CN103839891A - Semiconductor structure and manufacturing method thereof - Google Patents
Semiconductor structure and manufacturing method thereof Download PDFInfo
- Publication number
- CN103839891A CN103839891A CN201210489362.2A CN201210489362A CN103839891A CN 103839891 A CN103839891 A CN 103839891A CN 201210489362 A CN201210489362 A CN 201210489362A CN 103839891 A CN103839891 A CN 103839891A
- Authority
- CN
- China
- Prior art keywords
- polycrystalline
- layer
- source
- soi substrate
- gate stack
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 45
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 42
- 239000000758 substrate Substances 0.000 claims abstract description 35
- 238000000137 annealing Methods 0.000 claims abstract description 13
- 239000000463 material Substances 0.000 claims description 9
- 230000004888 barrier function Effects 0.000 claims description 5
- 238000005229 chemical vapour deposition Methods 0.000 claims description 3
- 238000002513 implantation Methods 0.000 claims description 2
- 238000011065 in-situ storage Methods 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- 238000001947 vapour-phase growth Methods 0.000 claims 1
- 238000009826 distribution Methods 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 62
- 230000008569 process Effects 0.000 description 16
- 229910052710 silicon Inorganic materials 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 229910052732 germanium Inorganic materials 0.000 description 4
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 4
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 4
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 4
- 238000001289 rapid thermal chemical vapour deposition Methods 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- -1 HfRu Inorganic materials 0.000 description 1
- 229910004129 HfSiO Inorganic materials 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 229910015617 MoNx Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910004200 TaSiN Inorganic materials 0.000 description 1
- 229910010037 TiAlN Inorganic materials 0.000 description 1
- 229910008482 TiSiN Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- YQNQNVDNTFHQSW-UHFFFAOYSA-N acetic acid [2-[[(5-nitro-2-thiazolyl)amino]-oxomethyl]phenyl] ester Chemical compound CC(=O)OC1=CC=CC=C1C(=O)NC1=NC=C([N+]([O-])=O)S1 YQNQNVDNTFHQSW-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- QUZPNFFHZPRKJD-UHFFFAOYSA-N germane Chemical compound [GeH4] QUZPNFFHZPRKJD-UHFFFAOYSA-N 0.000 description 1
- 229910052986 germanium hydride Inorganic materials 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0167—Manufacturing their channels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6704—Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device
- H10D30/6713—Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device characterised by the properties of the source or drain regions, e.g. compositions or sectional shapes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/031—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT]
- H10D30/0321—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT] comprising silicon, e.g. amorphous silicon or polysilicon
- H10D30/0323—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT] comprising silicon, e.g. amorphous silicon or polysilicon comprising monocrystalline silicon
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6704—Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device
- H10D30/6713—Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device characterised by the properties of the source or drain regions, e.g. compositions or sectional shapes
- H10D30/6715—Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device characterised by the properties of the source or drain regions, e.g. compositions or sectional shapes characterised by the doping profiles, e.g. having lightly-doped source or drain extensions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/6741—Group IV materials, e.g. germanium or silicon carbide
- H10D30/6748—Group IV materials, e.g. germanium or silicon carbide having a multilayer structure or superlattice structure
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/017—Manufacturing their source or drain regions, e.g. silicided source or drain regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
Landscapes
- Thin Film Transistor (AREA)
Abstract
本发明提供了一种半导体结构的制造方法,该方法包括以下步骤:提供SOI供衬底,在所述SOI衬底上形成栅极堆叠,在所述栅极堆叠的侧壁形成侧墙;在所述SOI衬底上形成多晶Si1-xGex层;退火,形成源/漏区。相应地,本发明还提供了一种半导体结构。本发明通过在较低温度下形成多晶Si1-xGex的源/漏区,降低了对沟道、源/漏延伸区掺杂分布的影响,提高了器件性能和可靠性。
The invention provides a method for manufacturing a semiconductor structure. The method includes the following steps: providing an SOI substrate, forming a gate stack on the SOI substrate, and forming sidewalls on the side walls of the gate stack; Forming a polycrystalline Si 1-x Ge x layer on the SOI substrate; annealing to form source/drain regions. Correspondingly, the present invention also provides a semiconductor structure. The invention reduces the influence on the doping distribution of the channel and the source/drain extension region by forming the source/drain region of polycrystalline Si 1-x Gex at a relatively low temperature, and improves device performance and reliability.
Description
技术领域technical field
本发明涉及半导体制造领域,尤其涉及一种半导体结构及其制造方法。The invention relates to the field of semiconductor manufacturing, in particular to a semiconductor structure and a manufacturing method thereof.
背景技术Background technique
为了提高集成电路芯片的性能和集成度,器件特征尺寸按照摩尔定律不断缩小,目前已经进入纳米尺度。随着器件体积的缩小,功耗与漏电流成为最关注的问题。采用绝缘体上硅SOI(Silicon on Insulator)制备的CMOS器件具有高速、低功耗、高集成度、抗辐照和无自锁效应等许多优点,已成为深亚微米及纳米级MOS器件的优选结构。为了进一步提高CMOS器件的性能,往往要求超薄硅膜(≤100nm)的SOI结构,使器件沟道处于全耗尽状态,用这种超薄SOI(UTSOI)结构制备的CMOS电路可以改善DIBL(Drain Induced Barrier Lowering,漏致势垒降低)等短沟道效应、改善器件的亚阈值特性、降低电路的静态功耗、消除kink效应等。In order to improve the performance and integration of integrated circuit chips, the feature size of devices has been continuously reduced according to Moore's law, and has now entered the nanometer scale. As the size of devices shrinks, power consumption and leakage current become the most concerned issues. CMOS devices prepared by silicon on insulator SOI (Silicon on Insulator) have many advantages such as high speed, low power consumption, high integration, radiation resistance and no self-locking effect, and have become the preferred structure of deep submicron and nanoscale MOS devices. . In order to further improve the performance of CMOS devices, the SOI structure of ultra-thin silicon film (≤100nm) is often required to make the device channel in a fully depleted state. CMOS circuits prepared with this ultra-thin SOI (UTSOI) structure can improve DIBL ( Drain Induced Barrier Lowering (Drain Induced Barrier Lowering) and other short channel effects, improving the sub-threshold characteristics of the device, reducing the static power consumption of the circuit, and eliminating the kink effect, etc.
然而,由于超薄SOI的顶层硅膜(≤100nm)非常薄,造成了较大的源/漏区串联电阻和接触电阻,金属硅化物可能消耗掉整个硅膜,但仍难以减小源/漏区串联电阻和接触电阻的影响,同时还可能造成较大的漏电流。通过形成提升源/漏(Raised Source/Drain,RSD),可以进一步降低源/漏区的接触电阻,增大器件的驱动电流,提高器件性能。现有技术中,形成提升源/漏常用的方法为选择性外延单晶硅、锗等,工艺温度一般在650℃以上,工艺过程中,容易使得已经形成的源/漏扩展区、沟道掺杂区等的掺杂剂再分布,可能会造成阈值电压过低,或沟道穿通短路等问题。降低提升源/漏的工艺温度,减小其对掺杂分布的影响,成为提升源/漏技术的一个重要挑战。However, since the top silicon film (≤100nm) of ultra-thin SOI is very thin, resulting in a large source/drain region series resistance and contact resistance, metal silicide may consume the entire silicon film, but it is still difficult to reduce the source/drain Area series resistance and contact resistance, and may also cause a large leakage current. By forming a raised source/drain (Raised Source/Drain, RSD), the contact resistance of the source/drain region can be further reduced, the driving current of the device can be increased, and the performance of the device can be improved. In the prior art, the commonly used method for forming the raised source/drain is selective epitaxial single crystal silicon, germanium, etc., and the process temperature is generally above 650°C. The redistribution of dopants in the impurity region may cause problems such as low threshold voltage or channel punch-through short circuit. Reducing the process temperature for raising the source/drain and reducing its influence on the doping profile has become an important challenge for the raising source/drain technology.
发明内容Contents of the invention
本发明旨在至少解决上述技术缺陷,提供一种半导体器件的制造方法及其结构,降低提升源/漏生长的工艺温度,减小其对半导体结构掺杂分布的影响,提高半导体器件的性能和可靠性。The purpose of the present invention is to at least solve the above-mentioned technical defects, provide a semiconductor device manufacturing method and its structure, reduce the process temperature for raising the source/drain growth, reduce its influence on the doping distribution of the semiconductor structure, and improve the performance and performance of the semiconductor device. reliability.
为达上述目的,本发明提供了一种半导体结构的制造方法,该方法包括以下步骤:To achieve the above object, the invention provides a method for manufacturing a semiconductor structure, the method comprising the following steps:
(a)提供SOI衬底,在所述SOI衬底上形成栅极堆叠,在所述栅极堆叠的侧壁形成侧墙;(a) providing an SOI substrate, forming a gate stack on the SOI substrate, and forming sidewalls on the sidewalls of the gate stack;
(b)在暴露的SOI衬底上形成多晶Si1-xGex层;(b) Forming a polycrystalline Si 1-x Ge x layer on the exposed SOI substrate;
(c)退火,在SOI衬底上的多晶Si1-xGex层中形成源/漏区。(c) Annealing to form source/drain regions in the polycrystalline Si 1-x Ge x layer on the SOI substrate.
其中,在步骤(a)中形成侧墙之前或之后,还包括步骤:Wherein, before or after forming the side wall in the step (a), the step also includes:
以所述栅极堆叠为掩膜,形成源/漏延伸区。Using the gate stack as a mask, a source/drain extension region is formed.
本发明另一方面还提出一种半导体结构,包括SOI衬底、栅极堆叠、侧墙、源/漏区,其中:Another aspect of the present invention also proposes a semiconductor structure, including an SOI substrate, a gate stack, side walls, and source/drain regions, wherein:
所述SOI衬底包括基底层、位于所述基底层之上的绝缘层以及位于所述绝缘层之上的器件层;The SOI substrate includes a base layer, an insulating layer on the base layer, and a device layer on the insulating layer;
所述栅极堆叠位于所述SOI衬底之上;the gate stack is located on the SOI substrate;
所述侧墙位于所述栅极堆叠的侧壁上;the sidewall is located on the sidewall of the gate stack;
所述源/漏区形成于所述SOI衬底之上,位于所述栅极堆叠的两侧,其材料为多晶Si1-xGex。The source/drain region is formed on the SOI substrate at two sides of the gate stack, and its material is polycrystalline Si 1-x Ge x .
根据本发明提供的半导体结构及其制造方法,可以在较低温度下形成源/漏区,减小了其对半导体结构掺杂分布的影响,减小了源/漏区的串联电阻和接触电阻,避免出现阈值电压降低、沟道穿通短路等问题,提高半导体器件的性能和可靠性。According to the semiconductor structure and its manufacturing method provided by the present invention, the source/drain region can be formed at a lower temperature, which reduces its influence on the doping distribution of the semiconductor structure, and reduces the series resistance and contact resistance of the source/drain region , avoid problems such as threshold voltage reduction, channel punch-through short circuit, etc., and improve the performance and reliability of semiconductor devices.
附图说明Description of drawings
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and easy to understand from the following description of the embodiments in conjunction with the accompanying drawings, wherein:
图1是根据本发明的半导体结构的制造方法的一个具体实施方式的流程图;Fig. 1 is the flow chart of a specific embodiment of the manufacturing method of semiconductor structure according to the present invention;
图2至图8为根据图1示出的方法制造半导体结构过程中该半导体结构在各个制造阶段的剖面结构示意图。2 to 8 are schematic cross-sectional structural views of the semiconductor structure at various manufacturing stages during the process of manufacturing the semiconductor structure according to the method shown in FIG. 1 .
具体实施方式Detailed ways
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。另外,以下描述的第一特征在第二特征之“上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。Embodiments of the present invention are described in detail below, examples of which are shown in the drawings, wherein the same or similar reference numerals designate the same or similar elements or elements having the same or similar functions throughout. The embodiments described below by referring to the figures are exemplary only for explaining the present invention and should not be construed as limiting the present invention. The following disclosure provides many different embodiments or examples for implementing different structures of the present invention. To simplify the disclosure of the present invention, components and arrangements of specific examples are described below. Of course, they are only examples and are not intended to limit the invention. Furthermore, the present invention may repeat reference numerals and/or letters in different instances. This repetition is for the purpose of simplicity and clarity and does not in itself indicate a relationship between the various embodiments and/or arrangements discussed. In addition, various specific process and material examples are provided herein, but one of ordinary skill in the art will recognize the applicability of other processes and/or the use of other materials. Additionally, configurations described below in which a first feature is "on" a second feature may include embodiments where the first and second features are formed in direct contact, and may include additional features formed between the first and second features. For example, such that the first and second features may not be in direct contact.
图1为根据本发明的半导体结构制造方法的流程图,图2至图8为根据本发明的一个实施例按照图1所示流程制造半导体结构的各个阶段的剖面示意图。下面将结合图2至图8对图1中形成半导体结构的方法进行具体地描述。需要说明的是,本发明实施例的附图仅是为了示意的目的,因此没有必要按比例绘制。FIG. 1 is a flowchart of a method for manufacturing a semiconductor structure according to the present invention, and FIGS. 2 to 8 are schematic cross-sectional views of various stages of manufacturing a semiconductor structure according to the process shown in FIG. 1 according to an embodiment of the present invention. The method for forming the semiconductor structure in FIG. 1 will be specifically described below with reference to FIGS. 2 to 8 . It should be noted that the drawings of the embodiments of the present invention are only for illustrative purposes, and therefore are not necessarily drawn to scale.
参考图2至图6,在步骤S101中,提供SOI衬底100,在所述SOI衬底100上形成栅极堆叠,在所述栅极堆叠的侧壁形成侧墙230。如图2所示,所述SOI衬底100包括基底层101、位于所述基底层101之上的绝缘层102以及位于所述绝缘层102之上的器件层103。Referring to FIG. 2 to FIG. 6 , in step S101 , an
在本实施例中,所述基底层101为单晶硅。在其他实施例中,所述基底层101还可以包括其他基本半导体例如锗,或其他化合物半导体,例如,碳化硅、砷化镓、砷化铟或者磷化铟。典型地,所述基底层101的厚度可以约为但不限于几百微米,例如0.2mm-1mm的厚度范围。In this embodiment, the
所述绝缘层102可以为SiO2、氮化硅、Al2O3或者其他任何合适的绝缘材料,典型地,所述绝缘层102的厚度范围为10nm~300nm。The
所述器件层103可以为所述基底层101包括的半导体中的任何一种。在本实施例中,所述器件层103为单晶硅。在其他实施例中,所述器件层103还可以包括其他基本半导体或者化合物半导体。典型地,所述器件层103的厚度范围是10nm~100nm。在本实施例中,所述SOI衬底100为超薄SOI(Ultra-Thin SOI,UTSOI)衬底,具有极薄的器件层,厚度通常小于10nm,有利于控制源/漏区深度,形成超浅结,从而减小短沟道效应。The
特别地,在所述SOI衬底100中形成隔离区,例如浅沟槽隔离(STI)结构120,以便电隔离连续的半导体器件。In particular, isolation regions, such as shallow trench isolation (STI)
所述栅堆叠形成于所述SOI衬底100之上,其包括栅介质层210、栅极220,如图3所示。可选地,所述栅极堆叠还可以包括覆盖在所述栅极上的覆盖层(未在图中示出),例如通过沉积氮化硅、氧化硅、氮氧化硅、碳化硅及其组合形成,用以保护栅极220的顶部区域,防止其在后续的工艺中受到破坏。所述栅介质层210位于SOI衬底100上,可以为高K介质,例如,HfO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、Al2O3、La2O3、ZrO2、LaAlO中的一种或其组合。在另一个实施例中,还可以是热氧化层,包括氧化硅、氮氧化硅;所述栅极介质层210的厚度可以为1nm~10nm,如5nm或8nm。而后在所述栅介质层210上形成栅极220,所述栅极220可以是通过沉积形成的重掺杂多晶硅,或是先形成功函数金属层(对于NMOS,例如TaC,TiN,TaTbN,TaErN,TaYbN,TaSiN,HfSiN,MoSiN,RuTax,NiTax等,对于PMOS,例如MoNx,TiSiN,TiCN,TaAlC,TiAlN,TaN,PtSix,Ni3Si,Pt,Ru,Ir,Mo,HfRu,RuOx),其厚度可以为1nm-20nm,如3nm、5nm、8nm、10nm、12nm或15nm,再在所述功函数金属层上形成重掺杂多晶硅、Ti、Co、Ni、Al、W或其合金等而形成栅极220。The gate stack is formed on the
如图4所示,所述侧墙230形成于栅堆叠的侧壁上,用于将栅堆叠隔开。侧墙230可以由氮化硅、氧化硅、氮氧化硅、碳化硅、及其组合,和/或其他合适的材料形成。侧墙230可以具有多层结构。侧墙230可以通过包括沉积-刻蚀工艺形成,其厚度范围可以是10nm~100nm,如30nm、50nm或80nm。As shown in FIG. 4 , the
可选地,在步骤S101中,还包括在形成所述栅极堆叠之后或形成所述侧墙230之后,形成源/漏延伸区300。通过低能注入的方式在衬底100中形成较浅的源/漏延伸区300,可以向衬底100中注入P型或N型掺杂物或杂质,例如,对于PMOS来说,源/漏延伸区300可以是P型掺杂的Si;对于NMOS来说,源/漏延伸区300可以是N型掺杂的Si。可选地,随之对所述半导体结构进行退火,以激活源/漏延伸区300中的掺杂,退火可以采用包括快速退火、尖峰退火等其他合适的方法形成。在本发明的其他一些实施例中,退火操作也可以放在形成源/漏区之后进行。由于源/漏延伸区300的厚度较浅,可以有效地抑制短沟道效应。图5所示为在形成所述栅极堆叠之后,以所述栅极堆叠为掩膜进行注入,形成所述源/漏延伸区300后的结构剖面图,图6所示为在形成所述侧墙230之后,形成所述源/漏延伸区300后的结构剖面图。Optionally, in step S101 , further comprising forming a source/
参考图1和图7,执行步骤S102,在所述SOI衬底100上,形成多晶Si1-xGex层310。形成所述多晶Si1-xGex层310的方法包括等离子增强化学气相淀积(PECVD)、低压化学气相淀积(LPCVD)、快速热化学气相沉积(RTCVD),通过对气体流量、气压、设备功率等进行调整,可以控制形成多晶Si1-xGex层310的工艺温度在450℃以下,典型的工艺温度为425℃、400℃。相比于选择性外延单晶Si、Ge(工艺温度≥650℃),化学气相淀积形成多晶Si1-xGex层的方法,对半导体结构已有的掺杂分布影响较小,利于提高半导体器件的性能和可靠性。典型地,生成多晶Si1-xGex层310的反应气体为SiH4、GeH4,通过控制SiH4或GeH4的气体流量或气体百分比,来调整Si1-xGex中Si和Ge的组分比。在本实施例中,x的取值是0.2~0.7。所述多晶Si1-xGex层310的厚度不能高于所述栅极堆叠的高度,其厚度范围是50nm~200nm。在本实施例中,通过在形成所述多晶Si1-xGex层310时进行原位掺杂,实现对所述多晶Si1-xGex层310的掺杂;在本发明的其他一些实施例中,可以在形成所述多晶Si1-xGex层310之后,再进行离子注入,实现对所述多晶Si1-xGex层310的掺杂。其中所述多晶Si1-xGex的掺杂浓度为1018~2x1020cm-3,对于NMOS,Si1-xGex层的掺杂类型为N型;对于PMOS,所述多晶Si1-xGex层的掺杂类型为P型。Referring to FIG. 1 and FIG. 7 , step S102 is performed to form a polycrystalline Si 1-x Ge x layer 310 on the
参考图1和图8,在步骤S103中,进行退火,并图形化所述多晶Si1-xGex层,形成源/漏区310。退火可以采用包括快速退火、尖峰退火等其他合适的方法,工艺温度为450℃~550℃。在步骤S102中,利用等离子增强化学气相淀积(PECVD)、低压化学气相淀积(LPCVD)、快速热化学气相沉积(RTCVD)等方法形成的Si1-xGex层有可能是非晶态的,通过退火恢复其晶体结构,消除缺陷,从而得到多晶Si1-xGex层。另一方面,通过退火激活施主和受主杂质。随后,通过干法刻蚀RIE等合适的方法对所述多晶Si1-xGex层进行图形化,在刻蚀的Si1-xGex层上形成源/漏区310。Referring to FIG. 1 and FIG. 8 , in step S103 , annealing is performed, and the polycrystalline Si 1-x Ge x layer is patterned to form source/
随后按照常规半导体制造工艺的步骤完成该半导体结构的制造,例如,在源/漏区上形成金属硅化物;沉积层间介质层以覆盖所述源/漏区和栅极堆叠;刻蚀所述层间介质层暴露源/漏区以形成接触孔,在所述接触孔中填充金属;以及后续的多层金属互连等工艺步骤。Then complete the fabrication of the semiconductor structure according to the steps of the conventional semiconductor manufacturing process, for example, forming metal silicide on the source/drain region; depositing an interlayer dielectric layer to cover the source/drain region and the gate stack; etching the The interlayer dielectric layer exposes the source/drain region to form a contact hole, filling the contact hole with metal; and subsequent process steps such as multi-layer metal interconnection.
本发明还提供了一种半导体结构,如图8所示,所述半导体结构包括SOI衬底100、栅极堆叠、侧墙230、源/漏区310。其中所述SOI衬底100包括基底层101、位于所述基底层101之上的绝缘层102以及位于所述绝缘层102之上的器件层103;所述栅极堆叠位于所述SOI衬底100之上;所述侧墙230位于所述栅极堆叠的侧壁上;所述源/漏区310形成于所述SOI衬底100之上,位于所述栅极堆叠的两侧,其材料为多晶Si1-xGex。所述多晶Si1-xGex源/漏区的厚度为50nm~200nm,x的取值是0.2~0.7。所述多晶Si1-xGex的掺杂浓度为1018~2x1020cm-3,对于NMOS,所述多晶Si1-xGex层的掺杂类型为N型;对于PMOS,所述多晶Si1-xGex层的掺杂类型为P型。所述源/漏区310为提升源/漏结构,即源/漏区310的顶部高于所述栅极堆叠的底部,有利于减小源/漏区的串联电阻和接触电阻,多晶Si1-xGex相比于多晶硅,具有更小的接触电阻,进一步提高半导体器件的电流驱动能力。The present invention also provides a semiconductor structure. As shown in FIG. 8 , the semiconductor structure includes an
可选地,该半导体结构还包括源/漏延伸区300,所述源/漏延伸区300嵌于所述器件层103中,夹于所述源/漏区310和绝缘层102之间。Optionally, the semiconductor structure further includes a source/
虽然关于示例实施例及其优点已经详细说明,应当理解在不脱离本发明的精神和所附权利要求限定的保护范围的情况下,可以对这些实施例进行各种变化、替换和修改。对于其他例子,本领域的普通技术人员应当容易理解在保持本发明保护范围内的同时,工艺步骤的次序可以变化。Although the example embodiments and their advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made to these embodiments without departing from the spirit and scope of the invention as defined by the appended claims. For other examples, those of ordinary skill in the art will readily understand that the order of process steps may be varied while remaining within the scope of the present invention.
此外,本发明的应用范围不局限于说明书中描述的特定实施例的工艺、机构、制造、物质组成、手段、方法及步骤。从本发明的公开内容,作为本领域的普通技术人员将容易地理解,对于目前已存在或者以后即将开发出的工艺、机构、制造、物质组成、手段、方法或步骤,其中它们执行与本发明描述的对应实施例大体相同的功能或者获得大体相同的结果,依照本发明可以对它们进行应用。因此,本发明所附权利要求旨在将这些工艺、机构、制造、物质组成、手段、方法或步骤包含在其保护范围内。In addition, the scope of application of the present invention is not limited to the process, mechanism, manufacture, material composition, means, method and steps of the specific embodiments described in the specification. From the disclosure of the present invention, those of ordinary skill in the art will easily understand that for the processes, mechanisms, manufacturing, material compositions, means, methods or steps that currently exist or will be developed in the future, they are implemented in accordance with the present invention Corresponding embodiments described which function substantially the same or achieve substantially the same results may be applied in accordance with the present invention. Therefore, the appended claims of the present invention are intended to include these processes, mechanisms, manufacture, material compositions, means, methods or steps within their protection scope.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210489362.2A CN103839891A (en) | 2012-11-26 | 2012-11-26 | Semiconductor structure and manufacturing method thereof |
PCT/CN2013/085532 WO2014079296A1 (en) | 2012-11-26 | 2013-10-21 | Semiconductor structure and manufacturing method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210489362.2A CN103839891A (en) | 2012-11-26 | 2012-11-26 | Semiconductor structure and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103839891A true CN103839891A (en) | 2014-06-04 |
Family
ID=50775506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210489362.2A Pending CN103839891A (en) | 2012-11-26 | 2012-11-26 | Semiconductor structure and manufacturing method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103839891A (en) |
WO (1) | WO2014079296A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6275559B2 (en) | 2014-06-13 | 2018-02-07 | ルネサスエレクトロニクス株式会社 | Semiconductor device and manufacturing method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030190791A1 (en) * | 2002-04-04 | 2003-10-09 | International Business Machines Corporation | Germanium field effect transistor and method of fabricating the same |
US6909186B2 (en) * | 2003-05-01 | 2005-06-21 | International Business Machines Corporation | High performance FET devices and methods therefor |
US20050156238A1 (en) * | 2004-01-08 | 2005-07-21 | Taiwan Semiconductor Manufacturing Co. | Silicide gate transistors and method of manufacture |
US20050279997A1 (en) * | 2004-06-17 | 2005-12-22 | Samsung Electronics Co., Ltd. | Methods of selectively forming epitaxial semiconductor layer on single crystalline semiconductor and semiconductor devices fabricated using the same |
CN101542697A (en) * | 2006-05-31 | 2009-09-23 | 先进模拟科技公司 | High-voltage bipolar-CMOS-DMOS integrated circuit devices and modular methods of forming the same |
US20110230017A1 (en) * | 2010-03-18 | 2011-09-22 | International Business Machines Corporation | Method for Forming an SOI Schottky Source/Drain Device to Control Encroachment and Delamination of Silicide |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7163903B2 (en) * | 2004-04-30 | 2007-01-16 | Freescale Semiconductor, Inc. | Method for making a semiconductor structure using silicon germanium |
US7091075B2 (en) * | 2004-07-09 | 2006-08-15 | Atmel Corporation | Fabrication of an EEPROM cell with SiGe source/drain regions |
JP5311851B2 (en) * | 2007-03-23 | 2013-10-09 | 株式会社半導体エネルギー研究所 | Semiconductor device |
-
2012
- 2012-11-26 CN CN201210489362.2A patent/CN103839891A/en active Pending
-
2013
- 2013-10-21 WO PCT/CN2013/085532 patent/WO2014079296A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030190791A1 (en) * | 2002-04-04 | 2003-10-09 | International Business Machines Corporation | Germanium field effect transistor and method of fabricating the same |
US6909186B2 (en) * | 2003-05-01 | 2005-06-21 | International Business Machines Corporation | High performance FET devices and methods therefor |
US20050156238A1 (en) * | 2004-01-08 | 2005-07-21 | Taiwan Semiconductor Manufacturing Co. | Silicide gate transistors and method of manufacture |
US20050279997A1 (en) * | 2004-06-17 | 2005-12-22 | Samsung Electronics Co., Ltd. | Methods of selectively forming epitaxial semiconductor layer on single crystalline semiconductor and semiconductor devices fabricated using the same |
CN101542697A (en) * | 2006-05-31 | 2009-09-23 | 先进模拟科技公司 | High-voltage bipolar-CMOS-DMOS integrated circuit devices and modular methods of forming the same |
US20110230017A1 (en) * | 2010-03-18 | 2011-09-22 | International Business Machines Corporation | Method for Forming an SOI Schottky Source/Drain Device to Control Encroachment and Delamination of Silicide |
Also Published As
Publication number | Publication date |
---|---|
WO2014079296A1 (en) | 2014-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6371822B2 (en) | Semiconductor chip | |
CN103107091B (en) | Semiconductor structure and manufacturing method thereof | |
CN103311247B (en) | Semiconductor device and method for manufacturing the same | |
CN103730363B (en) | Semiconductor structure and manufacturing method thereof | |
CN103632973B (en) | Semiconductor device and method for manufacturing the same | |
CN103137488A (en) | Semiconductor device and method for manufacturing the same | |
CN103489779B (en) | Semiconductor structure and manufacturing method thereof | |
CN103137475B (en) | Semiconductor structure and manufacturing method thereof | |
CN103377946B (en) | Semiconductor structure and manufacturing method thereof | |
WO2014071754A1 (en) | Semiconductor structure and manufacturing method therefor | |
CN103377930B (en) | Semiconductor structure and manufacturing method thereof | |
CN102842616B (en) | Semiconductor structure and manufacturing method thereof | |
CN103779212B (en) | Semiconductor structure and manufacturing method thereof | |
CN104576381B (en) | Asymmetric ultrathin SOIMOS transistor structure and manufacturing method thereof | |
CN104576378B (en) | MOSFET structure and manufacturing method thereof | |
CN103681509B (en) | Method for manufacturing semiconductor structure | |
CN103839891A (en) | Semiconductor structure and manufacturing method thereof | |
CN102842615B (en) | Semiconductor structure and manufacturing method thereof | |
WO2015051564A1 (en) | Mosfet structure and manufacturing method thereof | |
US8969164B2 (en) | Semiconductor structure and method for manufacturing the same | |
CN103165622B (en) | Semiconductor structure and manufacturing method thereof | |
CN102856376B (en) | Semiconductor structure and manufacturing method thereof | |
CN103383914B (en) | Semiconductor structure and manufacturing method thereof | |
CN102856375A (en) | Semiconductor structure and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140604 |