[go: up one dir, main page]

CN103820475B - The protein of Fructus Lycii yak base geranylpyrophosphate synthase gene and coding thereof and application - Google Patents

The protein of Fructus Lycii yak base geranylpyrophosphate synthase gene and coding thereof and application Download PDF

Info

Publication number
CN103820475B
CN103820475B CN201310555823.6A CN201310555823A CN103820475B CN 103820475 B CN103820475 B CN 103820475B CN 201310555823 A CN201310555823 A CN 201310555823A CN 103820475 B CN103820475 B CN 103820475B
Authority
CN
China
Prior art keywords
lmggps2
synthase gene
geranyl
gene
tobacco
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310555823.6A
Other languages
Chinese (zh)
Other versions
CN103820475A (en
Inventor
季静
王罡
贾翠翠
吴电云
曹海燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201310555823.6A priority Critical patent/CN103820475B/en
Publication of CN103820475A publication Critical patent/CN103820475A/en
Application granted granted Critical
Publication of CN103820475B publication Critical patent/CN103820475B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及一种枸杞牦牛儿基牦牛儿焦磷酸合成酶基因及其编码的蛋白质和应用,具体为枸杞(<i>Lycium</i><i> chinense Miller</i>)中牦牛儿基牦牛儿焦磷酸合成酶基因<i>LmGGPS</i><i>2</i>的克隆。通过提取新鲜枸杞叶片中的总RNA,克隆了枸杞中的牦牛儿基牦牛儿焦磷酸合成酶基因<i>LmGGPS2</i>,得到基因完整的序列为1246bp;构建了大肠杆菌表达载体pET28a-LmGGPS2,通过大肠杆菌异源表达系统,得到了LmGGPS2表达蛋白;并构建了双元植物表达载体pCAMBIA2300-LmGGPS2,电击法将载体转入农杆菌C58细胞,用这种细胞转化烟草,得到转基因烟草,通过测试,发现转基因烟草大大提高了植物西红柿红素的含量,类胡萝卜素的含量也有所提高。The present invention relates to a wolfberry geranyl geranyl pyrophosphate synthase gene and its encoded protein and application thereof, specifically geranyl in wolfberry (<i>Lycium</i><i>chinense Miller</i>) Cloning of yak pyrophosphate synthase gene <i>LmGGPS</i><i>2</i>. The geranylgeranyl geranyl pyrophosphate synthase gene <i>LmGGPS2</i> in Lycium barbarum was cloned by extracting total RNA from fresh Lycium barbarum leaves, and the complete sequence of the gene was 1246bp; the Escherichia coli expression vector pET28a- LmGGPS2, through the heterologous expression system of E. coli, the LmGGPS2 expression protein was obtained; and the binary plant expression vector pCAMBIA2300-LmGGPS2 was constructed, and the vector was transferred into Agrobacterium C58 cells by electric shock method, and the cells were used to transform tobacco to obtain transgenic tobacco. Through testing, it was found that the genetically modified tobacco greatly increased the content of plant lycopene, and the content of carotenoids also increased.

Description

枸杞牦牛儿基牦牛儿焦磷酸合成酶基因及其编码的蛋白质和应用Lycium barbarum geranyl geranyl pyrophosphate synthase gene and its encoded protein and application

技术领域technical field

本发明涉及一种枸杞牦牛儿基牦牛儿焦磷酸合成酶基因及其编码的蛋白质和应用,具体为枸杞(LyciumchinenseMiller)中牦牛儿基牦牛儿焦磷酸合成酶基因LmGGPS2的克隆。The invention relates to a wolfberry geranyl geranyl pyrophosphate synthase gene and its coded protein and application thereof, in particular to the cloning of the geranyl geranyl pyrophosphate synthase gene LmGGPS2 in Lycium chinense Miller.

背景技术Background technique

牦牛儿基牦牛儿焦磷酸(GGPP)是生物界普遍存在的重要中间代谢产物.在植物中,GGPP参与叶绿素、类胡萝卜素、赤霉素、质体醌、维生素E、单萜和苯醌等产物的合成,对植物光合作用、生长发育和产品品质等有重要影响。该产物由GGPS直接催化合成。GGPP不仅是类胡萝卜素生物合成的最直接的前体物质,还是植物体内赤霉素、叶绿素和质体醌等前体物质。GGPP的合成是类胡萝卜素合成中的限速过程。通过一系列的酶促反应,产生的西红柿红素不仅赋予西红柿鲜艳的色泽,而且具有重要的营养保健价值。医学研究表明,血清中高含量的西红柿红素可显着地降低各种癌症的发病率,血液中的西红柿红素含量与前列腺癌、消化道癌、乳腺癌、肺癌、膀胱癌、皮肤癌等多种癌症的发生几率呈负相关,研究表明人体中高西红柿红素含量能显着的降低前列腺癌的发生几率。西红柿红素保护心脑血管的作用主要是通过其抗氧化作用,降低血清脂质和低密度脂蛋白的过氧化作用,从而减少动脉硬化和冠心病的发病率,高西红柿红素的摄入能显着的降低心脑血管疾病的发病几率。西红柿红素还具有提高免疫力、延缓衰老等作用。Geranylgeranyl pyrophosphate (GGPP) is an important intermediate metabolite ubiquitous in the biological world. In plants, GGPP participates in chlorophyll, carotenoids, gibberellins, plastoquinones, vitamin E, monoterpenes and benzoquinones, etc. The synthesis of products has an important impact on plant photosynthesis, growth and development, and product quality. The product was directly catalyzed by GGPS. GGPP is not only the most direct precursor of carotenoid biosynthesis, but also the precursor of gibberellin, chlorophyll and plastoquinone in plants. The synthesis of GGPP is the rate-limiting process in carotenoid synthesis. Through a series of enzymatic reactions, the lycopene produced not only gives tomatoes a bright color, but also has important nutritional and health value. Medical research shows that high levels of lycopene in serum can significantly reduce the incidence of various cancers. The incidence of cancer is negatively correlated. Studies have shown that high lycopene content in the human body can significantly reduce the incidence of prostate cancer. The role of lycopene in protecting cardiovascular and cerebrovascular is mainly through its antioxidant effect, reducing the peroxidation of serum lipids and low-density lipoproteins, thereby reducing the incidence of arteriosclerosis and coronary heart disease. High intake of lycopene can Significantly reduce the incidence of cardiovascular and cerebrovascular diseases. Lycopene also has the functions of improving immunity and delaying aging.

西红柿红素能够猝灭单线态氧、清除自由基,防止蛋白质和DNA受到氧的破坏等作用。西红柿红素清除单线态氧的能力是目前常用抗氧化剂维生素E的10倍,β-胡萝卜素的2倍。西红柿红素分子在所有类胡萝卜素中含有的共轭双键的数量最多,其淬灭单线态氧速率常数是维生素E的100倍,是抗氧化能力最强的类胡萝卜素。西红柿红素的化学结构决定了其具有很强的去除活性氧和自由基的能力,是一种有效的抗氧化剂。而且类胡萝卜素,尤其是β-胡萝卜素能抑制、清除体内自由基,可以延缓衰老和预防肿瘤、血栓、动脉粥样硬化等疾病。类胡萝卜素能增加免疫系统中B细胞的活力、消灭外源入侵的病原菌,能提高淋巴辅助T细胞的活力,协助B细胞产生抗体,并提高其它免疫组分的活性;还能增加自然杀伤细胞的数目,以消除机体内被感染的细胞或癌细胞。Lycopene can quench singlet oxygen, scavenge free radicals, and prevent protein and DNA from being damaged by oxygen. The ability of lycopene to scavenge singlet oxygen is 10 times that of commonly used antioxidant vitamin E and 2 times that of β-carotene. Lycopene molecule contains the largest number of conjugated double bonds among all carotenoids, and its singlet oxygen quenching rate constant is 100 times that of vitamin E, making it the carotenoid with the strongest antioxidant capacity. The chemical structure of lycopene determines that it has a strong ability to remove active oxygen and free radicals, and is an effective antioxidant. Moreover, carotenoids, especially β-carotene, can inhibit and scavenge free radicals in the body, which can delay aging and prevent diseases such as tumors, thrombosis, and atherosclerosis. Carotenoids can increase the activity of B cells in the immune system, eliminate foreign invading pathogens, increase the activity of lymphatic helper T cells, assist B cells to produce antibodies, and improve the activity of other immune components; they can also increase natural killer cells The number of infected cells or cancer cells in the body to eliminate.

在植物中,GGPS基因与其它酶共同作用下生成二萜、四萜和多萜化合物。GGPS是合成二萜、四萜和多萜的关键酶。烟草萜类化合物与烟叶香气密切相关,它们不但作为重要的烟草香气前体物存在于烟叶中,而且在烟气中也发现了烟叶中具有的大部分类萜化合物。如二萜是叶面腺体胶质分泌物的主要组成成分,其主要成分是西柏三烯二醇,它的降解产物茄酮及其衍生物是重要的香味物质;四萜化合物类胡萝卜素是烟叶中重要的致香物前体物,其降解产物如大马酮、紫罗兰酮、巨豆三烯酮等是烟叶中重要致香成分。在我国烟叶生产中,增加烟叶萜类化合物含量,特别是与香气品质密切相关的香气前体物质如二萜、类胡萝卜素等在烟叶中的积累,可增加烟叶香气量,改善烟叶香气品质。因此,研究转基因GGPS烟草具有重要意义。In plants, the GGPS gene works with other enzymes to produce diterpenes, tetraterpenes and polyterpenes. GGPS is a key enzyme in the synthesis of diterpenes, tetraterpenes and polyterpenes. Tobacco terpenoids are closely related to the aroma of tobacco leaves. They not only exist in tobacco leaves as important tobacco aroma precursors, but also found most of the terpenoids in tobacco leaves in smoke. For example, diterpene is the main component of the glial secretions of foliage glands, and its main component is cembratriene diol, and its degradation product solanone and its derivatives are important aroma substances; tetraterpene compound carotenoids are Important aroma precursors in tobacco leaves, and their degradation products such as damascenone, ionone, and macrostigmatrienone are important aroma components in tobacco leaves. In the production of tobacco leaves in my country, increasing the content of terpenoids in tobacco leaves, especially the accumulation of aroma precursors such as diterpenes and carotenoids, which are closely related to aroma quality, can increase the aroma of tobacco leaves and improve the aroma quality of tobacco leaves. Therefore, it is of great significance to study transgenic GGPS tobacco.

植物类胡萝卜素合成的步骤如下:3-甲基-3,5-二羟基戊酸(MVA)在酶的催化作用下合成异戊烯焦磷酸(IPP),异戊烯焦磷酸(IPP)首先在异戊烯焦磷酸异构酶(IPI)的作用下生成带有丙烯基结构的同分异构体二甲基丙烯焦磷酸(DMAPP),它是异戊稀合成途径中必需的前体物质,DMAPP和IPP经过连续的缩合依次生成牦牛儿基焦磷酸(GPS)、法呢基焦磷酸(FPP)、牦牛儿基牦牛儿基焦磷酸(GGPP)。两分子的GGPP由八氢西红柿红素合成酶(PSY)催化聚合成八氢西红柿红素。八氢西红柿红素经过连续的脱氢反应生成顺式结构的原西红柿红素(prolycopene),原西红柿红素在胡萝卜素异构酶(CRTISO)的作用下异构成反式结构西红柿红素。西红柿红素随后相应环化酶的催化下,生成a、β-胡萝卜素,并进一步生成其它类型的色素(Tanakaetal.,2008)。The steps of plant carotenoid synthesis are as follows: 3-methyl-3,5-dihydroxyvaleric acid (MVA) synthesizes isopentenyl pyrophosphate (IPP) under the catalysis of enzymes, and isopentenyl pyrophosphate (IPP) first Under the action of isopentenyl pyrophosphate isomerase (IPI), the isomer dimethylpropylene pyrophosphate (DMAPP) with propenyl structure is generated, which is an essential precursor substance in the synthesis pathway of isopentene , DMAPP and IPP undergo continuous condensation to generate geranyl pyrophosphate (GPS), farnesyl pyrophosphate (FPP), and geranyl geranyl pyrophosphate (GGPP). Two molecules of GGPP are catalyzed by phytoene synthase (PSY) to form phytolycopene. Octahydrolycopene undergoes continuous dehydrogenation reactions to generate cis-structure prolycopene, and prolycopene is isomerized into trans-structure lycopene under the action of carotene isomerase (CRTISO). Lycopene is then catalyzed by the corresponding cyclase to generate α, β-carotene, and further generate other types of pigments (Tanaka et al., 2008).

随着人类对西红柿红素和类胡萝卜素药用价值及医疗保健作用的不断发现,对西红柿红素和类胡萝卜素的种类和产量的需求也将越来越大,然而,西红柿红素类胡萝卜素很难用化学方法合成。现代分子生物学研究手段的发展,使得西红柿红素和类胡萝卜素生物合成途径中的一系列关键酶的基因被陆续分离鉴定,为通过DNA重组技术和遗传工程调控生产西红柿红素和类胡萝卜素开辟了道路,特别是通过类胡萝卜素基因工程获得“金色水稻”和“金油菜”,极大地增强了人们开展植物类胡萝卜素基因工程的信心。With the continuous discovery of the medicinal value and health care function of lycopene and carotenoids, the demand for the types and production of lycopene and carotenoids will also increase. However, lycopene carotenoids It is difficult to synthesize chemically. With the development of modern molecular biology research methods, a series of key enzyme genes in the biosynthetic pathway of lycopene and carotenoids have been isolated and identified one after another, providing a basis for the regulation and production of lycopene and carotenoids through DNA recombination technology and genetic engineering. The road has been opened up, especially the "golden rice" and "golden rapeseed" obtained through carotenoid genetic engineering, which greatly enhanced people's confidence in carrying out plant carotenoid genetic engineering.

萜类化合物是植物代谢物中数量最多的一类化合物,由异戊二烯为结构单元组成。在植物体的呼吸作用、光合作用,以及生长、发育、繁殖、信号转导和防御中发挥着重要作用。某些萜类化合物具有重要的经济价值,还有些可被用作天然香料和香味化合物或抗肿瘤化疗药。在植物中,萜类化合物的生物合成发生在细胞质和质体中,其前体物质是C5结构的异戊烯基焦磷酸(Isopentenylpyrophosphate,IPP)及其同分异构体——二甲基烯丙基焦磷酸酯(Dimethylallylpyrophosphate,DMAPP)。经由甲羟戊酸(Mevalonicacid,MVA)途径合成的IPP是合成法呢基焦磷酸(Farnesylpyrophosphate,FPP,C15)的前体物,FPP最终在细胞质中合成为倍半萜、三萜以及甾醇。在质体中甲基赤藓糖醇磷酸(methyl-erythritol-phosphate,MEP)途径合成的IPP和DMAPP是生成牻牛儿基焦磷酸(Geranylpyrophosphate,GPP,C10)的前体物。GPP在单萜合成酶的作用下生成单萜;在牻牛儿基牻牛儿焦磷酸合成酶(GeranylgeranylpyrophosphateSynthase,GGPPS)作用下生成牻牛儿基牻牛儿焦磷酸(Geranylgeranylpyrophosphate,GGPP,C20),进而在酶的作用下生成二萜、四萜和多萜化合物。Terpenoids are the most numerous class of compounds in plant metabolites, which are composed of isoprene as a structural unit. It plays an important role in plant respiration, photosynthesis, growth, development, reproduction, signal transduction and defense. Some terpenoids have important economic value, and some can be used as natural fragrances and aroma compounds or anti-tumor chemotherapy drugs. In plants, the biosynthesis of terpenoids occurs in the cytoplasm and plastids, and its precursor is isopentenyl pyrophosphate (IPP) with C5 structure and its isomer - dimethylene Dimethylallylpyrophosphate (DMAPP). IPP synthesized via the mevalonic acid (MVA) pathway is the precursor for the synthesis of farnesyl pyrophosphate (FPP, C15), and FPP is finally synthesized into sesquiterpenes, triterpenes and sterols in the cytoplasm. IPP and DMAPP synthesized by the methyl-erythritol-phosphate (MEP) pathway in the plastid are precursors for the formation of geranylpyrophosphate (GPP, C10). GPP generates monoterpene under the action of monoterpene synthase; under the action of geranylgeranylpyrophosphate synthase (GGPPS), it generates geranylgeranylpyrophosphate (GGPP, C20), Then, under the action of enzymes, diterpenes, tetraterpenes and polyterpenes are generated.

发明内容Contents of the invention

本发明的目的在于提供一种枸杞牦牛儿基牦牛儿焦磷酸合成酶基因。The object of the present invention is to provide a wolfberry geranyl geranyl pyrophosphate synthase gene.

本发明的第二个目的是提供该基因编码的蛋白质。The second object of the present invention is to provide the protein encoded by the gene.

本发明的目的还在于提供含有该基因的重组载体和宿主细胞。The object of the present invention is also to provide a recombinant vector and host cell containing the gene.

本发明的另一个目的在于提供该基因的用途。Another object of the present invention is to provide the application of the gene.

本发明提供了一种枸杞牦牛儿基牦牛儿焦磷酸合成酶基因LmGGPS2,如序列表中SEQIDNO.1所示的核苷酸序列构成。The invention provides a wolfberry geranyl geranyl pyrophosphate synthase gene LmGGPS2, which is composed of the nucleotide sequence shown in SEQ ID NO.1 in the sequence listing.

本发明提供了一种上述枸杞牦牛儿基牦牛儿焦磷酸合成酶基因LmGGPS2编码的蛋白质,如序列表中SEQIDNO.2所示的氨基酸序列的蛋白质。The present invention provides a protein encoded by the wolfberry geranyl geranyl pyrophosphate synthase gene LmGGPS2, such as the protein with the amino acid sequence shown in SEQ ID NO.2 in the sequence listing.

本发明提供了一种上述枸杞牦牛儿基牦牛儿焦磷酸合成酶基因LmGGPS2重组克隆载体pMD18-T-LmGGPS2。The invention provides a recombination cloning vector pMD18-T-LmGGPS2 of the wolfberry geranyl geranyl pyrophosphate synthase gene LmGGPS2.

含有上述的枸杞牦牛儿基牦牛儿焦磷酸合成酶基因LmGGPS2的重组载体,这些重组载体包括质粒。The recombinant vectors containing the above-mentioned wolfberry geranyl geranyl pyrophosphate synthase gene LmGGPS2 include plasmids.

所述的质粒表达载体大肠杆菌表达载体pET28a-LmGGPS2。The plasmid expression vector is the Escherichia coli expression vector pET28a-LmGGPS2.

含有上述的枸杞牦牛儿基牦牛儿焦磷酸合成酶基因LmGGPS2的重组载体,这些重组载体包括质粒。The recombinant vectors containing the above-mentioned wolfberry geranyl geranyl pyrophosphate synthase gene LmGGPS2 include plasmids.

所述的质粒表达载体大肠杆菌表达载体pET28a-LmGGPS2。The plasmid expression vector is the Escherichia coli expression vector pET28a-LmGGPS2.

所述的质粒表达载体双元植物表达载体pCAMBIA2300-LmGGPS2。The plasmid expression vector is a binary plant expression vector pCAMBIA2300-LmGGPS2.

含有上述枸杞牦牛儿基牦牛儿焦磷酸合成酶基因LmGGPS2的完整编码阅读框序列的宿主细胞,如含有上述重组载体的宿主细胞也属于本发明的保护范围。A host cell containing the complete coding reading frame sequence of the Lycium barbarum geranyl geranyl pyrophosphate synthase gene LmGGPS2, such as a host cell containing the above recombinant vector, also belongs to the scope of protection of the present invention.

所述的宿主细胞选自大肠杆菌细胞、农杆菌细胞或烟草细胞。The host cell is selected from Escherichia coli cells, Agrobacterium cells or tobacco cells.

本发明提供了一种含有LmGGPS2基因的工程菌。The invention provides an engineering bacterium containing the LmGGPS2 gene.

上述枸杞牦牛儿基牦牛儿焦磷酸合成酶基因LmGGPS2的应用包括该基因编码的蛋白在植物中的应用;用所述的重组载体,如植物表达载体转化玉米细胞;或者用所述含有该基因的农杆菌与玉米、大豆、向日葵、马铃薯、棉花、谷子、大麦以及花卉和蔬菜等细胞共培养,得到转基因的再生植株;或者用所述的LmGGPS2遗传转化获得上述物种转基因植株。The application of the wolfberry geranyl geranyl pyrophosphate synthase gene LmGGPS2 includes the application of the protein encoded by the gene in plants; using the recombinant vector, such as plant expression vector, to transform corn cells; or using the gene containing the gene Agrobacterium is co-cultured with cells such as corn, soybean, sunflower, potato, cotton, millet, barley, flowers and vegetables to obtain transgenic regenerated plants; or use the LmGGPS2 genetic transformation to obtain transgenic plants of the above species.

本发明的技术方案具体概述如下:Technical scheme of the present invention is specifically summarized as follows:

本发明的克隆方法包括下述步骤:Cloning method of the present invention comprises the following steps:

从枸杞新鲜叶片中提取总RNA,根据转录组Unigene序列中枸杞牦牛儿基牦牛儿焦磷酸合成酶基因LmGGPS2的核苷酸序列设计上游引物LmGGPS2-F1:5’-GTCATGTCTATGCTAATAGGTGT-3’,LmGGPS-R1:5’-GGTCATotal RNA was extracted from fresh leaves of Lycium barbarum, and the upstream primers LmGGPS2-F1:5'-GTCATGTCTATGCTAATAGGTGT-3', LmGGPS-R1 were designed according to the nucleotide sequence of Lycium barbarum geranyl geranyl pyrophosphate synthase gene LmGGPS2 in the transcriptome Unigene sequence :5'-GGTCA

GTTTCTGATGGAGAAATT-3’,PCR扩增获得该基因全长序列1246bp。GTTTCTGATGGAGAAATT-3', the full-length sequence of the gene was 1246bp obtained by PCR amplification.

本发明构建含有牦牛儿基牦牛儿焦磷酸合成酶基因LmGGPS2的大肠杆菌表达载体pET28a-LmGGPS2和植物表达载体pCAMBIA2300-LmGGPS2,由下述步骤组成:The present invention constructs the Escherichia coli expression vector pET28a-LmGGPS2 containing geranyl geranyl pyrophosphate synthase gene LmGGPS2 and the plant expression vector pCAMBIA2300-LmGGPS2, consisting of the following steps:

1)构建含有牦牛儿基牦牛儿焦磷酸合成酶基因的中间载体pMD18-T-LmGGPS2。1) Construct the intermediate vector pMD18-T-LmGGPS2 containing the geranyl geranyl pyrophosphate synthase gene.

以LmGGPS-F1/LmGGPS-R1为引物,以枸杞cDNA为模板,进行PCR扩增,将PCR扩增产物连接于pMD18-T载体,获得含有序列表中SEQIDNO.1所示的LmGGPS2基因的中间载体pMD18-T-LmGGPS2。Using LmGGPS-F1/LmGGPS-R1 as primers and Lycium barbarum cDNA as a template, perform PCR amplification, connect the PCR amplification product to the pMD18-T vector, and obtain an intermediate vector containing the LmGGPS2 gene shown in SEQ ID NO.1 in the sequence table pMD18-T-LmGGPS2.

2)构建大肠杆菌表达载体pET28a-LmGGPS22) Construction of Escherichia coli expression vector pET28a-LmGGPS2

以LmGGPS-F1/LmGGPS-R1为引物,以枸杞cDNA为模板,进行PCR扩增,将PCR扩增产物连接于pMD18-T载体,并转化到感受态大肠杆菌TOP10中,菌落PCR验证后,提取质粒,用BamHI和SalI双酶切该质粒,将pET28a空载体用BamHI和SalI双酶切,分别纯化后进行连接,得到大肠杆菌表达载体pET28a-LmGGPS2。Using LmGGPS-F1/LmGGPS-R1 as primers, using Lycium barbarum cDNA as template, PCR amplification was carried out, the PCR amplification product was connected to pMD18-T vector, and transformed into competent Escherichia coli TOP10, after colony PCR verification, extraction For the plasmid, the plasmid was double-digested with BamHI and SalI, and the pET28a empty vector was double-digested with BamHI and SalI, purified and then ligated to obtain the Escherichia coli expression vector pET28a-LmGGPS2.

3)构建植物表达载体pCAMBIA2300-LmGGPS23) Construction of plant expression vector pCAMBIA2300-LmGGPS2

以LmGGPS-F1/LmGGPS-R1为引物,以枸杞cDNA为模板,进行PCR扩增,将PCR扩增产物连接于pMD18-T载体,并转化到感受态大肠杆菌TOP10中,菌落PCR验证后,提取质粒,用BamHI和SalI双酶切该质粒,将pCAMBIA2300-35S-OCS空载体用BamHI和SalI双酶切,分别纯化后进行连接,得到植物表达载体pCAMBIA2300-LmGGPS2。Using LmGGPS-F1/LmGGPS-R1 as primers, using Lycium barbarum cDNA as template, PCR amplification was carried out, the PCR amplification product was connected to pMD18-T vector, and transformed into competent Escherichia coli TOP10, after colony PCR verification, extraction For the plasmid, the plasmid was double-digested with BamHI and SalI, and the pCAMBIA2300-35S-OCS empty vector was double-digested with BamHI and SalI, respectively purified and ligated to obtain the plant expression vector pCAMBIA2300-LmGGPS2.

本发明提供了一种枸杞牦牛儿基牦牛儿焦磷酸合成酶基因及其编码的蛋白质和应用。首次从枸杞中分离出编码牦牛儿基牦牛儿焦磷酸合成酶基因的完整cDNA,连接到大肠杆菌表达载体上,利用外源表达系统验证枸杞LmGGPS2基因的表达蛋白;然后连接到植物表达载体上,利用农杆菌侵染法转化烟草,获得转基因植株,通过研究表明转基因植株的类胡萝卜素含量有所提高,即本发明在增强植物类胡萝卜素含量等方面具有广泛应用。The invention provides a wolfberry geranyl geranyl pyrophosphate synthase gene and its encoded protein and application. For the first time, the complete cDNA encoding geranyl geranyl pyrophosphate synthase gene was isolated from Lycium barbarum, connected to the expression vector of Escherichia coli, and the expression protein of Lycium barbarum LmGGPS2 gene was verified by using the exogenous expression system; then connected to the plant expression vector, Tobacco is transformed by using the Agrobacterium infection method to obtain transgenic plants, and the research shows that the carotenoid content of the transgenic plants is increased, that is, the invention has wide application in enhancing plant carotenoid content and the like.

本发明所述的枸杞牦牛儿基牦牛儿焦磷酸合成酶基因LmGGPS2可望用于制备转基因玉米、大豆、水稻、花生、向日葵、马铃薯、棉花、谷子、大麦以及花卉和蔬菜植株。The wolfberry geranyl geranyl pyrophosphate synthase gene LmGGPS2 of the present invention is expected to be used to prepare transgenic corn, soybean, rice, peanut, sunflower, potato, cotton, millet, barley, flower and vegetable plants.

附图说明Description of drawings

图1.为LmGGPS2全长PCR扩增电泳图。Figure 1 is the electrophoresis diagram of the full-length PCR amplification of LmGGPS2.

图2.为pMD18-T-LmGGPS2载体示意图。Figure 2 is a schematic diagram of the pMD18-T-LmGGPS2 vector.

图3.为pET-28a-LmGGPS2载体示意图。Figure 3. Schematic diagram of pET-28a-LmGGPS2 vector.

图4.为pCAMBIA2300-LmGGPS2载体示意图。Figure 4. Schematic diagram of pCAMBIA2300-LmGGPS2 vector.

图5.为转基因烟草基因组PCR。Figure 5. Genome PCR for transgenic tobacco.

图6.为转基因玉米、大豆、水稻、花生、向日葵、谷子、小麦、棉花基因组PCR。Figure 6. Genome PCR for transgenic corn, soybean, rice, peanut, sunflower, millet, wheat, and cotton.

图7.为转基因月季、洋桔梗、安祖花、蝴蝶兰基因组PCR。Figure 7 shows the genome PCR of transgenic rose, eustoma, anthurium, and Phalaenopsis.

图8.为转基因杨树基因组PCR。Figure 8. Genome PCR for transgenic poplar.

具体实施方式detailed description

实施例1Example 1

枸杞中牦牛儿基牦牛儿焦磷酸合成酶基因LmGGPS2的克隆Cloning of the geranylgeranyl pyrophosphate synthase gene LmGGPS2 from Lycium barbarum

从枸杞新鲜叶片中提取总RNA,利用3’FULLRACECoreSetVer.2.0(TaKaRa,Japan)试剂盒将RNA反转录合成cDNA,具体步骤参照说明书,反应体系如下:Total RNA was extracted from fresh leaves of Lycium barbarum, and the RNA was reverse-transcribed into cDNA using the 3'FULLRACECoreSetVer.2.0 (TaKaRa, Japan) kit. The specific steps refer to the instructions. The reaction system is as follows:

RNARNA 2μL.2μL. OligdTOligdT 1μL1μL 5×M-MLV Buffer5×M-MLV Buffer 2μL2μL dNTP MixturedNTP Mixture 1μL1μL Rnase InhibitorRNase Inhibitor 0.25μL0.25 μL Reverse Transcriptase M- MLVReverse Transcriptase M- MLV 0.25μL0.25 μL Rnase Free ddH2ORNase Free ddH 2 O 3.5μL3.5μL

反应条件:42℃,60min;70℃,15min。Reaction conditions: 42°C, 60min; 70°C, 15min.

根据转录组Unigene序列中枸杞牦牛儿基牦牛儿焦磷酸合成酶基因LmGGPS2的核苷酸序列设计上游引物LmGGPS-F1:5’-GTCATGTCTATGCTAATAGGTGT-3’,LmGGPS-R1:5’-GGTCAGTTTCTGATGGAGAAATT-3’,以合成的cDNA为模板,PCR反应体系如下:Design upstream primers LmGGPS-F1:5'-GTCATGTCTATGCTAATAGGTGT-3', LmGGPS-R1:5'-GGTCAGTTTCTGATGGAGAAATT-3', Using the synthesized cDNA as a template, the PCR reaction system is as follows:

1 st Strand cDNA1st Strand cDNA 1μL1μL LmGGPS2-F1LmGGPS2-F1 0.5μL0.5μL LmGGPS2-R1LmGGPS2-R1 0.5μL4 -->0.5μL4 --> 2.5mM dNTP Mixture2.5mM dNTP Mixture 2μL2μL 10×LA Taq PCR buffer10×LA Taq PCR buffer 2.5μL2.5μL TaKaRa LA Taq DNA聚合酶TaKaRa LA Taq DNA Polymerase 0.25μL0.25 μL ddH2OddH 2 O 18.25μL18.25μL Total volumeTotal volume 25μL25 μL

一共配置4管反应液,反应条件如下:94℃,4min;94℃,30Sec;56℃,30Sec;72℃,lmin20Sec;72℃,10min;30个循环。反应后利用天根公司普通DNA产物纯化试剂盒对PCR反应产物进行纯化,得到纯化的LmGGPSPCR片段,如图1,试剂盒说明书操作。A total of 4 tubes of reaction solution were prepared, and the reaction conditions were as follows: 94°C, 4min; 94°C, 30Sec; 56°C, 30Sec; 72°C, 1min20Sec; 72°C, 10min; 30 cycles. After the reaction, the PCR reaction product was purified using the common DNA product purification kit of Tiangen Company to obtain the purified LmGGPS PCR fragment, as shown in Figure 1, and the operation of the kit instruction manual.

实施例2Example 2

克隆载体pMD18-T-LmGGPS2的构建过程Construction process of cloning vector pMD18-T-LmGGPS2

将序列表所示的LmGGPS2基因与pMD19-T载体连接,反应体系如下:The LmGGPS2 gene shown in the sequence listing is connected to the pMD19-T carrier, and the reaction system is as follows:

LmGGPS2全长回收产物LmGGPS2 full-length recovery product 4μL4μL pMD18-T载体pMD18-T vector 1μL1μL SolutionISolutionI 5μL5μL

LmGGPS2PCR片段为实施例1中的回收的GGPS全长产物。The LmGGPS2PCR fragment is the recovered GGPS full-length product in Example 1.

反应条件:16℃,30min。连接产物转化感受态E-Coli.TOP10,涂布在含有40ml25mg/ml的X-Gal、16ml50mg/ml的IPTG、100mg/LAmp的LB琼脂平板培养基上培养,形成单菌落。挑选白色菌落,菌落PCR法确认T载体中插入片段的长度大小,如图2,与预期一致,将该载体送往华大基因公司测序,我们得到了1074bp的该基因碱基序列,在NCBI进行blast,与茄科同源性高,表明为该基因克隆成功。Reaction conditions: 16°C, 30min. The ligation product was transformed into competent E-Coli.TOP10, spread on LB agar plate medium containing 40ml25mg/ml X-Gal, 16ml50mg/ml IPTG, 100mg/LAmp and cultured to form a single colony. Select white colonies, colony PCR method to confirm the length of the insert in the T vector, as shown in Figure 2, as expected, the vector was sent to Huada Gene Company for sequencing, and we obtained the 1074bp base sequence of the gene, which was carried out at NCBI blast, has high homology with Solanaceae, indicating that the gene was successfully cloned.

实施例3Example 3

大肠杆菌表达载体pET28a-LmGGPS2的构建过程Construction process of Escherichia coli expression vector pET28a-LmGGPS2

扩大培养实验例2中所获得的含有pMD19-T-LmGGPS2质粒的大肠杆菌,提取质粒,用BamHI和SalI双酶切该质粒,将pET28a空载体用BamHI和SalI双酶切,分别纯化后进行连接,得到大肠杆菌表达载体pET28a-LmGGPS2,将二者的酶切产物连接。The Escherichia coli containing the pMD19-T-LmGGPS2 plasmid obtained in the expanded culture experiment example 2 was extracted, and the plasmid was double-digested with BamHI and SalI, and the pET28a empty vector was double-digested with BamHI and SalI, purified and ligated , to obtain the Escherichia coli expression vector pET28a-LmGGPS2, and connect the digested products of the two.

连接体系如下:The connection system is as follows:

pET28a空载体片段pET28a empty vector fragment 2μL2μL pMD19-T-LmGGPS2酶切片段pMD19-T-LmGGPS2 restriction fragment 5μL5μL 5×T4 DNA ligase buffer5×T4 DNA ligase buffer 2μL2μL T4 DNA ligaseT4 DNA ligase 1μL1μL

连接产物转化感受态大肠杆菌BL21。涂布于含100mg/Lkana抗性的LB平板上,37℃培养。12h后挑取单菌落进行菌落PCR验证,如图3,将菌落PCR验证阳性的菌,摇菌提取质粒,酶切鉴定得到目的条带,最后送华大基因测序公司测序,结果表明载体pET28a-LmGGPS2构建正确。The ligation product was transformed into competent Escherichia coli BL21. Spread on LB plates containing 100 mg/L kana resistance, and culture at 37°C. After 12 hours, a single colony was picked for colony PCR verification, as shown in Figure 3. The bacteria that were positive for colony PCR verification were shaken to extract plasmids, digested and identified to obtain the target band, and finally sent to Huada Gene Sequencing Company for sequencing. The results showed that the vector pET28a- LmGGPS2 builds correctly.

实施例4Example 4

双元植物表达载体pCAMBIA2300-LmGGPS2的构建Construction of Binary Plant Expression Vector pCAMBIA2300-LmGGPS2

扩大培养实验例2中所获得的含有pMD19-T-LmGGPS2质粒的大肠杆菌,提取质粒,用BamHI和SalI双酶切该质粒,将pCAMBIA2300空载体质粒也用BamHI和SalI双酶切,将二者的酶切产物连接,连接体系如下:The Escherichia coli containing the pMD19-T-LmGGPS2 plasmid obtained in the expanded culture experiment example 2 was extracted, and the plasmid was double-digested with BamHI and SalI, and the pCAMBIA2300 empty vector plasmid was also double-digested with BamHI and SalI. The enzyme digestion products were connected, and the connection system was as follows:

pCAMBIA2300空载体片段pCAMBIA2300 empty vector fragment 2μL2μL pMD19-T-LmGGPS2酶切片段pMD19-T-LmGGPS2 restriction fragment 5μL5μL 5×T4 DNA ligase buffer5×T4 DNA ligase buffer 2μL2μL T4 DNA ligaseT4 DNA ligase 1μL1μL

连接产物转化E-Coli.DH5α,涂布于含100mg/L浓度kana抗性的LB平板上。37℃培养,12h后挑取单菌落进行菌落PCR验证,将菌落PCR验证阳性的菌,摇菌提取质粒,酶切鉴定得到目的条带,如图4。The ligation product was transformed into E-Coli.DH5α, and spread on LB plates containing 100 mg/L kana resistance. Cultivate at 37°C, pick a single colony after 12 hours for colony PCR verification, shake the bacteria that are positive in the colony PCR verification, extract the plasmid, and identify the target band by enzyme digestion, as shown in Figure 4.

实施例5Example 5

用于植物转基因的农杆菌工程菌种C58:pCAMBIA2300-LmGGPS2的构建。Construction of Agrobacterium engineering strain C58:pCAMBIA2300-LmGGPS2 for plant transgenesis.

农杆菌感受态细胞制备Agrobacterium Competent Cell Preparation

1.将农杆菌C58单菌落接种于5mLYEP液体培养基中,28℃,180r/min振荡培养。1. Inoculate a single colony of Agrobacterium C58 in 5mL YEP liquid medium, culture at 28°C with shaking at 180r/min.

2.将上述菌液转入l00mLYEP液体培养基中,28℃,180r/min,振荡培养至(OD600值约为0.5)。2. Transfer the above bacterial liquid into 100mLYEP liquid medium, culture at 28°C, 180r/min, with shaking until (OD 600 value is about 0.5).

3.冰浴30min后,4℃,4000r/min离心l0min,收集菌体,重悬于20mL预冷的H2O中。3. After 30 minutes in ice bath, centrifuge at 4000 r/min for 10 minutes at 4°C, collect the bacteria, and resuspend in 20 mL of pre-cooled H 2 O.

4.4℃,4000r/min离心10min,收集菌体,重悬于预冷的10%甘油中,每管200μL速冻,存于-80℃备用。4. Centrifuge at 4000r/min for 10min at 4°C, collect the bacteria, resuspend in pre-cooled 10% glycerol, quickly freeze in 200μL per tube, and store at -80°C for later use.

植物表达载体的电击转化Electroporation Transformation of Plant Expression Vectors

1.将-80℃取出的C58感受态细胞置于冰上,使其缓慢融化;1. Put the C58 competent cells taken out at -80°C on ice and let it melt slowly;

2.加入4μL质粒,混匀,冰浴5min;2. Add 4 μL of plasmid, mix well, and ice bath for 5 minutes;

3.转移至电击杯中;3. Transfer to the electric shock cup;

4.设置电击转化仪参数:1500V,0.2s,电击转化;4. Set the parameters of the electric shock conversion instrument: 1500V, 0.2s, electric shock conversion;

5.室温静置2min后加入500μLYEB液体培养基,28℃,180r/min振荡培养3h;5. After standing at room temperature for 2 minutes, add 500 μL YEB liquid medium, 28 ° C, 180 r/min shaking culture for 3 hours;

6.室温4000r/min离心10min,吸出400μL上清液,将剩下的菌液混匀,涂布于含100mg/L卡那霉素和100mg/L利福平抗性的YEB平板上,倒置平板,28℃培养,48h,直至看到清晰的单菌落。6. Centrifuge at 4000r/min at room temperature for 10min, suck out 400μL of the supernatant, mix the remaining bacterial solution, spread it on a YEB plate containing 100mg/L kanamycin and 100mg/L rifampicin resistance, and invert plate, cultured at 28°C for 48 hours, until a clear single colony was seen.

7.挑取单菌落,菌落PCR验证。7. Pick a single colony, colony PCR verification.

实施例6Example 6

农杆菌介导的烟草遗传转化Agrobacterium-mediated genetic transformation of tobacco

烟草苗的无菌培养:选饱满、健康的烟草种子,用75%乙醇浸泡lmin,25%的安替福明(有效氯2.5%)水溶液灭菌8min,无菌水漂洗三次,将种子放在MS培养基中,25℃光培养,16h/8h光周期。The aseptic culture of tobacco seedlings: choose plump, healthy tobacco seeds, soak 1min with 75% ethanol, 25% antiformin (available chlorine 2.5%) aqueous solution sterilization 8min, rinse three times with sterile water, put the seeds in In MS medium, light culture at 25°C, 16h/8h photoperiod.

本实验用到的培养基如下表所示The media used in this experiment are shown in the table below

烟草的农杆菌转化Agrobacterium transformation of tobacco

侵染菌液的制备Preparation of the infection solution

1.挑取阳性农杆菌单菌落,接种到5ml含100mg/L卡那霉素的YEP液体培养基中,于28℃、200r/min的摇床上过夜培养。1. Pick a single positive Agrobacterium colony, inoculate it into 5ml of YEP liquid medium containing 100mg/L kanamycin, and culture it overnight on a shaker at 28°C and 200r/min.

2.次日,取3ml菌液,接种到含100mg/L卡那霉素的50mlYEP液体培养基中,当菌液处于旺盛生长期(OD600=0.6-0.9)时,将菌液倒入50ml离心管,在3500r/min,4℃下离心10min,弃上清液,收集菌体。用等量的MS液体培养基重悬,使OD600=0.9-1。2. The next day, take 3ml of the bacterial solution and inoculate it into 50ml of YEP liquid medium containing 100mg/L kanamycin. When the bacterial solution is in the vigorous growth phase (OD 600 =0.6-0.9), pour the bacterial solution into 50ml The centrifuge tube was centrifuged at 3500r/min, 4°C for 10min, the supernatant was discarded, and the bacteria were collected. Resuspend with an equal amount of MS liquid medium to make OD 600 =0.9-1.

外植体浸染explant infection

1.将烟草叶片去除主脉和叶边缘,然后将叶片切成0.5cm×0.5cm大小,浸入制备好的农杆菌菌液,浸泡15-20min,其间摇动2-3次,使叶片充分接触菌液,取出叶片,用无菌的滤纸吸净多余的菌液,叶面朝下、叶背朝上接种于共培培养基中,25℃左右暗培养2天。1. Remove the main veins and leaf edges from the tobacco leaves, then cut the leaves into 0.5cm×0.5cm size, immerse in the prepared Agrobacterium bacteria solution, soak for 15-20min, shake 2-3 times during the period, so that the leaves are fully exposed to the bacteria Remove the leaves, absorb the excess bacterial solution with sterile filter paper, inoculate in the co-cultivation medium with the leaf face down and the leaf back up, and culture in dark at about 25°C for 2 days.

2.将叶片转移至筛选培养基中,20天左右更换一次培养基,诱导抗性芽产生,当抗性芽从愈伤组织上长到1cm左右,从愈伤上切取抗性芽,接种于抗性苗生根培养基中。2. Transfer the leaves to the screening medium, replace the medium every 20 days or so, and induce the production of resistant buds. When the resistant buds grow to about 1 cm from the callus, cut the resistant buds from the callus and inoculate them on Resistant seedling rooting medium.

转基因苗移栽Transgenic seedlings transplanted

将根系生长良好、生命力旺盛的烟草组培苗从组培瓶中取出,用自来水冲洗培养基(尽量减少根系损伤),种植在蛙石和腐殖土的培养土中,覆盖薄膜保温保湿15天,然后揭开薄膜,定期浇水、施肥,使之在温室中正常生长。Take out the tobacco tissue culture seedlings with good root growth and vigorous vitality from the tissue culture bottle, rinse the medium with tap water (to minimize root damage), plant it in the culture soil of frog stone and humus, cover it with a film to keep it warm for 15 days, Then uncover the film, water and fertilize regularly to make it grow normally in the greenhouse.

实施例7Example 7

转基因烟草分子检测及胡萝卜素含量的测定Molecular Detection of Transgenic Tobacco and Determination of Carotene Content

转基因烟草基因组DNA的PCR检测:1.CTAB法提取烟草总DNA;2.以基因组DNA为模板行PCR检测,引物为GGPS-F3和GGPS-R-FULL,反应条件::94℃,4min;94℃,30Sec;54℃,30Sec;72℃,lmin10Sec;72℃,10min;30个循环。取上述PCR产物5μl进行电泳检测,如图5,说明LmGGPS2基因已成功转入烟草。PCR detection of genomic DNA in transgenic tobacco: 1. CTAB method to extract total tobacco DNA; 2. PCR detection using genomic DNA as a template, primers GGPS-F3 and GGPS-R-FULL, reaction conditions: 94 ° C, 4 min; 94 ℃, 30Sec; 54℃, 30Sec; 72℃, 1min10Sec; 72℃, 10min; 30 cycles. 5 μl of the above PCR product was taken for electrophoresis detection, as shown in Figure 5, indicating that the LmGGPS2 gene has been successfully transferred into tobacco.

提取转基因烟草的类胡萝卜素,通过HPLC测定转基因烟草类胡萝卜素含量明显高于野生型烟草,说明该基因在提高类胡萝卜素含量具有重要作用。The carotenoids of the transgenic tobacco were extracted, and the content of carotenoids in the transgenic tobacco was significantly higher than that of the wild-type tobacco as determined by HPLC, indicating that the gene plays an important role in increasing the content of carotenoids.

实施例8Example 8

本实验室通过生长点侵染法对玉米、大豆、水稻、花生、向日葵、谷子、大麦、小麦、棉花等农作物成熟胚转基因(LmGGPS2),成功获得转基因玉米、大豆、水稻、花生、向日葵、谷子、大麦、小麦、棉花植株,基因组PCR电泳图,如图6,B:阴性对照,1-8分别为玉米、大豆、水稻、花生、向日葵、谷子、大麦、小麦、棉花的基因组PCR。Our laboratory transgenes (LmGGPS2) mature embryos of corn, soybean, rice, peanut, sunflower, millet, barley, wheat, cotton and other crops by growing point infection method, and successfully obtained transgenic corn, soybean, rice, peanut, sunflower, millet , barley, wheat, cotton plants, genome PCR electrophoresis, as shown in Figure 6, B: negative control, 1-8 are respectively the genome PCR of corn, soybean, rice, peanut, sunflower, millet, barley, wheat, cotton.

在温室正常生长的,转基因幼苗和野生型对照苗,分别提取西红柿红素和类胡萝卜素,HPLC测定转基因组幼苗西红柿红素和类胡萝卜素含量明显高于野生型组。不仅如此,转基因组幼苗生长壮硕,野生型生长相对缓慢,生物量相对较少。Lycopene and carotenoids were extracted from the transgenic seedlings and wild-type control seedlings grown normally in the greenhouse, and the contents of lycopene and carotenoids in the transgenic seedlings were significantly higher than those in the wild-type group as determined by HPLC. Not only that, but the transgenic group seedlings grew vigorously, while the wild type grew relatively slowly and had relatively less biomass.

实施例9Example 9

本实验室利用农杆菌侵染法对月季、洋桔梗、安祖花、蝴蝶兰等花卉进行转基因(LmGGPS1),获得转基因月季、洋桔梗、安祖花、蝴蝶兰植株,基因组PCR电泳图,如图7,B:阴性对照,1-4分别为月季、洋桔梗、安祖花、蝴蝶兰的基因组PCR。在温室正常生长的转基因花卉苗比野生型生长壮硕,花色鲜艳,花瓣类胡萝卜素含量增高。In our laboratory, we use the Agrobacterium infection method to transgene (LmGGPS1) rose, Eustoma, Anthurium, Phalaenopsis and other flowers, and obtain transgenic rose, Eustoma, Anthurium, Phalaenopsis plants, genome PCR electrophoresis, as shown in Fig. 7, B: Negative control, 1-4 are respectively the genome PCR of Chinese rose, eustoma, anthurium, Phalaenopsis. The transgenic flower seedlings normally grown in the greenhouse grew stronger than the wild type, the flower color was bright, and the content of carotenoids in the petals increased.

实施例10Example 10

本实验室利用农杆菌侵染法对杨树等乔木类树木进行转基因(LmGGPS2),获得转基因杨树植株,基因组PCR电泳图,为杨树基因组PCR,如图8。In our laboratory, we use the Agrobacterium infection method to transgene (LmGGPS2) poplar and other arbor trees to obtain transgenic poplar plants. The genome PCR electrophoresis map is the poplar genome PCR, as shown in Figure 8.

在温室正常生长的转基因树苗和野生型对照苗,转基因植株比野生型植株生长好,转基因植株西红柿红素和类胡萝卜素含量比野生型植株明显增高。The transgenic saplings and wild-type control seedlings normally grown in the greenhouse, the transgenic plants grew better than the wild-type plants, and the contents of lycopene and carotenoid in the transgenic plants were significantly higher than those of the wild-type plants.

序列表sequence listing

<110>天津大学<110> Tianjin University

<120>枸杞牦牛儿基牦牛儿焦磷酸合成酶基因及其编码的蛋白质和应用<120> Lycium barbarum geranyl geranyl pyrophosphate synthase gene and its encoded protein and application

<130>20131025<130>20131025

<160>2<160>2

<170>PatentInversion3.3<170>PatentInversion3.3

<210>1<210>1

<211>1246<211>1246

<212>DNA<212>DNA

<213>人工系列<213> Artificial series

<220><220>

<221>gene<221> gene

<222>(1)..(1246)<222>(1)..(1246)

<400>1<400>1

gtcatgtctatgctaataggtgtaatccacaatcttgcaagaggtactataaatagatcc60gtcatgtctatgctaataggtgtaatccacaatcttgcaagaggtactataaataggtcc60

agatctgcaggaacaaagttgcttctttcttcagaggaaacaccagaagctctattgttc120agatctgcaggaacaaagttgcttctttcttcagaggaaacaccagaagctctattgttc120

ctcccaaaagcaagaaccttttgtaatagcaaagatgtttccaagaatgaggctgaagtt180ctcccaaaagcaagaaccttttgtaatagcaaagatgtttccaagaatgaggctgaagtt180

atcaaacatgaaaacacattcagacaagctggtgtatttgatttcaaaagttacatgctt240atcaaacatgaaaacacattcagacaagctggtgtatttgatttcaaaagttacatgctt240

caaaagatcaagtctgtcaatacagccttagatgctgctgtcccaatcagagaaccaatc300caaaagatcaagtctgtcaatacagccttagatgctgctgtcccaatcagagaaccaatc300

aagttccatgaagcaatgagatattcgctcctttctgaaggtaagcgggtttgtcctgta360aagttccatgaagcaatgagatattcgctcctttctgaaggtaagcgggtttgtcctgta360

ctctgcatagccacctgtgagcttgttggtggccaagaatcaacagcaatgcctgctgct420ctctgcatagccacctgtgagcttgttggtggccaagaatcaacagcaatgcctgctgct420

tgcggaatggagatgatacatgctatgtgtatgatgcacgacgaccttccgtgcatggac480tgcggaatggagatgatacatgctatgtgtatgatgcacgacgaccttccgtgcatggac480

aatgatgatctccgtcgaggaaagttgtcacatcacaaggtttatggcgaaaatgtcact540aatgatgatctccgtcgaggaaagttgtcacatcacaaggtttatggcgaaaatgtcact540

gttctagctggttattcccttgttgccttagcatttgagcatatcgcaatagccactaaa600gttctagctggttatcccttgttgccttagcatttgagcatatcgcaatagccactaaa600

ggggtccacccgaaaacaatggttcgtgctgttggagaactagcaagattgataggacca660ggggtccacccgaaaacaatggttcgtgctgttggagaactagcaagattgataggacca660

gagggggcgacagctggccaggtggttgacttgctgtgtggaggtaaatcgggtaccaga720gagggggcgacagctggccaggtggttgacttgctgtgtgggaggtaaatcgggtaccaga720

ttagaagagctcgagtatattcatcgtcacaagacagcggactttgcagaggcagcgtcc780ttagaagagctcgagtatattcatcgtcacaagacagcggactttgcagaggcagcgtcc780

attgtaggagcaattcttggtggtgcttccgaggatgagattaatagacttaggaaattc840attgtaggagcaattcttggtggtgcttccgaggatgagattaatagacttaggaaattc840

tcccagtgtattgggctgctgtttcaggttgtggatgacattcttgatgtgactaaatcc900tcccagtgtattgggctgctgtttcaggttgtggatgacattcttgatgtgactaaatcc900

tctgagcaattaggaaagacagcagggaaggatttgttggctaacaagttgacgtacccg960tctgagcaattaggaaagacagcagggaaggatttgttggctaacaagttgacgtacccg960

aagatgattggcattgacaagtctaaaaaatatgctcaaaaacttagcaaggaggctaag1020aagatgattggcattgacaagtctaaaaaatatgctcaaaaacttagcaaggaggctaag1020

gagcagcttgtcggttttgatccagaaaaggcagctccactactttctatggcggatttc1080gagcagcttgtcggttttgatccagaaaaggcagctccactactttctatggcggatttc1080

gttcttcatcggcaaaaatgatctccttaggatgataatacctgtactatttaacattag1140gttcttcatcggcaaaaatgatctccttaggatgataatacctgtactatttaacattag1140

ttgtgcgcatttatgtaaggacataggagggagtgaagctattccagttccttgagatat1200ttgtgcgcatttatgtaaggacatagggggggagtgaagctattccagttccttgagatat1200

atcaggaaatatggttgctgcttaatttctccatcagaaactgacc1246atcaggaaatatggttgctgcttaatttctccatcagaaactgacc1246

<210>2<210>2

<211>365<211>365

<212>PRT<212>PRT

<213>MUTAGEN<213> MUTAGEN

<220><220>

<221>MUTAGEN<221> MUTAGEN

<222>(1)..(365)<222>(1)..(365)

<400>2<400>2

MetSerMetLeuIleGlyValIleHisAsnLeuAlaArgGlyThrIleMetSerMetLeuIleGlyValIleHisAsnLeuAlaArgGlyThrIle

151015151015

AsnArgSerArgSerAlaGlyThrLysLeuLeuLeuSerSerGluGluAsnArgSerArgSerAlaGlyThrLysLeuLeuLeuSerSerGluGlu

202530202530

ThrProGluAlaLeuLeuPheLeuProLysAlaArgThrPheCysAsnThrProGluAlaLeuLeuPheLeuProLysAlaArgThrPheCysAsn

354045354045

SerLysAspValSerLysAsnGluAlaGluValIleLysHisGluAsnSerLysAspValSerLysAsnGluAlaGluValIleLysHisGluAsn

505560505560

ThrPheArgGlnAlaGlyValPheAspPheLysSerTyrMetLeuGlnThrPheArgGlnAlaGlyValPheAspPheLysSerTyrMetLeuGln

6570758065707580

LysIleLysSerValAsnThrAlaLeuAspAlaAlaValProIleArgLysIleLysSerValAsnThrAlaLeuAspAlaAlaValProIleArg

859095859095

GluProIleLysPheHisGluAlaMetArgTyrSerLeuLeuSerGluGluProIleLysPheHisGluAlaMetArgTyrSerLeuLeuSerGlu

100105110100105110

GlyLysArgValCysProValLeuCysIleAlaThrCysGluLeuValGlyLysArgValCysProValLeuCysIleAlaThrCysGluLeuVal

115120125115120125

GlyGlyGlnGluSerThrAlaMetProAlaAlaCysGlyMetGluMetGlyGlyGlnGluSerThrAlaMetProAlaAlaCysGlyMetGluMet

130135140130135140

IleHisAlaMetCysMetMetHisAspAspLeuProCysMetAspAsnIleHisAlaMetCysMetMetHisAspAspLeuProCysMetAspAsn

145150155160145150155160

AspAspLeuArgArgGlyLysLeuSerHisHisLysValTyrGlyGluAspAspLeuArgArgGlyLysLeuSerHisHisLysValTyrGlyGlu

165170175165170175

AsnValThrValLeuAlaGlyTyrSerLeuValAlaLeuAlaPheGluAsnValThrValLeuAlaGlyTyrSerLeuValAlaLeuAlaPheGlu

180185190180185190

HisIleAlaIleAlaThrLysGlyValHisProLysThrMetValArgHisIleAlaIleAlaThrLysGlyValHisProLysThrMetValArg

195200205195200205

AlaValGlyGluLeuAlaArgLeuIleGlyProGluGlyAlaThrAlaAlaValGlyGluLeuAlaArgLeuIleGlyProGluGlyAlaThrAla

2102152021021520

GlyGlnValValAspLeuLeuCysGlyGlyLysSerGlyThrArgLeuGlyGlnValValAspLeuLeuCysGlyGlyLysSerGlyThrArgLeu

225230235240225230235240

GluGluLeuGluTyrIleHisArgHisLysThrAlaAspPheAlaGluGluGluLeuGluTyrIleHisArgHisLysThrAlaAspPheAlaGlu

245250255245250255

AlaAlaSerIleValGlyAlaIleLeuGlyGlyAlaSerGluAspGluAlaAlaSerIleValGlyAlaIleLeuGlyGlyAlaSerGluAspGlu

260265270260265270

IleAsnArgLeuArgLysPheSerGlnCysIleGlyLeuLeuPheGlnIleAsnArgLeuArgLysPheSerGlnCysIleGlyLeuLeuPheGln

275280285275280285

ValValAspAspIleLeuAspValThrLysSerSerGluGlnLeuGlyValValAspAspIleLeuAspValThrLysSerSerGluGlnLeuGly

290295300290295300

LysThrAlaGlyLysAspLeuLeuAlaAsnLysLeuThrTyrProLysLysThrAlaGlyLysAspLeuLeuAlaAsnLysLeuThrTyrProLys

305310315320305310315320

MetIleGlyIleAspLysSerLysLysTyrAlaGlnLysLeuSerLysMetIleGlyIleAspLysSerLysLysTyrAlaGlnLysLeuSerLys

325330335325330335

GluAlaLysGluGlnLeuValGlyPheAspProGluLysAlaAlaProGluAlaLysGluGlnLeuValGlyPheAspProGluLysAlaAlaPro

340345350340345350

LeuLeuSerMetAlaAspPheValLeuHisArgGlnLysLeuLeuSerMetAlaAspPheValLeuHisArgGlnLys

355360365355360365

Claims (4)

1.一个枸杞牻牛儿基牻牛儿焦磷酸合成酶基因,其特征在于该基因为SEQIDNO.1所示的核苷酸序列。1. A wolfberry geranylgeranylpyrophosphate synthase gene, characterized in that the gene is the nucleotide sequence shown in SEQ ID NO.1. 2.权利要求1所述的枸杞牻牛儿基牻牛儿焦磷酸合成酶基因编码的蛋白质,其特征在于所述的蛋白质为SEQIDNO.2所示的氨基酸序列。2. The protein encoded by Lycium barbarum geranylgeranylpyrophosphate synthase gene according to claim 1, characterized in that said protein is the amino acid sequence shown in SEQ ID NO.2. 3.一种重组载体,其特征在于含有权利要求1所述的枸杞牻牛儿基牻牛儿焦磷酸合成酶基因的全序列。3. A recombinant vector, characterized in that it contains the complete sequence of the Lycium barbarum geranylgeranyl pyrophosphate synthase gene according to claim 1. 4.一种权利要求1所述的枸杞牻牛儿基牻牛儿焦磷酸合成酶基因应用于制备转基因玉米、大豆、水稻、花生、向日葵、棉花、谷子、大麦以及花卉和蔬菜植株。4. The wolfberry geranylgeranylpyrophosphate synthase gene according to claim 1 is applied to the preparation of transgenic corn, soybean, rice, peanut, sunflower, cotton, millet, barley, flowers and vegetable plants.
CN201310555823.6A 2013-11-11 2013-11-11 The protein of Fructus Lycii yak base geranylpyrophosphate synthase gene and coding thereof and application Expired - Fee Related CN103820475B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310555823.6A CN103820475B (en) 2013-11-11 2013-11-11 The protein of Fructus Lycii yak base geranylpyrophosphate synthase gene and coding thereof and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310555823.6A CN103820475B (en) 2013-11-11 2013-11-11 The protein of Fructus Lycii yak base geranylpyrophosphate synthase gene and coding thereof and application

Publications (2)

Publication Number Publication Date
CN103820475A CN103820475A (en) 2014-05-28
CN103820475B true CN103820475B (en) 2016-06-22

Family

ID=50755764

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310555823.6A Expired - Fee Related CN103820475B (en) 2013-11-11 2013-11-11 The protein of Fructus Lycii yak base geranylpyrophosphate synthase gene and coding thereof and application

Country Status (1)

Country Link
CN (1) CN103820475B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112391327B (en) * 2019-08-14 2022-08-05 中国农业科学院烟草研究所 A kind of engineering bacteria for co-producing geraniol and nerol and its construction method and application
CN111235044B (en) * 2019-12-31 2022-01-04 天津大学 Synthesis of delta-tocotrienol recombinant Saccharomyces cerevisiae strain and construction method and use
CN114574507B (en) * 2022-03-09 2023-10-03 中国科学院西北高原生物研究所 Key gene for regulating biosynthesis of zeaxanthin palmitate and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103153043A (en) * 2010-10-08 2013-06-12 韩国生命工学研究院 Ggps gene for promotimg higher growth or biomass of plant and use thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103153043A (en) * 2010-10-08 2013-06-12 韩国生命工学研究院 Ggps gene for promotimg higher growth or biomass of plant and use thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GenBank Accession:AFC88470;Li F et al.;《GenBank》;20130117;第1-2页 *
Nucleotide sequence of an arabidopsis cDNA for geranylgeranyl pyrophosphate synthase.;P A Scolnik et al.;《Plant Physiol》;19940430;第104卷(第4期);第1469-1470页 *
类胡萝卜素生物合成相关基因的克隆及其遗传工程的研究进展;郑阳霞等;《细胞生物学杂志》;20060630;第28卷(第3期);第442-446页 *

Also Published As

Publication number Publication date
CN103820475A (en) 2014-05-28

Similar Documents

Publication Publication Date Title
US20060225154A1 (en) Method for increasing expression of stress defense genes
CN102888425B (en) Method for producing astaxanthin by using transgenic plant
CN105368850A (en) Lycium carotenoid cleavage dioxygenase enzyme gene with function of generating beta-ionone aroma substances and application of lycium carotenoid cleavage dioxygenase enzyme gene with function of generating beta-ionone aroma substances
US20240309393A1 (en) Use of slbin2 gene in regulating fruit ripening and carotenoid synthesis in tomato
CN102321649A (en) Lycium chinense miller lycopene beta-cyclase gene, recombinant vector containing gene, host cell and application
ES2376868T3 (en) Transgenic pineapple plants that have modified concentrations of carotenoids and manufacturing process
CN103820475B (en) The protein of Fructus Lycii yak base geranylpyrophosphate synthase gene and coding thereof and application
CN105368849A (en) Lycium 9-cis-epoxy-carotenoid dioxygenase enzyme gene with function of stress resistance and application of lycium 9-cis-epoxy-carotenoid dioxygenase enzyme gene with function of stress resistance
UA124449C2 (en) Transgenic plants with engineered redox sensitive modulation of photosynthetic antenna complex pigments and methods for making the same
Semiarti et al. Agrobacterium-mediated transformation of Indonesian orchids for micropropagation
CN115948456B (en) Fusion gene and method capable of improving patchouli alcohol synthesis amount
CN111118059B (en) A recombinant plasmid comprising astaxanthin synthase fusion gene and non-selectable marker gene NPTII, recombinant bacteria and application
CN103757034B (en) For the recombinant vectors of the matrimony vine GGPS1 gene and this gene that improve stress resistance of plant
CN104531755A (en) Application of gene for interfering expression of LCYB and LCYE and simultaneously ectopically expressing TT8 in preparation of brassica plant having red petals
CN105695506A (en) Method for improving cottonseed nutritional quality and application thereof
KR101424123B1 (en) Transgenic colored rice producing capsanthin and the method for producing the same
CN104531754B (en) Overexpression PAP is preparing the application that petal takes on a red color in brassica plant simultaneously for interference LCYB, LCYE expression
CN102499037A (en) Method for rapid propagation of genetically modified sweet wormwood by hydroponics
KR101231141B1 (en) Composition for promoting plant growth comprising IDS gene
CN105255914A (en) Lycium barbarum mitogen activated protein kinase kinase and application in improving saline-alkaline tolerance of plant
US20050022269A1 (en) Polypeptides having carotenoids isomerase catalytic activity, nucleic acids encoding same and uses thereof
KR100813284B1 (en) Rapeseed plant transformed with citrus phytoene biosynthesis enzyme PS gene
CN116254288B (en) Application of a Chunlan MIR156b gene in regulating plant flowering time
CN103773801A (en) Application for breeding transgenic water-saving and drought-resistance plant by using aspen ABA (Abscisic Acid) receptor PtPYRL gene
CN116042696B (en) Application of cymbidium MIR156a gene in regulating and controlling plant fruit development

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160622

Termination date: 20201111

CF01 Termination of patent right due to non-payment of annual fee