CN103824845A - 半导体装置 - Google Patents
半导体装置 Download PDFInfo
- Publication number
- CN103824845A CN103824845A CN201310585132.0A CN201310585132A CN103824845A CN 103824845 A CN103824845 A CN 103824845A CN 201310585132 A CN201310585132 A CN 201310585132A CN 103824845 A CN103824845 A CN 103824845A
- Authority
- CN
- China
- Prior art keywords
- field effect
- effect transistor
- layer
- gan
- heterostructure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
- H10D62/8503—Nitride Group III-V materials, e.g. AlN or GaN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/475—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
- H10D30/4755—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs having wide bandgap charge-carrier supplying layers, e.g. modulation doped HEMTs such as n-AlGaAs/GaAs HEMTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/82—Heterojunctions
- H10D62/824—Heterojunctions comprising only Group III-V materials heterojunctions, e.g. GaN/AlGaN heterojunctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/811—Combinations of field-effect devices and one or more diodes, capacitors or resistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/05—Manufacture or treatment characterised by using material-based technologies using Group III-V technology
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
- H10D84/84—Combinations of enhancement-mode IGFETs and depletion-mode IGFETs
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
本发明公开了一种半导体装置包含基板、第一氮化镓场效晶体管、第二氮化镓场效晶体管与氮化镓二极管。第一氮化镓场效晶体管置于基板上。第一氮化镓场效晶体管为耗尽型场效晶体管。第二氮化镓场效晶体管置于基板上。第二氮化镓场效晶体管为增强型场效晶体管。氮化镓二极管置于基板上。第一氮化镓场效晶体管、第二氮化镓场效晶体管与氮化镓二极管皆置于基板的同一侧并互相电性连接。
Description
技术领域
本发明是有关于一种半导体装置。
背景技术
随着半导体技术的不断发展,硅基半导体的技术已非常成熟。然而随着元件尺寸的不断缩小,许多元件性能却也面临到一些来自材料本身所造成的瓶颈。许多下一世代的半导体元件技术也陆续提出,其中III-V族半导体材料,尤其是氮基材料,例如氮化镓,更因其具有特殊的自发极化效应与能形成二维电子气(2DEG),具有高电子饱和速度与高击穿电场,使得氮化镓元件受到瞩目,特别是常关型氮化镓晶体管。
在现有常关型氮化镓晶体管的应用中,往往会因应产品的需求,而进行不同的程度的调整,以符合产品所需电性参数,例如击穿电压、导通电阻、切换电阻等。然而由于许多参数的调整通常是互斥的,亦即当优化某一参数时,往往会造成另一参数的劣化。因此很多时候,并不会直接使用单一元件的常关型氮化镓晶体管,而采用凭借多个电路元件的整合所形成的等效电路,来进行后续应用。然而,因氮基半导体技术的发展不如硅基半导体技术成熟,因此氮基半导体面临电路整合上的困难。
发明内容
一方面,本发明提供一种半导体装置,包含基板、第一氮化镓场效晶体管、第二氮化镓场效晶体管与氮化镓二极管。第一氮化镓场效晶体管置于基板上。第一氮化镓场效晶体管为耗尽型场效晶体管。第二氮化镓场效晶体管置于基板上。第二氮化镓场效晶体管为增强型场效晶体管。氮化镓二极管置于基板上。第一氮化镓场效晶体管、第二氮化镓场效晶体管与氮化镓二极管皆置于基板的同一侧并互相电性连接。
在一或多个实施方式中,第一氮化镓场效晶体管以共漏共栅形态电性连接第二氮化镓场效晶体管,且氮化镓二极管并联地电性连接第二氮化镓场效晶体管。
在一或多个实施方式中,第二氮化镓场效晶体管的漏极电性连接至第一氮化镓场效晶体管的源极与氮化镓二极管的阴极。
在一或多个实施方式中,第一氮化镓场效晶体管、第二氮化镓场效晶体管与氮化镓二极管共同组成常关型场效晶体管装置。
在一或多个实施方式中,上述半导体装置还包含功率因数修正二极管。功率因数修正二极管的阳极电性连接至第一氮化镓场效晶体管的漏极。
在一或多个实施方式中,上述的半导体装置还包含氮化物层,置于基板上。第一氮化镓场效晶体管、第二氮化镓场效晶体管与氮化镓二极管均置于氮化物层上。
在一或多个实施方式中,第一氮化镓场效晶体管、第二氮化镓场效晶体管与氮化镓二极管共同包含至少一异质结构层,且异质结构层至少包含氮化镓铝(AlxGa1-xN,0<x<0.3)。
在一或多个实施方式中,第一氮化镓场效晶体管包含异质结构层、源极、漏极与栅极。异质结构层置于基板上。异质结构层包含多个氮化物半导体层以及至少一个二维电子气沟道于其中。源极与漏极互相分离设置,且分别电性连接至二维电子气沟道。栅极置于异质结构层上方,且置于源极与漏极之间。
在一或多个实施方式中,第二氮化镓场效晶体管包含异质结构层、源极、漏极、栅极与p型掺杂层。异质结构层置于基板上。异质结构层包含多个氮化物半导体层以及二维电子气沟道于其中。源极与漏极互相分离设置,且分别电性连接至二维电子气沟道。栅极置于异质结构层上方,且置于源极与漏极之间。p型掺杂层置于异质结构层与栅极之间。
在一或多个实施方式中,p型掺杂层的材质为p型氮化镓或p型氮化镓铝。
在一或多个实施方式中,第二氮化镓场效晶体管包含异质结构层、源极、漏极与栅极。异质结构层置于基板上。异质结构层包含多个氮化物半导体层以及二维电子气沟道于其中,且异质结构层具有倾斜部。源极与漏极互相分离设置,且分别电性连接至二维电子气沟道。栅极置于源极与漏极之间。至少部分的栅极置于异质结构层的倾斜部上。
在一或多个实施方式中,第二氮化镓场效晶体管包含异质结构层、源极、漏极与栅极。异质结构层置于基板上。异质结构层包含多个氮化物半导体层以及二维电子气沟道于其中,且异质结构层具有凹槽。源极与漏极互相分离设置,且分别电性连接至二维电子气沟道。栅极置于源极与漏极之间,其中至少部分之栅极置于异质结构层的凹槽上。
在一或多个实施方式中,氮化镓二极管包含异质结构层、阳极、阴极与p型掺杂层。异质结构层包含多个氮化物半导体层置于基板上。阳极与阴极互相分离设置,且分别电性连接至异质结构层。p型掺杂层置于异质结构层上,且置于阳极与异质结构层之间。
另一方面,本发明提供一种半导体装置,包含基板、异质结构层、第一氮化镓场效晶体管、第二氮化镓场效晶体管、中间连接结构与覆盖层。异质结构层置于基板上。异质结构层包含第一区域、第二区域与中间连接区域,中间连接区域置于第一区域与第二区域之间,且异质结构层产生二维电子气沟道于其中。第一氮化镓场效晶体管包含第一区域的部分异质结构层。第二氮化镓场效晶体管包含第二区域的部分异质结构层。中间连接结构置于中间连接区域的异质结构层上方,且电性连接第一氮化镓场效晶体管与第二氮化镓场效晶体管。覆盖层置于中间连接结构与异质结构层之间。位于异质结构层的中间连接区域的二维电子气沟道于覆盖层下方实质中断。
在一或多个实施方式中,覆盖层为p型掺杂层。
在一或多个实施方式中,第一氮化镓场效晶体管为耗尽型场效晶体管,且第二氮化镓场效晶体管为增强型场效晶体管。
在一或多个实施方式中,中间连接结构电性连接增强型场效晶体管的漏极与耗尽型场效晶体管的源极,且中间连接结构的上表面、增强型场效晶体管的漏极的上表面、与耗尽型场效晶体管的源极的上表面实质共平面。
在一或多个实施方式中,异质结构层包含第一半导体层与第二半导体层,第二半导体层置于第一半导体层上。
在一或多个实施方式中,二维电子气结构毗邻第一半导体层与第二半导体层之间的界面。
因第一氮化镓场效晶体管、第二氮化镓场效晶体管与氮化镓二极管均置于基板的同一侧,因此第一氮化镓场效晶体管、第二氮化镓场效晶体管与氮化镓二极管之间的连接电阻可被降低。
附图说明
图1为本发明一实施方式的半导体装置的剖面图。
图2为本发明另一实施方式的半导体装置的剖面图。
图3为本发明又一实施方式的半导体装置的剖面图。
图4为图1的半导体装置的电路图。
图5为图1的半导体装置再一实施方式的电路图。
图6为本发明另一实施方式的半导体装置的电路图。
图7为本发明又一实施方式的半导体装置的剖面图。
图8至图11为图7的半导体装置多个实施方式的电路图。
其中,附图标记说明如下:
100:基板
150:氮化物层
200、620:第一氮化镓场效晶体管
210、310、410、510、560、610:异质结构层
212~216、312~316、412~416、512~516、561~565:氮化物半导体层
220、330、520、570、752:栅极
230、340、530、580、622、754:源极
240、350、540、590、634、732:漏极
300、500、550、630:第二氮化镓场效晶体管
320、420:p型掺杂层
400、707、720、740、760:氮化镓二极管
430、490、742、762:阳极
440、764:阴极
450:二极管
566:凹槽
612:第一半导体层
614:第二半导体层
616:二维电子气沟道
640:中间连接结构
650、632:覆盖层
705、720、730:增强型氮化镓场效晶体管
750:耗尽型氮化镓场效晶体管
I-I:倾斜部
II-II:第一区域
III-III:第二区域
IV-IV:中间连接区域
具体实施方式
以下将参照附图说明揭示本发明的多个实施方式,为明确说明起见,许多实务上的细节将在以下叙述中一并说明。然而,应了解到,这些实务上的细节不应用以限制本发明。也就是说,在本发明部分实施方式中,这些实务上的细节是非必要的。此外,为简化附图起见,一些现有惯用的结构与元件在附图中将以简单示意的方式绘示。
应注意的是,在本文中的化学元素可由元素符号表示。亦即,Al表示铝,Ga表示镓,以及N表示氮。
图1为本发明一实施方式的半导体装置的剖面图。半导体装置包含基板100、第一氮化镓(GaN)场效晶体管200、第二氮化镓场效晶体管300与氮化镓二极管400。第一氮化镓场效晶体管200置于基板100上。第一氮化镓场效晶体管200为耗尽型场效晶体管。第二氮化镓场效晶体管300置于基板100上。第二氮化镓场效晶体管300为增强型场效晶体管。氮化镓二极管400置于基板100上。第一氮化镓场效晶体管200、第二氮化镓场效晶体管300与氮化镓二极管400均置于基板100的同一侧并互相电性连接。因第一氮化镓场效晶体管200、第二氮化镓场效晶体管300与氮化镓二极管400均置于基板100的同一侧,因此第一氮化镓场效晶体管200、第二氮化镓场效晶体管300与氮化镓二极管400之间的连接电阻可被降低。
如图1所示,第一氮化镓场效晶体管200可包含异质结构层210、栅极220、源极230与漏极240。异质结构层210置于基板100上,且异质结构层210包含多个氮化物半导体层212、213、214、215与216以及一二维电子气(Two-Dimensional Electronic Gas,2DEG)沟道于其中。源极230与漏极240互相分离设置,且源极230与漏极240分别电性连接至二维电子气沟道。栅极220置于异质结构层210上方,且置于源极230与漏极240之间。
第二氮化镓场效晶体管300可包含异质结构层310、p型掺杂层320、栅极330、源极340与漏极350。异质结构层310置于基板100上。异质结构层310包含多个氮化物半导体层312、313、314、315与316以及二维电子气沟道于其中。源极340与漏极350互相分离设置,且源极340与漏极350分别电性连接至二维电子气沟道。栅极330置于异质结构层310上方,且置于源极340与漏极350之间。p型掺杂层320置于异质结构层310与栅极330之间。
氮化镓二极管400可包含异质结构层410、p型掺杂层420、阳极430与阴极440。异质结构层410置于基板100上,且异质结构层410包含多个氮化物半导体层412、413、414、415与416以及二维电子气沟道于其中。阳极430与阴极440互相分离设置,且阳极430与阴极440分别电性连接至异质结构层410。p型掺杂层420置于异质结构层410上,且置于阳极430与异质结构层410之间。
在本实施方式中,异质结构层210、异质结构层310与异质结构层410是共同的。也就是说,异质结构层210、异质结构层310与异质结构层410的结构与材质为相同的。在一或多个实施方式中,异质结构层210、异质结构层310与异质结构层410可包含堆迭的氮化物半导体层,例如互相堆迭的氮化镓/氮化镓铝(GaN/AlGaN)层。在一或多个实施方式中,每一氮化物半导体层212、214、216、312、314、316、413、414与416均包含AlxGa1-xN(0≤x≤0.3),且每一氮化物半导体层213、215、313、315、413与415均包含AlyGa1-yN(0≤y≤0.5),其中x小于y。应注意的是,虽然在图1中,氮化物半导体层组合如212、213、214、215与216;组合如312、313、314、315与316;或组合如412、413、414、415与416等均可为多层,但在其他的实施方式中,各氮化物半导体层的层数和/或数量可视实际情况而定,本发明并不以此为限。
在本实施方式中,p型掺杂层320的材质可为p型氮化镓或p型氮化镓铝。因存在于异质结构层310中的二维电子气沟道会因p型掺杂层320而中断,因此第二氮化镓场效晶体管300可为一常关型场效晶体管,即增强型场效晶体管。
更进一步地,p型掺杂层420的材质亦可为p型氮化镓或p型氮化镓铝。在一或多个实施方式中,具有相同材质的p型掺杂层320与420可在同一制程步骤中形成。
图2为本发明另一实施方式的半导体装置的剖面图。本实施方式与图1的实施方式的不同处在于第二氮化镓场效晶体管。如图2所示,第二氮化镓场效晶体管500可包含异质结构层510、栅极520、源极530与漏极540。异质结构层510置于基板100上。异质结构层510具有倾斜部I-I。相似地,异质结构层510可包含多个氮化物半导体层512/513/514/515/516以及二维电子气沟道于其中。源极530与漏极540互相分离设置,且源极530与漏极540分别电性连接至异质结构层510的二维电子气沟道。栅极520置于源极530与漏极540之间。至少部分的栅极520置于异质结构层510的倾斜部I-I上。因于倾斜部I-I的氮化物半导体层512的倾斜表面能够有效地降低其附近的二维电子气的浓度,因此二维电子气沟道可在倾斜部I-I中被中断。如此一来,第二氮化镓场效晶体管500可为一常关型场效晶体管,即增强型场效晶体管。应注意的是,虽然在图2中,氮化物半导体层512、513、514、515与516的组合均可为多层,但在其他的实施方式中,氮化物半导体层512、513、514、515与516的数量和/或层数可视实际情况而定,本发明并不以此为限。
至于本发明的其他相关结构、材质与制程细节因与图1的实施方式相同,因此便不再赘述。
图3为本发明又一实施方式的半导体装置的剖面图。本实施方式与图1的实施方式的不同处在于第二氮化镓场效晶体管。如图3所示,第二氮化镓场效晶体管550可包含异质结构层560、栅极570、源极580与漏极590。异质结构层560置于基板100上,且异质结构层560具有凹槽566。相似地,异质结构层560可包含多个氮化物半导体层561/562/563/564/565以及二维电子气沟道于其中。源极580与漏极590互相分离设置,且源极580与漏极590分别电性连接至异质结构层560的二维电子气沟道。栅极570置于源极580与漏极590之间,其中至少部分的栅极570置于异质结构层560的凹槽566上。因位于凹槽566下方的二维电子气会被中断,因此第二氮化镓场效晶体管550可为一常关型场效晶体管,即增强型场效晶体管。应注意的是,虽然在图3中,氮化物半导体层561、562、563、564与565的组合可为多层,但在其他的实施方式中,氮化物半导体层561、562、563、564与565的数量和/或层数可视实际情况而定,本发明并不以此为限。
至于本发明的其他相关结构、材质与工艺细节因与图1的实施方式相同,因此便不再赘述。
在一或多个实施方式中,半导体装置还包含氮化物层150,置于基板100与位于基板100上的装置(即第一氮化镓场效晶体管200、第二氮化镓场效晶体管300与氮化镓二极管400)之间。氮化物层150可作为缓冲层,用以减少形成于其上的装置的缺陷或晶格错位;也可作为形成于其上的装置的成核层。
图4为图1的半导体装置的电路图。在本实施方式中,第一氮化镓场效晶体管200可以共漏共栅形态电性连接第二氮化镓场效晶体管300,且氮化镓二极管400可并联地电性连接第二氮化镓场效晶体管300。具体而言,第二氮化镓场效晶体管300的漏极350电性连接至第一氮化镓场效晶体管200的源极230与氮化镓二极管400的阴极440,且第二氮化镓场效晶体管300的源极340电性连接至氮化镓二极管400的阳极430。
如此一来,第一氮化镓场效晶体管200、第二氮化镓场效晶体管300与氮化镓二极管400可共同组成一常关型场效晶体管装置。正常而言,第一氮化镓场效晶体管200通常具有高操作电压,第二氮化镓场效晶体管300通常具有高速开关。与第二氮化镓场效晶体管300并联的氮化镓二极管400可作为本体二极管(Body Diode),用以进一步改善其开关性能。如此一来,第一氮化镓场效晶体管200、第二氮化镓场效晶体管300与氮化镓二极管400可等效于一具高操作电压与高速操作的常关型场效晶体管装置。
虽然图4的第一氮化镓场效晶体管200的栅极220电性连接至第二氮化镓场效晶体管300的源极340,然而本发明不以此为限。在其他的实施方式中,如图5所示,第一氮化镓场效晶体管200的栅极220与第二氮化镓场效晶体管300的源极340可分别连接至其他元件,以达成特定功能。
图6为本发明另一实施方式的半导体装置的电路图。该半导体装置还可以包含一二极管450。在一或多个实施方式中,二极管450可为一功率因数修正(Power Factor Correction,PFC)二极管。二极管450可为任意形式的二极管,例如萧特基二极管(Schottky diode)、超快速二极管(Ultra–Fast Diode)、碳化硅(Silicon Carbide)二极管、氮化镓二极管或上述二极管的任意组合。第一氮化镓场效晶体管200、第二氮化镓场效晶体管300与氮化镓二极管400均置于基板100(如图1所示)的同一侧。二极管450的阳极490电性连接至第一氮化镓场效晶体管200的漏极240。在一实施方式中,二极管450可与第一氮化镓场效晶体管200、第二氮化镓场效晶体管300以及氮化镓二极管400共同置于基板100上。在其他的实施方式中,二极管450可独立制作并与第一氮化镓场效晶体管200封装在一起。
请回到图1。在一实施方式中,半导体装置还可以包含保护层,覆盖第一氮化镓场效晶体管200、第二氮化镓场效晶体管300与氮化镓二极管400。在一实施方式中,半导体装置还可以包含三个焊垫,分别电性连接至第一氮化镓场效晶体管200的漏极240、第二氮化镓场效晶体管300的栅极330与第二氮化镓场效晶体管300的源极340。
在一实施方式中,半导体装置可以覆晶方式设置于一金属基板上,例如金属导线架(Leadframe),使得上述三焊垫均面向金属基板设置。在一实施方式中,金属基板可包含第一导线、第二导线与第三导线,分别电性连接至半导体装置的三焊垫。
图7为本发明又一实施方式的半导体装置的剖面图。该半导体装置包含基板100、异质结构层610、第一氮化镓场效晶体管620、第二氮化镓场效晶体管630、中间连接结构640与覆盖层650。异质结构层610置于基板100上。异质结构层610包含第一区域II-II、第二区域III-III与中间连接区域IV-IV,中间连接区域IV-IV置于第一区域II-II与第二区域III-III之间,且异质结构层610产生二维电子气沟道616于其中。第一氮化镓场效晶体管620包含第一区域II-II的部分异质结构层610。第二氮化镓场效晶体管630包含第二区域III-III的部分异质结构层610。中间连接结构640置于中间连接区域IV-IV的异质结构层610上方,且电性连接第一氮化镓场效晶体管620与第二氮化镓场效晶体管630。覆盖层650置于中间连接结构640与异质结构层610之间。覆盖层650能够实质中断位于异质结构层610的中间连接区域IV-IV的二维电子气沟道616。
异质结构层610可包含第一半导体层612,即i型氮化镓(i-GaN)层,以及第二半导体层614,即i型氮化镓铝(i-AlGaN)层,其中第二半导体层614置于第一半导体层612上。因此二维电子气沟道616可毗邻第一半导体层612与第二半导体层614之间的界面存在。
在一或多个实施方式中,覆盖层650可为p型掺杂层。其中p型掺杂层可中断位于异质结构层610的中间连接区域IV-IV下方的二维电子气沟道616,而p型掺杂层的材质可为p型氮化镓或p型氮化镓铝。
因覆盖层650可中断位于异质结构层610的中间连接区域IV-IV的二维电子气沟道616,因此异质结构层610的中间连接区域IV-IV可不需形成其他绝缘结构,即绝缘沟槽。更进一步地,第一氮化镓场效晶体管620与第二氮化镓场效晶体管630之间可以中间连接结构640作电性连接,因此也可不需再另外加入额外的导线工艺。
在本实施方式中,第一氮化镓场效晶体管620可为耗尽型场效晶体管,而第二氮化镓场效晶体管630可为增强型场效晶体管。具体而言,第二氮化镓场效晶体管630可包含具p型掺杂材料的覆盖层632,置于栅极结构与异质结构层610的第二区域III-III之间,因此位于异质结构层610的第二区域III-III的二维电子气沟道616可被覆盖层632中断。
在本实施方式中,中间连接结构640电性连接至第一氮化镓场效晶体管620的源极622以及第二氮化镓场效晶体管630的漏极634,其中第一氮化镓场效晶体管620为耗尽型场效晶体管,且第二氮化镓场效晶体管630为增强型场效晶体管。中间连接结构640的上表面、第一氮化镓场效晶体管620的源极622的上表面、与第二氮化镓场效晶体管630的漏极634的上表面实质共平面。
上述的设计,即所有氮化镓元件皆置于基板的同一侧、以及覆盖层置于中间连接结构与异质结构层之间,可被应用于不同的电路(例如图8至11的电路)中。如图8所示,半导体装置可包含二增强型氮化镓场效晶体管705与二氮化镓二极管707。增强型氮化镓场效晶体管705分别以共漏共栅形态并联地电性连接氮化镓二极管707。在图8中,增强型氮化镓场效晶体管705与氮化镓二极管707皆置于基板的同一侧,和/或增强型氮化镓场效晶体管705与氮化镓二极管707之间的每一电性连接皆可应用如图7所绘示的覆盖层650与中间连接结构640。如图9所示,半导体装置可包含一增强型氮化镓场效晶体管710与一氮化镓二极管720。增强型氮化镓场效晶体管710并联地电性连接氮化镓二极管720。在图9中,增强型氮化镓场效晶体管710与氮化镓二极管720皆置于基板的同一侧,和/或增强型氮化镓场效晶体管710和/或氮化镓二极管720之间的每一电性连接皆可应用如图7所绘示的覆盖层650与中间连接结构640。如图10所示,半导体装置可包含一增强型氮化镓场效晶体管730与一氮化镓二极管740。氮化镓二极管740的阳极742电性连接至增强型氮化镓场效晶体管730的漏极732。在图10中,增强型氮化镓场效晶体管730与氮化镓二极管740皆置于基板的同一侧,和/或增强型氮化镓场效晶体管730与氮化镓二极管740之间的每一电性连接皆可应用如图7所绘示的覆盖层650与中间连接结构640。如图11所示,半导体装置可包含一耗尽型氮化镓场效晶体管750与一氮化镓二极管760。氮化镓二极管760的阴极764电性连接至耗尽型氮化镓场效晶体管750的源极754,且氮化镓二极管760的阳极762电性连接至耗尽型氮化镓场效晶体管750的栅极752。在图11中,耗尽型氮化镓场效晶体管750与氮化镓二极管760皆置于基板的同一侧,和/或耗尽型氮化镓场效晶体管750与氮化镓二极管760之间的每一电性连接皆可应用如图7所绘示的覆盖层650与中间连接结构640。
虽然本发明已以实施方式揭示如上,然其并非用以限定本发明,任何本领域的普通技术人员,在不脱离本发明的构思和范围的情况下,均可作出各种改动和润饰,因此本发明的保护范围当以权利要求书所界定的范围为准。
Claims (19)
1.一种半导体装置,包含:
一基板;
一第一氮化镓场效晶体管,置于该基板上,其中该第一氮化镓场效晶体管为一耗尽型场效晶体管;
一第二氮化镓场效晶体管,置于该基板上,其中该第二氮化镓场效晶体管为一增强型场效晶体管;以及
一氮化镓二极管,置于该基板上,其中该第一氮化镓场效晶体管、该第二氮化镓场效晶体管与该氮化镓二极管皆置于该基板的同一侧并互相电性连接。
2.根据权利要求1的半导体装置,其中该第一氮化镓场效晶体管以共漏共栅形态电性连接该第二氮化镓场效晶体管,且该氮化镓二极管并联地电性连接该第二氮化镓场效晶体管。
3.根据权利要求1的的半导体装置,其中该第二氮化镓场效晶体管的一漏极电性连接至该第一氮化镓场效晶体管的一源极与该氮化镓二极管的一阴极。
4.根据权利要求1的半导体装置,其中该第一氮化镓场效晶体管、该第二氮化镓场效晶体管与该氮化镓二极管共同组成一常关型场效晶体管装置。
5.根据权利要求1的半导体装置,还包含:
一功率因数修正二极管,其中该功率因数修正二极管的一阳极电性连接至该第一氮化镓场效晶体管的一漏极。
6.根据权利要求1的半导体装置,还包含:
一氮化物层,置于该基板上,其中该第一氮化镓场效晶体管、该第二氮化镓场效晶体管与该氮化镓二极管均置于该氮化物层上。
7.根据权利要求1的半导体装置,其中该第一氮化镓场效晶体管、该第二氮化镓场效晶体管与该氮化镓二极管共同包含至少一异质结构层,且该异质结构层至少包含氮化镓铝AlxGa1-xN,0<x<0.3。
8.根据权利要求1的半导体装置,其中该第一氮化镓场效晶体管包含:
一异质结构层,置于该基板上,该异质结构层包含多个氮化物半导体层以及至少一二维电子气沟道于其中;
一源极与一漏极,互相分离设置,且分别电性连接至该二维电子气沟道;以及
一栅极,置于该异质结构层上方,且置于该源极与该漏极之间。
9.根据权利要求1的半导体装置,其中该第二氮化镓场效晶体管包含:
一异质结构层,置于该基板上,该异质结构层包含多个氮化物半导体层以及至少一二维电子气沟道于其中;
一源极与一漏极,互相分离设置,且分别电性连接至该二维电子气沟道;
一栅极,置于该异质结构层上方,且置于该源极与该漏极之间;以及
一p型掺杂层,置于该异质结构层与该栅极之间。
10.根据权利要求9的半导体装置,其中该p型掺杂层的材质为p型氮化镓或p型氮化镓铝。
11.根据权利要求1的半导体装置,其中该第二氮化镓场效晶体管包含:
一异质结构层,置于该基板上,该异质结构层包含多个氮化物半导体层以及至少一二维电子气沟道于其中,且该异质结构层具有一倾斜部;
一源极与一漏极,互相分离设置,且分别电性连接至该二维电子气沟道;以及
一栅极,置于该源极与该漏极之间,其中至少部分的该栅极置于该异质结构层的倾斜部上。
12.根据权利要求1的导体装置,其中该第二氮化镓场效晶体管包含:
一异质结构层,置于该基板上,该异质结构层包含多个氮化物半导体层以及至少一二维电子气沟道于其中,且该异质结构层具有一凹槽;
一源极与一漏极,互相分离设置,且分别电性连接至该二维电子气沟道;以及
一栅极,置于该源极与该漏极之间,其中至少部分的该栅极置于该异质结构层的凹槽上。
13.根据权利要求1的半导体装置,其中该氮化镓二极管包含:
一异质结构层,置于该基板上;
一阳极与一阴极,互相分离设置,且分别电性连接至该异质结构层;以及
一p型掺杂层,置于该异质结构层上,且置于该阳极与该异质结构层之间。
14.一种半导体装置,包含:
一基板;
一异质结构层,置于该基板上,其中该异质结构层包含一第一区域、一第二区域与一中间连接区域,该中间连接区域置于该第一区域与该第二区域之间,且该异质结构层产生一二维电子气沟道于其中;
一第一氮化镓场效晶体管,包含该第一区域的部分异质结构层;
一第二氮化镓场效晶体管,包含该第二区域的部分异质结构层;
一中间连接结构,置于该中间连接区域的异质结构层上方,且电性连接该第一氮化镓场效晶体管与该第二氮化镓场效晶体管;以及
一覆盖层,置于该中间连接结构与该异质结构层之间,其中位于该异质结构层的中间连接区域的二维电子气沟道于该覆盖层下方实质中断。
15.根据权利要求14的半导体装置,其中该覆盖层为一p型掺杂层。
16.根据权利要求14的半导体装置,其中该第一氮化镓场效晶体管为一耗尽型场效晶体管,且该第二氮化镓场效晶体管为一增强型场效晶体管。
17.根据权利要求16的半导体装置,其中该中间连接结构电性连接该增强型场效晶体管的一漏极与该耗尽型场效晶体管的一源极,且该中间连接结构的一上表面、该增强型场效晶体管的漏极的一上表面、与该耗尽型场效晶体管的源极的一上表面实质共平面。
18.根据权利要求14的半导体装置,其中该异质结构层包含一第一半导体层与一第二半导体层,该第二半导体层置于该第一半导体层上。
19.根据权利要求18的半导体装置,其中该二维电子气结构毗邻该第一半导体层与该第二半导体层之间的一界面。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261728136P | 2012-11-19 | 2012-11-19 | |
US61/728,136 | 2012-11-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103824845A true CN103824845A (zh) | 2014-05-28 |
CN103824845B CN103824845B (zh) | 2017-08-29 |
Family
ID=50727122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310585132.0A Active CN103824845B (zh) | 2012-11-19 | 2013-11-19 | 半导体装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9484418B2 (zh) |
CN (1) | CN103824845B (zh) |
TW (1) | TWI567930B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112117271A (zh) * | 2019-06-19 | 2020-12-22 | 意法半导体应用有限公司 | 包括氮化镓功率晶体管的单片式组件 |
CN114072908A (zh) * | 2019-05-07 | 2022-02-18 | 剑桥氮化镓器件有限公司 | 具有集成功率晶体管和启动电路的iii-v族半导体器件 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102182016B1 (ko) * | 2013-12-02 | 2020-11-23 | 엘지이노텍 주식회사 | 반도체 소자 및 이를 포함하는 반도체 회로 |
TWI627723B (zh) * | 2014-08-20 | 2018-06-21 | 納維達斯半導體公司 | 具有分布閘極之功率電晶體 |
US10290566B2 (en) * | 2014-09-23 | 2019-05-14 | Infineon Technologies Austria Ag | Electronic component |
JP2017005153A (ja) * | 2015-06-11 | 2017-01-05 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
JP6552925B2 (ja) | 2015-09-04 | 2019-07-31 | 株式会社東芝 | 半導体装置 |
US9871510B1 (en) * | 2016-08-24 | 2018-01-16 | Power Integrations, Inc. | Clamp for a hybrid switch |
GB2564482B (en) * | 2017-07-14 | 2021-02-10 | Cambridge Entpr Ltd | A power semiconductor device with a double gate structure |
US11336279B2 (en) | 2017-07-14 | 2022-05-17 | Cambridge Enterprise Limited | Power semiconductor device with a series connection of two devices |
US11257811B2 (en) | 2017-07-14 | 2022-02-22 | Cambridge Enterprise Limited | Power semiconductor device with an auxiliary gate structure |
TWI644432B (zh) * | 2017-12-11 | 2018-12-11 | 世界先進積體電路股份有限公司 | 半導體結構及其製造方法 |
US10692857B2 (en) | 2018-05-08 | 2020-06-23 | Vanguard International Semiconductor Corporation | Semiconductor device combining passive components with HEMT |
US10840798B1 (en) | 2018-09-28 | 2020-11-17 | Dialog Semiconductor (Uk) Limited | Bidirectional signaling method for high-voltage floating circuits |
US11955478B2 (en) * | 2019-05-07 | 2024-04-09 | Cambridge Gan Devices Limited | Power semiconductor device with an auxiliary gate structure |
US11749656B2 (en) | 2020-06-16 | 2023-09-05 | Transphorm Technology, Inc. | Module configurations for integrated III-Nitride devices |
US12206031B2 (en) * | 2022-06-09 | 2025-01-21 | Macom Technology Solutions Holdings, Inc. | Monolithic pin and Schottky diode integrated circuits |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101022128A (zh) * | 2006-02-16 | 2007-08-22 | 松下电器产业株式会社 | 氮化物半导体装置及其制作方法 |
CN101562182A (zh) * | 2008-04-02 | 2009-10-21 | 香港科技大学 | 集成的hemt和横向场效应整流器组合、方法及系统 |
EP2256799A2 (en) * | 2009-05-28 | 2010-12-01 | International Rectifier Corporation | Monolithic vertically integrated composite group III-V and group IV semiconductor device and method for fabricating same |
US20110073911A1 (en) * | 2009-09-26 | 2011-03-31 | Sanken Electric Co., Ltd. | Semiconductor device |
US20120273797A1 (en) * | 2009-07-30 | 2012-11-01 | Sumitomo Electric Device Innovations, Inc. | Semiconductor device and method for manufacturing same |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5192987A (en) | 1991-05-17 | 1993-03-09 | Apa Optics, Inc. | High electron mobility transistor with GaN/Alx Ga1-x N heterojunctions |
US7298123B2 (en) | 2000-02-08 | 2007-11-20 | The Furukawa Electric Co., Ltd. | Apparatus and circuit for power supply, and apparatus for controlling large current load |
US6768146B2 (en) * | 2001-11-27 | 2004-07-27 | The Furukawa Electric Co., Ltd. | III-V nitride semiconductor device, and protection element and power conversion apparatus using the same |
US8089097B2 (en) * | 2002-12-27 | 2012-01-03 | Momentive Performance Materials Inc. | Homoepitaxial gallium-nitride-based electronic devices and method for producing same |
US7382001B2 (en) | 2004-01-23 | 2008-06-03 | International Rectifier Corporation | Enhancement mode III-nitride FET |
US8017978B2 (en) | 2006-03-10 | 2011-09-13 | International Rectifier Corporation | Hybrid semiconductor device |
US8264003B2 (en) * | 2006-03-20 | 2012-09-11 | International Rectifier Corporation | Merged cascode transistor |
US9076852B2 (en) * | 2007-01-19 | 2015-07-07 | International Rectifier Corporation | III nitride power device with reduced QGD |
US8502323B2 (en) | 2007-08-03 | 2013-08-06 | The Hong Kong University Of Science And Technology | Reliable normally-off III-nitride active device structures, and related methods and systems |
US8659275B2 (en) | 2008-01-11 | 2014-02-25 | International Rectifier Corporation | Highly efficient III-nitride power conversion circuit |
US7965126B2 (en) | 2008-02-12 | 2011-06-21 | Transphorm Inc. | Bridge circuits and their components |
JP5566618B2 (ja) | 2008-03-07 | 2014-08-06 | 古河電気工業株式会社 | GaN系半導体素子 |
US8957642B2 (en) * | 2008-05-06 | 2015-02-17 | International Rectifier Corporation | Enhancement mode III-nitride switch with increased efficiency and operating frequency |
US7985986B2 (en) | 2008-07-31 | 2011-07-26 | Cree, Inc. | Normally-off semiconductor devices |
US8289065B2 (en) | 2008-09-23 | 2012-10-16 | Transphorm Inc. | Inductive load power switching circuits |
US8084783B2 (en) * | 2008-11-10 | 2011-12-27 | International Rectifier Corporation | GaN-based device cascoded with an integrated FET/Schottky diode device |
US7898004B2 (en) * | 2008-12-10 | 2011-03-01 | Transphorm Inc. | Semiconductor heterostructure diodes |
US7884394B2 (en) * | 2009-02-09 | 2011-02-08 | Transphorm Inc. | III-nitride devices and circuits |
US8816497B2 (en) * | 2010-01-08 | 2014-08-26 | Transphorm Inc. | Electronic devices and components for high efficiency power circuits |
US9219058B2 (en) * | 2010-03-01 | 2015-12-22 | Infineon Technologies Americas Corp. | Efficient high voltage switching circuits and monolithic integration of same |
US9263439B2 (en) * | 2010-05-24 | 2016-02-16 | Infineon Technologies Americas Corp. | III-nitride switching device with an emulated diode |
FR2967813B1 (fr) | 2010-11-18 | 2013-10-04 | Soitec Silicon On Insulator | Procédé de réalisation d'une structure a couche métallique enterrée |
US9076853B2 (en) * | 2011-03-18 | 2015-07-07 | International Rectifie Corporation | High voltage rectifier and switching circuits |
US9859882B2 (en) * | 2011-03-21 | 2018-01-02 | Infineon Technologies Americas Corp. | High voltage composite semiconductor device with protection for a low voltage device |
US9362905B2 (en) * | 2011-03-21 | 2016-06-07 | Infineon Technologies Americas Corp. | Composite semiconductor device with turn-on prevention control |
US20120241820A1 (en) * | 2011-03-21 | 2012-09-27 | International Rectifier Corporation | III-Nitride Transistor with Passive Oscillation Prevention |
KR20130004707A (ko) * | 2011-07-04 | 2013-01-14 | 삼성전기주식회사 | 질화물 반도체 소자, 질화물 반도체 소자의 제조방법 및 질화물 반도체 파워소자 |
US9147701B2 (en) * | 2011-09-22 | 2015-09-29 | Raytheon Company | Monolithic InGaN solar cell power generation with integrated efficient switching DC-DC voltage convertor |
US10122293B2 (en) * | 2012-01-17 | 2018-11-06 | Infineon Technologies Americas Corp. | Power module package having a multi-phase inverter and power factor correction |
TWI439841B (zh) * | 2012-03-15 | 2014-06-01 | Univ Nat Chiao Tung | 電流限制電路裝置 |
KR101922117B1 (ko) * | 2012-08-16 | 2018-11-26 | 삼성전자주식회사 | 트랜지스터를 포함하는 전자소자 및 그 동작방법 |
KR101919421B1 (ko) * | 2012-08-16 | 2018-11-19 | 삼성전자주식회사 | 반도체소자 및 그 제조방법 |
-
2013
- 2013-11-19 CN CN201310585132.0A patent/CN103824845B/zh active Active
- 2013-11-19 TW TW102141968A patent/TWI567930B/zh active
- 2013-11-19 US US14/083,777 patent/US9484418B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101022128A (zh) * | 2006-02-16 | 2007-08-22 | 松下电器产业株式会社 | 氮化物半导体装置及其制作方法 |
CN101562182A (zh) * | 2008-04-02 | 2009-10-21 | 香港科技大学 | 集成的hemt和横向场效应整流器组合、方法及系统 |
EP2256799A2 (en) * | 2009-05-28 | 2010-12-01 | International Rectifier Corporation | Monolithic vertically integrated composite group III-V and group IV semiconductor device and method for fabricating same |
US20120273797A1 (en) * | 2009-07-30 | 2012-11-01 | Sumitomo Electric Device Innovations, Inc. | Semiconductor device and method for manufacturing same |
US20110073911A1 (en) * | 2009-09-26 | 2011-03-31 | Sanken Electric Co., Ltd. | Semiconductor device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114072908A (zh) * | 2019-05-07 | 2022-02-18 | 剑桥氮化镓器件有限公司 | 具有集成功率晶体管和启动电路的iii-v族半导体器件 |
CN112117271A (zh) * | 2019-06-19 | 2020-12-22 | 意法半导体应用有限公司 | 包括氮化镓功率晶体管的单片式组件 |
Also Published As
Publication number | Publication date |
---|---|
US9484418B2 (en) | 2016-11-01 |
TW201421648A (zh) | 2014-06-01 |
US20140138701A1 (en) | 2014-05-22 |
CN103824845B (zh) | 2017-08-29 |
TWI567930B (zh) | 2017-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103824845B (zh) | 半导体装置 | |
US8981380B2 (en) | Monolithic integration of silicon and group III-V devices | |
CN103325828B (zh) | 氮化物半导体元件 | |
JP4645313B2 (ja) | 半導体装置 | |
JP6244557B2 (ja) | 窒化物半導体デバイス | |
JP2013038409A (ja) | 集積されたダイオードを備える複合半導体装置 | |
CN112534570B (zh) | 具有增强模式和耗尽模式晶体管二者的单片微波集成电路 | |
US10833185B2 (en) | Heterojunction semiconductor device having source and drain pads with improved current crowding | |
KR20140042470A (ko) | 노멀리 오프 고전자이동도 트랜지스터 | |
US9905563B2 (en) | Semiconductor device | |
JP2007059882A (ja) | 半導体装置 | |
JP5643783B2 (ja) | Iii−v族トランジスタとiv族ダイオードを含む積層複合デバイス | |
JP2011029507A (ja) | 半導体装置 | |
CN109980000A (zh) | 增强型高电子迁移率晶体管元件及其形成方法 | |
US20130175542A1 (en) | Group III-V and Group IV Composite Diode | |
US9647102B2 (en) | Field effect transistor | |
JP2013197590A (ja) | Iii−v族及びiv族複合ダイオード | |
US12087763B2 (en) | Nitride-based semiconductor bidirectional switching device and method for manufacturing the same | |
CN111312815A (zh) | GaN基功率晶体管结构及其制备方法 | |
CN114556561B (zh) | 基于氮化物的半导体ic芯片及其制造方法 | |
JP7545044B2 (ja) | 半導体装置、半導体装置の製造方法及び電子装置 | |
US12046669B2 (en) | HEMT and method of fabricating the same | |
WO2024000475A1 (en) | Semiconductor packaged device and method for manufacturing thereof | |
JP2009044035A (ja) | 電界効果半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20221116 Address after: No. 252, Shanying Road, Guishan District, Taoyuan City, Taiwan, China, China (6/F) Patentee after: Anchorage Semiconductor Co.,Ltd. Address before: Taoyuan County, Taiwan, China Patentee before: DELTA ELECTRONICS, Inc. |
|
TR01 | Transfer of patent right |