CN103825883A - Multi-protocol conversion equipment based on wireless ZigBee, CAN bus and MODBUS/TCP and realization method thereof - Google Patents
Multi-protocol conversion equipment based on wireless ZigBee, CAN bus and MODBUS/TCP and realization method thereof Download PDFInfo
- Publication number
- CN103825883A CN103825883A CN201410019937.3A CN201410019937A CN103825883A CN 103825883 A CN103825883 A CN 103825883A CN 201410019937 A CN201410019937 A CN 201410019937A CN 103825883 A CN103825883 A CN 103825883A
- Authority
- CN
- China
- Prior art keywords
- bus
- wireless
- modbus
- network
- zigbee
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
本发明公开了一种将基于IEEE802.15.4标准的无线ZigBee网络引入到CAN总线和MODBUS/TCP工业以太网的多协议转换设备及其实现方法,本发明设备包括:微处理器、ZigBee无线主站、CAN总线站点和MODBUS/TCP从站,微处理器作为设备的控制中心,完成不同协议之间信息的解析与分发;以太网物理层芯片通过MII接口接入微处理器,建立了一个MODBUS/TCP从站模块;通过输入总线RX和输出总线TX与CAN控制器连接,构建CAN总线主站模块;选用无线射频芯片CC2530作为设备的ZigBee无线主站并通过USART与微处理器连接进行数据交换;本发明的多协议转换方法通过开辟地址转换映射表完成无线ZigBee网络、CAN总线和MODBUS/TCP以太网三种协议之间的数据转换,实现一种无线/有线异构控制网络。
The invention discloses a multi-protocol conversion device and its realization method for introducing a wireless ZigBee network based on the IEEE802.15.4 standard to CAN bus and MODBUS/TCP industrial Ethernet. The device of the invention includes: a microprocessor and a ZigBee wireless master station , CAN bus station and MODBUS/TCP slave station, the microprocessor is used as the control center of the equipment to complete the analysis and distribution of information between different protocols; the Ethernet physical layer chip is connected to the microprocessor through the MII interface, and a MODBUS/ TCP slave station module; connect with CAN controller through input bus RX and output bus TX to construct CAN bus master station module; choose wireless radio frequency chip CC2530 as the ZigBee wireless master station of the device and connect with microprocessor through USART for data exchange; The multi-protocol conversion method of the present invention completes the data conversion among the three protocols of wireless ZigBee network, CAN bus and MODBUS/TCP Ethernet by opening an address conversion mapping table, and realizes a wireless/wired heterogeneous control network.
Description
技术领域 technical field
本发明涉及一种将基于IEEE802.15.4标准的无线ZigBee网络引入CAN-bus现场总线和MODBUS/TCP工业以太网的多协议转换设备及其多协议转换的实现方法。 The invention relates to a multi-protocol conversion device for introducing a wireless ZigBee network based on the IEEE802.15.4 standard into a CAN-bus field bus and a MODBUS/TCP industrial Ethernet and a method for realizing multi-protocol conversion. the
背景技术 Background technique
现场总线是应用在生产现场与微机化测量控制设备之间实现双向串行多节点的数字通信系统,也被称为开放式、数字化、多点通信的底层控制网络。现场总线的出现改变了传统现场仪表装置与主控系统点对点的联系方式,减少了现场总线的布置线缆,节省工程的施工费用;同时随着现场仪表装置的智能化发展,可以实现部分主控系统的控制功能,使控制系统结构具备高度的分散性。现场总线技术经过几十年的发展,已经形成了多标准共存的局面,虽然现场总线具有实时性好、稳定性高等优点,但是现存的多种现场总线都存在传输速率较低和传输距离受限的问题,而且现场总线各个标准之间互不兼容,给系统的集成和用户的使用、维护带来了很大的不便。 Fieldbus is a digital communication system that implements two-way serial multi-nodes between the production site and computerized measurement and control equipment. It is also known as an open, digital, and multi-point communication underlying control network. The appearance of the field bus has changed the point-to-point contact between the traditional field instrument device and the main control system, reduced the layout of the field bus cables, and saved the construction cost of the project; at the same time, with the intelligent development of the field instrument device, it is possible to realize the The control function of the system makes the structure of the control system highly decentralized. After decades of development, fieldbus technology has formed a multi-standard coexistence situation. Although fieldbus has the advantages of good real-time performance and high stability, the existing various fieldbuses have low transmission rates and limited transmission distances. The problem, and the fieldbus standards are not compatible with each other, which brings great inconvenience to the integration of the system and the use and maintenance of the user. the
MODBUS/TCP工业以太网是MODBUS的延伸,协议的物理层和数据链路层是基于以太网和标准TCP/IP协议,而应用层的定义与MODBUS协议家族的其他协议通用。另一方面MODBUS由于其开放性、透明性,得到了工业界的广泛支持,已成为工业上的事实标准。基于IEEE802.15.4标准的ZigBee无线数据传输网络中,节点之间射频的传输成本低、距离短,各节点只需很少的能量,即可实现一点到两点的和多点的对等通信,而且ZigBee无线网络具有快速组网自动配置等功能,适用于环境较为复杂和恶劣的工业监测系统中。CAN总线技术是一种有效支持分布式控制和实时控制的多主串行通信方式,具有优良的稳定性、实时性、远程通信能力以及超强的硬件CRC纠错等特性,以其高性能和高可靠性在自动控制领域得到了广泛的应用,被公认为是最有前途的现场总线之一。将CAN总线和 ZigBee无线网络相结合,组成移动分布式网络系统,通过MODBUS/TCP工业以太网实现与上位机控制信息的通讯,更有利于工业检测的灵活性和实时性。 MODBUS/TCP Industrial Ethernet is an extension of MODBUS. The physical layer and data link layer of the protocol are based on Ethernet and standard TCP/IP protocol, while the definition of the application layer is common to other protocols in the MODBUS protocol family. On the other hand, because of its openness and transparency, MODBUS has been widely supported by the industry and has become the de facto standard in the industry. In the ZigBee wireless data transmission network based on the IEEE802.15.4 standard, the radio frequency transmission cost between nodes is low and the distance is short, and each node only needs a small amount of energy to realize one-to-two and multi-point peer-to-peer communication. Moreover, ZigBee wireless network has functions such as fast networking and automatic configuration, which is suitable for industrial monitoring systems with complex and harsh environments. CAN bus technology is a multi-master serial communication method that effectively supports distributed control and real-time control. It has excellent stability, real-time performance, long-distance communication capabilities, and super hardware CRC error correction. High reliability has been widely used in the field of automatic control, and is recognized as one of the most promising field buses. The CAN bus and ZigBee wireless network are combined to form a mobile distributed network system, and the communication with the upper computer control information is realized through the MODBUS/TCP industrial Ethernet, which is more conducive to the flexibility and real-time performance of industrial detection. the
经对现有的技术文献检索发现,中国专利公开号为:CN1697448,公开日2005年11月16日,名称为:MODBUS/TCP工业以太网与设备网现场总线和ProfibusDP现场总线间的多协议转换方法和装置,该申请案公开了MODBUS/TCP工业以太网、DeviceNet现场总线和ProfibusDP现场总线间的应用层协议转换;中国专利公开号为:CN1645852,公开日2005年7月27日,名称为MODBUS/TCP工业以太网和ProfibusDP现场总线间的协议转换方法和装置,该申请案公开了MODBUS/TCP工业以太网和ProfibusDP现场总线间的协议转换;以上两种方法的不足之处为:均没有涉及到工业无线网络的应用。中国专利公开号为:CN101425948,公开日2009年5月6日,名称为:工业无线网接入工业以太网和现场总线的多协议网关及协议转换方法,该专利申请案加入了基于IEEE802.15.4a的工业无线网络,并由微控制器实现了MODBUS/TCP工业以太网和ProfibusDP现场总线及工业无线网络三种网络之间的协议转换。但以上专利均没有涉及到在同一装置内实现MODBUS/TCP工业以太网和工业无线网络及CAN总线之间的多协议转换方法和装置的内容。经对现有的技术文献检索还发现,《工矿自动化》2010年1671-251X(2010)11-0101–05,名称为矿用多协议转换网关的设计,提出了一种嵌入式的矿用多协议转换网关的设计方案,该网关通过CAN总线网络、工业以太网和802.11网络等网络的有机结合,解决了井下多种网络的数据交换问题,但是此种方法没有涉及到MODBUS/TCP以太网通信以及无线ZigBee技术,且协议转换的方法中没有用到通过通讯协议开辟地址转换映射表来实现协议转换功能。 After searching the existing technical documents, it is found that the Chinese patent publication number is: CN1697448, the publication date was November 16, 2005, and the name is: multi-protocol conversion between MODBUS/TCP industrial Ethernet and equipment network fieldbus and ProfibusDP fieldbus Method and device, the application discloses the application layer protocol conversion among MODBUS/TCP industrial Ethernet, DeviceNet field bus and ProfibusDP field bus; Protocol conversion method and device between /TCP industrial Ethernet and ProfibusDP field bus, this application discloses the protocol conversion between MODBUS/TCP industrial Ethernet and ProfibusDP field bus; The weak point of above two kinds of methods is: all do not involve to industrial wireless network applications. The Chinese patent publication number is: CN101425948, the publication date was May 6, 2009, and the name is: Multi-protocol gateway and protocol conversion method for industrial wireless network access to industrial Ethernet and field bus. a's industrial wireless network, and the microcontroller realizes the protocol conversion among the three networks of MODBUS/TCP industrial Ethernet, ProfibusDP field bus and industrial wireless network. But none of the above patents involves the realization of the multi-protocol conversion method and device between MODBUS/TCP industrial Ethernet, industrial wireless network and CAN bus in the same device. After searching the existing technical literature, it is also found that "Industrial and Mine Automation" 2010 1671-251X (2010) 11-0101-05, the name is the design of multi-protocol conversion gateway for mining, and an embedded multi-protocol conversion gateway for mining is proposed. The design scheme of the protocol conversion gateway, which solves the data exchange problem of various underground networks through the organic combination of CAN bus network, industrial Ethernet and 802.11 network, but this method does not involve MODBUS/TCP Ethernet communication And the wireless ZigBee technology, and the protocol conversion method does not use the communication protocol to open the address conversion mapping table to realize the protocol conversion function. the
发明内容 Contents of the invention
本发明克服了现有技术中的缺点,提供一种将基于IEEE802.15.4标准的无线ZigBee网络引入到MODBUS/TCP工业以太网和CAN总线的无线多协议设备及其协议转换方法。 The invention overcomes the shortcomings in the prior art, and provides a wireless multi-protocol device and a protocol conversion method for introducing a wireless ZigBee network based on the IEEE802.15.4 standard to MODBUS/TCP industrial Ethernet and CAN bus. the
本发明在已有的工业以太网和现场总线的基础上,引入了工业无线网络,实现了有线/无线异构网络控制技术。本发明不仅能够使当前现场有线接口的传感器、执行器等智能设备接入控制网络内,而且还能将无线通讯设备接入控制网络内,扩大设备的网络控制规模,从而实现在统一的系统协议架构内完成有线和无线的无缝连接。 The invention introduces the industrial wireless network on the basis of the existing industrial Ethernet and the field bus, and realizes the wired/wireless heterogeneous network control technology. The present invention can not only connect intelligent devices such as sensors and actuators with wired interfaces in the field to the control network, but also connect wireless communication devices to the control network to expand the network control scale of the devices, thereby realizing a unified system protocol Complete wired and wireless seamless connection within the architecture. the
基于IEEE802.15.4标准的无线ZigBee网络是一种工业无线局域网标准,它可以实现短距离、低功率的无线通讯,供廉价、固定、便捷或移动设备使用,近年来被广泛的应用在无线传感器网络;Modbus协议最早是于1978年由施奈德公司制定的,当时它主要是用于电子控制器上的一种通信语言,实现控制器之间,控制器与网络和其他设备之间的通信,支持传统的RS232/RS485和最新发展的以太网设备。在1996年施奈德公司又推出了基于TCP/IP的Modbus协议,其成本低廉适用于各种应用的解决方案,在自动化设备中得到了广泛的应用;CAN总线技术(Controller Area Network)即控制器局域网,是国际上应用最广泛的开放式现场总线之一。作为一种技术先进、可靠性高、功能完善、成本合理的远程网络通讯控制方式,CAN总线已被广泛地应用到各个自动化控制系统中。CAN总线作为一种工业现场总线,它将传统分布式控制系统结构中主机的常规测试与控制功能分散到现场的各个节点来完成,从而可以实现更高层次的控制和管理功能。基于IEEE802.15.4的无线ZigBee网络标准、MODBUS/TCP工业以太网协议和CAN总线协议在物理层和数据链路层均采用不同的标准,为了实现这三种协议之间数据的交换,本发明提出的无线异构中的多协议转换设备既要满足各个协议物理层和数据链路层的要求,又要对不同协议的应用层分别作出定义。 The wireless ZigBee network based on the IEEE802.15.4 standard is an industrial wireless local area network standard. It can realize short-distance, low-power wireless communication for cheap, fixed, convenient or mobile devices. It has been widely used in wireless sensor networks in recent years. The Modbus protocol was first developed by Schneider in 1978. At that time, it was mainly used as a communication language on electronic controllers to realize communication between controllers, controllers, networks and other devices. Support traditional RS232/RS485 and the latest development of Ethernet equipment. In 1996, Schneider introduced the TCP/IP-based Modbus protocol, which is a low-cost solution suitable for various applications and has been widely used in automation equipment; CAN bus technology (Controller Area Network) is the control Device LAN is one of the most widely used open field buses in the world. As a remote network communication control method with advanced technology, high reliability, complete functions and reasonable cost, CAN bus has been widely used in various automatic control systems. As an industrial field bus, CAN bus disperses the routine test and control functions of the host computer in the traditional distributed control system structure to each node in the field to complete, so as to realize higher-level control and management functions. Based on the wireless ZigBee network standard of IEEE802.15.4, the MODBUS/TCP industrial Ethernet protocol and the CAN bus protocol all adopt different standards in the physical layer and the data link layer. In order to realize the exchange of data between these three kinds of protocols, the present invention proposes The multi-protocol conversion equipment in the wireless heterogeneity should not only meet the requirements of the physical layer and data link layer of each protocol, but also define the application layers of different protocols separately. the
为了解决上述存在的技术问题,本发明的目的之一是通过以下技术方案实现的: In order to solve the above-mentioned technical problems that exist, one of the purposes of the present invention is achieved through the following technical solutions:
一种将基于IEEE802.15.4标准的无线ZigBee网络引入到CAN总线和MODBUS/TCP工业以太网的多协议转换设备(以下简称:多协议转换设备),该多协议转换设备包括:微处理器、ZigBee无线主站、CAN总线主 站、MODBUS/TCP从站、以太网物理层接口芯片和RJ45网口;所述的微处理器是整个设备的控制中心,采用STM32F107系列芯片,它包括以太网MAC层控制器、CAN控制器和USART串型接口,支持以太网、CAN总线和RS485总线扩展,能够完成不同协议之间信息的解析与分发;所述的ZigBee无线主站采用CC2530射频芯片完成无线协议的处理,通过USART串型接口与所述的微处理器连接,并写入了无线主站的控制程序,从而建立了一个无线主站模块,实现将无线ZigBee网络引入到CAN总线主站和MODBUS/TCP从站的工业以太网中;所述的以太网物理层接口芯片选用DP83848芯片作为设备的物理层芯片,通过MII接口接入所述的微处理器,并写入了所述的MODBUS/TCP从站程序从而建立一个MODBUS/TCP的从站模块,通过所述的RJ45网口实现与远程计算机的MODBUS/TCP主从通信; A multi-protocol conversion device (hereinafter referred to as: multi-protocol conversion device) that introduces a wireless ZigBee network based on the IEEE802.15.4 standard to CAN bus and MODBUS/TCP industrial Ethernet. The multi-protocol conversion device includes: microprocessor, ZigBee Wireless master station, CAN bus master station, MODBUS/TCP slave station, Ethernet physical layer interface chip and RJ45 network port; Described microprocessor is the control center of whole equipment, adopts STM32F107 series chip, and it includes Ethernet MAC layer The controller, CAN controller and USART serial interface support Ethernet, CAN bus and RS485 bus expansion, and can complete the analysis and distribution of information between different protocols; the ZigBee wireless master station uses the CC2530 radio frequency chip to complete the wireless protocol Processing, connected with the microprocessor through the USART serial interface, and written the control program of the wireless master station, thereby establishing a wireless master station module, realizing the introduction of the wireless ZigBee network into the CAN bus master station and MODBUS/ In the industrial Ethernet of the TCP slave station; the Ethernet physical layer interface chip selects the DP83848 chip as the physical layer chip of the equipment, inserts the described microprocessor through the MII interface, and writes the described MODBUS/TCP The slave station program thus establishes a MODBUS/TCP slave station module, and realizes the MODBUS/TCP master-slave communication with the remote computer through the RJ45 network port;
所述的CAN控制器和所述的CAN总线主站之间的接口芯片选用SN65VHD230芯片,通过输入总线RX和输出总线TX与CAN控制器连接,实现一个CAN总线主站的主站模块;通过所述的ZigBee无线主站实现将无线ZigBee网络引入到CAN总线和MODBUS/TCP工业以太网中;所述的CAN总线主站,通过定义应用层协议通信方式实现基于轮询的CAN总线网络。 The interface chip between described CAN controller and the described CAN bus master station selects SN65VHD230 chip, is connected with CAN controller by input bus RX and output bus TX, realizes the master station module of a CAN bus master station; The ZigBee wireless master station described above realizes introducing the wireless ZigBee network into the CAN bus and MODBUS/TCP industrial Ethernet; the CAN bus master station realizes the CAN bus network based on polling by defining the application layer protocol communication mode. the
本发明的另一个目的是通过以下技术方案来实现的:一种将基于IEEE802.15.4标准的无线ZigBee网络引入到CAN总线和MODBUS/TCP工业以太网的多协议转换的实现方法,采用所述的一种将基于IEEE802.15.4标准的无线ZigBee网络引入到CAN总线和MODBUS/TCP工业以太网的多协议转换设备进行协议转换,该方法包括:由ZigBee无线主站实现基于IEEE802.15.4标准的ZigBee无线通讯,由CAN总线轮询方式实现CAN总线主从站通讯,由MODBUS/TCP从站内存区映射实现MODBUS/TCP的通讯,并通过建立地址转换映射区,由微控制器实现三个协议之间数据的转换;其具体内容包括如下步骤: Another object of the present invention is achieved by the following technical solutions: a kind of wireless ZigBee network based on IEEE802.15.4 standard is introduced into the realization method of the multi-protocol conversion of CAN bus and MODBUS/TCP industrial ethernet, adopts described A kind of wireless ZigBee network based on IEEE802.15.4 standard is introduced into the multi-protocol conversion equipment of CAN bus line and MODBUS/TCP industrial ethernet to carry out protocol conversion, this method comprises: Realize ZigBee wireless network based on IEEE802.15.4 standard by ZigBee wireless main station Communication, the CAN bus master-slave communication is realized by the CAN bus polling method, the MODBUS/TCP communication is realized by the MODBUS/TCP slave memory area mapping, and the three protocols are realized by the microcontroller by establishing the address conversion mapping area Data conversion; its specific content includes the following steps:
第一步将多协议转换设备初始化: The first step is to initialize the multi-protocol conversion device:
(1)微处理器初始化; (1) Microprocessor initialization;
(2)微处理器通过RS232接口读入网络配置参数; (2) The microprocessor reads in the network configuration parameters through the RS232 interface;
(3)ZigBee无线主站模块初始化; (3) ZigBee wireless master module initialization;
(4)CAN总线主站模块初始化; (4) CAN bus master module initialization;
(5)MODBUS从站模块初始化; (5) MODBUS slave module initialization;
(6)为不同协议之间的地址转换开辟结构体数组,根据网络配置参数,对地址转换映射表初始化; (6) Create a structure array for address translation between different protocols, and initialize the address translation mapping table according to network configuration parameters;
(7)ZigBee主站轮询与协议转换 (7) ZigBee master station polling and protocol conversion
(8)CAN总线主站轮询与协议转换; (8) CAN bus master station polling and protocol conversion;
(9)MODBUS/TCP从站与远程计算机的主从通信; (9) Master-slave communication between MODBUS/TCP slave station and remote computer;
(10)返回步骤(7),循环进行。 (10) Return to step (7) and proceed in a loop. the
第二步通过定义各协议的应用层,在系统中建立一个协议转换模型,实现无线/有线以及有线协议之间的协议转换;在此协议转换系统中,为实现现场总线的无缝升级,定义基于IEEE802.15.4标准的无线ZigBee网络和CAN总线都有各自网络通讯的一个主站,可以同时且独立地完成各自网络中对子节点数据的轮询;为了实现两个主站访问对方从站的数据信息,可以在微处理器的内存中开辟地址转换映射区,预先储存无线ZigBee网络和CAN总线中所有子节点的与其他网络通信时对应的地址信息;在MODBUS/TCP工业以太网网络中,多协议转换设备与远程计算机组成MODBUS主从协议栈,多协议转换设备作为透明从站通过接收上位机的控制指令实现对无线ZigBee网络和CAN总线中子节点的数据查询; The second step is to establish a protocol conversion model in the system by defining the application layer of each protocol to realize the protocol conversion between wireless/wired and wired protocols; in this protocol conversion system, in order to realize the seamless upgrade of the field bus, define Both the wireless ZigBee network and the CAN bus based on the IEEE802.15.4 standard have a master station for their own network communication, which can simultaneously and independently complete the polling of the sub-node data in their respective networks; For data information, an address conversion mapping area can be opened up in the memory of the microprocessor, and the corresponding address information of all sub-nodes in the wireless ZigBee network and CAN bus can be stored in advance when communicating with other networks; in the MODBUS/TCP industrial Ethernet network, The multi-protocol conversion device and the remote computer form the MODBUS master-slave protocol stack. The multi-protocol conversion device, as a transparent slave station, realizes the data query of the sub-nodes in the wireless ZigBee network and CAN bus by receiving the control instructions from the host computer;
所述的透明从站是指多协议转换设备本身不具备MODBUS从站地址识别信息,设备针对远程主站携带的地址信息,通过地址转换映射区进行相应解析与转发; The transparent slave station refers to that the multi-protocol conversion device itself does not have the address identification information of the MODBUS slave station, and the device performs corresponding parsing and forwarding through the address conversion mapping area for the address information carried by the remote master station;
第三步通过建立地址转换映射区完成不同协议之间数据交换的方法如下: The third step is to complete the data exchange between different protocols by establishing an address translation mapping area as follows:
微处理器开始初始化时,预留一部分内存作为地址转换映射区;在ZigBee无线网络和CAN总线网络初始化时,在地址转换映射区定义一个地 址结构体数组,并通过网络配置参数对地址结构体数组经行初始化,建立地址转换映射表,定义ZigBee无线网络和CAN总线网络网络节点之间地址的对应关系:通过查询地址转换映射表完成一次数据传输的过程如下: When the microprocessor starts to initialize, a part of the memory is reserved as the address translation mapping area; when the ZigBee wireless network and the CAN bus network are initialized, an array of address structures is defined in the address translation mapping area, and the address structure is configured through the network configuration parameters The array is initialized, the address conversion mapping table is established, and the corresponding relationship between the addresses of the ZigBee wireless network and the CAN bus network node is defined: the process of completing a data transmission by querying the address conversion mapping table is as follows:
(1)首先上位机通过MODBUS/TCP网络将控制指令发送到微控制器,微控制器通过解析MODBUS中的地址识别信息对照地址转换映射表,对照地址转换映射表判断该目的地址处于何种子网络,判断是否需要并将实际的通信地址重新封装到控制指令中; (1) First, the host computer sends the control command to the microcontroller through the MODBUS/TCP network. The microcontroller analyzes the address identification information in the MODBUS and compares it with the address translation mapping table to determine which subnetwork the destination address is in. , judge whether it is necessary and repackage the actual communication address into the control instruction;
(2)如果该指令指向的目的地址指向ZigBee网络,通过USART接口发送给ZigBee无线主站,ZigBee无线主站直接下发控制指令对相应子节点进行数据处理; (2) If the destination address of the command points to the ZigBee network, it is sent to the ZigBee wireless master station through the USART interface, and the ZigBee wireless master station directly issues a control command to process the data of the corresponding child node;
(3)如果若该指令指向的目的地址属于CAN总线网络的子节点,直接通过CAN总线控制器转发至相应节点。 (3) If the destination address pointed to by the instruction belongs to the child node of the CAN bus network, it is directly forwarded to the corresponding node through the CAN bus controller. the
与现有技术相比,本发明的技术方案具有如下优点: Compared with prior art, technical scheme of the present invention has following advantage:
(1)微处理器通过USART连接ZigBee主站的无线信号射频芯片CC2530,实现了将基于IEEE802.15.4标准的无线ZigBee网络引入到MODBUS/TCP工业以太网和CAN总线的多协议转换系统中,解决了现场总线在实际工业应用中存在的二次部署和设备无线化升级的问题; (1) The microprocessor is connected to the wireless signal radio frequency chip CC2530 of the ZigBee master station through the USART, realizing the introduction of the wireless ZigBee network based on the IEEE802.15.4 standard into the multi-protocol conversion system of MODBUS/TCP industrial Ethernet and CAN bus, and solving Solved the problems of secondary deployment and wireless upgrade of equipment in the actual industrial application of fieldbus;
(2)本发明中使用的MODBUS/TCP工业以太网,是一种简单、高效的控制方案,易于各种系统互连,本方案中通过MODBUS/TCP通讯协议开辟地址转换映射表可实现多种通讯系统中各协议之间转换; (2) The MODBUS/TCP industrial Ethernet used in the present invention is a simple and efficient control scheme, which is easy to interconnect various systems. In this scheme, a variety of address conversion mapping tables can be developed through the MODBUS/TCP communication protocol. Conversion between protocols in the communication system;
(3)本发明中由CAN总线轮询方式完成CAN总线主从站通讯,实现一种有效支持分布式控制和实时控制的多主串行通信方式,再将CAN总线和ZigBee无线网络相结合,组成移动分布式网络系统,通过MODBUS/TCP工业以太网实现与上位机控制信息的通讯,更有利于工业监控的灵活性和可扩展性。 (3) In the present invention, the CAN bus master-slave communication is completed by the CAN bus polling mode, and a multi-master serial communication mode that effectively supports distributed control and real-time control is realized, and then the CAN bus and the ZigBee wireless network are combined, Composing a mobile distributed network system, the communication with the host computer control information is realized through MODBUS/TCP industrial Ethernet, which is more conducive to the flexibility and scalability of industrial monitoring. the
附图说明 Description of drawings
图1为本发明实例的多协议转换系统硬件结构示意图。 Fig. 1 is a schematic diagram of the hardware structure of the multi-protocol conversion system of the example of the present invention. the
图2为本发明实例的多协议转换系统的主程序流程图。 Fig. 2 is a flow chart of the main program of the multi-protocol conversion system of the example of the present invention. the
图3为本发明实例的MODBUS/TCP以太网物理接口初始化流程图。 Fig. 3 is a flowchart of MODBUS/TCP Ethernet physical interface initialization of the example of the present invention. the
图4为本发明实例的无线信号射频芯片初始化流程图。 Fig. 4 is a flowchart of the initialization of the wireless signal radio frequency chip of the example of the present invention. the
图5为本发明实例的多协议转换系统的地址转换映射表。 FIG. 5 is an address conversion mapping table of the multi-protocol conversion system of the example of the present invention. the
具体实施方式 Detailed ways
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。 The specific implementation manners of the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. The following examples are used to illustrate the present invention, but are not intended to limit the scope of the present invention. the
下面结合附图对本发明的一个优选实例进行说明: A preferred example of the present invention is described below in conjunction with accompanying drawing:
如图1所示,本发明实现的一种将基于IEEE802.15.4标准的无线ZigBee网络引入到CAN总线和MODBUS/TCP工业以太网的多协议转换设备,该设备包括MODBUS/TCP从站、ZigBee无线主站、CAN总线主站;其中微处理器选用STM32F107芯片作为设备的控制中心,通过USART连接ZigBee无线信号射频芯片CC2530,通过输入总线TX和输出总线RX与CAN控制器SN65VHD230芯片连接;以太网物理接口选用DP83848芯片作为设备的物理层芯片,通过RJ45网口与远程MODBUS/TCP主站通信。 As shown in Figure 1, a kind of wireless ZigBee network based on IEEE802.15.4 standard realized by the present invention is introduced into the multi-protocol conversion equipment of CAN bus and MODBUS/TCP industrial Ethernet, and this equipment comprises MODBUS/TCP slave station, ZigBee wireless Master station, CAN bus master station; the microprocessor chooses STM32F107 chip as the control center of the equipment, connects ZigBee wireless signal radio frequency chip CC2530 through USART, and connects with CAN controller SN65VHD230 chip through input bus TX and output bus RX; Ethernet physical The interface uses the DP83848 chip as the physical layer chip of the device, and communicates with the remote MODBUS/TCP master station through the RJ45 network port. the
微处理器作为设备的控制中心,通过定义应用层的程序,实现不同协议之间报文信息的解析与分发。本发明的微处理器选用STM32F107系列芯片,具有丰富的存储资源和快捷的内核架构。STM32微控制器内带程序存储器(SRAM)、闪存程序存储器(FLASH)、时钟、复位等,2个12位的数模转换器、7个定时器和9个通信接口等等。STM32微控制器杰出的功耗控制性能,不仅大大降低了微处理器的功耗,还提高了设备的工作效率。 As the control center of the device, the microprocessor realizes the analysis and distribution of message information between different protocols by defining the program of the application layer. The microprocessor of the present invention selects STM32F107 series chips, and has abundant storage resources and fast kernel architecture. STM32 microcontroller has program memory (SRAM), flash program memory (FLASH), clock, reset, etc., 2 12-bit digital-to-analog converters, 7 timers and 9 communication interfaces, etc. The outstanding power consumption control performance of the STM32 microcontroller not only greatly reduces the power consumption of the microprocessor, but also improves the working efficiency of the device. the
微处理器通过USART连接ZigBee主站的无线信号射频芯片CC2530,并通过无线ZigBee网络实现与其它无线节点的主从通信。CC2530是可以运行Zigbee协议的无线射频终端,具有数据处理效率高、准确度高的优点,可以配合功率放大器等射频前端,提高芯片的接收灵敏度和发射功率。ZigBee物理协议栈的物理、MAC层为IEEE802.15.4协议。IEEE802.15.4物理层定义了868MHz、915MHz、2.4GHz三个频段,用户可以根据具体的要求选择适合的数据传输频段与通信速率。 The microprocessor is connected to the wireless signal radio frequency chip CC2530 of the ZigBee master station through the USART, and realizes the master-slave communication with other wireless nodes through the wireless ZigBee network. CC2530 is a wireless RF terminal that can run the Zigbee protocol. It has the advantages of high data processing efficiency and high accuracy. It can cooperate with RF front-ends such as power amplifiers to improve the receiving sensitivity and transmitting power of the chip. The physical and MAC layers of the ZigBee physical protocol stack are IEEE802.15.4 protocols. The IEEE802.15.4 physical layer defines three frequency bands of 868MHz, 915MHz, and 2.4GHz. Users can choose the appropriate data transmission frequency band and communication rate according to specific requirements. the
微处理器通过输入总线TX和输出总线RX连接CAN总线主站的CAN 控制器SN65VHD230芯片,作为CAN总线主站与实现CAN总线上的其他设备实现主从通信。 The microprocessor connects the CAN controller SN65VHD230 chip of the CAN bus master station through the input bus TX and the output bus RX, and realizes master-slave communication with other devices on the CAN bus as the CAN bus master station. the
微处理器STM32F107系列芯片包含以太网MAC层控制器,其中以太网物理接口选用DP83848芯片作为设备的物理层芯片,通过MII接口接入微处理器。本发明的设备作为MODBUS/TCP的从站,通过RJ45网口实现与远程计算机的MODBUS/TCP主从通信。DP83848芯片可提供10/100Mb/s数据速率,不仅功耗低、单路高速、性价比高,还具有通用的网络接口,可简化软硬件开发流程。 Microprocessor STM32F107 series chips include Ethernet MAC layer controller, and the Ethernet physical interface uses DP83848 chip as the physical layer chip of the device, which is connected to the microprocessor through the MII interface. The device of the present invention is used as a MODBUS/TCP slave station, and realizes MODBUS/TCP master-slave communication with a remote computer through an RJ45 network port. The DP83848 chip can provide 10/100Mb/s data rate, not only low power consumption, single-channel high speed, high cost performance, but also has a common network interface, which can simplify the software and hardware development process. the
如图2所示本发明实现的一种基于IEEE802.15.4标准的无线ZigBee网络引入到CAN总线和MODBUS/TCP工业以太网的多协议转换设备及其实现方法,该方法包括:由ZigBee无线主站实现基于IEEE802.15.4标准的ZigBee主从通讯,由CAN总线轮询方式实现CAN总线主从站通讯,由MODBUS/TCP从站内存区映射实现MODBUS/TCP的通讯,并通过建立地址转换映射区实现三个协议之间数据的转换。设备的主程序流程如下: A kind of wireless ZigBee network based on IEEE802.15.4 standard that the present invention realizes as shown in Figure 2 is introduced into CAN bus and MODBUS/TCP industrial Ethernet multi-protocol conversion equipment and its implementation method, the method comprising: by ZigBee wireless master station Realize ZigBee master-slave communication based on IEEE802.15.4 standard, realize CAN bus master-slave communication by CAN bus polling mode, realize MODBUS/TCP communication by mapping MODBUS/TCP slave memory area, and realize by establishing address conversion mapping area Data conversion between the three protocols. The main program flow of the device is as follows:
(1)微处理器初始化; (1) Microprocessor initialization;
(2)微处理器通过RS232接口读入网络配置参数; (2) The microprocessor reads in the network configuration parameters through the RS232 interface;
(3)ZigBee无线主站模块初始化; (3) ZigBee wireless master module initialization;
(4)CAN总线主站模块初始化; (4) CAN bus master module initialization;
(5)MODBUS从站模块初始化; (5) MODBUS slave module initialization;
(6)为地址转换开辟结构体数组,根据网络配置参数,对地址转换映射表初始化; (6) Create a structure array for address translation, and initialize the address translation mapping table according to the network configuration parameters;
(7)ZigBee主站轮询与协议转换; (7) ZigBee master station polling and protocol conversion;
(8)CAN总线主站轮询与协议转换; (8) CAN bus master station polling and protocol conversion;
(9)MODBUS/TCP从站与远程计算机的主从通信; (9) Master-slave communication between MODBUS/TCP slave station and remote computer;
(10)返回步骤(7),循环进行。 (10) Return to step (7) and proceed in a loop. the
如图3所示,在MODBUS从站模块开始正常工作之前,需要对DP83848以太网物理接口芯片进行初始化,包括初始化STM32微处理器的MII接口,然后复位DP83848以太网物理接口芯片。通过STM32的MDIO接口初始 化DP83848以太网物理接口芯片,配置模式控制寄存器,使能MII接口的接收/发送中断。最后进入协议主程序,使MODBUS/TCP从站模块正常工作。具体初始化的步骤如下; As shown in Figure 3, before the MODBUS slave module starts to work normally, it is necessary to initialize the DP83848 Ethernet physical interface chip, including initializing the MII interface of the STM32 microprocessor, and then reset the DP83848 Ethernet physical interface chip. Initialize the DP83848 Ethernet physical interface chip through the MDIO interface of STM32, configure the mode control register, and enable the receive/transmit interrupt of the MII interface. Finally, enter the main program of the protocol to make the MODBUS/TCP slave module work normally. The specific initialization steps are as follows;
(1)初始化STM32微处理器的MII接口; (1) Initialize the MII interface of the STM32 microprocessor;
(2)通过微处理器复位DP83848以太网物理层接口芯片; (2) Reset the DP83848 Ethernet physical layer interface chip through the microprocessor;
(3)通过微处理器的MDIO接口初始化DP83848以太网物理层接口芯片,配置以太网物理层接口芯片中的模式寄存器; (3) Initialize the DP83848 Ethernet physical layer interface chip through the MDIO interface of the microprocessor, and configure the mode register in the Ethernet physical layer interface chip;
(4)通过微处理器使能数据的接收/发送中断; (4) Enable data receiving/sending interrupts through the microprocessor;
(5)进入MODBUS/TCP协议入口程序,使MODBUS/TCP从站进入正常工作状态,通过以太网与远程计算机建立主从通信。 (5) Enter the MODBUS/TCP protocol entry program, make the MODBUS/TCP slave station enter the normal working state, and establish master-slave communication with the remote computer through Ethernet. the
如图4所示,在ZigBee无线主站模块正常工作之前,需要对无线信号射频芯片CC2530进行初始化,包括初始化STM32F107芯片的USART接口,复位无线信号射频芯片CC2530,使能芯片内部时钟,配置寄存器的访问方式,设定数据的收发机制,校验方式,使能接收/发送中断等。最后启动无线信号射频芯片CC2530,使主站开始正常运行。具体初始化步骤如下: As shown in Figure 4, before the ZigBee wireless master module works normally, the wireless signal radio frequency chip CC2530 needs to be initialized, including initializing the USART interface of the STM32F107 chip, resetting the wireless signal radio frequency chip CC2530, enabling the internal clock of the chip, and configuring the registers. Access mode, set data sending and receiving mechanism, check mode, enable receiving/sending interrupt, etc. Finally, start the wireless signal radio frequency chip CC2530, so that the master station starts to run normally. The specific initialization steps are as follows:
(1)初始化STM32F107芯片的USART接口通过微处理器复位无线信号射频芯片CC2530; (1) Initialize the USART interface of the STM32F107 chip and reset the wireless signal RF chip CC2530 through the microprocessor;
(2)无线信号射频芯片内部时钟使能,配置无线信号射频芯片内寄存器的访问方式,设定数据收发机制,使能无线接收/发送中断等; (2) Enable the internal clock of the wireless signal RF chip, configure the access mode of the registers in the wireless signal RF chip, set the data sending and receiving mechanism, and enable wireless receiving/sending interrupts, etc.;
(3)由程序配置无线信号射频芯片的各参数; (3) Configure the parameters of the wireless signal RF chip by the program;
(4)启动无线信号射频芯片CC2530无线收发,无线主站进入正常运行状态。 (4) Start the wireless signal radio frequency chip CC2530 wireless transceiver, and the wireless master station enters the normal operation state. the
ZigBee无线主站模块正常工作之后,ZigBee无线主站模块自动与其他无线ZigBee设备建立连接,形成主从通信的无线ZigBee网络,网络内部的无线从站设备主动上报自己的无线通信地址以及实际节点地址,以便在协议转换设备内存建立地址映射关系。 After the ZigBee wireless master module works normally, the ZigBee wireless master module automatically establishes a connection with other wireless ZigBee devices to form a wireless ZigBee network for master-slave communication, and the wireless slave devices within the network actively report their wireless communication addresses and actual node addresses , so as to establish an address mapping relationship in the memory of the protocol conversion device. the
如图5所示,为本发明中多协议转换开辟的地址转换映射表的实现:本发明的协议转换设备本身不具备实际的物理地址,而是通过建立一个多 协议地址映射表实现数据在不同协议之间的传输。在MODBUS通信中用MODBUS站号区分不同设备,在ZigBee网络中是通过ZigBee网络地址区分不同设备,而在CAN总线传输中是以识别报文信息的标示符来实现数据的接收与发送。通过建立地址映射表,可以使不同网络之间的设备以一个统一的逻辑地址来实现数据的传输。 As shown in Figure 5, the realization of the address conversion mapping table opened for multi-protocol conversion in the present invention: the protocol conversion device of the present invention does not possess actual physical address itself, but realizes data in different by setting up a multi-protocol address mapping table transfer between protocols. In MODBUS communication, the MODBUS station number is used to distinguish different devices. In the ZigBee network, the ZigBee network address is used to distinguish different devices. In the CAN bus transmission, the identifier of the message information is used to realize the data receiving and sending. By establishing an address mapping table, devices on different networks can use a unified logical address to transmit data. the
MODBUS从站模块正常工作之后,通过以太网与远程计算机建立MODBUS/TCP主从通信,同时通过网络配置参数,在地址转换表中预先存入MODBUS从站节点地址。如图5(a)(b)所示,假设当前MODBUS从站节点地址为0X01-0X0C。 After the MODBUS slave module works normally, establish MODBUS/TCP master-slave communication with the remote computer through Ethernet, and at the same time configure parameters through the network, and pre-store the MODBUS slave node address in the address conversion table. As shown in Figure 5(a)(b), suppose the current MODBUS slave node address is 0X01-0X0C. the
ZigBee无线网络由设备的无线网内地址建立主从通信后,通过读取地址编码器中的实际地址参数,向无线网络中的无线从站节点分配实际节点识别地址,使每个无线从站节点具有唯一的实际节点识别地址。并与MODBUS从站节点地址一一对应。在ZigBee无线主站开始对从站进行数据轮询之前,需要根据ZigBee网络中从站节点的地址,来更新微处理器中的地址转换映射区,建立ZigBee从站节点地址与MODBUS从站节点地址之间一一对应的关系,如图5(a)所示。 After the ZigBee wireless network establishes master-slave communication by the address in the wireless network of the device, by reading the actual address parameters in the address encoder, the actual node identification address is assigned to the wireless slave station nodes in the wireless network, so that each wireless slave station node Has a unique actual node identification address. And correspond to the node address of MODBUS slave station one by one. Before the ZigBee wireless master station starts to poll the slave station for data, it needs to update the address conversion mapping area in the microprocessor according to the address of the slave station node in the ZigBee network, and establish the ZigBee slave station node address and MODBUS slave station node address There is a one-to-one correspondence between them, as shown in Figure 5(a). the
CAN总线上的设备通过CAN-bus(一种多主方式的串行通讯总线)实现数据传输,报文中没有发送数据的源地址和接收数据的目的地址,而是通过标识符来指示数据的功能信息和优选级信息。本发明中CAN总线通过具有29位标识符的CAN-bus扩展帧,采用重新定义数据帧功能的表示方式,以总线轮询方式实现CAN总线主从站的通讯,并建立CAN总线上从站节点地址与MODBUS从站节点地址之间一一对应的关系,如图5(b)所示。 The devices on the CAN bus realize data transmission through CAN-bus (a multi-master serial communication bus). There is no source address for sending data and destination address for receiving data in the message, but an identifier to indicate the data. Capability information and priority information. In the present invention, the CAN bus passes through the CAN-bus extended frame with 29 identifiers, adopts the expression mode of redefining the data frame function, realizes the communication of the CAN bus master and slave stations in the bus polling mode, and establishes the slave station nodes on the CAN bus The one-to-one relationship between the address and the MODBUS slave node address is shown in Figure 5(b). the
通过地址转换映射表实现数据在不同协议之间的传输的过程如下:远程计算机将数据的传输指令通过以太网发送至微处理器,指令中数据帧的源地址和目的地址都是以MODBUS从站节点地址定义的,通过查询地址转换映射表中MODBUS从站节点地址与ZigBee从站节点地址,及MODBUS从站节点地址与CAN总线上从站节点地址的对应关系。最后根据对应的实际地址完成数据的传输。例如,若传输的数据帧中源地址用MODBUS从站节 点地址表示为0X02,通过查询地址转换映射表得知,数据帧中的源地址为ZigBee从站节点地址中的0X0002;若传输的数据帧中目的地址为0X0B,通过查询地址转换映射表得知,对应的地址为CAN总线上从站节点地址为0X0005,最后则可以实现数据帧在不同网络之间的传输。 The process of data transmission between different protocols through the address conversion mapping table is as follows: the remote computer sends the data transmission instruction to the microprocessor through Ethernet, and the source address and destination address of the data frame in the instruction are both MODBUS slave stations The node address is defined by querying the corresponding relationship between the MODBUS slave node address and the ZigBee slave node address in the address conversion mapping table, and the MODBUS slave node address and the slave node address on the CAN bus. Finally, the data transmission is completed according to the corresponding actual address. For example, if the source address in the transmitted data frame is expressed as 0X02 by the node address of the MODBUS slave station, it can be known by querying the address conversion mapping table that the source address in the data frame is 0X0002 in the node address of the ZigBee slave station; if the transmitted data The destination address in the frame is 0X0B. By querying the address conversion mapping table, the corresponding address is 0X0005 of the slave node address on the CAN bus. Finally, the transmission of data frames between different networks can be realized. the
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410019937.3A CN103825883A (en) | 2014-01-16 | 2014-01-16 | Multi-protocol conversion equipment based on wireless ZigBee, CAN bus and MODBUS/TCP and realization method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410019937.3A CN103825883A (en) | 2014-01-16 | 2014-01-16 | Multi-protocol conversion equipment based on wireless ZigBee, CAN bus and MODBUS/TCP and realization method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103825883A true CN103825883A (en) | 2014-05-28 |
Family
ID=50760711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410019937.3A Pending CN103825883A (en) | 2014-01-16 | 2014-01-16 | Multi-protocol conversion equipment based on wireless ZigBee, CAN bus and MODBUS/TCP and realization method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103825883A (en) |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104582007A (en) * | 2015-01-15 | 2015-04-29 | 贵州大学 | Integrated information gateway device based on ZigBee technology |
CN104932472A (en) * | 2015-06-10 | 2015-09-23 | 西南大学 | Network online reconfigurable industrial security monitoring system |
CN105554794A (en) * | 2015-12-24 | 2016-05-04 | 燕山大学 | Portable wireless ZigBee network configuration method |
WO2016127722A1 (en) * | 2015-02-11 | 2016-08-18 | 深圳配天智能技术研究院有限公司 | Modbus-mechatrolink iii protocol conversion device and protocol conversion method therefor |
CN105978778A (en) * | 2016-07-01 | 2016-09-28 | 南京理工大学 | Ethernet and serial port/CAN protocol conversion device based on STM32 |
CN106169960A (en) * | 2016-08-31 | 2016-11-30 | 河南黎明重工科技股份有限公司 | Mining machinery controls equipment networking module and networking method |
CN106302338A (en) * | 2015-05-26 | 2017-01-04 | 机械工业仪器仪表综合技术经济研究所 | A kind of KNX-Modbus Transmission Control Protocol transfer gateway based on Cortex-M processor |
CN106330397A (en) * | 2016-08-25 | 2017-01-11 | 北京安控科技股份有限公司 | Method and device for implementing data interaction on ZigBee and Modbus RTU protocols |
CN106572075A (en) * | 2016-09-22 | 2017-04-19 | 北京理工大学 | Virtual heterogeneous network convergence method based on on-demand protocol conversion |
CN107896174A (en) * | 2017-11-28 | 2018-04-10 | 深圳市瑞意博科技股份有限公司 | A kind of intelligent medicine-chest master controller and its control method |
CN107995081A (en) * | 2017-12-29 | 2018-05-04 | 徐州中矿大传动与自动化有限公司 | The system and method for a variety of communication bus conversions is supported at the same time |
CN108023897A (en) * | 2018-01-05 | 2018-05-11 | 深圳前海有电物联科技有限公司 | Communication port and the electronic equipment with the communication port |
CN108173817A (en) * | 2017-12-13 | 2018-06-15 | 中核控制系统工程有限公司 | It is a kind of based on Modbus-TCP agreements from conversion method |
CN108364454A (en) * | 2018-03-02 | 2018-08-03 | 哈尔滨电工仪表研究所有限公司 | A kind of intelligent protocol conversion equipment |
CN108763127A (en) * | 2018-06-05 | 2018-11-06 | 南京邮电大学 | The implementation method for the Modbus adapters that source data is mutually converted with target data |
CN109587158A (en) * | 2018-12-19 | 2019-04-05 | 武汉理工光科股份有限公司 | Transparent transmission and the adaptive method of Modbus protocol conversion both of which are realized in Network Serial Port |
CN109617774A (en) * | 2018-11-26 | 2019-04-12 | 上海融政能源科技有限公司 | A kind of management system and battery pack communication system of CAN device |
CN109802899A (en) * | 2017-11-17 | 2019-05-24 | 长沙闽壹湖电子科技有限责任公司 | A kind of CAN bus based modbus communication scheme |
CN110809003A (en) * | 2019-11-13 | 2020-02-18 | 哈工大机器人湖州国际创新研究院 | Method for protocol conversion between robot and welding equipment and protocol conversion module |
CN111176691A (en) * | 2019-12-31 | 2020-05-19 | 华东理工大学 | Flowmeter control system and control method thereof, and method for controlling flowmeter |
CN111464466A (en) * | 2020-04-13 | 2020-07-28 | 中国人民解放军国防科技大学 | A multi-bus network communication architecture |
CN111611190A (en) * | 2020-04-08 | 2020-09-01 | 广州奇芯机器人技术有限公司 | Moudbu communication protocol analysis method |
CN111800394A (en) * | 2020-06-16 | 2020-10-20 | 深圳市三旺通信股份有限公司 | TRDP and Modbus-based protocol conversion gateway method |
CN112422389A (en) * | 2020-11-20 | 2021-02-26 | 昆高新芯微电子(江苏)有限公司 | Ethernet and field bus fusion gateway based on chip-level encryption and transmission method |
CN112422694A (en) * | 2020-12-07 | 2021-02-26 | 国网甘肃省电力公司营销服务中心 | Method for accessing information of multi-type energy equipment into system based on energy controller |
CN112565329A (en) * | 2019-09-26 | 2021-03-26 | 通用电气公司 | Device, system and method for directing data to distributed devices in an aircraft |
CN112666905A (en) * | 2020-12-21 | 2021-04-16 | 哈尔滨天达控制股份有限公司 | Multi-channel communication control system and channel control method |
CN113259230A (en) * | 2021-05-12 | 2021-08-13 | 苏州和欣致远节能科技有限公司 | BACnet gateway with multiple Modbus ports and communication method thereof |
CN113485474A (en) * | 2021-07-20 | 2021-10-08 | 沈阳鑫博工业技术股份有限公司 | Multi-protocol temperature controller and control method for aluminum oxide suspension roasting furnace |
CN113741360A (en) * | 2021-08-09 | 2021-12-03 | 北京和利时控制技术有限公司 | Industrial control gateway, system, control method and storage medium |
CN114326531A (en) * | 2022-01-05 | 2022-04-12 | 山西华泰升电力杆塔股份有限公司 | Automatic galvanizing system and galvanizing process |
CN114554318A (en) * | 2022-04-26 | 2022-05-27 | 杭州罗莱迪思科技股份有限公司 | Internet of things data processing system for strong and weak current control and loop data acquisition |
CN115297187A (en) * | 2022-07-12 | 2022-11-04 | 重庆大学 | Conversion device and cluster system of network communication protocol and bus protocol |
CN116527793A (en) * | 2023-06-30 | 2023-08-01 | 杭州禾芯半导体有限公司 | Protocol connection method, device, equipment and storage medium |
CN116800557A (en) * | 2023-08-21 | 2023-09-22 | 成都炎兴自动化技术有限公司 | CAN bus fusion communication system based on CANOpen application protocol |
CN117234146A (en) * | 2023-11-15 | 2023-12-15 | 北京科技大学 | Cloud PLC multi-protocol I/O equipment remote control method and system |
CN117278661A (en) * | 2023-11-23 | 2023-12-22 | 中汽数据(天津)有限公司 | Industrial Internet of things multi-protocol analysis method and system |
CN117714237A (en) * | 2024-02-05 | 2024-03-15 | 中国电子信息产业集团有限公司第六研究所 | Gateway communication board and data transmission method |
CN118368346A (en) * | 2024-06-14 | 2024-07-19 | 深圳三铭电气有限公司 | Bus multi-protocol conversion control method, device, equipment and storage medium |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1645852A (en) * | 2004-12-15 | 2005-07-27 | 上海大学 | Agreement converting method and device between MODBUS/TCP industrial Ethernet and PROFIBUS-DP bus on-the-spot |
EP1906601A1 (en) * | 2006-09-29 | 2008-04-02 | Rockwell Automation Technologies, Inc. | Industrial ethernet communications adapter |
CN101425948A (en) * | 2008-10-23 | 2009-05-06 | 上海大学 | Multi-protocol gateway and protocol conversion method for industrial wireless network to access industrial Ethernet and field bus |
CN101719922A (en) * | 2009-12-04 | 2010-06-02 | 上海交通大学 | Device and method of protocol conversion between PROFIBUS-DP industrial fieldbus and wireless ZIGBEE |
CN101729572A (en) * | 2009-11-20 | 2010-06-09 | 上海交通大学 | Protocol conversion device between MODBUS industrial field bus and wireless ZIGBEE and method thereof |
CN103248542A (en) * | 2013-03-28 | 2013-08-14 | 燕山大学 | Gateway device base on multi-antenna data information fusion |
-
2014
- 2014-01-16 CN CN201410019937.3A patent/CN103825883A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1645852A (en) * | 2004-12-15 | 2005-07-27 | 上海大学 | Agreement converting method and device between MODBUS/TCP industrial Ethernet and PROFIBUS-DP bus on-the-spot |
EP1906601A1 (en) * | 2006-09-29 | 2008-04-02 | Rockwell Automation Technologies, Inc. | Industrial ethernet communications adapter |
CN101425948A (en) * | 2008-10-23 | 2009-05-06 | 上海大学 | Multi-protocol gateway and protocol conversion method for industrial wireless network to access industrial Ethernet and field bus |
CN101729572A (en) * | 2009-11-20 | 2010-06-09 | 上海交通大学 | Protocol conversion device between MODBUS industrial field bus and wireless ZIGBEE and method thereof |
CN101719922A (en) * | 2009-12-04 | 2010-06-02 | 上海交通大学 | Device and method of protocol conversion between PROFIBUS-DP industrial fieldbus and wireless ZIGBEE |
CN103248542A (en) * | 2013-03-28 | 2013-08-14 | 燕山大学 | Gateway device base on multi-antenna data information fusion |
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104582007A (en) * | 2015-01-15 | 2015-04-29 | 贵州大学 | Integrated information gateway device based on ZigBee technology |
WO2016127722A1 (en) * | 2015-02-11 | 2016-08-18 | 深圳配天智能技术研究院有限公司 | Modbus-mechatrolink iii protocol conversion device and protocol conversion method therefor |
CN106302338A (en) * | 2015-05-26 | 2017-01-04 | 机械工业仪器仪表综合技术经济研究所 | A kind of KNX-Modbus Transmission Control Protocol transfer gateway based on Cortex-M processor |
CN104932472A (en) * | 2015-06-10 | 2015-09-23 | 西南大学 | Network online reconfigurable industrial security monitoring system |
CN105554794A (en) * | 2015-12-24 | 2016-05-04 | 燕山大学 | Portable wireless ZigBee network configuration method |
CN105554794B (en) * | 2015-12-24 | 2018-12-07 | 燕山大学 | A kind of wireless ZigBee-network configuration method of portable |
CN105978778A (en) * | 2016-07-01 | 2016-09-28 | 南京理工大学 | Ethernet and serial port/CAN protocol conversion device based on STM32 |
CN106330397A (en) * | 2016-08-25 | 2017-01-11 | 北京安控科技股份有限公司 | Method and device for implementing data interaction on ZigBee and Modbus RTU protocols |
CN106169960A (en) * | 2016-08-31 | 2016-11-30 | 河南黎明重工科技股份有限公司 | Mining machinery controls equipment networking module and networking method |
CN106572075A (en) * | 2016-09-22 | 2017-04-19 | 北京理工大学 | Virtual heterogeneous network convergence method based on on-demand protocol conversion |
CN106572075B (en) * | 2016-09-22 | 2018-06-08 | 北京理工大学 | A kind of virtual heterogeneous network fusion method based on on-demand protocol conversion |
CN109802899A (en) * | 2017-11-17 | 2019-05-24 | 长沙闽壹湖电子科技有限责任公司 | A kind of CAN bus based modbus communication scheme |
CN107896174A (en) * | 2017-11-28 | 2018-04-10 | 深圳市瑞意博科技股份有限公司 | A kind of intelligent medicine-chest master controller and its control method |
CN108173817A (en) * | 2017-12-13 | 2018-06-15 | 中核控制系统工程有限公司 | It is a kind of based on Modbus-TCP agreements from conversion method |
CN107995081A (en) * | 2017-12-29 | 2018-05-04 | 徐州中矿大传动与自动化有限公司 | The system and method for a variety of communication bus conversions is supported at the same time |
CN108023897A (en) * | 2018-01-05 | 2018-05-11 | 深圳前海有电物联科技有限公司 | Communication port and the electronic equipment with the communication port |
CN108023897B (en) * | 2018-01-05 | 2024-04-09 | 深圳有电物联科技有限公司 | Communication port and electronic equipment with same |
CN108364454A (en) * | 2018-03-02 | 2018-08-03 | 哈尔滨电工仪表研究所有限公司 | A kind of intelligent protocol conversion equipment |
CN108763127A (en) * | 2018-06-05 | 2018-11-06 | 南京邮电大学 | The implementation method for the Modbus adapters that source data is mutually converted with target data |
CN108763127B (en) * | 2018-06-05 | 2021-06-04 | 南京邮电大学 | The Realization Method of Modbus Adapter for Mutual Conversion of Source Data and Target Data |
CN109617774A (en) * | 2018-11-26 | 2019-04-12 | 上海融政能源科技有限公司 | A kind of management system and battery pack communication system of CAN device |
CN109587158A (en) * | 2018-12-19 | 2019-04-05 | 武汉理工光科股份有限公司 | Transparent transmission and the adaptive method of Modbus protocol conversion both of which are realized in Network Serial Port |
CN109587158B (en) * | 2018-12-19 | 2021-07-13 | 武汉理工光科股份有限公司 | Method for realizing transparent transmission and Modbus protocol conversion two-mode self-adaption in network serial port |
CN112565329A (en) * | 2019-09-26 | 2021-03-26 | 通用电气公司 | Device, system and method for directing data to distributed devices in an aircraft |
CN110809003A (en) * | 2019-11-13 | 2020-02-18 | 哈工大机器人湖州国际创新研究院 | Method for protocol conversion between robot and welding equipment and protocol conversion module |
CN111176691A (en) * | 2019-12-31 | 2020-05-19 | 华东理工大学 | Flowmeter control system and control method thereof, and method for controlling flowmeter |
CN111176691B (en) * | 2019-12-31 | 2024-03-19 | 华东理工大学 | Flowmeter control system, flowmeter control method and flowmeter control method |
CN111611190A (en) * | 2020-04-08 | 2020-09-01 | 广州奇芯机器人技术有限公司 | Moudbu communication protocol analysis method |
CN111464466A (en) * | 2020-04-13 | 2020-07-28 | 中国人民解放军国防科技大学 | A multi-bus network communication architecture |
CN111800394A (en) * | 2020-06-16 | 2020-10-20 | 深圳市三旺通信股份有限公司 | TRDP and Modbus-based protocol conversion gateway method |
CN112422389A (en) * | 2020-11-20 | 2021-02-26 | 昆高新芯微电子(江苏)有限公司 | Ethernet and field bus fusion gateway based on chip-level encryption and transmission method |
CN112422389B (en) * | 2020-11-20 | 2022-03-08 | 昆高新芯微电子(江苏)有限公司 | Ethernet and field bus fusion gateway based on chip-level encryption and transmission method |
CN112422694A (en) * | 2020-12-07 | 2021-02-26 | 国网甘肃省电力公司营销服务中心 | Method for accessing information of multi-type energy equipment into system based on energy controller |
CN112666905A (en) * | 2020-12-21 | 2021-04-16 | 哈尔滨天达控制股份有限公司 | Multi-channel communication control system and channel control method |
CN112666905B (en) * | 2020-12-21 | 2024-01-30 | 哈尔滨天达控制股份有限公司 | Multichannel communication control system and channel control method |
CN113259230A (en) * | 2021-05-12 | 2021-08-13 | 苏州和欣致远节能科技有限公司 | BACnet gateway with multiple Modbus ports and communication method thereof |
CN113485474A (en) * | 2021-07-20 | 2021-10-08 | 沈阳鑫博工业技术股份有限公司 | Multi-protocol temperature controller and control method for aluminum oxide suspension roasting furnace |
CN113741360B (en) * | 2021-08-09 | 2023-09-29 | 北京和利时控制技术有限公司 | Industrial control gateway, system, control method and storage medium |
CN113741360A (en) * | 2021-08-09 | 2021-12-03 | 北京和利时控制技术有限公司 | Industrial control gateway, system, control method and storage medium |
CN114326531A (en) * | 2022-01-05 | 2022-04-12 | 山西华泰升电力杆塔股份有限公司 | Automatic galvanizing system and galvanizing process |
CN114554318A (en) * | 2022-04-26 | 2022-05-27 | 杭州罗莱迪思科技股份有限公司 | Internet of things data processing system for strong and weak current control and loop data acquisition |
CN115297187A (en) * | 2022-07-12 | 2022-11-04 | 重庆大学 | Conversion device and cluster system of network communication protocol and bus protocol |
CN115297187B (en) * | 2022-07-12 | 2023-11-17 | 重庆大学 | Conversion device of network communication protocol and bus protocol and cluster system |
CN116527793B (en) * | 2023-06-30 | 2023-09-15 | 杭州禾芯半导体有限公司 | Protocol connection method, device, equipment and storage medium |
CN116527793A (en) * | 2023-06-30 | 2023-08-01 | 杭州禾芯半导体有限公司 | Protocol connection method, device, equipment and storage medium |
CN116800557A (en) * | 2023-08-21 | 2023-09-22 | 成都炎兴自动化技术有限公司 | CAN bus fusion communication system based on CANOpen application protocol |
CN116800557B (en) * | 2023-08-21 | 2023-12-29 | 成都炎兴自动化技术有限公司 | CAN bus fusion communication system based on CANOpen application protocol |
CN117234146B (en) * | 2023-11-15 | 2024-02-27 | 北京科技大学 | A cloud-based PLC multi-protocol I/O device remote control method and system |
CN117234146A (en) * | 2023-11-15 | 2023-12-15 | 北京科技大学 | Cloud PLC multi-protocol I/O equipment remote control method and system |
CN117278661A (en) * | 2023-11-23 | 2023-12-22 | 中汽数据(天津)有限公司 | Industrial Internet of things multi-protocol analysis method and system |
CN117278661B (en) * | 2023-11-23 | 2024-04-09 | 中汽数据(天津)有限公司 | Industrial Internet of things multi-protocol analysis method and system |
CN117714237A (en) * | 2024-02-05 | 2024-03-15 | 中国电子信息产业集团有限公司第六研究所 | Gateway communication board and data transmission method |
CN117714237B (en) * | 2024-02-05 | 2024-05-03 | 中国电子信息产业集团有限公司第六研究所 | Gateway communication board and data transmission method |
CN118368346A (en) * | 2024-06-14 | 2024-07-19 | 深圳三铭电气有限公司 | Bus multi-protocol conversion control method, device, equipment and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103825883A (en) | Multi-protocol conversion equipment based on wireless ZigBee, CAN bus and MODBUS/TCP and realization method thereof | |
CN101425948B (en) | Industrial wireless network access industrial Ethernet, multi-protocol gateway of field bus and protocol conversion method | |
CN107465608B (en) | Internet of Things Multifunctional gateway based on NB-IoT | |
CN207184521U (en) | Internet of Things Multifunctional gateway based on NB IoT | |
CN101977167B (en) | Gateway communication protocol conversion method for wireless sensor network access Modbus bus | |
CN101719922B (en) | Device and method of protocol conversion between PROFIBUS-DP industrial fieldbus and wireless ZIGBEE | |
CN204291023U (en) | A kind of RS232, RS485 and CAN based on FPGA turns Ethernet device | |
CN103248542A (en) | Gateway device base on multi-antenna data information fusion | |
CN102170430A (en) | Multi-port multi-network protocol converter | |
CN102571795B (en) | Based on the automatic building control system of BACnet and EIB agreement | |
CN105939253A (en) | Industrial wireless gateway device and protocol conversion method thereof | |
WO2011130939A1 (en) | Method and system for interconnection between sensor network and mobile terminal, and network connectiondevice | |
CN111464339B (en) | Heterogeneous industrial network interconnection method based on dynamic reconfiguration and universal wired communication module | |
CN101917465A (en) | Internet of things network architecture based on mobile gateway | |
CN102946447A (en) | Long-distance data transmission system and long-distance data transmission method of commercial plant | |
CN104486783B (en) | Polymorphic wireless gateway system and control method for polymorphic wireless monitor network | |
CN111447084B (en) | A method and system for interconnection and fusion of heterogeneous industrial networks | |
CN103036892A (en) | Industrial ethernet protocol converter | |
CN202929470U (en) | A remote data transmission system for industrial equipment | |
CN113625632B (en) | Multi-scenario application gateway, system and control method thereof | |
CN103763187A (en) | IP gateway of EnOcean and KNX and communication network and method | |
CN103326936A (en) | Multi-protocol gateway of Internet of Things allowing unified access of various heterogeneous sensing layer networks | |
CN111464466A (en) | A multi-bus network communication architecture | |
CN101977447A (en) | ZigBee intelligent gateway for large-scale networking and implementing method thereof | |
CN101729572A (en) | Protocol conversion device between MODBUS industrial field bus and wireless ZIGBEE and method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140528 |
|
WD01 | Invention patent application deemed withdrawn after publication |