
- Environmental Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mycology (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Physiology (AREA)
Abstract
Description
技术领域 technical field
本发明涉及植物基因工程和分子育种技术领域。具体地说,更具体而言,涉及植物抗高温基因的定位、分离、功能分析、序列特征化、调控序列鉴定和共分离分子标记筛选与创造及其在改良水稻等作物的抗逆性方面的应用水稻中的一种抗高温基因的遗传转化和分子标记辅助选择方法与程序。此外本发明还涉及借助所述利用抗高温基因来改良水稻等作物的抗逆性方面的应用。 The invention relates to the technical fields of plant genetic engineering and molecular breeding. Specifically, it relates to the mapping, isolation, functional analysis, sequence characterization, regulatory sequence identification, and co-segregation molecular marker screening and creation of plant high temperature resistance genes and their application in improving the stress resistance of rice and other crops. A method and program for genetic transformation and molecular marker-assisted selection of a heat-resistant gene in rice. In addition, the present invention also relates to the application of improving the stress resistance of crops such as rice by using the high temperature resistance gene. the
背景技术 Background technique
水稻是最重要的粮食农作物,而且是世界上一半以上人口的主要食物来源(Khush, 2005),报道显示,水稻产量以每年0.6-0.9%增长速率才能在2050 年满足人们生活的需求(Carriger and Vallee, 2007)。作物产量的增加依赖农田,农业生产的可持续发展需要避免环境的恶化、生态平衡的破坏以及生物多样性的丧失(Cassman, 1999; Tilman et al., 2002)。作物产量主要是由光合作用和呼吸作用决定的,然而,光合作用和呼吸作用均对温度敏感(Yoshida, 1981),此外还受空气中CO2 浓度(Baker et al., 1990)、臭氧层(Maggs and Ashmore, 1998)的影响,这些因素也和温室效应有关(Rosenzweig and Parry, 1994)。 Rice is the most important food crop and the main source of food for more than half of the world's population (Khush, 2005). According to reports, rice production can only meet people's living needs by 2050 at an annual growth rate of 0.6-0.9% (Carriger and Vallee, 2007). The increase of crop yield depends on farmland, and the sustainable development of agricultural production needs to avoid the deterioration of the environment, the destruction of ecological balance and the loss of biodiversity (Cassman, 1999; Tilman et al., 2002). Crop yield is mainly determined by photosynthesis and respiration, however, both photosynthesis and respiration are sensitive to temperature (Yoshida, 1981), and are also affected by the concentration of CO2 in the air (Baker et al., 1990), the ozone layer (Maggs and Ashmore, 1998), these factors are also related to the greenhouse effect (Rosenzweig and Parry, 1994). the
气候的持续变暖已经给水稻生产带来灾难性的影响。2006 和2007 年, 中国长江中下游的重庆、湖北、湖南、安徽、浙江和广东等省区连续两年出现大范围持续38℃以上的高温天气,导致水稻等粮食作物大面积减产,严重的使其结实率不到50%。因此,育种上迫切需要可资利用的抗高温遗传资源用以应对全球升温给水稻生产带来的严重威胁。因此,广泛开展耐热研究、深入挖掘抗高温遗传资源,努力从植物耐热新品种选育角度应对全球升温给水稻生产带来的严重威胁无疑在理论上和实践上都有重要意义。 Continued warming of the climate has had a disastrous effect on rice production. In 2006 and 2007, the provinces of Chongqing, Hubei, Hunan, Anhui, Zhejiang and Guangdong in the middle and lower reaches of the Yangtze River in China experienced large-scale and sustained high-temperature weather above 38°C for two consecutive years, resulting in large-scale production reductions of rice and other food crops, and serious damage to the population. Its seed setting rate is less than 50%. Therefore, there is an urgent need for available high-temperature resistant genetic resources in breeding to cope with the serious threat to rice production brought about by global warming. Therefore, it is undoubtedly of great significance in theory and practice to carry out extensive research on heat tolerance, deeply excavate high temperature resistant genetic resources, and strive to cope with the serious threat of global warming to rice production from the perspective of breeding new heat resistant plant varieties. the
近年来,国内外就水稻孕穗期(赵志刚等,2006)、抽穗期(张永生等,2009; Zhang et al., 2009)、开花期(曹立勇等,2003,2002;盘毅等,2005;陈庆全等,2008;张涛等,2008;奎丽梅等,2008; Zhang et al., 2009;Jagadish et al., 2010;)、灌浆期(朱昌兰等,2005)以及稻米直链淀粉含量合成和胶稠度形成(朱昌兰等,2006)等时期的抗高温特性进行了大量的遗传分析和染色体定位,定位到的耐热水稻数量形状(简称QTL)涉及水稻的每一条染色体,其中,遗传效应最显著的一个QTL 位点是来自巴基斯坦的品系Bala,其对表型变异的解释率达18%。然而,由于不同的研究者使用的试验材料和高温处理程序与方法的不同,所获得的实验数据彼此难以相互印证和重演,所定位的QTL区间相对较大,以致无法确定候选基因和进行相关的分子克隆及功能互补验证。因此,对上述定位的耐热QTL而言,不仅在理论上缺乏必要的数据支持,而且在生产实践上也难以有效利用。 In recent years, rice booting stage (Zhao Zhigang et al., 2006), heading stage (Zhang Yongsheng et al., 2009; Zhang et al., 2009), flowering stage (Cao Liyong et al., 2003, 2002; Pan Yi et al., 2005; Chen Qingquan et al. , 2008; Zhang Tao et al., 2008; Kui Limei et al., 2008; Zhang et al., 2009; Jagadish et al., 2010;), grain filling stage (Zhu Changlan et al., 2005) and rice amylose content synthesis and gel consistency formation (Zhu Changlan et al., 2006) carried out a large number of genetic analyzes and chromosome mapping on the high temperature resistance characteristics of the period, and the number and shape of heat-resistant rice (referred to as QTL) mapped to each chromosome of rice, among which, the most significant genetic effect of a QTL The locus was the line Bala from Pakistan, which explained 18% of the phenotypic variation. However, due to the differences in experimental materials, high-temperature treatment procedures and methods used by different researchers, the experimental data obtained are difficult to confirm and repeat each other, and the QTL intervals located are relatively large, so that it is impossible to determine candidate genes and carry out related research. Molecular cloning and functional complementation verification. Therefore, for the above-mentioned heat-resistant QTL, not only lack of necessary data support in theory, but also difficult to effectively use in production practice. the
此外,一些研究者还通过同源克隆法对水稻耐热相关基因进行了研究。Yamanouchi 等(2002)利用图位克隆法定位并克隆了一个关于水稻斑点基因Sp17,发现它的一个阅读框和热胁迫转录因子高度相似,在热胁迫条件下,突变体和野生型Sp17的表达量都上调。Yokotani 等(2008)把水稻编码OsHsfA2e的耐热基因转移到拟南芥中去,转基因拟南芥对环境胁迫的耐性增强。对非胁迫条件下过量表达的拟南芥植株进行芯片分析,发现与胁迫相关的一些基因表达量升高,这其中包括几类热激蛋白。 In addition, some researchers have also studied rice heat tolerance-related genes by homologous cloning. Yamanouchi et al. (2002) used map-based cloning to locate and clone a rice spot gene Sp17, and found that one of its reading frames was highly similar to heat stress transcription factors. Under heat stress conditions, the expression levels of mutant and wild-type Sp17 Both raised. Yokotani et al. (2008) transferred the rice heat resistance gene encoding OsHsfA2e into Arabidopsis, and the tolerance of the transgenic Arabidopsis to environmental stress was enhanced. Microarray analysis of overexpressed Arabidopsis plants under non-stress conditions found that the expression of some stress-related genes increased, including several types of heat shock proteins. the
一般认为,热激蛋白(heat shock protein, HSP)与高温响应相关。已有的报道结果显示rHsp90 对盐、干旱及高温等几种胁迫均有响应,且42℃和50℃的高温处理30 分钟能使rHsp90 表达量显著增加(Liu 等,2006)。另有报道结果显示水稻中有40 个包含α-晶体的基因,其中,23 种为热激蛋白(Sarkar 等,2009)。对其进行芯片和RT-PCR 分析表明,23 个热激蛋白中的19 个在高温下表达量上调。另外, Chang 等人(2007)把水稻热激蛋白Hsp101 转到烟草中,发现过量表达的植株在高温下存活情况比野生型对照要好。Wu 等(2009)用HSP10 启动子驱动OsWRKY11 表达,发现水稻转基因植株热处理后叶片萎焉较慢,存活率高。Yokotani 等人(2011)通过在拟南芥中过量表达水稻OsCEST(叶绿体蛋白-能增强胁迫耐性)基因,发现转基因植株不仅耐盐胁迫,而且抗旱和抗高温。 It is generally believed that heat shock protein (heat shock protein, HSP) is related to high temperature response. Existing reports have shown that rHsp90 responds to several stresses such as salt, drought, and high temperature, and high temperature treatment at 42°C and 50°C for 30 minutes can significantly increase the expression of rHsp90 (Liu et al., 2006). Another report showed that there are 40 α-crystal-containing genes in rice, of which 23 are heat shock proteins (Sarkar et al., 2009). Microarray and RT-PCR analysis showed that 19 of the 23 heat shock proteins were up-regulated at high temperature. In addition, Chang et al. (2007) transferred rice heat shock protein Hsp101 into tobacco and found that overexpressed plants survived better than wild-type controls at high temperatures. Wu et al. (2009) used the HSP10 promoter to drive the expression of OsWRKY11, and found that the leaves of transgenic rice plants wilted slowly and had a high survival rate after heat treatment. Yokotani et al. (2011) found that transgenic plants were not only resistant to salt stress, but also resistant to drought and high temperature by overexpressing the rice OsCEST (chloroplast protein-enhanced stress tolerance) gene in Arabidopsis. the
锌指蛋白(Zinc finger protein)是一个庞大的转录因子家族,在基因表达调控、细胞分化、胚胎发育等生命过程中(Gerisman ﹠Pabo,1997;Laity et al.,2001),特别是在抗逆基因表达调控中起重要作用(Li ﹠ Chen,2000)。根据锌指蛋白中半胱氨酸(C)和组氨酸(H)残基的数目和位置,可将含锌指蛋白结构域的转录因子分为C2H2,C2C2,C3H,C3HC4(即RING finger),C3HC5(即LM finger)等亚类。其中,C2H2 型锌指蛋白是锌指蛋白中研究最为清楚的一类,由两个半胱氨酸和两个组氨酸与Zn2+形成配位键,进而形成一个包含β折叠和一个α螺旋的紧密指状结构。Kim 等(2001)从大豆cDNA 文库中分离到冷诱导锌指蛋白基因SCOF-1,其编码产物含有两个典型的C2H2 锌指结构,SCOF-1 的表达受低温和ABA 的特异性诱导,而不受盐胁迫诱导,转基因研究证实SCOF-1 的过量表达可以增强拟南芥和烟草的耐冷性。刘萌萌等(2007)克隆的一个大豆C2H2 型锌指蛋白转录因子基因GmC2H2 的表达与低温、ABA 的胁迫诱导相关。至于C3HC4 型兼CHY 型锌指蛋白只在拟南芥、水稻、球蒴藓、沙蒿、玉米、菠萝、大豆等几种植物中有成功分离的报道(Stone et al.,2005;Ohyanagi et al.,2006;Rensing et al.,2008;Yang et al.,2008;Alexandrov et al.,2009;杨祥燕等,2009;吴学闯等,2010)。沙蒿AdZFP1 基因是编码这类锌指蛋白的典型例子(Yang 等2008),半定量PCR 分析表明,AdZFP1 基因受外源ABA 的强烈诱导,同时在一定程度上受高盐、低温和高温的诱导。吴学闯等(2010)从大豆旱处cDNA 文库中也筛选到一个编码C3HC4 型锌指蛋白基因GmRZFP1,研究结果显示,该基因主要受高温和干旱的诱导,当高温胁迫1-6 小时,GmRZFP1 基因表达量与处理时间成正相关,胁迫12 小时有则所下降,到24 小时时,其表达量最高。这些研究结果因此表明GmRZFP1 基因受多种胁迫处理的诱导,可能涉及到多种逆境胁迫信号传导。 Zinc finger protein (Zinc finger protein) is a large family of transcription factors, which are involved in gene expression regulation, cell differentiation, embryonic development and other life processes (Gerisman﹠Pabo, 1997; Laity et al., 2001), especially in stress resistance It plays an important role in the regulation of gene expression (Li ﹠ Chen, 2000). According to the number and position of cysteine (C) and histidine (H) residues in the zinc finger protein, the transcription factors containing the zinc finger protein domain can be divided into C2H2, C2C2, C3H, C3HC4 (that is, RING finger ), C3HC5 (ie LM finger) and other subclasses. Among them, the C2H2 type zinc finger protein is the most clearly studied type of zinc finger protein. It consists of two cysteines and two histidines and Zn2+ to form a coordination bond, and then forms a β sheet and an α helix. Tight finger structure. Kim et al. (2001) isolated the cold-induced zinc finger protein gene SCOF-1 from the soybean cDNA library, and its encoded product contains two typical C2H2 zinc finger structures. The expression of SCOF-1 is specifically induced by low temperature and ABA, while Not induced by salt stress, transgenic studies confirmed that overexpression of SCOF-1 can enhance cold tolerance in Arabidopsis and tobacco. Liu Mengmeng et al. (2007) cloned a soybean C2H2-type zinc finger protein transcription factor gene GmC2H2. The expression of GmC2H2 is related to the stress induction of low temperature and ABA. As for C3HC4-type and CHY-type zinc finger proteins, there are only reports of successful isolation in Arabidopsis, rice, Physcomitrella bulbarum, Artemisia salsa, corn, pineapple, soybean and other plants (Stone et al., 2005; Ohyanagi et al. ., 2006; Rensing et al., 2008; Yang et al., 2008; Alexandrov et al., 2009; Yang Xiangyan et al., 2009; Wu Xuechuang et al., 2010). The AdZFP1 gene of Artemisia annua is a typical example of encoding this type of zinc finger protein (Yang et al. 2008). Semi-quantitative PCR analysis showed that AdZFP1 gene was strongly induced by exogenous ABA, and to some extent induced by high salt, low temperature and high temperature. . Wu Xuechuang et al. (2010) also screened a C3HC4-type zinc finger protein gene GmRZFP1 from the soybean drought cDNA library. The research results showed that this gene is mainly induced by high temperature and drought. When high temperature stress is 1-6 hours, GmRZFP1 The expression level of the gene was positively correlated with the treatment time, and it decreased after 12 hours of stress, and the expression level was the highest at 24 hours. These findings thus suggest that the GmRZFP1 gene is induced by multiple stress treatments and may be involved in multiple stress signaling. the
此外,Huang 等(2008)在粳稻上找到12 个A20/AN1 类型的锌指蛋白,芯片分析发现低温、干旱和H2O2分别诱导其中的四个基因(ZFP177,ZEP181,ZFP176,ZFP173)、两个基因(ZEP181 和ZFP176)和一个基因(ZFP157)表达。进一步的研究表明ZFP177 对低温和高温胁迫均有响应。对ZFP177基因进行过量表达,所获得的转基因烟草能耐2℃的低温和55℃的高温,但对盐胁迫和干旱胁迫反而更敏感,这说明ZFP177 在植物各种非生物胁迫中起着重要的作用,但是不同的胁迫作用可能有不同的响应机理。 In addition, Huang et al. (2008) found 12 A20/AN1 type zinc finger proteins in japonica rice. Microarray analysis found that low temperature, drought and H2O2 respectively induced four genes (ZFP177, ZEP181, ZFP176, ZFP173), two genes (ZEP181 and ZFP176) and one gene (ZFP157) was expressed. Further studies showed that ZFP177 responded to both low temperature and high temperature stress. Overexpressing the ZFP177 gene, the transgenic tobacco obtained can tolerate a low temperature of 2°C and a high temperature of 55°C, but is more sensitive to salt stress and drought stress, which shows that ZFP177 plays an important role in various abiotic stresses in plants , but different stresses may have different response mechanisms. the
参考文献: references:
曹立勇,赵建根,占小登,李登楼,何立斌,程式华. 水稻耐热性的QTL 定位及耐热性与光合速率的相关性.中国水稻科学,2003,17(3):223-227. Cao Liyong, Zhao Jiangen, Zhan Xiaodeng, Li Denglou, He Libin, Cheng Shihua. QTL mapping of rice heat tolerance and the correlation between heat tolerance and photosynthetic rate. Chinese Rice Science, 2003, 17(3): 223-227.
曹立勇,朱军,赵松涛. 水稻籼粳交DH 群体耐热性的QTLs定位. 农业生物技术学报,2002,10(3):210-214. Cao Liyong, Zhu Jun, Zhao Songtao. Mapping of QTLs for Heat Tolerance in Indica-Japonica DH Population. Journal of Agricultural Biotechnology, 2002, 10(3): 210-214.
陈庆全,余四斌,李春海,牟同敏. 水稻抽穗开花期耐热性OTL 的定位分析. 中国农业科学,2008,41(2):315-32. Chen Qingquan, Yu Sibin, Li Chunhai, Mou Tongmin. Location Analysis of OTL of Heat Tolerance in Rice Heading and Flowering Stage. Chinese Agricultural Sciences, 2008, 41(2): 315-32.
奎丽梅,谭禄宾,涂建,卢义宣,孙传清. 云南元江野生稻抽穗开花期耐热QTL 定位. 农业生物技术学报,2008,16 (3):461-464. Kui Limei, Tan Lubin, Tu Jian, Lu Yixuan, Sun Chuanqing. Mapping of QTLs for Heat Tolerance in Heading and Flowering Stage of Wild Rice in Yuanjiang, Yunnan. Journal of Agricultural Biotechnology, 2008, 16 (3): 461-464.
刘萌萌.大豆C2H2 型锌指蛋白转录因子基因的克隆与鉴定.北京:中国农业学院,2007. Liu Mengmeng. Cloning and Identification of Soybean C2H2 Zinc Finger Protein Transcription Factor Gene. Beijing: China Agricultural College, 2007.
盘毅,罗丽华,邓华并,张桂莲,唐文邦,陈立云,肖应辉. 水稻开花期高温胁迫下的花粉育性QTL 定位. 中国水稻科学,2011,25(1):99-102. Pan Yi, Luo Lihua, Deng Huabing, Zhang Guilian, Tang Wenbang, Chen Liyun, Xiao Yinghui. Mapping of pollen fertility QTLs in rice under high temperature stress during anthesis. Chinese Rice Science, 2011, 25(1): 99-102.
吴学闯,曹新有,陈明,张晓科,刘阳娜,徐兆师,李连城,马有志.大豆C3HC4 型RING 锌指蛋白基因GmRZFP1 克隆与表达分析,植物遗传资源学报,2010,11(3):343-348. Wu Xuechuang, Cao Xinyou, Chen Ming, Zhang Xiaoke, Liu Yangna, Xu Zhaoshi, Li Liancheng, Ma Youzhi. Cloning and expression analysis of soybean C3HC4 type RING zinc finger protein gene GmRZFP1, Journal of Plant Genetic Resources, 2010, 11 (3): 343 -348.
杨祥燕,蔡元保,吴青松,孙光明.菠萝锌指蛋白基因AcRCHY1的克隆与表达分析。园艺学报,2009,36(11):1589-1596. Yang Xiangyan, Cai Yuanbao, Wu Qingsong, Sun Guangming. Cloning and expression analysis of pineapple zinc finger protein gene AcRCHY1. Journal of Horticulture, 2009, 36(11): 1589-1596.
张涛, 杨莉, 蒋开锋, 黄敏,孙群,陈温福,郑家奎. 水稻抽穗扬花期耐热性QTL 分析. 分子植物育种,2008,6(5):867-873. Zhang Tao, Yang Li, Jiang Kaifeng, Huang Min, Sun Qun, Chen Wenfu, Zheng Jiakui. QTL Analysis of Heat Tolerance in Rice Heading and Flowering Stage. Molecular Plant Breeding, 2008, 6(5): 867-873.
张永生,刘喜,江玲,陈亮明,刘世家,翟虎渠,万建民. 利用南京11Ⅹ越光RIL 群体进行抽穗期QTL 定位分析. 江苏农业学报,2009,2(1):6-12. Zhang Yongsheng, Liu Xi, Jiang Ling, Chen Liangming, Liu Shijia, Zhai Huqu, Wan Jianmin. QTL mapping analysis for heading date using Nanjing 11X Koshihikari RIL population. Jiangsu Agricultural Journal, 2009, 2(1): 6-12.
赵志刚,江玲,肖应辉,张文伟,翟虎渠. 水稻孕穗期耐热性QTLs 分析 (Oryza sativa L.). 作物学报,2006,32(5):640-644. Zhao Zhigang, Jiang Ling, Xiao Yinghui, Zhang Wenwei, Zhai Huqu. Analysis of QTLs for rice heat tolerance at booting stage (Oryza sativa L.). Acta Crops Sinica, 2006, 32(5): 640-644.
朱昌兰,江玲,张文伟,王春明,翟虎渠,万建民. 稻米直链淀粉含量和胶稠度对高温耐性的QTL 分析. 中国水稻科学,2006, 20(3):248-250. Zhu Changlan, Jiang Ling, Zhang Wenwei, Wang Chunming, Zhai Huqu, Wan Jianmin. QTL analysis of rice amylose content and gel consistency for high temperature tolerance. Chinese Rice Science, 2006, 20(3): 248-250.
朱昌兰,肖应辉,王春明,江玲,翟虎渠. 水稻灌浆期耐热害的数量性状基因位点分析. 中国水稻科学,2005,19(2):117-121. Zhu Changlan, Xiao Yinghui, Wang Chunming, Jiang Ling, Zhai Huqu. Quantitative trait loci analysis of heat damage tolerance in rice at grain filling stage. Chinese Rice Science, 2005, 19(2): 117-121.
Alexandrov N N, Broer V V, Freidin S, Troukhan M E,Tatarinova T V, Zhang H, Swaller T J, Lu Y P, Bouck J, Flavell R B,Feldmann K A. (2009) Insights into com genes derived fromlarge-scale cDNA sequencing. Plant MolecularBiology. 69:179-194. Alexandrov N N, Broer V V, Freidin S, Troukhan M E, Tatarinova T V, Zhang H, Swaller T J, Lu Y P, Bouck J, Flavell R B, Feldmann K A. (2009) Insights into com genes derived fromlarge -scale cDNA sequencing. Plant Molecular Biology. 69:179-194.
Baker J.T., Allen L. H., J., Boote K. J. (1990) Growth and yield responses of rice to carbon dioxide concentration. J. Agric. Sci. 115,313-320. Baker J.T., Allen L. H., J., Boote K. J. (1990) Growth and yield responses of rice to carbon dioxide concentration. J. Agric. Sci. 115,313-320.
Carriger S., Vallee D. (2007) More crop per drop. Rice Today. 6:10-13. Carriger S., Vallee D. (2007) More crop per drop. Rice Today. 6:10-13.
Cassman, K. G. (1999) Ecological intensification of cereal production syatems: Yield potential, soil quality, and precision agriculture. Proc. Natl. Acad. Sci. USA 96: 5952-5959. Cassman, K. G. (1999) Ecological intensification of cereal production syatems: Yield potential, soil quality, and precision agriculture. Proc. Natl. Acad. Sci. USA 96: 5952-5959.
Chang C.C., Huang P.S., Lin H.R., Lu C.H. (2007) Transactivation of protein expression by rice HSP101 in planta andusing Hsp101 as a selection marker for transformation. Plant CellPhysiol. 48(8):1098-1107. Chang C.C., Huang P.S., Lin H.R., Lu C.H. (2007) Transactivation of protein expression by rice HSP101 in planta and using Hsp101 as a selection marker for transformation. Plant CellPhysiol. 48(8):1098-1107
Gerisman H.A, Pabo C. (1997). A general strategy for selectinghigh-affinity zinc finger protein for diverse DNA target sites.Science.275:657-661. Gerisman H.A, Pabo C. (1997). A general strategy for selecting high-affinity zinc finger protein for diverse DNA target sites. Science.275:657-661.
Jagadish S.V.K., Cairnsb J., Lafitte R., Wheeler T.R., Price A.H.,Craufurd P.Q. (2010a) Genetic analysis of heat tolerance at anthesis inrice. Crop Science. 50(5):1633-1641. Jagadish S.V.K., Cairnsb J., Lafitte R., Wheeler T.R., Price A.H., Craufurd P.Q. (2010a) Genetic analysis of heat tolerance at anthesis inrice. Crop Science. 50(5):1633-1641.
Khush G.S. (2005) What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol. 59: 1-6. Khush G.S. (2005) What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol. 59: 1-6.
Kim J.C., Lee S.H., Cheong Y.H., Yoo C.M., Lee S.I., Chun H.J.,Yun D.Y., Hong J.C., Lee S.Y., Lim C.O., Cho M.J. (2001) A novelcold-inducible zinc finger protein from soybean, SCOF-1, enhancescold tolerance in transgenic plants. The PlantJournal.25(3):247-259. Kim J.C., Lee S.H., Cheong Y.H., Yoo C.M., Lee S.I., Chun H.J.,Yun D.Y., Hong J.C., Lee S.Y., Lim C.O., Cho M.J. (2001) A novelcold-inducible zinc finger protein from soybean, SCOF-1, enhancescold tolerance in transgenic plants. The Plant Journal. 25(3):247-259.
Liu D., Zhang X., Cheng Y., Takano T., Liu S. (2006) rHsp90 gene expression in response to several environmental stresses in rice(Oryza sativa L.). Plant Physiol Biochem. 44: 380-386. Liu D., Zhang X., Cheng Y., Takano T., Liu S. (2006) rHsp90 gene expression in response to several environmental stresses in rice(Oryza sativa L.). Plant Physiol Biochem. 44: 380-386.
Maggs, R., Ashmore, M. R. (1998) Growth and yield responsesof Pakistan rice (Oryza sativa L.) cultivars to O3 and NO2. Environmental Pollution. 103: 159-170. Maggs, R., Ashmore, M. R. (1998) Growth and yield responses of Pakistan rice ( Oryza sativa L.) cultivars to O3 and NO2. Environmental Pollution. 103: 159-170.
Ohyanagi H., Tanaka T., Sakai H., Shigemoto Y., Yamaguchi K.,Habara T., Fujii Y., Antonio BA., Nagamura Y., Imanishi T., Ikeo K., Ohyanagi H., Tanaka T., Sakai H., Shigemoto Y., Yamaguchi K., Habara T., Fujii Y., Antonio BA., Nagamura Y., Imanishi T., Ikeo K.,
Rensing S.A., Zimmer A.D., Terry A., Salamov A., Salamov A.,Shapiro H., Nishiyama T., Perroud P.F., Lindquist E.A., Kamisugi Y.,Tanahashi T.(2008) The physomitrella genome reveals evolutionary insights into the conquest of land by plants. Science.319(5859):64-69. Rensing S.A., Zimmer A.D., Terry A., Salamov A., Salamov A.,Shapiro H., Nishiyama T., Perroud P.F., Lindquist E.A., Kamisugi Y.,Tanahashi T.(2008) The physomitrella genome reveals the evolutioninary insights conquest of land by plants. Science. 319(5859):64-69.
Rosenzweig C., Parry M.L. (1994) Potential impact of climatechange on world food supply. Nature.367: 133-138. Rosenzweig C., Parry M.L. (1994) Potential impact of climate change on world food supply. Nature.367: 133-138.
Sarkar N.K., Kim Y.K., Grover A. (2009) Rice sHsp genes: genomics organization and expression profiling under stress and development. BMC Genomics. 10:1-18. Sarkar N.K., Kim Y.K., Grover A. (2009) Rice sHsp genes: genomics organization and expression profiling under stress and development. BMC Genomics. 10:1-18.
Stone S L., Hauksadottir H., Troy A., Herschleb J., Kraft E.,Callis J. (2005) Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiology. 137(1):13-30. Stone S L., Hauksadottir H., Troy A., Herschleb J., Kraft E., Callis J. (2005) Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiology. 137(1):13- 30.
Tilman D., Cassman K. G., Matson P.A., Naylor, R., Polasky S.(2002) Agricultural sustainability and intensive production practices. Nature 418, 671–677. Tilman D., Cassman K. G., Matson P.A., Naylor, R., Polasky S. (2002) Agricultural sustainability and intensive production practices. Nature 418, 671–677.
Wu X.L., Yoko S., Sachie K., Yukihiro I., Kinya T. (2009)Enhanced heat and drought tolerance in transgenic rice seedlingsoverexpressing OsWRKY11 under the control of HSP101 promoter.Plant Cell Rep. 28: 21-30. Wu X.L., Yoko S., Sachie K., Yukihiro I., Kinya T. (2009) Enhanced heat and drought tolerance in transgenic rice seedlings over expressing OsWRKY11 under the control of HSP101 promoter. Plant Cell 2-30.
Yamanouchi U.,Yano M., Lin H., Ashikari M., Yamada K. (2002)A rice spotted leaf gene, Spl7, encodes a heat stress transcriptionfactor protein. PNAS. 99(11): 7530-7535. Yamanouchi U., Yano M., Lin H., Ashikari M., Yamada K. (2002) A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. PNAS. 99(11): 7530-7535.
Yang X.H., Sun C., Hu Y.L., Lin Z.P. (2008).Molecular cloningand characterization of a gene eccoding RING zinc finger ankyrinprotein from drought-tolerant Artemisia desertorum,. Journal ofBiosciences. 33(1):103-112. Yang X.H., Sun C., Hu Y.L., Lin Z.P. (2008).Molecular cloning and characterization of a gene eccoding RING zinc finger ankyrinprotein from drought-tolerant Artemisia desertorum,. Journal of Biosciences. 033(1):2
Yokotani N., Higuchi M., Kondou Y., Ichikawa T., Iwabuchi M.,Hirochika H., Matsui M., Oda K. (2011) A novel chloroplast protein, CEST induces tolerance to multiple environmental stresses and reduces photooxidative damage in transgenic Arabidopsis. Journal of Experimental Botany. 62(2):557-569. Yokotani N., Higuchi M., Kondou Y., Ichikawa T., Iwabuchi M.,Hirochika H., Matsui M., Oda K. (2011) A novel chloroplast protein, CEST induces tolerance to multiple environmental stresses and reduces dphotooxidative in transgenic Arabidopsis. Journal of Experimental Botany. 62(2):557-569.
Yokotani N., Ichikawa T., Kondou Y., Matsui M., Hirochika H.,Iwabuchi M., Oda K. (2008) Expression of rice heat stresstranscription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta, 227:957-967. Yokotani N., Ichikawa T., Kondou Y., Matsui M., Hirochika H., Iwabuchi M., Oda K. (2008) Expression of rice heat stress translation factor OsHsfA2e enhances tolerance to environmental stresses in .2 Arabidopsis .2 Arabidopsis: 957-967.
Yoshida S. (1981) Fundamentals of Rice Crop Science(International Rice Research Institute, Los Banos, Philippines). pp69-83. Yoshida S. (1981) Fundamentals of Rice Crop Science (International Rice Research Institute, Los Banos, Philippines). pp69-83.
Zhang G.L., Chen L.Y., Xiao G.Y., Xiao Y.H., Chen X.B., Zhang S.T. (2009) Bulked segregant analysis to detect QTL related to heat tolerance in rice (Oryza sativa L.) using SSR markers. Agricultural Sciences in China. 8(4):482-487。 Zhang GL, Chen LY, Xiao GY, Xiao YH, Chen XB, Zhang ST (2009) Bulked segregant analysis to detect QTL related to heat tolerance in rice ( Oryza sativa L.) using SSR markers. Agricultural Sciences in China. 8(4 ):482-487.
发明概述 Summary of the invention
为解决上述问题,本申请的发明人通过锐意研究,开发出一种优化的定位植物抗逆性基因,尤其是抗高温基因的方法,提供了多种新的基因筛选、定位标记,并精确定位了一种水稻抗高温新基因,由此提供了将温度敏感型植物恢复为非温度敏感型植物、将普通植物转化为抗高温植物的育种方法。具体而言,本发明涉及下述方面: In order to solve the above problems, the inventors of the present application have developed an optimized method for positioning plant stress resistance genes, especially high temperature resistance genes, through dedicated research, providing a variety of new gene screening, positioning markers, and precise positioning A new high temperature resistance gene of rice has been discovered, thereby providing a breeding method for restoring temperature sensitive plants to non-temperature sensitive plants and transforming ordinary plants into high temperature resistant plants. Specifically, the present invention relates to the following aspects:
1). 一种多肽,其为选自下述任一: 1). A polypeptide, which is selected from any of the following:
A)包含如SEQ ID NO.3 所示的氨基酸序列的多肽; A) a polypeptide comprising the amino acid sequence shown in SEQ ID NO.3;
B)包含在如SEQ ID NO.3 所示的氨基酸序列中或经缺失、替换、插入一个或多个氨基酸所得的氨基酸序列,所述多肽具有抗高温功能; B) The amino acid sequence contained in the amino acid sequence shown in SEQ ID NO.3 or obtained by deletion, substitution, or insertion of one or more amino acids, and the polypeptide has the function of anti-high temperature;
C)具有SEQ ID NO.3 所示的氨基酸序列的多肽; C) a polypeptide having the amino acid sequence shown in SEQ ID NO.3;
D)氨基酸序列如SEQ ID NO:3 所示的多肽。 D) the amino acid sequence of the polypeptide shown in SEQ ID NO:3.
2). 一种基因该基因的多核苷酸序列为选自以下任一的多核苷酸序列: 2). A gene The polynucleotide sequence of the gene is a polynucleotide sequence selected from any of the following:
A)包含如SEQ ID NO.1 所示的核苷酸序列的多核苷酸; A) a polynucleotide comprising the nucleotide sequence shown in SEQ ID NO.1;
B)包含对应于如SEQ ID NO.1 所示的核苷酸序列中的第-1395到-1406位核苷酸为GGGGGGGGGGGG保持不变,在除此之外的核苷酸序列中经缺失、替换、插入一个或多个核苷酸所得的多核苷酸序列,其所编码的多肽具有抗高温功能; B) Contains the nucleotides corresponding to positions -1395 to -1406 in the nucleotide sequence shown in SEQ ID NO.1 as GGGGGGGGGGGG remains unchanged, and is deleted in other nucleotide sequences, The polynucleotide sequence obtained by replacing or inserting one or more nucleotides, and the encoded polypeptide has the function of anti-high temperature;
C)具有SEQ ID NO.1 所示的核苷酸序列的多核苷酸; C) a polynucleotide having the nucleotide sequence shown in SEQ ID NO.1;
D)核苷酸序列如SEQ ID NO:1所示的多核苷酸; D) nucleotide sequence such as the polynucleotide shown in SEQ ID NO:1;
E)编码如权利要求1所述任一种的多肽的多核苷酸序列。 E) A polynucleotide sequence encoding the polypeptide of any one of claim 1.
3). 包含项所述2的基因的载体。 3). A vector comprising the gene of item 2. the
4). 一种宿主细胞,其特征在于所述的细胞包含项1所述的多肽,或者项2所述的基因,或者项3 所述的载体,所述宿主细胞优选真核生物细胞,更优选植物细胞和酵母细胞,所述植物细胞优选禾本科植物细胞,特别优选水稻(Oryza sativa L.)细胞。 4). A host cell, characterized in that the cell comprises the polypeptide described in item 1, or the gene described in item 2, or the vector described in item 3, the host cell is preferably a eukaryotic cell, and more Preference is given to plant cells and yeast cells, preferably grass cells, particularly rice ( Oryza sativa L.) cells.
5). 用于筛选、定位、分离新核苷酸序列的分子标记,所述标记选自: 5). Molecular markers for screening, locating and isolating new nucleotide sequences, the markers are selected from:
A)插入/缺失标记InDel5,该标记位于水稻第九染色体距短臂端9130-9150kb之间,所述标记的扩增产物具有长度多态性; A) Insertion/deletion marker InDel5, which is located between 9130-9150kb from the short arm end of rice chromosome 9, and the amplified product of the marker has a length polymorphism;
B)SNP标记,简称RBsp1407,在感高温水稻和抗高温水稻植株中,基于SEQ ID NO:1所述多核苷酸序列,所述标记对应序列分别为TGT-3060ACA 和TGG-3060ACA; B) SNP marker, referred to as RBsp1407, in high temperature sensitive rice and high temperature resistant rice plants, based on the polynucleotide sequence described in SEQ ID NO: 1, the corresponding sequences of the markers are TGT-3060ACA and TGG-3060ACA, respectively;
C)微卫星DNA标记RM7364,该标记位于水稻第九染色体距短臂端9440-9450kb之间,所述标记经引物的扩增产物具有长度多态性。 C) Microsatellite DNA marker RM7364, which is located between 9440-9450kb from the short arm of rice chromosome 9, and the amplified product of the marker through primers has length polymorphism.
6).项5所述的标记在筛选、定位、分离抗/感高温基因中的应用,其中所述的高温优选42℃或以上,45℃或以上,48℃或以上,或50℃或以上。 6). The application of the marker described in item 5 in screening, locating, and isolating high temperature resistance/sensitivity genes, wherein the high temperature is preferably 42°C or above, 45°C or above, 48°C or above, or 50°C or above . the
7). 植物育种方法,所述方法包含应用项2所述的基因,或应用项1所述的多肽,或项3所述的载体,或项4所述的宿主细胞,或项5或6所述的标记。 7). The plant breeding method, the method comprising the gene described in item 2, or the polypeptide described in item 1, or the vector described in item 3, or the host cell described in item 4, or item 5 or 6 said markup. the
8).使温度敏感型水稻恢复为非温度敏感型水稻的方法,该方法包括通过遗传操作使温度敏感型水稻基因组第9号染色体中相应于SEQ ID NO:1第-3060位的核苷酸突变为G。 8). A method for restoring temperature-sensitive rice to non-temperature-sensitive rice, the method comprising genetically manipulating the nucleotide corresponding to position -3060 of SEQ ID NO: 1 in chromosome 9 of the temperature-sensitive rice genome Mutate to G. the
9).诱导水稻抗高温表型的方法,该方法包括通过遗传操作使不具备抗高温表型的水稻基因组第9号染色体中相应于SEQ ID NO:1第-1394位的5′端插入G,其中,所述的高温优选42℃或以上,45℃或以上,48℃或以上,或50℃或以上。 9). A method for inducing a high temperature resistance phenotype in rice, the method comprising inserting G into the 5′ end corresponding to position -1394 of SEQ ID NO: 1 in chromosome 9 of the rice genome that does not have a high temperature resistance phenotype through genetic manipulation , wherein the high temperature is preferably 42°C or above, 45°C or above, 48°C or above, or 50°C or above. the
10).使温度敏感型水稻为抗高温型水稻的方法,该方法包括通过遗传操作使温度敏感型水稻基因组第9号染色体中相应于SEQ ID NO:1第-3060位的核苷酸突变为G,并且使其温度敏感型水稻基因组第9号染色体中第-1394位的5′端上游插入一个G,使所得核苷酸序列与SEQ ID NO.1 所示的核苷酸序列中的第-1395到-1406位核苷酸相同,即自-1395位起远离起始密码子方向序列包含连续的12个G,其中,所述的高温优选42℃或以上,45℃或以上,48℃或以上,或50℃或以上。 10). A method for making temperature-sensitive rice a high-temperature-resistant rice, the method comprising mutating the nucleotide corresponding to position -3060 of SEQ ID NO: 1 in chromosome 9 of the temperature-sensitive rice genome through genetic manipulation to G, and a G is inserted upstream of the 5' end of position -1394 in the temperature-sensitive rice genome chromosome 9, so that the resulting nucleotide sequence is the same as that of the nucleotide sequence shown in SEQ ID NO.1 Nucleotides from -1395 to -1406 are the same, that is, the sequence away from the start codon from -1395 contains 12 consecutive Gs, wherein the high temperature is preferably 42°C or above, 45°C or above, and 48°C or above, or 50°C or above. the
11)本发明涉及用于鉴定植物抗高温特性的方法,所述方法可概括如下:即以两叶一心期至三叶一心期的土培秧苗,经45-48℃高温处理79h, 恢复5d后观察温度反应结果,作为耐高温鉴定的标准程序,相对湿度和其它栽条件设置在相同水平上。 11) The present invention relates to a method for identifying the high temperature resistance characteristics of plants. The method can be summarized as follows: that is, the seedlings are cultivated in the soil at the stage of two leaves and one heart to three leaves and one heart stage, and are subjected to high temperature treatment at 45-48°C for 79 hours, and after recovery for 5 days Observe the temperature response results. As a standard procedure for high temperature identification, relative humidity and other plant conditions are set at the same level. the
12)上述第11项所述方法,优选还包括每次所用盆栽盆的大小均为长43cm,宽33cm和高10cm,盆栽土经称量后等量加入,栽培规格为每品种5行,每行12株,周围种植1行高温材料作为保护行,以消除边际影响,保护行和正式实验材料间预留清晰的界限;处理时生长箱内的湿度设定为75%,光暗周期轮换的时长设定为12h。 12) The method described in item 11 above preferably also includes the pots used each time are 43cm long, 33cm wide and 10cm high, and the potting soil is weighed and added in equal amounts. The cultivation specification is 5 rows per variety, and each 12 plants were planted in a row, and 1 row of high-temperature material was planted as a protection row to eliminate the marginal influence, and a clear boundary was reserved between the protection row and the formal experimental materials; the humidity in the growth chamber was set at 75% during treatment, and the light-dark cycle rotation The duration is set to 12h. the
附图说明 Description of drawings
图1 高温胁迫处理试验和抗、感品种HT54 及HT13 的耐高温反应。图中所示为处在两叶一心期的土培苗经不同高温处理79 小时恢复5 天后的生长状况, A:42℃高温处理;B:45℃高温处理;C:48℃高温处理;从图中照片结果可以看出,抗高温品种HT54和感高温品种HT13 对45℃和48℃高温处理的热激反应都呈现质的存活与死亡差异。 Fig. 1 High temperature stress treatment test and the high temperature resistance response of resistant and susceptible varieties HT54 and HT13. The figure shows the growth status of soil-cultured seedlings at the two-leaf and one-heart stage after 79 hours of different high-temperature treatments and recovery for 5 days. A: 42°C high-temperature treatment; B: 45°C high-temperature treatment; C: 48°C high-temperature treatment; From the photos in the figure, it can be seen that the heat shock response of the high temperature resistant variety HT54 and the high temperature sensitive variety HT13 to the high temperature treatment of 45°C and 48°C showed qualitative differences in survival and death. the
图2为水稻抗高温基因定位建立的微卫星分子标记(SSLP)连锁遗传图。标记间的图距为物理距离。 Figure 2 is the linkage genetic map of microsatellite molecular markers (SSLP) established by mapping high temperature resistance genes in rice. The distance between the markers is the physical distance. the
图3 HT54 (抗)X HT13 (感)杂种F2 代抗高温位点的初步连锁群检测结果。所用的分子标记为位于水稻第九连锁群的SSR 标记RM444。图中,M表示分子量标记; RP为抗高温亲本;SP为感高温亲本;RB为抗高温极端单株DNA池;SB为感高温极端单株DNA池; F1为杂种一代植株;1-9为F2隐性感高温极端单株。 Fig. 3 Preliminary linkage group detection results of high temperature resistant loci in the F2 generation of HT54 (anti)X HT13 (sensible) hybrids. The molecular marker used was the SSR marker RM444 located in the ninth linkage group of rice. In the figure, M represents the molecular weight marker; RP is the high-temperature-resistant parent; SP is the high-temperature-sensitive parent; RB is the extreme high-temperature-resistant single-plant DNA pool; SB is the high-temperature-sensitive extreme single-plant DNA pool; F2 recessive high temperature extreme single plant. the
图4 抗高温基因OsHTAS在第9染色体上的连锁遗传图谱。(a):由61株定位群体产生的连锁遗传图谱;(b):由131株定位群体对(a)图中黑色区段精细定位产生的连锁遗传图谱。 Fig. 4 Linkage genetic map of high temperature resistance gene OsHTAS on chromosome 9. (a): Linkage genetic map generated from 61 mapped populations; (b): Linked genetic map generated from fine mapping of 131 mapped populations to the black segment in (a). the
图5 利用候选基因(ZFP)序列中于抗、感高温亲本间呈现的一个单核苷酸多态性(SNP)转换的PCR-RFLP 标记对用InDel5 和RM7364 标记定位时作图群体中出现的交换株进行检测的结果。图中,M、RP、SP、S 分别表示分子量标记(DL2000)、抗高温亲本HT54、感高温亲本HT13 和3 个交换株。 Figure 5. Using a single nucleotide polymorphism (SNP) conversion in the candidate gene (ZFP) sequence between the high-temperature-resistant and high-temperature-sensitive parents, the PCR-RFLP markers appear in the mapping population when the InDel5 and RM7364 markers are used for mapping The results of the detection of the exchanged strains. In the figure, M, RP, SP, S represent the molecular weight marker (DL2000), the high temperature resistant parent HT54, the high temperature sensitive parent HT13 and the three exchanged strains, respectively. the
图6 ZFP 抗、感等位基因对45℃高温胁迫处理的动态表达模式分析。所用的分析方法为RT-PCR 半定量分析法。PCR 扩增数为25 个循环,并以水稻肌动蛋白基因actin 作为内标。图中,从上至下4 排分别为HT54(抗)/actin、HT13(感)/actin、HT54(抗)/ZFP 和HT13(感)/ZFP。图中可见,ZFP 在处理6 小时的抗、感高温样本中分别呈上调和下调表达。 Fig. 6 Dynamic expression pattern analysis of ZFP resistant and susceptible alleles to 45°C high temperature stress treatment. The analysis method used is RT-PCR semi-quantitative analysis. The number of PCR amplifications was 25 cycles, and the rice actin gene actin was used as an internal standard. In the figure, the four rows from top to bottom are HT54 (anti)/actin, HT13 (sense)/actin, HT54 (anti)/ZFP and HT13 (sense)/ZFP. As can be seen in the figure, ZFP was up-regulated and down-regulated in the high temperature-resistant and sensitive samples treated for 6 hours, respectively. the
图7抗高温基因OsZFP编码序列的亚细胞定位分析。图中显示:与对照35S-YFP相比,35S-ZFP-YFP即抗高温基因编码产物与黄色荧光蛋白的融合蛋白主要定位于细胞膜上。
Fig. 7 Subcellular localization analysis of the high temperature resistant gene OsZFP coding sequence. The figure shows that compared with the
图8 本申请中所涉及的抗高温基因OsZFP DNA序列、编码序列及其产物氨基酸列。 Fig. 8 The high temperature resistance gene OsZFP DNA sequence, coding sequence and its product amino acid sequence involved in this application.
发明详述 Detailed description of the invention
为解决上述问题,本发明人经过锐意研究,在大量试验结果的基础上,完成了本发明。以下结合附图对本发明进行具体说明。 In order to solve the above-mentioned problems, the present inventors have completed the present invention on the basis of a large number of test results after earnest research. The present invention will be described in detail below in conjunction with the accompanying drawings.
一,水稻苗期耐高温标准化鉴定程序 1. Standardized identification procedure for rice seedling high temperature tolerance
首先,发明人建立了水稻苗期耐高温标准化鉴定程序。该鉴定程序的突出优点是抗、感分型清楚、结果重衍性好、实际应用性强。因此,该程序的建立将为水稻抗高温种质资源材料的筛选、评价,抗高温基因的遗传分析、染色体定位与克隆提供良好的技术基础。具体鉴定内容请参见实施例1所述的内容。 First, the inventor established a standardized identification procedure for high temperature tolerance of rice seedlings. The outstanding advantages of this identification program are clear classification of resistance and sensitivity, good reproducibility of results, and strong practical applicability. Therefore, the establishment of this program will provide a good technical basis for the screening and evaluation of rice high-temperature-resistant germplasm resources, genetic analysis of high-temperature-resistant genes, chromosome mapping and cloning. Please refer to the content described in Example 1 for specific identification content.
二,水稻抗高温基因进行了分子定位 2. Molecular mapping of rice high temperature resistance genes
在以上试验结果的基础上,发明人利用抗高温水稻材料HT54、感高温水稻材料HT13及其杂交后代F1和F2为示例性试验材料,对水稻抗高温基因进行了分子定位。 On the basis of the above test results, the inventors used the high-temperature-resistant rice material HT54, the high-temperature-sensitive rice material HT13 and their hybrid offspring F1 and F2 as exemplary test materials to carry out molecular mapping of rice high-temperature resistance genes.
试验方法 experiment method
(1). 亲本多态性标记的筛选 (1). Screening of parental polymorphic markers
水稻抗高温基因的分子定位选用多态性高和重复性好的微卫星DNA 长度多态性分子标记(SSLP)进行,所用SSR引物均根据Gramene数据库(www.gramene.org)和NCBI(www.ncbi.nlm.nih.gov)数据库上公布的引物序列,由上海生物工程技术服务公司合成。 The molecular mapping of high temperature resistance genes in rice was carried out using microsatellite DNA length polymorphism molecular markers (SSLP) with high polymorphism and good repeatability. The SSR primers used were based on the Gramene database (www.gramene.org) and NCBI (www. ncbi.nlm.nih.gov) database and synthesized by Shanghai Bioengineering Technology Service Company.
水稻基因组DNA的抽提采用McCouch等(1988)报道的小量DNA提取法。具体方法步骤如下:1)剪取一小片叶片4-5 cm,加入700μL 1.5 × CTAB(含1.5% CTAB,75 mM Tris-HCI,15mM EDTA,1.05 M NaCl),充分研磨;2)将研磨的匀浆转入1.5 ml的离心管,56℃水浴20 min后冷却至室温;3)加入等体积的氯仿:异戊醇(24:1),摇匀;4)最高速度(13200 rpm)离心10 min;5)将上清液转入新的离心管,并加入两倍体积的预冷的100%酒精,静止20 min后离心收集DNA;6)去上清,风干DNA,加50-100 μL双蒸水,于紫外分光光度计中检测,稀释DNA浓度,制备一套DNA工作溶液,其浓度为50-100ng/μL左右,4℃冰箱保存备用。 Rice genomic DNA was extracted using a small amount of DNA extraction method reported by McCouch et al. (1988). The specific method steps are as follows: 1) Cut a small piece of leaf 4-5 cm, add 700μL 1.5 × CTAB (containing 1.5% CTAB, 75 mM Tris-HCl, 15mM EDTA, 1.05 M NaCl), fully grind; 2) Grind the Transfer the homogenate to a 1.5 ml centrifuge tube, cool to room temperature in a water bath at 56°C for 20 min; 3) Add an equal volume of chloroform:isoamyl alcohol (24:1) and shake well; 4) Centrifuge at the highest speed (13200 rpm) for 10 min; 5) Transfer the supernatant to a new centrifuge tube, add twice the volume of pre-cooled 100% ethanol, and centrifuge to collect DNA after standing still for 20 min; 6) Remove the supernatant, air-dry the DNA, and add 50-100 μL Double-distilled water, tested in the ultraviolet spectrophotometer, dilute the DNA concentration, and prepare a set of DNA working solution, the concentration of which is about 50-100ng/μL, and store it in the refrigerator at 4°C for later use. the
2) 定位群体的构建 2) Construction of targeting groups
2008年秋在广东农科院水稻所试验基地以抗高温材料HT54为父本、高温敏感材料HT13为母本配制杂交组合。母本HT13以“温汤杀雄”的方法进行处理,考虑到HT13是对温度敏感的材料,温汤杀雄的温度的设定比通常情况低2℃,以避免其雌蕊受到伤害。具体做法是:于水稻抽穗期,在晴天的上午7:30左右,选好母本HT13的穗子(抽出2/3),将水温调制到43℃的暖水瓶倒置套住母穗,并用棉花塞住瓶口保温,8min后取出穗子,抖掉水珠,有部分颖花(已开花授粉或过几天才能开花)不开,应全部剪去,并立即套上纸袋,9:00左右取父本HT54的穗子,穗柄插在装有自来水的瓶中,以黑布罩住,待一个小时后,父本上的大部分小花均盛开,把花粉抖落在已进行高温杀雄并且开颖良好的母穗柱头上,重复2-3次授粉。授粉后立即给母穗套上牛皮纸袋,袋口用回形针夹住,但不要夹住穗梗,挂上牌子,记上名称及杂交日期,待8天左右可以取下纸袋,成熟时收获F1种子。 In the autumn of 2008, a hybrid combination was prepared in the experimental base of the Rice Institute of Guangdong Academy of Agricultural Sciences, using the high temperature resistant material HT54 as the male parent and the high temperature sensitive material HT13 as the female parent. The female parent HT13 was treated with the method of "killing males in warm soup". Considering that HT13 is a material sensitive to temperature, the temperature for killing males in warm soup was set 2°C lower than usual to avoid damage to its pistils. The specific method is: at the earing stage of rice, at around 7:30 in the morning on a sunny day, select the ears of the female parent HT13 (take out 2/3), turn the thermos bottle with the water temperature adjusted to 43°C upside down to cover the ears, and plug them with cotton Keep warm at the mouth of the bottle. After 8 minutes, take out the tassels and shake off the water drops. If some spikelets (have bloomed and pollinated or will bloom after a few days) will not open, they should be cut off and put in a paper bag immediately. Take the male parent around 9:00 For the tassels of HT54, the stalks were inserted in a bottle filled with tap water and covered with a black cloth. After one hour, most of the florets on the male parent were in full bloom, and the pollen was shaken off on the surface that had been killed by high temperature and had good glumes. Repeat pollination 2-3 times on the stigma of the ear. Immediately after pollination, put a kraft paper bag on the mother ear, and clamp the bag mouth with a paper clip, but do not clamp the ear stem, hang a sign, record the name and hybridization date, and take off the paper bag after about 8 days, and harvest F1 seeds when they are mature .
2008年冬在海南种植杂种F1,待植株长大后取叶片提取DNA,利用两亲本具有多态性的SSR标记3-4对检验植株是否为真杂种,并在植株抽穗后套袋自交收获F2种子用于后续抗高温鉴定,通过高温处理后的抗、感比进行抗高温基因的遗传分析并对抗高温基因定位。 In the winter of 2008, the hybrid F1 was planted in Hainan. After the plants grew up, the leaves were taken to extract DNA, and the polymorphic SSR marker 3-4 pair of the two parents was used to test whether the plants were true hybrids, and the plants were bagged and self-harvested after heading. F2 seeds were used for subsequent identification of high temperature resistance, and the genetic analysis of high temperature resistance genes was carried out through the resistance and sensitivity ratios after high temperature treatment, and the high temperature resistance genes were mapped. the
3) 高温处理程序 3) High temperature treatment procedure
按照前述秧苗培养方法和标准化的高温处理程序对亲本、F1和F2进行高温处理。具体步骤是:a.育苗盆准备,即向每盆育苗盆(大小为43cm×33cm×10cm)中加入等量的、且已经过筛、并经充分混匀的稻田土;b. 播种,即把催芽的种子点播在盆中,11行/盆,18粒/行,同时,播种亲本各1行/盘作对照,周围设置2行保护行。肥水管理同一般盆栽水稻管理; C.取样,待秧苗长至三叶期时,每株取第2片叶约2-3cm置于-80℃冰箱,用于鉴定后对敏感单株提取DNA。D.待秧苗恢复生长2天后,即第3片叶即将完全长出的前一天,移入人工气候箱进行高温处理。人工气候箱设置具体如下:33℃1h(光照Light,简写为L,下同)→ 36℃1h(L)→ 39℃1h(L)→ 42℃1h(L)→ 45℃1h(L)→ 48℃7h(L)→ 48℃12h(黑暗Dark,简写为D,下同)→ 48℃12h(L)→ 48℃12h(D)→ 48℃12h(L)→48℃12h(D)→ 48℃12h(L)。湿度75%。
The parents, F1 and F2 were subjected to high temperature treatment according to the aforementioned seedling culture method and standardized high temperature treatment procedure. The specific steps are: a. Prepare seedling pots, that is, add an equal amount of paddy field soil that has been sieved and fully mixed into each pot of seedling pots (43cm×33cm×10cm in size); b. Sowing, that is Sow the germinated seeds on demand in pots, 11 rows/pot, 18 seeds/row. At the same time, sow 1 row/dish of each parent as a control, and set up 2 rows of protection rows around it. Fertilizer and water management is the same as general potted rice management; C. Sampling. When the seedlings grow to the three-leaf stage, take the second leaf about 2-3cm from each plant and place it in a -80°C refrigerator for DNA extraction from sensitive individual plants after identification. D. After the seedlings resume growth for 2 days, that is, the day before the third leaf is about to grow completely, move them into an artificial climate box for high temperature treatment. The settings of the artificial climate chamber are as follows: 33°
(4). PCR反应程序及检测 (4). PCR reaction procedure and detection
SSR分析主要参照Wu等(1993)的方法修订而成,PCR为25 μL体系:2.5 μL 10×缓冲液(Mg2+);0.5μl 10Mm dNTP;1.0μl 5μM 5′-引物;1.0 μl 5μM 3′-引物;0.5 μl Taq 聚合酶;1.0 μl DNA; 18.5 μl ddH2O。dNTP订购于上海生工,Taq聚合酶订购于鼎国。PCR扩增程序为: 94℃先预变性5 min,然后开始35个循环(94℃变性45s,选择引物适合的温度50-60℃退火45s,72℃延伸45s),接着72℃继续延伸10 min。扩增产物用3%的琼脂糖凝胶电泳(AGE)或4%变性聚丙烯酰胺凝胶电泳(PAGE)检测。 The SSR analysis was mainly revised based on the method of Wu et al. (1993). The PCR system was 25 μL: 2.5 μL 10× buffer (Mg2+); 0.5 μl 10Mm dNTP; 1.0 μl 5 μM 5′-primer; 1.0 μl 5 μM 3′- Primers; 0.5 μl Taq polymerase; 1.0 μl DNA; 18.5 μl ddH 2 O. dNTP was ordered from Shanghai Sangong, and Taq polymerase was ordered from Dingguo. The PCR amplification program is: 94°C pre-denaturation for 5 minutes, then start 35 cycles (94°C denaturation for 45s, select a suitable temperature for primers to anneal at 50-60°C for 45s, 72°C for 45s extension), and then continue to extend at 72°C for 10 minutes . Amplified products were detected by 3% agarose gel electrophoresis (AGE) or 4% denaturing polyacrylamide gel electrophoresis (PAGE).
(5). 抗高温基因的初步定位 (5). Preliminary mapping of high temperature resistance genes
选用F2代分离群体构建作图群体,基因定位采用隐性极端群体法,所用分子标记为微卫星DNA多态性分子标记(SSLP)。其具体程序是,首先对F2分离群体进行高温处理,筛选出感高温的单株用作基因定位的作图群体。然后,从F2分离群体中,随机挑选抗、感高温类型单株各10株,将叶片等量混合后研磨抽提DNA,用于构建感、抗高温的DNA池。之后,利用亲本间具有多态性的SSLP标记(Chen et al., 1997; Temnykh et al.,2000),对两个DNA池首先进行标记分析,筛选出在两个DNA池中具有多态性的标记,籍此,初步确定基因所在的连锁群。在此基础上,再用在DNA池中获得的多态性标记对上述F2分离世代中隐性极端个体构建的作图群体逐一进行基因型测定,所获得的数据用于目标基因的初步定位。 The F2 generation segregation population was selected to construct the mapping population, and the recessive extreme population method was used for gene positioning, and the molecular marker used was microsatellite DNA polymorphism molecular marker (SSLP). The specific procedure is as follows: firstly, the F2 segregation population is subjected to high-temperature treatment, and individual plants sensitive to high temperature are screened out to be used as a mapping population for gene positioning. Then, from the F2 segregation population, 10 high-temperature-resistant and high-temperature-sensitive plants were randomly selected, and the leaves were mixed in equal amounts and ground to extract DNA, which was used to construct sensitive and high-temperature-resistant DNA pools. After that, using the polymorphic SSLP markers between the parents (Chen et al., 1997; Temnykh et al., 2000), the two DNA pools were first analyzed for markers, and the polymorphisms in the two DNA pools were screened out. Markers, whereby the linkage group where the gene is located is preliminarily determined. On this basis, the polymorphic markers obtained in the DNA pool were used to perform genotype determination on the mapping population constructed by the recessive extreme individuals in the above-mentioned F2 segregation generation one by one, and the obtained data were used for the preliminary positioning of the target gene.
(6). 抗高温基因的精细定位 (6). Fine mapping of high temperature resistance genes
在初步定位的基础上,进一步对定位区段进行标记加密分析,使其定位区段的长度至少,所用的SSLP标记或从禾本科基因组数据库中(http://www.gramene.org)获得,亦或是自己根据基因组序列设计合成,直到这类标记在目的基因涉及的连锁群上被用完为止。然后,利用生物学信息对标记区间(一般至少要小于或等于0.5Mb)内的编码序列进行生物学功能预测和分子特征化(包括基序、功能域、保守序列和调控序列等)分析,以便确定出候选基因。之后,针对候选基因设计特异引物,并通过TA克隆对候选基因进行克隆与测序,根据是否存在差异预测出目的基因。 On the basis of the preliminary positioning, the marker encryption analysis is further performed on the positioning segment to make the length of the positioning segment at least. The SSLP marker used can be obtained from the Poaceae Genome Database (http://www.gramene.org), Or design and synthesize it yourself based on the genome sequence until such markers are used up on the linkage groups involved in the target gene. Then, biological function prediction and molecular characterization (including motifs, functional domains, conserved sequences, and regulatory sequences, etc.) analysis of the coding sequence in the marker interval (generally at least 0.5Mb) is performed using biological information, so that Candidate genes were identified. Afterwards, specific primers were designed for the candidate genes, and the candidate genes were cloned and sequenced by TA cloning, and the target genes were predicted according to whether there were differences.
(7). 遗传距离的计算 (7). Calculation of genetic distance
将电泳图片结果进行数值统计转换:与HT54带型一致的记为A,与HT13带型一致的记为B,同时具有两亲本带型的记为H,没有带的记为-。 The results of the electrophoresis pictures were converted into numerical statistics: the ones consistent with the band type of HT54 were marked as A, those consistent with the band type of HT13 were marked as B, those with both parental bands were marked as H, and those without bands were marked as -.
连锁遗传分析采用MAPMAKER3.0软件(Lander et al, 1987)进行分析,计算遗传距离(cM),并进行遗传作图Mapdraw2.1(刘仁虎和孟金陵,2003),对抗高温基因进行定位分析。 Linkage genetic analysis was carried out using MAPMAKER3.0 software (Lander et al, 1987) to calculate the genetic distance (cM), and genetic mapping Mapdraw2.1 (Liu Renhu and Meng Jinling, 2003) was used to locate and analyze the anti-high temperature genes. the
为精确定位所述基因,发明还开发了一种新的定位标记,所述标记的制备示例请参见下文中的实施例2。 In order to precisely locate the gene, the inventor has also developed a new localization marker. For the preparation example of the marker, please refer to Example 2 below. the
遗传分析与基因定位结果 Genetic analysis and gene mapping results
1) 亲本多态性筛选和分子图谱建立 1) Parental polymorphism screening and molecular map establishment
总共使用了2304个SSLP分子标记对亲本进行了多态性筛选,从中筛选出322个在亲本间具有多态性的SSLP标记分子,其在染色体上的分布按照物理距离度量如图6,除第9染色体和着丝点附近外,获得的多态性SSLP标记较均匀覆盖了各个染色体。 A total of 2304 SSLP molecular markers were used to screen the parents for polymorphism, and 322 SSLP marker molecules with polymorphism among the parents were screened out. Their distribution on the chromosome is measured by physical distance as shown in Figure 6, except for the first Except for chromosome 9 and near the centromere, the obtained polymorphic SSLP markers covered each chromosome more evenly.
水稻抗高温基因定位建立的微卫星分子标记(SSLP)连锁遗传图如图2所示。标记间的图距为物理距离。 The linkage genetic map of microsatellite molecular markers (SSLP) established by mapping high temperature resistance genes in rice is shown in Figure 2. The distance between the markers is the physical distance. the
2) 遗传分析证实HT54在苗期的抗高温特性是受主效显性单基因控制 2) Genetic analysis confirmed that the high temperature resistance of HT54 at the seedling stage is controlled by a dominant single gene
利用标准化的高温处理程序于两叶一心期对亲本、杂种F1和F2进行高温处理。结果表明:高温处理后的F1植株完全存活,F2群体则呈现明显的抗、感分离,其中,抗高温植株442株,感高温植株152株,抗、感分离符合3:1的分离比率(见表1),卡平方测验,P>0.05,表明差异未达显著水平。该结果因此说明HT54在苗期的抗高温特性是受主效显性单基因控制,该基因现被命名为OsHTAS ( Oryza sativa Heat Tolerance at Seedling stage)。 The parents, hybrids F1 and F2 were subjected to high temperature treatment at the two-leaf one-heart stage using a standardized high-temperature treatment program. The results showed that the F1 plants survived the high temperature treatment completely, and the F2 population showed obvious separation of resistance and sensitivity. Among them, there were 442 high temperature resistant plants and 152 high temperature sensitive plants, and the resistance and sensitivity separation met the segregation ratio of 3:1 (see Table 1), chi-square test, P>0.05, indicating that the difference did not reach a significant level. This result therefore shows that the high temperature resistance of HT54 at the seedling stage is controlled by a dominant single gene, which is now named OsHTAS ( O ryza s ativa Heat Tolerance a t Seedling stage).
表1 HT54抗高温特性的遗传分析结果 Table 1 Results of genetic analysis of HT54 high temperature resistance characteristics
3) 初步定位显示抗高温基因位于水稻第9连锁群 3) Preliminary mapping shows that the high temperature resistance gene is located in rice linkage group 9
在322对于亲本间有多态性的SSLP标记中,发现只有RM444检测抗高温DNA池时呈现杂合带型,且感高温DNA池和敏感亲本一致,这说明RM444可能与目标基因连锁 (参见图3)。另外,在F1的PCR扩增产物中,两个亲本带型扩增强度基本一致;抗高温DNA池带型为杂合型,但其中的HT54带型明显强于HT13的带,暗示抗高温DNA池可能包含抗高温纯合体和杂合体两种;而感高温DNA池带型基本上为HT13带型,说明该DNA池主要由感高温的隐性纯合单株的DNA组成,因而预示所用的分子标记与目标抗高温基因可能连锁。于是,从高温处理过的F2群体中选择了61株隐性极端感高温单株和40株抗高温单株构建了两个验证群体,进行RM444标记分析。结果显示:61株隐形极端感高温单株中有13株为杂合带型,43株为HT13带型,5株为无带,0株为HT54带型;而40抗高温植株中有23株为杂合带型,2株为HT13带型,15株为HT54带型。这些结果因而进一步验证了RM444标记是和抗高温基因OsHTAS连锁的。 Among the 322 SSLP markers with polymorphism between parents, it was found that only RM444 showed a heterozygous band pattern when detecting the high temperature resistant DNA pool, and the high temperature sensitive DNA pool was consistent with the sensitive parent, which indicated that RM444 may be linked to the target gene (see Figure 3). In addition, in the PCR amplification product of F1, the amplification intensity of the two parental bands is basically the same; the band type of the high temperature resistant DNA pool is heterozygous, but the band type of HT54 is obviously stronger than that of HT13, implying that the band type of high temperature resistant DNA The pool may contain two types of high temperature resistant homozygous and heterozygous; while the band type of the high temperature sensitive DNA pool is basically HT13 band type, indicating that the DNA pool is mainly composed of DNA of recessive homozygous individual plants sensitive to high temperature, thus indicating that the used Molecular markers may be linked with target high temperature resistance genes. Therefore, 61 recessive extreme high-temperature-sensitive individuals and 40 high-temperature-resistant individuals were selected from the high-temperature-treated F2 population to construct two verification populations for RM444 marker analysis. The results showed that among the 61 invisible extreme high temperature individual plants, 13 were of the heterozygous band type, 43 were of the HT13 band type, 5 were of no band type, and 0 were of the HT54 band type; and 23 of the 40 high temperature resistant plants It is heterozygous banding type, 2 strains are HT13 banding type, and 15 strains are HT54 banding type. These results thus further verified that the RM444 marker is linked to the high temperature resistance gene OsHTAS.
4) 精细定位进一步将抗高温基因定位于两个分子标记 RM7364和InDel5之间,该区间的实际物理距离为420bp 4) Fine mapping further locates the high temperature resistance gene between two molecular markers RM7364 and InDel5, the actual physical distance of this interval is 420bp
从www.gramene.org网站上的数据库中搜寻第九号染色体的短臂端(即RM444上方)引物,进行亲本标记型分析,共找到3个在亲本间具有多态性的SSLP标记,它们分别是RM23687、RM23719和RGNMS2991。利用这三个标记扫描之前用过的61株定位群体后,发现RM23719和RM23687确实与抗高温的OsHTAS基因连锁(图4a),其连锁距离分别为12.2 cM和13.1 cM,而RGNM2991未能获得有效数据;另外,还发现RM23719紧邻地位于RM444的下方,两者的遗传距离为0.9 cM(图4a),但两者的实际物理距离为4.48Mb;而RM23687接近端点(两者相距1.07Mp),与RM23719相距1.01Mb,但检测到的与抗高温基因OsHTAS间的连锁遗传距离达到17.9 cM之多。根据禾本科基因组数据库列出的水稻第9染色体上的信息,发现之所以检测到上述这种不正常的连锁遗传情况,可能是由于RM23719靠近离着丝点的缘故。由此,推测抗高温基因可能在RM444的下方,即水稻第9染色体的长臂端。 From the database on the website www.gramene.org, search for the primers at the short arm end of chromosome 9 (that is, above RM444) and analyze the parental markers. A total of 3 SSLP markers with polymorphisms between the parents were found. They were respectively It is RM23687, RM23719 and RGNMS2991. After using these three markers to scan the previously used 61-strain mapping population, it was found that RM23719 and RM23687 were indeed linked to the high temperature resistant OsHTAS gene (Fig. In addition, it was also found that RM23719 is located immediately below RM444, the genetic distance between the two is 0.9 cM (Figure 4a), but the actual physical distance between the two is 4.48Mb; while RM23687 is close to the endpoint (the distance between the two is 1.07Mp), It is 1.01Mb away from RM23719, but the detected linkage genetic distance with the high temperature resistance gene OsHTAS reaches as much as 17.9 cM. According to the information on rice chromosome 9 listed in the Gramineae Genome Database, it was found that the above abnormal linkage inheritance may be due to the proximity of RM23719 to the centromere. Therefore, it is speculated that the high temperature resistance gene may be below RM444, that is, the long arm of rice chromosome 9.
接着,从禾本科基因组数据库中搜索水稻第9染色体的长臂端(即RM444下面)引物,共找到114对SSLP引物,经亲本多态性分析,共找到10对具有亲本多态性的引物,它们分别是RM23982、RM23985、RM7364、RM24019、RM5777、RM240712、RM24075、RM24099、RM24102、以及RM24170 。对抗、感DNA池进行标记分析的结果显示:RM23982、RM23985、RM7364和RM24019在抗、感高温DNA池间也表现多态性,接着用这些标记对61株F2定位群体作进一步的标记分析,进而把抗高温基因OsHTAS定位在RM23985和RM7364 (见图8b) 之间。在未能在此区间进一步找到已知SSLP标记的情况下,转而依据籼粳稻基因组的序列信息设计了90对插入/缺失(Insertion/Deletion, InDel)标记,在对亲本进行标记分析后,共找到8对具有亲本多态性的引物,但只有InDel3和InDel5在亲本间的差异较大,且易于进行定位群体带型的辨别。 Next, search for primers at the long arm end of rice chromosome 9 (below RM444) from the Poaceae genome database, and find 114 pairs of SSLP primers. After parental polymorphism analysis, a total of 10 pairs of primers with parental polymorphisms were found. They are RM23982, RM23985, RM7364, RM24019, RM5777, RM240712, RM24075, RM24099, RM24102, and RM24170. The results of marker analysis of the resistant and sensitive DNA pools showed that: RM23982, RM23985, RM7364 and RM24019 also showed polymorphisms between the resistant and sensitive DNA pools, and then these markers were used for further marker analysis of the 61 strains of the F2 positioning population, and then The high temperature resistance gene OsHTAS was positioned between RM23985 and RM7364 (see Figure 8b). In the absence of further known SSLP markers in this interval, 90 pairs of insertion/deletion (Insertion/Deletion, InDel) markers were designed based on the sequence information of the indica and japonica rice genome. After marker analysis of the parents, a total of Eight pairs of primers with parental polymorphisms were found, but only InDel3 and InDel5 had large differences between the parents and were easy to identify the band patterns of the mapping population. the
抗高温基因OsHTAS在第9染色体上的连锁遗传图谱如图4所示。 The linkage genetic map of the high temperature resistance gene OsHTAS on chromosome 9 is shown in Figure 4. the
这两个插入/缺失标记的引物序列分别是,InDel3F: 5′-GTTTGCG ACATTGGAGCCTTC-3′和InDel3R:5′-AATGCTTGGGTATGCTAG GTGAA-3′;InDel5F: 5′-TCCTCGGAGATGTTTGACCTTG-3′和InDel5R: 5′- CAGAAGGTG TACGCAACTCTTGT-3′。 The primer sequences for these two insertion/deletion markers are, InDel3F: 5′-GTTTGCG ACATTGGAGCCTTC-3′ and InDel3R: 5′-AATGCTTGGGTATGCTAG GTGAA-3′; InDel5F: 5′-TCCTCGGAGATGTTTGACCTTG-3′ and InDel5R: 5′- CAGAAGGTG TACGCAACTCTTGT-3′. the
由此,利用这两个自主设计的插入缺失标记进一步把水稻抗高温基因OsHTAS定位在RM7364和InDel5之间,其基因和这两个紧密连锁标间的遗传距离分别为2.5cM和1.7cM,标记间的实际物理距离为420Kb。然后,将定位群体扩大至131株,所检测到的InDel3、InDel5、RM7364、RM24019与抗高温基因OsHTAS间的遗传连锁距离分别为4.0 cM、3.2 cM、1.2 cM和1.6 cM (图4b)。这些定位结果基本与前述61株定位群体的定位结果一致。 Therefore, using these two self-designed indel markers, the rice high temperature resistance gene OsHTAS was further located between RM7364 and InDel5, and the genetic distance between the gene and these two closely linked markers was 2.5cM and 1.7cM, respectively. The actual physical distance between them is 420Kb. Then, the mapping population was expanded to 131 strains, and the genetic linkage distances detected between InDel3, InDel5, RM7364, RM24019 and the high temperature resistance gene OsHTAS were 4.0 cM, 3.2 cM, 1.2 cM and 1.6 cM, respectively (Fig. 4b). These mapping results are basically consistent with those of the aforementioned 61 strains mapping populations. the
5) 所确认的候选基因为锌指蛋白基因,其在抗、感高温亲本间有两处SNP差异,并与由其中之一开发展的PCR-RFLP标记共分离 5) The identified candidate gene is the zinc finger protein gene, which has two SNP differences between the heat-resistant and sensitive parents, and co-segregates with the PCR-RFLP marker developed by one of them
由于在上述定位区间内难以再获得可供使用的多态性标记,转而利用现有的生物学数据库信息结合已公开发表的基因数据去筛选和确定候选基因。从http://rice.plantbiology.msu.edu/ 网站上搜索420Kb长的定位区段(从Indel5到RM7364)DNA序列总计找到60个已知和未知基因,其中,15个为编码反转录转座子蛋白的基因,6个为编码转座子蛋白的基因,27个为编码已知功能蛋白的基因,12个为编码未知功能蛋白的基因。已有的报道结果表明:有关的泛素结合酶蛋白(LOC_Os09g15320)和锌指蛋白(LOC_Os09g15430)基因均与水稻耐高温性相关,因此,将其初步确定为候选基因;接着,我们对标准化后的芯片数据进行分析,在8个苗期表达超过100的基因[核苷碱基-抗坏血酸转运蛋白(LOC_Os09g15170)、逆转座子蛋白(LOC_Os09g15250)、泛素结合蛋白(LOC_Os09g15320)、转运家族蛋白(LOC_Os09g15330)、水解酶(LOC_Os09g15340)、NAD依赖表异构酶/脱水酶(LOC_Os09g15420)、锌指蛋白(LOC_Os09g15430)和在DGCR区的富含丝氨酸/苏氨酸蛋白T10(LOC_Os09g15480)]中,泛素结合蛋白(LOC_Os09g1532)和锌指蛋白(LOC_Os09g15430)都是高量表达的,说明这两个基因对水稻苗期的生长发育起着重要的作用。于是,从抗、感亲本的幼苗叶组织中扩增这两个候选基因的cDNA序列和启动子及终止子基因组DNA序列进行测序,结果发现抗、感亲本的cDNA序列均没有差异,但锌指蛋白(LOC_Os09g15430)的5′端非翻译区及其启动子序列上各存在一处单碱基多态性(SNP)差异。由于启动子序列中的SNP差异导致一个限制性内切酶Bsp1407识别位点(T↓GTACA)的改变,籍此,设计了一个PCR-RFLP(CAPs)标记,记为RBsp1407。 Since it is difficult to obtain available polymorphic markers in the above positioning interval, the existing biological database information combined with published genetic data is used to screen and determine candidate genes. From the http://rice.plantbiology.msu.edu/ website, search the DNA sequence of the 420Kb long positioning segment (from Indel5 to RM7364) to find a total of 60 known and unknown genes, of which 15 are coding reverse transcription Among the genes of transposon proteins, 6 are genes encoding transposon proteins, 27 are genes encoding known functional proteins, and 12 are genes encoding unknown functional proteins. The results of the existing reports showed that the related ubiquitin-conjugating enzyme protein (LOC_Os09g15320) and zinc finger protein (LOC_Os09g15430) genes were related to high temperature tolerance in rice, therefore, they were initially identified as candidate genes; then, we normalized The microarray data were analyzed, and the genes expressed more than 100 in 8 seedling stages [nucleobase-ascorbic acid transporter (LOC_Os09g15170), retrotransposon protein (LOC_Os09g15250), ubiquitin-binding protein (LOC_Os09g15320), transporter family protein (LOC_Os09g15330) , hydrolase (LOC_Os09g15340), NAD-dependent epimerase/dehydratase (LOC_Os09g15420), zinc finger protein (LOC_Os09g15430), and the serine/threonine-rich protein T10 in the DGCR region (LOC_Os09g15480)], the ubiquitin-binding protein (LOC_Os09g1532) and zinc finger protein (LOC_Os09g15430) are highly expressed, indicating that these two genes play an important role in the growth and development of rice seedlings. Therefore, the cDNA sequences of these two candidate genes and the genomic DNA sequences of the promoter and terminator were amplified from the seedling leaf tissues of the resistant and susceptible parents for sequencing. It was found that the cDNA sequences of the resistant and susceptible parents were not different, but the zinc finger There is a single base polymorphism (SNP) difference in the 5' untranslated region of the protein (LOC_Os09g15430) and its promoter sequence. Due to the SNP difference in the promoter sequence, a restriction endonuclease Bsp1407 recognition site (T↓GTACA) was changed, so a PCR-RFLP (CAPs) marker was designed, denoted as RBsp1407.
该标记的PCR扩增产物的大小为580bp。对扩增后的PCR产物进行回收,然后利用内切酶Bsp1407Ⅰ酶(Promega)对此片段进行酶切,结果显示:HT54的扩增产物不能被酶切,片段大小依然为580bp,而HT13和131株作图群体中呈现的所有交换株均能被酶切,切开后产生大小为422bp和158bp两个片段(图5)。PRBsp1407I标记在InDel5和RM7364之间呈现0交换株这一试验结果说明:在所用定位群体大小条件下该标记和抗高温基因OsHTAS呈现共分离,由此进一步将候选基因确定为锌指蛋白基因。 The size of the PCR amplification product of the marker is 580bp. The amplified PCR product was recovered, and then the fragment was digested with endonuclease Bsp1407Ⅰ (Promega). The results showed that the amplified product of HT54 could not be digested, and the fragment size was still 580bp, while HT13 and 131 All the exchanged strains presented in the strain mapping population could be digested, and two fragments of 422bp and 158bp were produced after cutting (Figure 5). The test results of the PRBsp1407I marker showing zero crossover strains between InDel5 and RM7364 indicated that the marker and the high temperature resistance gene OsHTAS were co-segregated under the conditions of the used mapping population size, thereby further identifying the candidate gene as a zinc finger protein gene. the
以下通过具体实施例的方式对本发明的技术方案进行详细描述。本领域技术人员明了,所述具体实施方案是为有利于本领域技术人员再现本发明所给出的示例性技术信息,其不作为对本申请请求保护的权利要求的限制,基于所述示例试验方案的改变,只要其技术方案和其所达到的有益效果不背离本发明的主旨,则经所述改变的技术方案均应包含在本申请的保护范围之内。 The technical solutions of the present invention are described in detail below by means of specific examples. Those skilled in the art understand that the specific implementation is to facilitate those skilled in the art to reproduce the exemplary technical information provided by the present invention, which is not a limitation to the claims of the application for protection, based on the exemplary test plan As long as the technical solutions and the beneficial effects achieved do not deviate from the gist of the present invention, the changed technical solutions shall be included in the protection scope of the present application. the
实施例 Example
实施例1 抗高温基因的鉴定 Example 1 Identification of High Temperature Resistance Genes
本实施例采用耐高温水稻品种HT54和高温敏感水稻品种HT13(两者均为稻种籼亚种(O.sativa ssp. indica))为示例性试验材料。 In this example, high temperature tolerant rice variety HT54 and high temperature sensitive rice variety HT13 (both of which are O. sativa ssp . indica) were used as exemplary test materials.
1) 水稻秧苗的培育和抗高温处理条件的设定 1) Cultivation of rice seedlings and setting of high temperature resistance treatment conditions
(1). 秧苗培育 (1). Seedling cultivation
取同一地块水稻田土壤,自然风干后粉碎过筛,按相同重量分装在植物生长盆(26cm×18cm×6cm)中,加等量水浸泡一夜后用于播种。试验材料经浸种、催芽后播种。每盆分为两个部分,一半种HT54,另一半种HT13,每个品种3行,每行8株。 Take the paddy field soil from the same plot, air-dry it naturally, crush and sieve it, divide it into plant growth pots (26cm×18cm×6cm) according to the same weight, add the same amount of water to soak overnight, and then use it for sowing. The test materials were sown after soaking and germination. Each pot is divided into two parts, one half is planted with HT54, the other half is planted with HT13, each variety has 3 rows, and each row has 8 plants.
(2). 高温处理时期和处理温度及其它条件设置 (2). High temperature treatment period, treatment temperature and other conditions settings
高温处理时期为苗期,所用的人工气候箱为浙江宁波福实验仪器厂生产的智能人工气候箱PRX-1000B,温度设置共分42℃、45℃和48℃三个处理,温度是从33℃开始以3℃/h的速率上升,直至到达设定高温,所用湿度为75%,其它栽培条件设置在相同的水平上。 The high temperature treatment period is the seedling stage. The artificial climate box used is the intelligent artificial climate box PRX-1000B produced by Zhejiang Ningbo Fu Experimental Instrument Factory. The temperature setting is divided into three treatments: 42°C, 45°C and 48°C. Start to rise at a rate of 3°C/h until it reaches the set high temperature, the humidity used is 75%, and other cultivation conditions are set at the same level.
(3). 水稻抗高温鉴定程序和标准化参数设定 (3). Identification procedure and standardized parameter setting of rice high temperature resistance
水稻抗、感高温品种HT54 和HT13秧苗经土培生长至两叶一心和三叶一心期移入生长箱,进行3种温度的高温处理,处理时间为79h,待处理完毕并恢复5天后,观察秧苗对高温的反应。结果如图1所示。由图1的结果可以清楚地看出:当温度为42℃时,处理后的抗、感高温品种秧苗均完全存活;而当处理温度为45℃和48℃时,处理后的抗、感高温品种呈现质的存活与死亡差异(图1),但显然45℃不是抗高温品种HT54能忍耐的高限温度,因此,最终选定48℃作为标准程序的温度设定值。于是,由该试验确定的水稻苗期抗高温鉴定程序可概括为:两叶一心的土培秧苗,48℃高温和75%相对湿度条件下处理79h,恢复5d后,观察秧苗对高温的反应,并以能否存活作为水稻抗、感高温的鉴定指标。图中照片结果可以看出,抗高温品种HT54和感高温品种HT13 对45℃和48℃高温处理的热激反应都呈现质的存活与死亡差异。 The rice seedlings of rice varieties HT54 and HT13, which are resistant to high temperature and sensitive to high temperature, were grown by soil culture to the two-leaf-one-center and three-leaf-one-center stages, and moved into the growth box, and subjected to high-temperature treatment at three temperatures for 79 hours. After the treatment was completed and recovered for 5 days, the seedlings were observed response to high temperature. The result is shown in Figure 1. It can be clearly seen from the results in Figure 1 that: when the temperature was 42°C, the treated high-temperature-resistant and sensitive seedlings survived completely; and when the treatment temperature was 45°C and 48°C, the treated high-temperature-resistant and sensitive Varieties showed qualitative differences in survival and death (Figure 1), but obviously 45°C is not the upper limit temperature that the high-temperature-resistant variety HT54 can tolerate, so 48°C was finally selected as the temperature setting value of the standard program. Therefore, the high temperature resistance identification procedure of rice seedlings determined by this experiment can be summarized as follows: soil-cultured seedlings with two leaves and one center, treated at 48°C and 75% relative humidity for 79 hours, and after 5 days of recovery, observe the response of the seedlings to the high temperature. And the survival is used as the identification index of rice resistance and sensitivity to high temperature. From the photos in the figure, it can be seen that the heat shock response of the high temperature resistant variety HT54 and the high temperature sensitive variety HT13 to the high temperature treatment of 45°C and 48°C showed qualitative differences in survival and death.
实施例2 新基因标记的确认 Example 2 Confirmation of new gene markers
为实现水稻抗高温基因的精确定位,显然现有技术中的SSLP不足以满足需要。为此,发明人开发了新的定位标记。具体而言,发明人通过NCBI(http://www.ncbi.nlm.nih.gov/)公布的粳稻日本晴和籼稻9311的全基因组序列差异寻找插入/缺失多态性(Insertion/Deletion, InDel)位点。根据此位点所在的两端DNA序列,利用Primer5.0设计合适的引物,通过NCBI在线Primer blast保证其引物的特异性。 In order to realize the precise positioning of high temperature resistance genes in rice, it is obvious that the SSLP in the prior art is not enough to meet the needs. To this end, the inventors have developed new positioning markers. Specifically, the inventors searched for insertion/deletion polymorphisms (Insertion/Deletion, InDel) through differences in the whole genome sequences of the japonica rice Nipponbare and the indica rice 9311 published by NCBI (http://www.ncbi.nlm.nih.gov/) location. According to the DNA sequence at both ends of this site, use Primer5.0 to design appropriate primers, and use NCBI online Primer blast to ensure the specificity of the primers.
TA克隆及测序分析 TA cloning and sequencing analysis
a)加A反应:由于纯化的PCR产物是用Proybest酶扩增获得的,其末端为平末端,需要加上碱基A,才能进行TA克隆。加A反应的总体系为20μL,所要加入成分和体积为:10×PCR缓冲液, 2μL;Taq酶,0.5μL;dNTPs(10mM),0.5μL;PCR纯化产物,17μL。混匀放到PCR仪上,72℃ 30min,4℃保存。使用Axy Prep PCR Clean-up Kit(Axygen)纯化加A反应产物。 a) Adding A reaction: Since the purified PCR product is amplified with Proybest enzyme, its end is blunt, and base A needs to be added for TA cloning. The total system for adding A reaction is 20 μL, and the components and volumes to be added are: 10×PCR buffer, 2 μL; Taq enzyme, 0.5 μL; dNTPs (10 mM), 0.5 μL; PCR purified product, 17 μL. Mix well and put it on the PCR instrument, 72°C for 30min, and store at 4°C. Add A reaction products were purified using the Axy Prep PCR Clean-up Kit (Axygen).
b) 连接:参照pMD18-T载体系统试剂盒(TaKaRa)说明书进行操作。取4μL纯化的加A反应产物与5μL连接混合液(solution I)和1μL pMD18-T载体混合,16℃下连接,恒温1-2小时(恒温仪中进行)。 b) Connection: operate according to the instructions of the pMD18-T vector system kit (TaKaRa). Take 4 μL of the purified reaction product of adding A, mix with 5 μL of the ligation mixture (solution I) and 1 μL of the pMD18-T carrier, connect at 16°C, and keep the temperature for 1-2 hours (performed in a thermostat). the
C)连接产物大肠杆菌热击转化:从-80℃取感受态细胞,加入10μL连接反应液,轻轻摇匀,于冰上放置30min;42℃水浴热击90s,立即置于冰上2min;之后,每管加800μL LB培养基,37℃摇床低速震荡培养45min(使细菌复苏,转速不超过190rpm);将上述菌液富集后涂布于LB筛选平板(Amp/IPTG/X-Gal)上;待菌液完全被培养基吸收后倒置培养皿,37℃过夜培养。 C) Escherichia coli heat shock transformation of the ligation product: Take competent cells from -80°C, add 10 μL ligation reaction solution, shake gently, and place on ice for 30 minutes; heat shock in a water bath at 42°C for 90 seconds, and immediately place on ice for 2 minutes; Afterwards, add 800 μL of LB medium to each tube, and incubate with low-speed shaking on a shaker at 37°C for 45 minutes (to revive the bacteria, the rotation speed should not exceed 190rpm); after enriching the above bacterial solution, spread it on the LB screening plate (Amp/IPTG/X-Gal ); after the bacterial solution was completely absorbed by the culture medium, invert the culture dish and incubate overnight at 37°C. the
d)转化子阳性克隆的鉴定:挑取白色菌落,利用载体测序通用引物进行PCR扩增鉴定。PCR反应体系同上,其反应程序为:94℃ 5min预变性,之后95℃ 30s, 55℃ 30s,72℃延伸(具体时间根据目的基因大小确定),共30个循环,接着72℃ 延伸5min。 d) Identification of positive clones of transformants: pick white colonies, and carry out PCR amplification identification using vector sequencing universal primers. The PCR reaction system is the same as above, and the reaction program is: 94°C for 5 minutes for pre-denaturation, followed by 95°C for 30 s, 55°C for 30 s, and 72°C extension (the specific time is determined according to the size of the target gene), a total of 30 cycles, followed by 72°C extension for 5 minutes. the
e)PCR产物电泳鉴定:阴性菌落的PCR产物长度为156bp(仅载体上扩增的序列),阳性菌落PCR产物片段大于156bp(目的基因片段长度+156bp)。 e) PCR product electrophoresis identification: the length of the PCR product of the negative colony is 156bp (only the sequence amplified on the vector), and the fragment of the PCR product of the positive colony is greater than 156bp (the length of the target gene fragment + 156bp). the
F)阳性克隆测序:取5mL含50μg/mL Amp的LB液体培养基到50 mL离心管中,接种菌落PCR呈阳性的菌落,37℃,220rpm振荡培养过夜;取培养的菌液到1.5mL离心管中,12000rpm离心2min,去上清,将离心管倒置于吸水纸上,使细菌沉淀尽可能干燥;用Axygen质粒抽提试剂盒提取质粒DNA。抽提的质粒DNA于-20℃保存备用,同时分别取10μL质粒对应的菌液进行测序验证(上海英俊)。每个基因测序验证3个阳性转化子。本发明所述的新标记是由抗、感高温亲本在候选基因的启动子上出现的一个SNP发展而来。具体地说,该SNP的出现导致了一个限制性内切酶Bsp1407 I识别位点的改变,其在抗高温亲本上的序列为 5'-TGGACA-3',不能被Bsp1407 I识别,而在感高温亲本上的序列为5'-TGTACA-3',能被Bsp1407 I识别;因此,针对SNP所在的区域设计特异引物,扩增出相应的基因组片段,再用Bsp1407 I酶切,即可检测这种多态性差异。 F) Sequencing of positive clones: Take 5 mL of LB liquid medium containing 50 μg/mL Amp into a 50 mL centrifuge tube, inoculate colonies with positive PCR results, and culture overnight at 37°C with shaking at 220 rpm; In the tube, centrifuge at 12000rpm for 2min, remove the supernatant, and place the centrifuge tube upside down on absorbent paper to make the bacterial pellet as dry as possible; use the Axygen plasmid extraction kit to extract plasmid DNA. The extracted plasmid DNA was stored at -20°C for later use, and at the same time, 10 μL of the bacterial liquid corresponding to the plasmid was taken for sequencing verification (Shanghai Yingjun). Three positive transformants were verified by sequencing of each gene. The new marker of the present invention is developed from a SNP present on the promoter of the candidate gene in the high temperature-resistant and sensitive parents. Specifically, the appearance of this SNP led to a change in the recognition site of a restriction endonuclease Bsp1407 I, whose sequence on the high temperature resistant parent was 5'-TGGACA-3', which could not be recognized by Bsp1407 I, The sequence on the high-temperature parent is 5'-TGTACA-3', which can be recognized by Bsp1407 I; therefore, specific primers are designed for the region where the SNP is located, the corresponding genomic fragment is amplified, and then digested with Bsp1407 I to detect this polymorphic differences.
根据这个原理,本实施例所设计的特异引物序列为,BspF: 5′-CCATCCAAACACGCCCTAA-3′ 和 BspR: 5′-ATTGCCCCTTGCTATGG T-3′,PCR扩增的产物大小580bp,来自感高温亲本的PCR产物被Bsp1407 I酶切后得到的两个片大小分别为422bp和158bp,由此开发的PCR-RFLP标记记为RBsp1407。 According to this principle, the specific primer sequences designed in this example are, BspF: 5'-CCATCCAAACACGCCCTAA-3' and BspR: 5'-ATTGCCCCTTGCTATGG T-3', the size of the PCR-amplified product is 580bp, which comes from the PCR of the high-temperature sensitive parent The sizes of the two fragments obtained after the product was digested by Bsp1407 I were 422bp and 158bp respectively, and the PCR-RFLP marker developed therefrom was marked as RBsp1407.
该标记在抗高温基因定位过程中已被证实是与目标基因共分离的。 This marker has been confirmed to co-segregate with the target gene during the localization of high temperature resistance genes. the
在确认RBsp1407标记的试验中,发明人用该标记对隐性极端定位群体经两个紧密连锁标记RM7364和InDel5分析后出现的3个重组单株进行了验证性检测,结果出现了与隐性感高温亲本一致的结果如图5所示。由此,发明人还开发出插入/缺失标记InDel5,该标记位于水稻第九染色体距短臂端9130-9150kb之间,在抗、感亲本间所述标记具有长度多态性;以及微卫星DNA标记RM7364,该标记位于水稻第九染色体距短臂端9440-9450kb之间。对于标记RM7364,设计引物RM7364F: 5′-TTCGTGGATGGAGGGAGTAC-3′;和RM7364R: 5′-RGCGTTTGTAGGAGTGCCAC-3′,同样,发现在抗、感亲本间所述标记经引物的扩增产物具有长度多态性。 In the test of confirming the RBsp1407 marker, the inventors used this marker to perform confirmatory detection on the three recombinant individual plants that appeared after the analysis of the two closely linked markers RM7364 and InDel5 in the recessive extreme positioning population. The results of parental agreement are shown in Figure 5. Thus, the inventors have also developed an insertion/deletion marker InDel5, which is located between 9130-9150kb from the short arm end of rice chromosome 9, and the marker has a length polymorphism between the resistant and susceptible parents; and microsatellite DNA The marker RM7364 is located between 9440-9450kb from the end of the short arm of rice chromosome 9. For the marker RM7364, primers RM7364F: 5'-TTCGTGGATGGAGGGAGTAC-3' were designed; and RM7364R: 5'-RGCGTTTGTAGGAGTGCCAC-3', similarly, it was found that the amplified products of the markers between the resistant and sensitive parents had length polymorphism . the
实施例3 抗高温基因OsHTAS 的确认 Example 3 Confirmation of high temperature resistance gene OsHTAS
经前述的基因定位研究,本发明人所发现了定位于水稻基因组第9染色体上的新基因,即显性耐高温基因OsHTAS。所述显性耐高温基因OsHTAS与隐性等位基因Oshtas 在DNA 序列上的差异仅为一个单核苷酸多态性(SNP)的差异,发生在OsHTAS 5 '-端非翻译区与耐高温、耐盐和耐干旱相关的基序上(11T12G),OsHTAS (TTTTTTTTTTTGGGGGGGGGGGG) 比Oshtas(TTTTTTTTTTTGGGGGGGGGGG)多一个G;显性耐高温基因(LOC_Os09g15430)OsHTAS 基因组序列全长4784bp,编码序列(CDS)全长1245bp,编码产物为414aa,属于锌指家簇蛋白;水稻(Oryza sativa )ZFP 基因,具体序列如序列表中SEQ ID NO:1所示。 Through the aforementioned gene mapping research, the inventors discovered a new gene located on chromosome 9 of the rice genome, namely the dominant high temperature resistant gene OsHTAS . The difference in the DNA sequence between the dominant high temperature resistance gene OsHTAS and the recessive allele Oshtas is only a single nucleotide polymorphism (SNP), which occurs in the 5'-end untranslated region of OsHTAS and the high temperature resistance , salt tolerance and drought tolerance-related motifs (11T12G), OsHTAS (TTTTTTTTTTTTGGGGGGGGGGGG) has one more G than Oshtas (TTTTTTTTTTTTGGGGGGGGGGG); dominant high temperature tolerance gene (LOC_Os09g15430) OsHTAS genome sequence full length 4784bp, coding sequence (CDS) full length 1245bp, the coding product is 414aa, belongs to zinc finger family cluster protein; rice ( Oryza sativa ) ZFP gene, the specific sequence is shown in SEQ ID NO: 1 in the sequence listing.
发明人在具体试验过程中对所述基因部分位点进行了插入、缺失、替换,对所获得的突变体实施了功能验证,结果表明因遗传密码子的简并以及部分位点的突变等操作后所获得突变体保持了与SEQ ID NO:1所示基因同样的抗高温功能。更具体而言在对应于如SEQ ID NO.1 所示的核苷酸序列中的第-1384到-1395位核苷酸为GGGGGGGGGGGG保持不变,在除此之外的核苷酸序列中经缺失、替换、插入一个或多个核苷酸所得的多核苷酸序列所编码的多肽仍具有抗高温功能。所述的插入、缺失、替换依照本领域公知的遗传操作方法进行,经变化的核苷酸数目优选1-100,更优选1-50个, 1-20个,更优选1-10个核苷酸的改变。 The inventors performed insertions, deletions, and substitutions on some sites of the gene during the specific test process, and performed functional verification on the obtained mutants. The obtained mutant has maintained the same anti-high temperature function as the gene shown in SEQ ID NO:1. More specifically, the -1384th to -1395th nucleotides corresponding to the nucleotide sequence shown in SEQ ID NO.1 are GGGGGGGGGGGG and remain unchanged. The polypeptide encoded by the polynucleotide sequence obtained by deleting, replacing or inserting one or more nucleotides still has the function of anti-high temperature. The insertion, deletion, and replacement are carried out according to genetic manipulation methods known in the art, and the number of changed nucleotides is preferably 1-100, more preferably 1-50, 1-20, and more preferably 1-10 nucleosides Sour change. the
此外,发明人将本发明的抗高温基因与诱导型启动子连接,构建了表达载体,将其转化酵母DY1455、拟南芥(Arabidopsis thaliana Columbia)等宿主细胞,成功获得了阳性转化子。 In addition, the inventors connected the high temperature resistance gene of the present invention with an inducible promoter, constructed an expression vector, and transformed it into host cells such as yeast DY1455 and Arabidopsis thaliana Columbia , and successfully obtained positive transformants.
实施例4 抗高温基因OsHTAS对高温胁迫的响应特点 Example 4 Response characteristics of high temperature resistance gene OsHTAS to high temperature stress
用45℃高温对不同抗、感高温品种进行12小时持续处理,并于8个时间点(0h、1h、2h、4h、6h、8h、10h、12h)取样抽提RNA,对候选基因OsHTAS进行RT-PCR半定量表达分析。结果显示:该基因在抗、感高温品种HT54和HT13中的表达变化模式明显不同,在HT54上该基因的表达量在6小时处明显上调,但在HT13上表现为下调,结果如图6所示,图示结果说明候选基因对高温胁迫具有主动响应的特点。图中可见,OsHTASP在处理6小时的抗、感高温样本中分别呈上调和下调表达。 The high temperature of 45 ℃ was used to treat different high temperature resistant and sensitive varieties continuously for 12 hours, and the RNA was extracted at 8 time points (0h, 1h, 2h, 4h, 6h, 8h, 10h, 12h), and the candidate gene OsHTAS was tested. RT-PCR semi-quantitative expression analysis. The results showed that the expression change patterns of this gene were significantly different in the heat-resistant and sensitive varieties HT54 and HT13. The expression of the gene was significantly up-regulated on HT54 at 6 hours, but it was down-regulated on HT13. The results are shown in Figure 6 The result in the figure shows that the candidate gene has the characteristics of active response to high temperature stress. It can be seen from the figure that the expression of OsHTASP was up-regulated and down-regulated in the high-temperature-resistant and sensitive samples treated for 6 hours, respectively.
实施例5、 候选基因的功能验证:过表达分析 Example 5, Functional verification of candidate genes: overexpression analysis
将候选基因的CDS克隆出来连入由肌动蛋白启动子ActinI驱动的过表达载体中,利用农杆菌介导法将其导入日本晴和敏感品种HT13的基因组中,并分别获得了5个阳性独立转化体。之后,利用前述提到的人工气候箱对这些阳性独立转化体的土培苗于二叶一心至三叶一心期进行79小时的48℃高温处理,并以野生型植株为对照。处理完毕将其移出生长箱,于正常温度条件下恢复5天后观察记录秧苗对高温处理的反应。结果显示:经高温处理后的所有过表达植株均与HT54一样恢复正常生长,表明所转化的候选基因确实具有耐高温的特性。 Clone the CDS of the candidate gene and connect it into the overexpression vector driven by the actin promoter ActinI, and then introduce it into the genome of Nipponbare and the sensitive variety HT13 using the Agrobacterium-mediated method, and obtained 5 positive independent transformations respectively body. Afterwards, the soil-cultured seedlings of these positive independent transformants were subjected to high temperature treatment at 48°C for 79 hours at the two-leaf-one-core to three-leaf-one-core stage using the aforementioned artificial climate chamber, and wild-type plants were used as controls. After the treatment, it was removed from the growth box, and the reaction of the seedlings to the high temperature treatment was observed and recorded after recovering for 5 days under normal temperature conditions. The results showed that after high temperature treatment, all the overexpressed plants returned to normal growth like HT54, indicating that the transformed candidate gene did have the characteristic of high temperature resistance.
实施例6、候选基因的功能验证:RNAi敲除 Example 6, Functional Verification of Candidate Genes: RNAi Knockout
将候选基因的CDS区和UTR区一段特异序列,正反向连入RNA干扰载体pTCK303中,利用农杆菌介导法将其导入日本晴和敏感品种HT54的基因组中,各获得5个和三个阳性独立转化体。之后,利用前述提到的人工气候箱对这些阳性独立转化体的土培苗于二叶一心智三叶一心期进行79小时的48℃高温处理,并以野生型植株为对照。处理完毕后移出生长箱于正常温度条件下恢复生长5天,再观察记录秧苗对高温处理的反应。结果显示:经高温处理后的所有过表达植株均与HT13一样完全死亡,该结果进一步表明所转化的候选基因确实具有耐高温的特性。 A specific sequence of the CDS region and UTR region of the candidate gene was connected forward and reverse into the RNA interference vector pTCK303, and introduced into the genome of Nipponbare and the sensitive variety HT54 using the Agrobacterium-mediated method, and 5 and 3 positives were obtained respectively independent transformants. Afterwards, the soil-cultured seedlings of these positive independent transformants were subjected to high temperature treatment at 48°C for 79 hours at the two-leaf-mental-three-leaf-one-heart stage using the aforementioned artificial climate chamber, and the wild-type plants were used as controls. After the treatment, remove the growth box and resume growth for 5 days under normal temperature conditions, then observe and record the response of the seedlings to the high temperature treatment. The results showed that all the overexpressed plants died completely like HT13 after the high temperature treatment, which further indicated that the transformed candidate gene did have the property of high temperature resistance.
实施例7、候选基因OsHTAS的亚细胞定位分析 Example 7, Subcellular localization analysis of the candidate gene OsHTAS
通过基因枪轰击洋葱表皮在共聚焦显微镜下的亚细胞定位结果表明,与对照35S-YFP相比,35S-ZFP-YFP即候选基因与黄色荧光蛋白的融合蛋白主要定位于细胞膜上,结果如图7所示,该结果说明候选基因ZFP的编码产物是一种膜蛋白,这与相当数量的膜蛋白参与逆境信号传导的结论十分吻合,说明了一种亚细胞定位与功能表达之间的相关关系。 图7所示结果显示:与对照35S-YFP相比,35S-ZFP-YFP即候选基因与黄色荧光蛋白的融合蛋白主要定位于细胞膜上。
The results of subcellular localization under the confocal microscope of the onion epidermis bombarded by gene guns showed that, compared with the
综上,本申请所公开的发明结果可以增进本领域技术人员对抗高温性状基本遗传规律的了解,同时,该抗高温遗传位点的定位和候选基因的确认与克隆及其共分离标记的开发都将为后续候选基因的功能分析和在分子育种上的有效利用奠定了良好的理论和材料基础。 In summary, the results of the invention disclosed in this application can enhance the understanding of those skilled in the art on the basic genetic laws of high-temperature resistance traits. It will lay a good theoretical and material foundation for the functional analysis of subsequent candidate genes and the effective use in molecular breeding. the
序列表独立文本 Sequence listing stand-alone text
SEQ ID NO:1 OsHTAS基因组序列; SEQ ID NO:1 OsHTAS genome sequence;
SEQ ID NO:2 OsHTAS基因编码序列; SEQ ID NO:2 OsHTAS gene coding sequence;
SEQ ID NO:3 OsHTAS蛋白多肽序列; SEQ ID NO:3 OsHTAS protein polypeptide sequence;
SEQ ID NO:4 人工引物序列; SEQ ID NO:4 artificial primer sequence;
SEQ ID NO:5 人工引物序列; SEQ ID NO:5 artificial primer sequence;
SEQ ID NO:6 人工引物序列; SEQ ID NO:6 artificial primer sequence;
SEQ ID NO:7 人工引物序列; SEQ ID NO:7 artificial primer sequence;
SEQ ID NO:8 人工引物序列; SEQ ID NO:8 artificial primer sequence;
SEQ ID NO:9 人工引物序列; SEQ ID NO:9 artificial primer sequence;
SEQ ID NO:10 人工引物序列; SEQ ID NO:10 artificial primer sequence;
SEQ ID NO:11 人工引物序列。 SEQ ID NO: 11 Artificial primer sequence.
序列表 Sequence Listing
the
<110> 浙江大学 <110> Zhejiang University
广东省农科院水稻研究所 Institute of Rice, Guangdong Academy of Agricultural Sciences
the
<120> 一个水稻抗高温的基因 <120> A high temperature resistance gene in rice
the
<130> CPCH1263656N <130> CPCH1263656N
the
<160> 11 <160> 11
the
<170> PatentIn version 3.3 <170> PatentIn version 3.3
the
<210> 1 <210> 1
<211> 4784 <211> 4784
<212> DNA <212> DNA
<213> 水稻(Oryza sativa L ssp.indica) <213> Rice (Oryza sativa L ssp. indica)
the
<400> 1 <400> 1
gagaagcgcc acaggaaaac gagccgcgtc gctttcgcga gagagggaca cctgctctgc 60 gagaagcgcc acaggaaaac gagccgcgtc gctttcgcga gagagggaca cctgctctgc 60
the
ttccgcttcc gcttccccct ctcgagtctc tcgcctctcc cccgtggcca acccacacac 120 ttccgcttcc gcttccccct ctcgagtctc tcgcctctcc cccgtggcca accccacacac 120
the
cgcgggttgg aggaggagga ggaggaggta ggggaaatcc ccgtcggccg tcggctcggc 180 cgcgggttgg aggagggagga ggaggaggta ggggaaatcc ccgtcggccg tcggctcggc 180
the
gccgaatcga tccggtgagt gagtgattga gttcgtctct gctctctctc ctccttgttc 240 gccgaatcga tccggtgagt gagtgattga gttcgtctct gctctctctc ctccttgttc 240
the
aattatcaag ctcttgaatc gagtcctagt agtagtgtgc tagaggtgct ggatgatttg 300 aattatcaag ctcttgaatc gagtcctagt agtagtgtgc tagaggtgct ggatgatttg 300
the
ggtttttggg gatttttttt tttggggggg gggggttgtt tgggaactgc tagtgcgttt 360 ggtttttggg gatttttttt tttgggggggg gggggttgtt tgggaactgc tagtgcgttt 360
the
gtggtatact ggtatgggag ttcgttgcta atggacgggg tatttgggaa cttttagggt 420 gtggtatact ggtatgggag ttcgttgcta atggacgggg tatttgggaa cttttagggt 420
the
tttgtttgga tggatttttg gttgtggttt ttgtcaggaa tgggtgtcgg cgacttggtt 480 tttgtttgga tggatttttg gttgtggttt ttgtcaggaa tgggtgtcgg cgacttggtt 480
the
agctttagct tttgagaatt tttttcgccc ctgttgttct gttcatggtt catctttaga 540 agctttagct tttgagaatt tttttcgccc ctgttgttct gttcatggtt catctttaga 540
the
ttcagaggag aatccttcta gcgtttttct gagaatgaaa cctttttttt tatgttttta 600 ttcagaggag aatccttcta gcgtttttct gagaatgaaa cctttttttt tatgttttta 600
the
tttttacggg gctataattt ttccactgcc ttttgtgatt actattacat aattacatgt 660 tttttacggg gctataattt ttccactgcc ttttgtgatt actattacat aattacatgt 660
the
ccctttgatg aataatggat gttggttctt tggctaaaag tcaaattgcg acttgaagta 720 ccctttgatg aataatggat gttggttctt tggctaaaag tcaaattgcg acttgaagta 720
the
gaaacgggtg tacctgggat taagttgcca tcgctggaac tagagttaat tattggtttg 780 gaaacgggtg tacctgggat taagttgcca tcgctggaac tagagttaat tattggtttg 780
the
atcattgttg cttcgcgttg gatatactat cggtttagca gttagcatga tactaaatca 840 atcattgttg cttcgcgttg gatatactat cggtttagca gttagcatga tactaaatca 840
the
taggaaggct actatgattg gagaaccgtg gtgttgtata actgattaga ttctttcaaa 900 taggaaggct actatgattg gagaaccgtg gtgttgtata actgattaga ttctttcaaa 900
the
tatgattttc agttagaccg ctcattggtt caggatcagg gtcttttgca gttctcccaa 960 tatgattttc agttagaccg ctcattggtt caggatcagg gtcttttgca gttctcccaa 960
the
atattgcact aatttgtttg ccaaataatc atgcaaaact tacatgagtg gtggcattaa 1020 atattgcact aatttgtttg ccaaataatc atgcaaaact tacatgagtg gtggcattaa 1020
the
ctcttttatt caaatacatg gttgttcaat gatggtatta actcttctat tcaacaggct 1080 ctcttttatt caaatacatg gttgttcaat gatggtatta actcttctat tcaacaggct 1080
the
gtaaaaaatt aagtgaataa tccttgtccc gctacttaaa atctagtcaa gactcagatt 1140 gtaaaaaatt aagtgaataa tccttgtccc gctacttaaa atctagtcaa gactcagatt 1140
the
ggaaaccatt ggggactagt aaagtttatg ggacttggac gtgtacatta catgcacatg 1200 ggaaaccatt ggggactagt aaagtttatg ggacttggac gtgtacatta catgcacatg 1200
the
cccatgatac attaacagga tggatgttct attctggaag gttaaatata atagttctta 1260 cccatgatac attaacagga tggatgttct attctggaag gttaaatata atagttctta 1260
the
gaaagttaga gttttcagac cgatggtatg cttgcatata tttttagaag tatcaaatat 1320 gaaagttaga gttttcagac cgatggtatg cttgcatata tttttagaag tatcaaatat 1320
the
gatgagagtt cttaaaagaa ttgggtttgt taactatgtt gagtgccttc tactatttat 1380 gatgagagtt cttaaaagaa ttgggtttgt taactatgtt gagtgccttc tactatttt 1380
the
tttacaggtt tttattgttc atggtgatat actatatgca tgaataagtt acagttatgt 1440 tttacaggtt tttatgttc atggtgatat actatatgca tgaataagtt acagttatgt 1440
the
aatatatatg ggcaaggatg tataagaagt tcatttgttt tctaaatttg tagcttaggc 1500 aatatatatg ggcaaggatg tataagaagt tcatttgttt tctaaatttg tagcttaggc 1500
the
ttcttctgct gggctcttcc atgaagcaaa tgaagtttat aatgcacata ctaatgttca 1560 ttcttctgct gggctcttcc atgaagcaaa tgaagtttat aatgcacata ctaatgttca 1560
the
gtatattata ctgagaatca actttattct cagctgtata tacactagta tgccagccat 1620 gtatattata ctgagaatca actttattct cagctgtata tacactagta tgccagccat 1620
the
tggtagctac ttgaaaggat ggtgaaacgc atatgattac ccatgatgag catgtgtgtt 1680 tggtagctac ttgaaaggat ggtgaaacgc atatgattac ccatgatgag catgtgtgtt 1680
the
cccttttttt attagtgcta agctggaaat caataaatcc aagatattca tggagcatgc 1740 cccttttttt attagtgcta agctggaaat caataaatcc aagatattca tggagcatgc 1740
the
tacctgtgat gatgtgcatg agcatgctat aaatgtatca catggagaaa ctgcatcaac 1800 tacctgtgat gatgtgcatg agcatgctat aaatgtatca catggagaaa ctgcatcaac 1800
the
atcaaccagt catcaagatt tgcacagtga ttcagatgat tcacatcagg atgataggcc 1860 atcaaccagt catcaagatt tgcacagtga ttcagatgat tcacatcagg atgataggcc 1860
the
ttcaacaagc acacaaaccc catcaccaca gtcttcagca tcaacttcgc ccactgcata 1920 ttcaacaagc acacaaaccc catcaccaca gtcttcagca tcaacttcgc ccactgcata 1920
the
taacaccaga aatttatcct ttcctagaag agatagtatg tatggtcatg gaagaagtat 1980 taacaccaga aatttatcct ttcctagaag agatagtatg tatggtcatg gaagaagtat 1980
the
ttggaattct ggtttgtgga tctcgtttga actggtcata tatgtagtac agattgtagc 2040 ttggaattct ggtttgtgga tctcgtttga actggtcata tatgtagtac agattgtagc 2040
the
tgctattttc gtccttgtct tttcaagaga cgaacatccg catgcccctt tatttgcatg 2100 tgctattttc gtccttgtct tttcaagaga cgaacatccg catgcccctt tatttgcatg 2100
the
gataattggt tacacaattg gctgcattgc aagcattcct cttatttgtt ggcgctgtgc 2160 gataattggt tacacaattg gctgcattgc aagcattcct cttatttgtt ggcgctgtgc 2160
the
ccatcgaaac agaccttcgg aacaagaacc tgaacaacca cccgcagcct atcctaattt 2220 ccatcgaaac agaccttcgg aacaagaacc tgaacaacca cccgcagcct atcctaattt 2220
the
gacttcctct caatcatcag aaggacgcaa tcagcgtagc agtggtactg ttttgcattt 2280 gacttcctct caatcatcag aaggacgcaa tcagcgtagc agtggtactg ttttgcattt 2280
the
tggatgtatc acaatttcgt gtccaaggta atttgtagtt ccatgttatt tttctatctt 2340 tggatgtatc acaatttcgt gtccaaggta atttgtagtt ccatgttatt tttctatctt 2340
the
gaatttccta aagtcctgta tgtgaactcg tgtatgcagt ctcactccta tgcatttttt 2400 gaatttccta aagtcctgta tgtgaactcg tgtatgcagt ctcactccta tgcatttttt 2400
the
gaagaaactg ctatccattt gcatcttata aacatattta tgctttccaa taactgaaag 2460 gaagaaactg ctatccattt gcatcttata aacatattta tgctttccaa taactgaaag 2460
the
atgcaacaaa taaactgata gttgaattga ttgaaactat caactctagg gcatcctaat 2520 atgcaacaaa taaactgata gttgaattga ttgaaactat caactctagg gcatcctaat 2520
the
tagtttattt ttgatattcc attggatcac gcaggtacca cagtcctatg ttcttgagtt 2580 tagttattt ttgatattcc attggatcac gcaggtacca cagtcctatg ttcttgagtt 2580
the
gagccttcta tttgtgcgta gtaccacgat atggattcta caatatattt ttactgcaat 2640 gagccttcta tttgtgcgta gtaccacgat atggattcta caatatattt ttactgcaat 2640
the
ttgttttttc tcagtcattc tggaagtgta gaagatatat atgctcttgt ttctttgacc 2700 ttgttttttc tcagtcattc tggaagtgta gaagatatat atgctcttgt ttctttgacc 2700
the
taggaatttg gaacagttgt gttgacctct tcaaggtgta atattacaat gttcgctgca 2760 taggaatttg gaacagttgt gttgacctct tcaaggtgta atttacaat gttcgctgca 2760
the
gatacctcat tacattggag gggaggatgt tccctttcta tatttgttgt gcttgacaaa 2820 gatacctcat tacattggag gggaggatgt tccctttcta tatttgttgt gcttgacaaa 2820
the
agcattcaac attgtggagc gtaatgtgtc ctatttaact ggaattggtc ctgttgaaaa 2880 agcattcaac attgtggagc gtaatgtgtc ctatttaact ggaattggtc ctgttgaaaa 2880
the
ttgtactagt ctactctaaa gtattaaaac tttataagta aatttgaaga aatgcgtgat 2940 ttgtactagt ctactctaaa gtattaaaac tttataagta aatttgaaga aatgcgtgat 2940
the
gcgagatctt atagtactta gttttgtgct aaatttgata tggatgtatt aactgaggtg 3000 gcgagatctt atagtactta gttttgtgct aaatttgata tggatgtatt aactgaggtg 3000
the
attatacatt acaggcctag catattggct tatcatttca agacagctgt agactgtttc 3060 attatacatt acaggcctag catattggct tatcatttca agacagctgt agactgtttc 3060
the
tttgctgtat ggtttgttgt tggcaatgtg tggatttttg gtgggcacag cactttgtca 3120 tttgctgtat ggtttgttgt tggcaatgtg tggatttttg gtgggcacag cactttgtca 3120
the
gattctcagg aagctcccaa tatgtatagg tattttcttt cctatcattc atagcttttc 3180 gattctcagg aagctcccaa tatgtatagg tattttcttt cctatcattc atagcttttc 3180
the
tgaactcaat caactcatgc cttactttgt tgcctcttgc taggctatgc ttagcattcc 3240 tgaactcaat caactcatgc cttactttgt tgcctcttgc taggctatgc ttagcattcc 3240
the
ttgcacttag ttgtgttggg tatgctattc ccttcgtcat gtgtgcagcc atatgctgct 3300 ttgcacttag ttgtgttggg tatgctattc ccttcgtcat gtgtgcagcc atatgctgct 3300
the
gctttccatg cttaatttct cttctgcgcc ttcaagagga tttgggtcat actagaggag 3360 gctttccatg cttaatttct cttctgcgcc ttcaagagga tttgggtcat actagaggag 3360
the
ctactcaaga actaattgat gcactgccaa cctacaaatt caagccaaaa cgaagcaaaa 3420 ctactcaaga actaattgat gcactgccaa ctacaaatt caagccaaaa cgaagcaaaa 3420
the
tgtgggttga ccatgcttca agctcagaga atcttagcga gggtggcatc ctgggcccag 3480 tgtgggttga ccatgcttca agctcagaga atcttagcga gggtggcatc ctgggcccag 3480
the
gaactaaaaa ggaaaggatt gtttcagctg aagatgctgt gagtatattt cacattttca 3540 gaactaaaaa ggaaaggatt gtttcagctg aagatgctgt gagtatattt cacattttca 3540
the
tatcattttc atgtctgatg atacttgatt tgcaattagt attgaggggg tttccgtaaa 3600 tatcattttc atgtctgatg atacttgatt tgcaattagt attgagggggg tttccgtaaa 3600
the
acaagtattg atgggattcc ttgtatcgac cttcatgtac cttataattt agtaatcata 3660 acaagtattg atgggattcc ttgtatcgac cttcatgtac cttataattt agtaatcata 3660
the
actccattca caagtgaata cttaagcagc ctctgttatg cagtaatatg tactgtctta 3720 actccattca caagtgaata cttaagcagc ctctgttatg cagtaatatg tactgtctta 3720
the
gccttatctt attttggaat atatttaaca aaaggtctag ctcgtgatga tgcttttaca 3780 gccttatctt attttggaat atatttaaca aaaggtctag ctcgtgatga tgcttttaca 3780
the
catctttttc agataacaat gagacttccc ttttttcctc agtgaaacat atagtgttct 3840 catctttttc agataacaat gagacttccc ttttttcctc agtgaaacat atagtgttct 3840
the
aggtaaatat tcattaacaa aagtgtttta gggaaatatt ctgctttatg agaaatagtt 3900 aggtaaatat tcattaacaa aagtgtttta gggaaatatt ctgctttatg agaaatagtt 3900
the
ttgtttatat tatactacag tatctttttt ctcgtgtatc ttcaaacagt tgtagttaca 3960 ttgtttatat tatactacag tatctttttt ctcgtgtatc ttcaaacagt tgtagttaca 3960
the
ctcgctttca taagtccttt tctaaattcc attcatttcc ttcagtaaca tgggacctct 4020 ctcgctttca taagtccttt tctaaattcc attcatttcc ttcagtaaca tgggacctct 4020
the
tggaattttc caagttacct gacttactgt ctggattatt atttttgtag ctcattcaat 4080 tggaattttc caagttacct gacttactgt ctggattatt atttttgtag ctcattcaat 4080
the
ttgccattac taacttgaaa ccagggttct cgaaataatg ttatagttgt tttagtttga 4140 ttgccattac taacttgaaa ccagggttct cgaaataatg ttatagttgt tttagtttga 4140
the
ttcataagtc ataacatata acttgtcaac atctattgat atctgcaggt gtgctgcatc 4200 ttcataagtc ataacatata acttgtcaac atctattgat atctgcaggt gtgctgcatc 4200
the
tgtcttacta agtacggaga tgatgatgag ctccgtgagc ttccttgcac ccacttcttt 4260 tgtcttacta agtacggaga tgatgatgag ctccgtgagc ttccttgcac ccacttcttt 4260
the
catgtgcaat gtgtcgataa atggctcaag ataaatgcag tgtgcccact ctgcaagacc 4320 catgtgcaat gtgtcgataa atggctcaag ataaatgcag tgtgcccact ctgcaagacc 4320
the
gagattgggg gtgtggttcg atcatttttt ggcttgccct ttggtcgccg acgtgttgat 4380 gagattgggg gtgtggttcg atcatttttt ggcttgccct ttggtcgccg acgtgttgat 4380
the
aggatggcag gaagaggtat agctagctcg agattcactg tatagaacac gtcttcttct 4440 aggatggcag gaagaggtat agctagctcg agattcactg tatagaacac gtcttcttct 4440
the
ctagcatgtt tgcttgtttc atctgctcat atgcacataa aagacgtgct catggattgt 4500 ctagcatgtt tgcttgtttc atctgctcat atgcacataa aagacgtgct catggattgt 4500
the
agtttgttga tttgcaatga aagcgataat ctgctttcat cacccttgag ttcaccaaag 4560 agtttgttga tttgcaatga aagcgataat ctgctttcat cacccttgag ttcaccaaag 4560
the
tgatgacaga aaagtggaga cctgatgctt gcagtgacaa gtttctgcag tacagtagaa 4620 tgatgacaga aaagtggaga cctgatgctt gcagtgacaa gtttctgcag tacagtagaa 4620
the
acataagtat attctgatgt aacatttgat gtcaagattg taaataaaga gcacaaagtt 4680 acataagtat attctgatgt aacatttgat gtcaagattg taaataaaga gcacaaagtt 4680
the
cacttcgggg gtgtatatct gcatgtgtat gggaaaggaa agcctaatta gttagtaact 4740 cacttcgggg gtgtatatct gcatgtgtat gggaaaggaa agcctaatta gttagtaact 4740
the
ttgtgggcat tttattgtgt gcaatcattg atcttgtttt tccc 4784 ttgtgggcat tttatgtgt gcaatcattg atcttgtttt tccc 4784
the
the
<210> 2 <210> 2
<211> 1245 <211> 1245
<212> DNA <212> DNA
<213> 水稻(Oryza sativa L ssp.indica) <213> Rice (Oryza sativa L ssp. indica)
the
the
<220> <220>
<221> CDS <221> CDS
<222> (1)..(1245) <222> (1)..(1245)
the
<400> 2 <400> 2
atg gag cat gct acc tgt gat gat gtg cat gag cat gct ata aat gta 48 atg gag cat gct acc tgt gat gat gtg cat gag cat gct ata aat gta 48
Met Glu His Ala Thr Cys Asp Asp Val His Glu His Ala Ile Asn Val Met Glu His Ala Thr Cys Asp Asp Val His Glu His Ala Ile Asn Val
1 5 10 15 1 5 10 15 15
the
tca cat gga gaa act gca tca aca tca acc agt cat caa gat ttg cac 96 tca cat gga gaa act gca tca aca tca acc agt cat caa gat ttg cac 96
Ser His Gly Glu Thr Ala Ser Thr Ser Thr Ser His Gln Asp Leu His Ser His Gly Glu Thr Ala Ser Thr Ser Ser Thr Ser His Gln Asp Leu His
20 25 30 20 25 30 30
the
agt gat tca gat gat tca cat cag gat gat agg cct tca aca agc aca 144 agt gat tca gat gat tca cat cag gat gat agg cct tca aca agc aca 144
Ser Asp Ser Asp Asp Ser His Gln Asp Asp Arg Pro Ser Thr Ser Thr Ser Asp Ser Asp Asp Ser His Gln Asp Asp Arg Pro Ser Thr Ser Thr
35 40 45 35 40 45 45
the
caa acc cca tca cca cag tct tca gca tca act tcg ccc act gca tat 192 caa acc cca tca cca cag tct tca gca tca act tcg ccc act gca tat 192
Gln Thr Pro Ser Pro Gln Ser Ser Ala Ser Thr Ser Pro Thr Ala Tyr Gln Thr Pro Ser Pro Gln Ser Ser Ala Ser Thr Ser Pro Thr Ala Tyr
50 55 60 50 55 60 60
the
aac acc aga aat tta tcc ttt cct aga aga gat agt atg tat ggt cat 240 aac acc aga aat tta tcc ttt cct aga aga gat agt atg tat ggt cat 240
Asn Thr Arg Asn Leu Ser Phe Pro Arg Arg Asp Ser Met Tyr Gly His Asn Thr Arg Asn Leu Ser Phe Pro Arg Arg Asp Ser Met Tyr Gly His
65 70 75 80 65 70 75 80 80
the
gga aga agt att tgg aat tct ggt ttg tgg atc tcg ttt gaa ctg gtc 288 gga aga agt att tgg aat tct ggt ttg tgg atc tcg ttt gaa ctg gtc 288
Gly Arg Ser Ile Trp Asn Ser Gly Leu Trp Ile Ser Phe Glu Leu Val Gly Arg Ser Ile Trp Asn Ser Gly Leu Trp Ile Ser Phe Glu Leu Val
85 90 95 85 90 95 95
the
ata tat gta gta cag att gta gct gct att ttc gtc ctt gtc ttt tca 336 ata tat gta gta cag att gta gct gct att ttc gtc ctt gtc ttt tca 336
Ile Tyr Val Val Gln Ile Val Ala Ala Ile Phe Val Leu Val Phe Ser Ile Tyr Val Val Gln Ile Val Ala Ala Ile Phe Val Leu Val Phe Ser
100 105 110 100 105 110
the
aga gac gaa cat ccg cat gcc cct tta ttt gca tgg ata att ggt tac 384 aga gac gaa cat ccg cat gcc cct tta ttt gca tgg ata att ggt tac 384
Arg Asp Glu His Pro His Ala Pro Leu Phe Ala Trp Ile Ile Gly Tyr Arg Asp Glu His Pro His Ala Pro Leu Phe Ala Trp Ile Ile Gly Tyr
115 120 125 115 120 125 125
the
aca att ggc tgc att gca agc att cct ctt att tgt tgg cgc tgt gcc 432 aca att ggc tgc att gca agc att cct ctt att tgt tgg cgc tgt gcc 432
Thr Ile Gly Cys Ile Ala Ser Ile Pro Leu Ile Cys Trp Arg Cys Ala Thr Ile Gly Cys Ile Ala Ser Ile Pro Leu Ile Cys Trp Arg Cys Ala
130 135 140 130 135 140 140
the
cat cga aac aga cct tcg gaa caa gaa cct gaa caa cca ccc gca gcc 480 cat cga aac aga cct tcg gaa caa gaa cct gaa caa cca ccc gca gcc 480
His Arg Asn Arg Pro Ser Glu Gln Glu Pro Glu Gln Pro Pro Ala Ala His Arg Asn Arg Pro Ser Glu Gln Glu Pro Glu Gln Pro Pro Ala Ala
145 150 155 160 145 150 155 160
the
tat cct aat ttg act tcc tct caa tca tca gaa gga cgc aat cag cgt 528 tat cct aat ttg act tcc tct caa tca tca gaa gga cgc aat cag cgt 528
Tyr Pro Asn Leu Thr Ser Ser Gln Ser Ser Glu Gly Arg Asn Gln Arg Tyr Pro Asn Leu Thr Ser Ser Gln Ser Ser Glu Gly Arg Asn Gln Arg
165 170 175 165 170 175
the
agc agt ggt act gtt ttg cat ttt gga tgt atc aca att tcg tgt cca 576 agc agt ggt act gtt ttg cat ttt gga tgt atc aca att tcg tgt cca 576
Ser Ser Gly Thr Val Leu His Phe Gly Cys Ile Thr Ile Ser Cys Pro Ser Ser Gly Thr Val Leu His Phe Gly Cys Ile Thr Ile Ser Cys Pro
180 185 190 180 185 190
the
agg cct agc ata ttg gct tat cat ttc aag aca gct gta gac tgt ttc 624 agg cct agcata a ttg gct tat cat ttc aag aca gct gta gac tgt ttc 624
Arg Pro Ser Ile Leu Ala Tyr His Phe Lys Thr Ala Val Asp Cys Phe Arg Pro Ser Ile Leu Ala Tyr His Phe Lys Thr Ala Val Asp Cys Phe
195 200 205 195 200 205 205
the
ttt gct gta tgg ttt gtt gtt ggc aat gtg tgg att ttt ggt ggg cac 672 ttt gct gta tgg ttt gtt gtt ggc aat gtg tgg att ttt ggt ggg cac 672
Phe Ala Val Trp Phe Val Val Gly Asn Val Trp Ile Phe Gly Gly His Phe Ala Val Trp Phe Val Val Gly Asn Val Trp Ile Phe Gly Gly His
210 215 220 210 215 220 220
the
agc act ttg tca gat tct cag gaa gct ccc aat atg tat agg cta tgc 720 agc act ttg tca gat tct cag gaa gct ccc aat atg tat agg cta tgc 720
Ser Thr Leu Ser Asp Ser Gln Glu Ala Pro Asn Met Tyr Arg Leu Cys Ser Thr Leu Ser Asp Ser Gln Glu Ala Pro Asn Met Tyr Arg Leu Cys
225 230 235 240 225 230 235 240
the
tta gca ttc ctt gca ctt agt tgt gtt ggg tat gct att ccc ttc gtc 768 tta gca ttc ctt gca ctt agt tgt gtt ggg tat gct att ccc ttc gtc 768
Leu Ala Phe Leu Ala Leu Ser Cys Val Gly Tyr Ala Ile Pro Phe Val Leu Ala Phe Leu Ala Leu Ser Cys Val Gly Tyr Ala Ile Pro Phe Val
245 250 255 245 250 255
the
atg tgt gca gcc ata tgc tgc tgc ttt cca tgc tta att tct ctt ctg 816 atg tgt gca gcc ata tgc tgc tgc ttt cca tgc tta att tct ctt ctg 816
Met Cys Ala Ala Ile Cys Cys Cys Phe Pro Cys Leu Ile Ser Leu Leu Met Cys Ala Ala Ile Cys Cys Cys Phe Pro Cys Leu Ile Ser Leu Leu
260 265 270 260 265 270
the
cgc ctt caa gag gat ttg ggt cat act aga gga gct act caa gaa cta 864 cgc ctt caa gag gat ttg ggt cat act aga gga gct act caa gaa cta 864
Arg Leu Gln Glu Asp Leu Gly His Thr Arg Gly Ala Thr Gln Glu Leu Arg Leu Gln Glu Asp Leu Gly His Thr Arg Gly Ala Thr Gln Glu Leu
275 280 285 275 280 285 285
the
att gat gca ctg cca acc tac aaa ttc aag cca aaa cga agc aaa atg 912 att gat gca ctg cca acc tac aaa ttc aag cca aaa cga agc aaa atg 912
Ile Asp Ala Leu Pro Thr Tyr Lys Phe Lys Pro Lys Arg Ser Lys Met Ile Asp Ala Leu Pro Thr Tyr Lys Phe Lys Pro Lys Arg Ser Lys Met
290 295 300 290 295 300
the
tgg gtt gac cat gct tca agc tca gag aat ctt agc gag ggt ggc atc 960 tgg gtt gac cat gct tca agc tca gag aat ctt agc gag ggt ggc atc 960
Trp Val Asp His Ala Ser Ser Ser Glu Asn Leu Ser Glu Gly Gly Ile Trp Val Asp His Ala Ser Ser Ser Ser Glu Asn Leu Ser Glu Gly Gly Ile
305 310 315 320 305 310 315 320
the
ctg ggc cca gga act aaa aag gaa agg att gtt tca gct gaa gat gct 1008 ctg ggc cca gga act aaa aag gaa agg att gtt tca gct gaa gat gct 1008
Leu Gly Pro Gly Thr Lys Lys Glu Arg Ile Val Ser Ala Glu Asp Ala Leu Gly Pro Gly Thr Lys Lys Glu Arg Ile Val Ser Ala Glu Asp Ala
325 330 335 325 330 335
the
gtg tgc tgc atc tgt ctt act aag tac gga gat gat gat gag ctc cgt 1056 gtg tgc tgc atc tgt ctt act aag tac gga gat gat gat gag ctc cgt 1056
Val Cys Cys Ile Cys Leu Thr Lys Tyr Gly Asp Asp Asp Glu Leu Arg Val Cys Cys Ile Cys Leu Thr Lys Tyr Gly Asp Asp Asp Glu Leu Arg
340 345 350 340 345 350
the
gag ctt cct tgc acc cac ttc ttt cat gtg caa tgt gtc gat aaa tgg 1104 gag ctt cct tgc acc cac ttc ttt cat gtg caa tgt gtc gat aaa tgg 1104
Glu Leu Pro Cys Thr His Phe Phe His Val Gln Cys Val Asp Lys Trp Glu Leu Pro Cys Thr His Phe Phe His Val Gln Cys Val Asp Lys Trp
355 360 365 355 360 365 365
the
ctc aag ata aat gca gtg tgc cca ctc tgc aag acc gag att ggg ggt 1152 ctc aag ata aat gca gtg tgc cca ctc tgc aag acc gag att ggg ggt 1152
Leu Lys Ile Asn Ala Val Cys Pro Leu Cys Lys Thr Glu Ile Gly Gly Leu Lys Ile Asn Ala Val Cys Pro Leu Cys Lys Thr Glu Ile Gly Gly
370 375 380 370 375 380 370 375 380
the
gtg gtt cga tca ttt ttt ggc ttg ccc ttt ggt cgc cga cgt gtt gat 1200 gtg gtt cga tca ttt ttt ggc ttg ccc ttt ggt cgc cga cgt gtt gat 1200
Val Val Arg Ser Phe Phe Gly Leu Pro Phe Gly Arg Arg Arg Val Asp Val Val Arg Ser Phe Phe Gly Leu Pro Phe Gly Arg Arg Arg Val Asp
385 390 395 400 385 390 395 400
the
agg atg gca gga aga ggt ata gct agc tcg aga ttc act gta tag 1245 agg atg gca gga aga ggt ata gct agc tcg aga ttc act gta tag 1245
Arg Met Ala Gly Arg Gly Ile Ala Ser Ser Arg Phe Thr Val Arg Met Ala Gly Arg Gly Ile Ala Ser Ser Arg Phe Thr Val
405 410 405 410 410
the
the
<210> 3 <210> 3
<211> 414 <211> 414
<212> PRT <212> PRT
<213> 水稻(Oryza sativa L ssp.indica) <213> Rice (Oryza sativa L ssp. indica)
the
<400> 3 <400> 3
the
Met Glu His Ala Thr Cys Asp Asp Val His Glu His Ala Ile Asn Val Met Glu His Ala Thr Cys Asp Asp Val His Glu His Ala Ile Asn Val
1 5 10 15 1 5 10 15
the
the
Ser His Gly Glu Thr Ala Ser Thr Ser Thr Ser His Gln Asp Leu His Ser His Gly Glu Thr Ala Ser Thr Ser Ser Thr Ser His Gln Asp Leu His
20 25 30 20 25 30
the
the
Ser Asp Ser Asp Asp Ser His Gln Asp Asp Arg Pro Ser Thr Ser Thr Ser Asp Ser Asp Asp Ser His Gln Asp Asp Arg Pro Ser Thr Ser Thr
35 40 45 35 40 45 45
the
the
Gln Thr Pro Ser Pro Gln Ser Ser Ala Ser Thr Ser Pro Thr Ala Tyr Gln Thr Pro Ser Pro Gln Ser Ser Ala Ser Thr Ser Pro Thr Ala Tyr
50 55 60 50 55 60 60
the
the
Asn Thr Arg Asn Leu Ser Phe Pro Arg Arg Asp Ser Met Tyr Gly His Asn Thr Arg Asn Leu Ser Phe Pro Arg Arg Asp Ser Met Tyr Gly His
65 70 75 80 65 70 75 80
the
the
Gly Arg Ser Ile Trp Asn Ser Gly Leu Trp Ile Ser Phe Glu Leu Val Gly Arg Ser Ile Trp Asn Ser Gly Leu Trp Ile Ser Phe Glu Leu Val
85 90 95 85 90 95
the
the
Ile Tyr Val Val Gln Ile Val Ala Ala Ile Phe Val Leu Val Phe Ser Ile Tyr Val Val Gln Ile Val Ala Ala Ile Phe Val Leu Val Phe Ser
100 105 110 100 105 110
the
the
Arg Asp Glu His Pro His Ala Pro Leu Phe Ala Trp Ile Ile Gly Tyr Arg Asp Glu His Pro His Ala Pro Leu Phe Ala Trp Ile Ile Gly Tyr
115 120 125 115 120 125
the
the
Thr Ile Gly Cys Ile Ala Ser Ile Pro Leu Ile Cys Trp Arg Cys Ala Thr Ile Gly Cys Ile Ala Ser Ile Pro Leu Ile Cys Trp Arg Cys Ala
130 135 140 130 135 140
the
the
His Arg Asn Arg Pro Ser Glu Gln Glu Pro Glu Gln Pro Pro Ala Ala His Arg Asn Arg Pro Ser Glu Gln Glu Pro Glu Gln Pro Pro Ala Ala
145 150 155 160 145 150 155 160
the
the
Tyr Pro Asn Leu Thr Ser Ser Gln Ser Ser Glu Gly Arg Asn Gln Arg Tyr Pro Asn Leu Thr Ser Ser Gln Ser Ser Glu Gly Arg Asn Gln Arg
165 170 175 165 170 175
the
the
Ser Ser Gly Thr Val Leu His Phe Gly Cys Ile Thr Ile Ser Cys Pro Ser Ser Gly Thr Val Leu His Phe Gly Cys Ile Thr Ile Ser Cys Pro
180 185 190 180 185 190
the
the
Arg Pro Ser Ile Leu Ala Tyr His Phe Lys Thr Ala Val Asp Cys Phe Arg Pro Ser Ile Leu Ala Tyr His Phe Lys Thr Ala Val Asp Cys Phe
195 200 205 195 200 205
the
the
Phe Ala Val Trp Phe Val Val Gly Asn Val Trp Ile Phe Gly Gly His Phe Ala Val Trp Phe Val Val Gly Asn Val Trp Ile Phe Gly Gly His
210 215 220 210 215 220
the
the
Ser Thr Leu Ser Asp Ser Gln Glu Ala Pro Asn Met Tyr Arg Leu Cys Ser Thr Leu Ser Asp Ser Gln Glu Ala Pro Asn Met Tyr Arg Leu Cys
225 230 235 240 225 230 235 240
the
the
Leu Ala Phe Leu Ala Leu Ser Cys Val Gly Tyr Ala Ile Pro Phe Val Leu Ala Phe Leu Ala Leu Ser Cys Val Gly Tyr Ala Ile Pro Phe Val
245 250 255 245 250 255
the
the
Met Cys Ala Ala Ile Cys Cys Cys Phe Pro Cys Leu Ile Ser Leu Leu Met Cys Ala Ala Ile Cys Cys Cys Phe Pro Cys Leu Ile Ser Leu Leu
260 265 270 260 265 270
the
the
Arg Leu Gln Glu Asp Leu Gly His Thr Arg Gly Ala Thr Gln Glu Leu Arg Leu Gln Glu Asp Leu Gly His Thr Arg Gly Ala Thr Gln Glu Leu
275 280 285 275 280 285
the
the
Ile Asp Ala Leu Pro Thr Tyr Lys Phe Lys Pro Lys Arg Ser Lys Met Ile Asp Ala Leu Pro Thr Tyr Lys Phe Lys Pro Lys Arg Ser Lys Met
290 295 300 290 295 300
the
the
Trp Val Asp His Ala Ser Ser Ser Glu Asn Leu Ser Glu Gly Gly Ile Trp Val Asp His Ala Ser Ser Ser Glu Asn Leu Ser Glu Gly Gly Ile
305 310 315 320 305 310 315 320
the
the
Leu Gly Pro Gly Thr Lys Lys Glu Arg Ile Val Ser Ala Glu Asp Ala Leu Gly Pro Gly Thr Lys Lys Glu Arg Ile Val Ser Ala Glu Asp Ala
325 330 335 325 330 335
the
the
Val Cys Cys Ile Cys Leu Thr Lys Tyr Gly Asp Asp Asp Glu Leu Arg Val Cys Cys Ile Cys Leu Thr Lys Tyr Gly Asp Asp Asp Glu Leu Arg
340 345 350 340 345 350
the
the
Glu Leu Pro Cys Thr His Phe Phe His Val Gln Cys Val Asp Lys Trp Glu Leu Pro Cys Thr His Phe Phe His Val Gln Cys Val Asp Lys Trp
355 360 365 355 360 365
the
the
Leu Lys Ile Asn Ala Val Cys Pro Leu Cys Lys Thr Glu Ile Gly Gly Leu Lys Ile Asn Ala Val Cys Pro Leu Cys Lys Thr Glu Ile Gly Gly
370 375 380 370 375 380
the
the
Val Val Arg Ser Phe Phe Gly Leu Pro Phe Gly Arg Arg Arg Val Asp Val Val Arg Ser Phe Phe Gly Leu Pro Phe Gly Arg Arg Arg Val Asp
385 390 395 400 385 390 395 400
the
the
Arg Met Ala Gly Arg Gly Ile Ala Ser Ser Arg Phe Thr Val Arg Met Ala Gly Arg Gly Ile Ala Ser Ser Arg Phe Thr Val
405 410 405 410
the
the
<210> 4 <210> 4
<211> 21 <211> 21
<212> DNA <212> DNA
<213> 人工序列 <213> Artificial sequence
the
<220> <220>
<223> 引物 <223> Primer
the
<400> 4 <400> 4
gtttgcgaca ttggagcctt c 21 gtttgcgaca ttggagcctt c 21
the
the
<210> 5 <210> 5
<211> 23 <211> 23
<212> DNA <212> DNA
<213> 人工序列 <213> Artificial sequence
the
<220> <220>
<223> 引物 <223> Primer
the
<400> 5 <400> 5
aatgcttggg tatgctaggt gaa 23 aatgcttggg tatgctaggt gaa 23
the
the
<210> 6 <210> 6
<211> 22 <211> 22
<212> DNA <212> DNA
<213> 人工序列 <213> Artificial sequence
the
<220> <220>
<223> 引物 <223> Primer
the
<400> 6 <400> 6
tcctcggaga tgtttgacct tg 22 tcctcggaga tgtttgacct tg 22
the
the
<210> 7 <210> 7
<211> 23 <211> 23
<212> DNA <212> DNA
<213> 人工序列 <213> Artificial sequence
the
<220> <220>
<223> 引物 <223> Primer
the
<400> 7 <400> 7
cagaaggtgt acgcaactct tgt 23 cagaaggtgt acgcaactct tgt 23
the
the
<210> 8 <210> 8
<211> 19 <211> 19
<212> DNA <212> DNA
<213> 人工序列 <213> Artificial sequence
the
<220> <220>
<223> 引物 <223> Primer
the
<400> 8 <400> 8
ccatccaaac acgccctaa 19 ccatccaaac acgccctaa 19
the
the
<210> 9 <210> 9
<211> 18 <211> 18
<212> DNA <212> DNA
<213> 人工序列 <213> Artificial sequence
the
<220> <220>
<223> 引物 <223> Primer
the
<400> 9 <400> 9
attgcccctt gctatggt 18 attgcccctt gctatggt 18
the
the
<210> 10 <210> 10
<211> 20 <211> 20
<212> DNA <212> DNA
<213> 人工序列 <213> Artificial sequence
the
<220> <220>
<223> 引物 <223> Primer
the
<400> 10 <400> 10
ttcgtggatg gagggagtac 20 ttcgtggatg gagggagtac 20
the
the
<210> 11 <210> 11
<211> 20 <211> 20
<212> DNA <212> DNA
<213> 人工序列 <213> Artificial sequence
the
<220> <220>
<223> 引物 <223> Primer
the
<400> 11 <400> 11
rgcgtttgta ggagtgccac 20 rgcgtttgta ggagtgccac 20
Claims (10)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210515449.2A CN103848906B (en) | 2012-12-05 | 2012-12-05 | Rice high temperature resistance related gene OsZFP, selectable marker and its isolation method |
CN201380063618.6A CN105189533A (en) | 2012-12-05 | 2013-12-05 | Heat-resistant rice gene OsZFP, screening marker and separation method thereof |
PCT/CN2013/001504 WO2014086100A1 (en) | 2012-12-05 | 2013-12-05 | Heat-resistant rice gene oszfp, screening marker and separation method thereof |
US14/730,622 US9663794B2 (en) | 2012-12-05 | 2015-06-04 | Heat-resistance rice gene OsZFP, screening marker and separation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210515449.2A CN103848906B (en) | 2012-12-05 | 2012-12-05 | Rice high temperature resistance related gene OsZFP, selectable marker and its isolation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103848906A true CN103848906A (en) | 2014-06-11 |
CN103848906B CN103848906B (en) | 2021-06-25 |
Family
ID=50857057
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210515449.2A Expired - Fee Related CN103848906B (en) | 2012-12-05 | 2012-12-05 | Rice high temperature resistance related gene OsZFP, selectable marker and its isolation method |
CN201380063618.6A Pending CN105189533A (en) | 2012-12-05 | 2013-12-05 | Heat-resistant rice gene OsZFP, screening marker and separation method thereof |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201380063618.6A Pending CN105189533A (en) | 2012-12-05 | 2013-12-05 | Heat-resistant rice gene OsZFP, screening marker and separation method thereof |
Country Status (3)
Country | Link |
---|---|
US (1) | US9663794B2 (en) |
CN (2) | CN103848906B (en) |
WO (1) | WO2014086100A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105117617A (en) * | 2015-08-26 | 2015-12-02 | 大连海事大学 | Method for screening environmentally sensitive biomolecules |
CN106868017A (en) * | 2017-03-02 | 2017-06-20 | 湖南农业大学 | A kind of adjusting and controlling rice seedling stage heat resistance gene TBZ1 and application |
CN109338003A (en) * | 2018-11-12 | 2019-02-15 | 上海市农业科学院 | TT1-dCAPS marker for detection of high temperature tolerance gene TT1 genotype in rice and its application |
CN110791523A (en) * | 2019-12-13 | 2020-02-14 | 南京农业大学 | A cotton drought resistance related gene GhRCHY1 and its application |
CN110951753A (en) * | 2019-12-31 | 2020-04-03 | 海南波莲水稻基因科技有限公司 | Rice photo-thermo-sensitive nuclear male sterility gene tms2759 and molecular marker and application thereof |
CN111471787A (en) * | 2020-04-08 | 2020-07-31 | 上海市农业科学院 | A PCR/LDR molecular marker and method for identifying high temperature resistant TT1 genotype in rice |
CN116790621A (en) * | 2023-05-17 | 2023-09-22 | 广东省农业科学院农业生物基因研究中心 | Application of rice OsZF gene in regulating seed size |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108841993A (en) * | 2016-02-04 | 2018-11-20 | 山东省农业科学院生物技术研究中心 | SSR molecular marker L10 and application with the high bar QTL close linkage of rice |
CN108165559B (en) * | 2017-11-29 | 2021-06-18 | 昆明理工大学 | A C2H2 type transcription factor gene and its application |
CN110157835B (en) * | 2019-07-09 | 2023-03-28 | 湖南省水稻研究所 | InDel molecular marker related to heat resistance of rice at heading and flowering stage as well as primer and application thereof |
CN113584200B (en) * | 2020-04-30 | 2023-09-26 | 深圳华大生命科学研究院 | Molecular marker related to cold non-retrogradation character of rice and application thereof |
CN113584199B (en) * | 2020-04-30 | 2023-09-26 | 深圳华大生命科学研究院 | Molecular marker related to cold non-retrogradation character of rice and application thereof |
CN111602592B (en) * | 2020-05-25 | 2021-11-16 | 湖南师范大学 | Breeding method and application of rice low temperature sensitive genic male sterile line with high sterility critical temperature of high and low temperature resistance |
CN111663003B (en) * | 2020-07-15 | 2022-07-19 | 江西农业大学 | Molecular marker detection kit for associating rice heat resistance and detection method thereof |
CN112369319B (en) * | 2020-11-12 | 2023-10-03 | 安徽荃银高科种业股份有限公司 | Method for breeding high-quality rice varieties in high temperature period based on alkali extinction value |
CN112369322B (en) * | 2020-11-12 | 2023-10-03 | 安徽荃银高科种业股份有限公司 | Method for identifying high-quality rice variety in high temperature period by using alkali extinction value |
CN112753569A (en) * | 2021-02-05 | 2021-05-07 | 楚雄彝族自治州农业科学院 | Method for cultivating new hybrid corn variety resistant to high temperature and heat damage |
CN113151554B (en) * | 2021-04-25 | 2022-12-06 | 新疆农业大学 | InDel molecular marker for identifying high-temperature resistance of cotton and application thereof |
CN117050154B (en) * | 2023-10-10 | 2024-04-09 | 广东省农业科学院作物研究所 | Method for improving high temperature resistance, drought resistance and salt stress resistance of tobacco |
CN118497401A (en) * | 2024-06-05 | 2024-08-16 | 江西省农业科学院水稻研究所 | DCAPS molecular marker of rice seed vitality gene OsRFP and related application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101821409A (en) * | 2007-08-29 | 2010-09-01 | 孟山都技术公司 | Methods and compositions for breeding for preferred traits |
CN102433334A (en) * | 2011-12-13 | 2012-05-02 | 中国农业科学院作物科学研究所 | A Tightly Linked Molecular Marker of a Sink-derived Novel Gene (SS2) in Rice |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080148432A1 (en) * | 2005-12-21 | 2008-06-19 | Mark Scott Abad | Transgenic plants with enhanced agronomic traits |
-
2012
- 2012-12-05 CN CN201210515449.2A patent/CN103848906B/en not_active Expired - Fee Related
-
2013
- 2013-12-05 WO PCT/CN2013/001504 patent/WO2014086100A1/en active Application Filing
- 2013-12-05 CN CN201380063618.6A patent/CN105189533A/en active Pending
-
2015
- 2015-06-04 US US14/730,622 patent/US9663794B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101821409A (en) * | 2007-08-29 | 2010-09-01 | 孟山都技术公司 | Methods and compositions for breeding for preferred traits |
CN102433334A (en) * | 2011-12-13 | 2012-05-02 | 中国农业科学院作物科学研究所 | A Tightly Linked Molecular Marker of a Sink-derived Novel Gene (SS2) in Rice |
Non-Patent Citations (1)
Title |
---|
GENBANK: "GenBank登录号:NM_001069405", 《GENBANK》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105117617A (en) * | 2015-08-26 | 2015-12-02 | 大连海事大学 | Method for screening environmentally sensitive biomolecules |
CN105117617B (en) * | 2015-08-26 | 2017-10-24 | 大连海事大学 | A kind of method for screening environmental sensitivity biomolecule |
CN106868017A (en) * | 2017-03-02 | 2017-06-20 | 湖南农业大学 | A kind of adjusting and controlling rice seedling stage heat resistance gene TBZ1 and application |
CN109338003A (en) * | 2018-11-12 | 2019-02-15 | 上海市农业科学院 | TT1-dCAPS marker for detection of high temperature tolerance gene TT1 genotype in rice and its application |
CN110791523A (en) * | 2019-12-13 | 2020-02-14 | 南京农业大学 | A cotton drought resistance related gene GhRCHY1 and its application |
CN110791523B (en) * | 2019-12-13 | 2022-05-10 | 南京农业大学 | Cotton drought-resistant related gene GhRCHY1 and application thereof |
CN110951753A (en) * | 2019-12-31 | 2020-04-03 | 海南波莲水稻基因科技有限公司 | Rice photo-thermo-sensitive nuclear male sterility gene tms2759 and molecular marker and application thereof |
CN110951753B (en) * | 2019-12-31 | 2021-11-26 | 海南波莲水稻基因科技有限公司 | Rice photo-thermo-sensitive nuclear male sterility gene tms2759 and molecular marker and application thereof |
CN111471787A (en) * | 2020-04-08 | 2020-07-31 | 上海市农业科学院 | A PCR/LDR molecular marker and method for identifying high temperature resistant TT1 genotype in rice |
CN116790621A (en) * | 2023-05-17 | 2023-09-22 | 广东省农业科学院农业生物基因研究中心 | Application of rice OsZF gene in regulating seed size |
CN116790621B (en) * | 2023-05-17 | 2024-02-27 | 广东省农业科学院农业生物基因研究中心 | Application of rice OsZF gene in regulating seed size |
Also Published As
Publication number | Publication date |
---|---|
US20150267219A1 (en) | 2015-09-24 |
US9663794B2 (en) | 2017-05-30 |
CN103848906B (en) | 2021-06-25 |
WO2014086100A1 (en) | 2014-06-12 |
CN105189533A (en) | 2015-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9663794B2 (en) | Heat-resistance rice gene OsZFP, screening marker and separation method thereof | |
CN102260703B (en) | Methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby | |
CN101942449B (en) | Methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby | |
JP5323044B2 (en) | Method for enhancing stress tolerance in plants and method | |
WO2011127744A1 (en) | Protein ipa1 related to plant architecture, its coding genes and uses | |
CN106148353A (en) | Rice brown planthopper resistant gene Bph6 and closely linked molecular marker thereof | |
CN110903368B (en) | A gene for controlling maize female traits and kits, mutant genotypes and methods for creating maize female sterile lines | |
CN103421804B (en) | Application of Ghd7-1 gene to regulate rice yield, flowering period and plant height | |
WO2014069339A1 (en) | Nucleic acid imparting high-yielding property to plant, method for producing transgenic plant with increased yield, and method for increasing plant yield | |
CN103114076A (en) | Rice leaf color control gene heme oxygenase2 (HO2) and application thereof | |
WO2015007241A1 (en) | Molecular marker | |
CN112250745B (en) | A MYB21 Gene Regulating Rice Bacterial Blight Resistance and Its Application | |
CN103789322B (en) | Application of plant transcription factor dst in regulating plant seed setting rate and improving plant resistance to high temperature | |
CN115044592B (en) | Gene ZmADT2 for regulating and controlling maize plant type and resistance to tumor smut, and encoding protein and application thereof | |
CN113957082B (en) | Rice chloroplast development gene TSA protected at low temperature and encoding protein and application thereof | |
CN107326030B (en) | A WRKY transcription factor regulating low potassium tolerance and its application | |
CN106318923B (en) | The protein and its gene of a kind of High Temperature Stress down regulation Development of Chloroplasts and application | |
CN101993479B (en) | Plant stress tolerance related transcription factor TaWRKY1 as well as coding gene and application thereof | |
CN105779476A (en) | Tea tree cold-proof gene CsSPMS and plant expression vector construction and application thereof | |
US20220090114A1 (en) | Soybean Transgenic Event IND-00410-5 | |
CN110564737A (en) | Transcription factor HvTTG1 derived from barley genotype SLB and application thereof | |
CN109628468A (en) | A kind of Chunlan CgWRKY53 gene and its application | |
CN115109783B (en) | Peanut NBS-LRR coding gene AhRRS2 and application thereof in plant bacterial wilt resistance | |
CN114410603B (en) | Rice adaptability response control gene TOGR3 to high ambient temperature and its application | |
CN104844700B (en) | New paddy rice hybrid disadvantage gene and its application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210625 |
|
CF01 | Termination of patent right due to non-payment of annual fee |