CN103785314A - Mixer and circulating type photometric testing automatic analyzer - Google Patents
Mixer and circulating type photometric testing automatic analyzer Download PDFInfo
- Publication number
- CN103785314A CN103785314A CN201410076336.6A CN201410076336A CN103785314A CN 103785314 A CN103785314 A CN 103785314A CN 201410076336 A CN201410076336 A CN 201410076336A CN 103785314 A CN103785314 A CN 103785314A
- Authority
- CN
- China
- Prior art keywords
- reagent
- valve
- channel switching
- control module
- switching valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012360 testing method Methods 0.000 title description 5
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 123
- 239000007788 liquid Substances 0.000 claims abstract description 83
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 78
- 238000001514 detection method Methods 0.000 claims abstract description 65
- 239000000203 mixture Substances 0.000 claims abstract description 34
- 238000005070 sampling Methods 0.000 claims abstract description 27
- 230000003287 optical effect Effects 0.000 claims description 24
- 239000002699 waste material Substances 0.000 claims description 23
- 238000004458 analytical method Methods 0.000 claims description 17
- 230000002572 peristaltic effect Effects 0.000 claims description 11
- 238000004891 communication Methods 0.000 claims description 9
- 238000003556 assay Methods 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 16
- 230000035945 sensitivity Effects 0.000 abstract description 2
- 239000013076 target substance Substances 0.000 abstract description 2
- 239000000523 sample Substances 0.000 description 80
- 239000000243 solution Substances 0.000 description 28
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 26
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 19
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 18
- 238000002835 absorbance Methods 0.000 description 14
- 238000004737 colorimetric analysis Methods 0.000 description 14
- 229960005070 ascorbic acid Drugs 0.000 description 9
- 239000011668 ascorbic acid Substances 0.000 description 8
- 235000010323 ascorbic acid Nutrition 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 229910052742 iron Inorganic materials 0.000 description 8
- 239000013535 sea water Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000013500 data storage Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 6
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 229940124530 sulfonamide Drugs 0.000 description 4
- 150000003456 sulfonamides Chemical class 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 3
- 238000004401 flow injection analysis Methods 0.000 description 3
- 239000011964 heteropoly acid Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- -1 polytetrafluoroethylene Polymers 0.000 description 3
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000012916 chromogenic reagent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005206 flow analysis Methods 0.000 description 2
- JGJLWPGRMCADHB-UHFFFAOYSA-N hypobromite Chemical compound Br[O-] JGJLWPGRMCADHB-UHFFFAOYSA-N 0.000 description 2
- GALOTNBSUVEISR-UHFFFAOYSA-N molybdenum;silicon Chemical compound [Mo]#[Si] GALOTNBSUVEISR-UHFFFAOYSA-N 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000002352 surface water Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- VRZJGENLTNRAIG-UHFFFAOYSA-N 4-[4-(dimethylamino)phenyl]iminonaphthalen-1-one Chemical compound C1=CC(N(C)C)=CC=C1N=C1C2=CC=CC=C2C(=O)C=C1 VRZJGENLTNRAIG-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000002211 L-ascorbic acid Substances 0.000 description 1
- 235000000069 L-ascorbic acid Nutrition 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 1
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 1
- 229940010552 ammonium molybdate Drugs 0.000 description 1
- 235000018660 ammonium molybdate Nutrition 0.000 description 1
- 239000011609 ammonium molybdate Substances 0.000 description 1
- ALSPKRWQCLSJLV-UHFFFAOYSA-N azanium;acetic acid;acetate Chemical compound [NH4+].CC(O)=O.CC([O-])=O ALSPKRWQCLSJLV-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- DMDOTRUOIVBPSF-UHFFFAOYSA-N naphthalene;hydrochloride Chemical compound Cl.C1=CC=CC2=CC=CC=C21 DMDOTRUOIVBPSF-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 208000014451 palmoplantar keratoderma and congenital alopecia 2 Diseases 0.000 description 1
- 150000005107 phenanthrazines Chemical class 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000007430 reference method Methods 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010129 solution processing Methods 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- SWGJCIMEBVHMTA-UHFFFAOYSA-K trisodium;6-oxido-4-sulfo-5-[(4-sulfonatonaphthalen-1-yl)diazenyl]naphthalene-2-sulfonate Chemical compound [Na+].[Na+].[Na+].C1=CC=C2C(N=NC3=C4C(=CC(=CC4=CC=C3O)S([O-])(=O)=O)S([O-])(=O)=O)=CC=C(S([O-])(=O)=O)C2=C1 SWGJCIMEBVHMTA-UHFFFAOYSA-K 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
一种混合器和流通式光度检测自动化分析仪,用于溶液中特定组分的测定或化学反应动力学研究,混合器包括进液管、混合体及与混合体内腔连通的上出液管和下出液管,该进液管一端由下而上竖直插入混合体并与其内腔连通,该上出液管与混合体顶部相连,该下出液管与混合体底部相连。自动化分析仪还包括混合器,自动进样阀、试剂选择阀、三通阀、试剂泵、水样泵、多通道切换阀、试剂定量环、分光检测装置和控制电路。本发明的光度检测不受流路中气泡的干扰,自动化程度高,结合了自动进样和在线混合,无需重复添加试剂,有效地提高了试剂的利用率,运行灵活,可以通过调整混合时间来控制反应程度,调整仪器的灵敏度,以满足不同浓度目标物的测定需求。
A mixer and a flow-through photometric detection automatic analyzer are used for the determination of specific components in a solution or the study of chemical reaction kinetics. The lower liquid outlet pipe, one end of the liquid inlet pipe is vertically inserted into the mixture from bottom to top and communicates with its inner cavity, the upper liquid outlet pipe is connected with the top of the mixture body, and the lower liquid outlet pipe is connected with the bottom of the mixture body. The automatic analyzer also includes a mixer, an automatic sampling valve, a reagent selection valve, a three-way valve, a reagent pump, a water sample pump, a multi-channel switching valve, a reagent quantitative loop, a spectroscopic detection device and a control circuit. The photometric detection of the present invention is free from the interference of air bubbles in the flow path, has a high degree of automation, combines automatic sampling and online mixing, does not need to add reagents repeatedly, effectively improves the utilization rate of reagents, and is flexible in operation, and can be adjusted by adjusting the mixing time. Control the degree of reaction and adjust the sensitivity of the instrument to meet the determination requirements of different concentrations of target substances.
Description
技术领域technical field
本发明涉及分光光度检测的化学分析仪设备,特别是一种用于溶液中特定组分的测定或化学反应动力学的研究,全自动、高准确度、不受流路中气泡影响、可实现多种分析检测功能的混合器及具有该混合器的流通式光度检测自动化分析仪。The invention relates to a chemical analyzer equipment for spectrophotometric detection, especially a kind of equipment used for the determination of specific components in a solution or the research of chemical reaction kinetics, fully automatic, high accuracy, not affected by bubbles in the flow path, and can realize A mixer with multiple analysis and detection functions and a flow-through automatic analyzer for photometric detection with the mixer.
背景技术Background technique
为节约劳动力资源并满足样品化学参数快速分析测试的需求,国内外研究者研发了多种自动化快速分析仪器。上世纪50年代,美国Technicon等公司根据Skeggs提出的气泡间隔式连续流动分析原理,开发了名为Auto-Analyzer的自动分析仪,开创性地把试样、试剂及分析操作从传统的试管和烧杯等容器中转入管道中,推动化学分析中溶液处理方式的变革。Ruzicka和Hansen在1975年首次提出了流动注射分析技术,打破了分析化学反应必须在物理化学平衡条件下完成的传统观念,引发了化学实验室中基本操作技术的又一次根本性的变革。Lachat Instruments和FIAlab Instruments等公司相继推出了基于流动注射分析的仪器,在环境、临床医学、农林、冶金地质、食品等诸多领域中得到广泛的应用。近年来,顺序注射分析和阀上实验室等新型分析技术和仪器的推出,体现了分析仪器朝向微型化、集成化和自动化的方向发展。In order to save labor resources and meet the needs of rapid analysis and testing of sample chemical parameters, researchers at home and abroad have developed a variety of automated rapid analysis instruments. In the 1950s, companies such as Technicon in the United States developed an automatic analyzer named Auto-Analyzer based on the bubble interval continuous flow analysis principle proposed by Skeggs, pioneering the transformation of samples, reagents and analysis operations from traditional test tubes and beakers. Waiting for the container to be transferred into the pipeline, promoting the transformation of the solution processing method in chemical analysis. Ruzicka and Hansen first proposed flow injection analysis technology in 1975, which broke the traditional concept that analytical chemical reactions must be completed under physical and chemical equilibrium conditions, and triggered another fundamental change in basic operating techniques in chemical laboratories. Companies such as Lachat Instruments and FIAlab Instruments have successively launched instruments based on flow injection analysis, which are widely used in many fields such as environment, clinical medicine, agriculture, forestry, metallurgical geology, and food. In recent years, the introduction of new analytical technologies and instruments such as sequential injection analysis and laboratory on valve reflects the development of analytical instruments towards miniaturization, integration and automation.
但是,目前这些分析仪器还均存在一些不足,主要包括:在气泡间隔式连续流动分析和流动注射分析中,试剂和试样通常都是连续不断地流动,试剂和试样利用率低、浪费严重;现有的顺序注射分析和阀上实验室需要用到精密的注射泵,其价格昂贵,操作也较为复杂,试样和试剂难以完全混合;更重要的是,流路中经常产生的气泡对最常用的分光光度检测产生严重干扰。环境监测和科研中,实时监视目标物变化、获得不稳定目标物的真实浓度及其变化规律等,均需要现场自动连续检测系统。然而,现有流通式分析仪存在的不足导致其难以胜任现场长期自动连续监测的工作。However, there are still some deficiencies in these analytical instruments at present, mainly including: in the bubble interval continuous flow analysis and flow injection analysis, the reagents and samples usually flow continuously, the utilization rate of reagents and samples is low, and the waste is serious ; Existing sequential injection analysis and on-valve laboratory need to use precision syringe pumps, which are expensive and complicated to operate, and it is difficult to completely mix samples and reagents; more importantly, the air bubbles often generated in the flow path have a negative impact on The most commonly used spectrophotometric detection produces severe interference. In environmental monitoring and scientific research, real-time monitoring of target changes, obtaining the true concentration of unstable targets and their changing laws, etc., all require on-site automatic continuous detection systems. However, the deficiencies of existing flow-through analyzers make them unsuitable for on-site long-term automatic and continuous monitoring.
发明内容Contents of the invention
本发明的主要目的在于克服现有技术中的上述不足,提出一种用于各种水体中目标物的测定或化学反应动力学过程的研究,试剂消耗少、准确高、不受气泡影响且具有多重功能的混合器及流通式光度检测自动化分析仪。The main purpose of the present invention is to overcome the above-mentioned deficiencies in the prior art, and propose a method for the determination of targets in various water bodies or the research of chemical reaction kinetics, which has less reagent consumption, high accuracy, is not affected by air bubbles, and has Multifunctional mixer and flow-through photometric automatic analyzer.
本发明采用如下技术方案:The present invention adopts following technical scheme:
一种混合器,用于光度检测中实现试剂和水样的混合并消除流路中的气泡对分光光度检测的影响,其特征在于:包括进液管、混合体及与混合体内腔连通的上出液管和下出液管,该进液管一端由下而上竖直插入混合体并与其内腔连通,该上出液管与混合体顶部相连,该下出液管与混合体底部相连;该混合体内径为上大下小。A mixer used in photometric detection to realize the mixing of reagents and water samples and to eliminate the influence of air bubbles in the flow path on spectrophotometric detection. The liquid outlet pipe and the lower liquid outlet pipe, one end of the liquid inlet pipe is vertically inserted into the mixture from bottom to top and communicated with its inner cavity, the upper liquid outlet pipe is connected to the top of the mixture body, and the lower liquid outlet pipe is connected to the bottom of the mixture body ; The internal diameter of the mixture is large at the top and small at the bottom.
进一步的,所述混合体为圆锥形混合体。Further, the mixture is a conical mixture.
进一步的,还包括T型三通,其一端与所述混合体底部连通,一端与下出液管连通,一端供所述进液管插入。Further, it also includes a T-shaped tee, one end of which communicates with the bottom of the mixing body, one end communicates with the lower liquid outlet pipe, and one end is inserted into the liquid inlet pipe.
一种流通式光度检测自动化分析仪,包括机箱,其特征在于:还包括设置于机箱上的混合器,及自动进样阀、试剂选择阀、三通阀、试剂泵、水样泵、多通道切换阀、试剂定量环、分光检测装置和控制电路;自动进样阀的各个水样入口分别用于连接各个待测水样,中间的公共通道与多通道切换阀的第二连接口连接;水样泵的入口和出口分别与多通道切换阀的第一连接口和混合器的进液管连接;混合器的上出液管直接连至三通阀的第一连接口,下出液管连接至分光检测装置的液体入口,分光检测装置的液体出口连接至三通阀的第二连接口,三通阀的公共接口再连接至多通道切换阀的第四接口;多通道切换阀的第三接口用于连接废液瓶,试剂定量环的两端分别与多通道切换阀的第五、第八接口连接;试剂选择阀的各个试剂入口分别用于连接各个试剂瓶,其公共通道与多通道切换阀的第七接口连接;试剂泵的入口连接至多通道切换阀的第六接口,出口再连接至废液瓶。A flow-through automatic analyzer for photometric detection, including a chassis, is characterized in that: it also includes a mixer arranged on the chassis, and an automatic sampling valve, a reagent selection valve, a three-way valve, a reagent pump, a water sample pump, a multi-channel Switching valve, reagent quantitative loop, spectroscopic detection device and control circuit; each water sample inlet of the automatic sampling valve is used to connect each water sample to be tested, and the common channel in the middle is connected to the second connection port of the multi-channel switching valve; The inlet and outlet of the sample pump are respectively connected to the first connection port of the multi-channel switching valve and the liquid inlet pipe of the mixer; the upper liquid outlet pipe of the mixer is directly connected to the first connection port of the three-way valve, and the lower liquid outlet pipe is connected to To the liquid inlet of the spectroscopic detection device, the liquid outlet of the spectroscopic detection device is connected to the second connection port of the three-way valve, and the public port of the three-way valve is connected to the fourth port of the multi-channel switching valve; the third port of the multi-channel switching valve It is used to connect the waste liquid bottle, and the two ends of the reagent quantitative loop are respectively connected to the fifth and eighth ports of the multi-channel switching valve; each reagent inlet of the reagent selection valve is used to connect each reagent bottle, and its common channel and multi-channel switching The seventh port of the valve is connected; the inlet of the reagent pump is connected to the sixth port of the multi-channel switching valve, and the outlet is connected to the waste liquid bottle.
进一步的,所述自动进样阀和所述试剂选择阀可采用四位、八位或十六位选择阀,所述多通道切换阀采用八通阀。Further, the automatic sampling valve and the reagent selection valve can be four-position, eight-position or sixteen-position selection valves, and the multi-channel switching valve is an eight-way valve.
进一步的,所述分光检测装置包括光源、光电检测器和流通池;所述混合器的下出液管连接至流通池的液体入口,流通池的液体出口连接至三通阀的第二连接口,所述流通池的光学入口和出口分别连接至光源和光电检测器。Further, the spectroscopic detection device includes a light source, a photoelectric detector and a flow cell; the lower outlet pipe of the mixer is connected to the liquid inlet of the flow cell, and the liquid outlet of the flow cell is connected to the second connection port of the three-way valve , the optical inlet and outlet of the flow cell are respectively connected to a light source and a photodetector.
进一步的,所述流通池为Z型或U型的流通池,其光程为1cm-15cm。Further, the flow cell is a Z-shaped or U-shaped flow cell with an optical path of 1 cm-15 cm.
进一步的,所述流通池为液芯波导长光程流通池,其光程为20cm-1000cm。Further, the flow cell is a liquid core waveguide long optical path flow cell, the optical path of which is 20cm-1000cm.
进一步的,所述试剂定量环为环形管,用于量取并储存固定体积的试剂,其内径为0.25mm-2mm,长度为3cm-30cm。Further, the reagent quantitative loop is an annular tube, used to measure and store a fixed volume of reagent, with an inner diameter of 0.25mm-2mm and a length of 3cm-30cm.
进一步的,所述控制电路包括微处理器、蠕动泵控制模块、多通道切换阀控制模块、多位阀控制模块、三通阀控制模块、通信模块、数据存储模块、光源和检测器模块;蠕动泵控制模块与所述试剂泵和水样泵相连;多通道切换阀控制模块与所述多通道切换阀相连,多位阀控制模块与所述自动进样阀和试剂选择阀相连,三通阀控制模块与所述三通阀相连;光源和检测器模块与所述分光检测装置相连;微处理器的输入端分别与通信模块、数据存储模块、光源和检测器模块连接;微处理器的输出端分别与蠕动泵控制模块、多通道切换阀控制模块、多位阀控制模块、三通阀控制模块和数据存储模块连接。Further, the control circuit includes a microprocessor, a peristaltic pump control module, a multi-channel switching valve control module, a multi-position valve control module, a three-way valve control module, a communication module, a data storage module, a light source and a detector module; The pump control module is connected with the reagent pump and the water sample pump; the multi-channel switching valve control module is connected with the multi-channel switching valve; the multi-position valve control module is connected with the automatic sampling valve and the reagent selection valve; the three-way valve The control module is connected with the three-way valve; the light source and the detector module are connected with the spectroscopic detection device; the input terminals of the microprocessor are respectively connected with the communication module, the data storage module, the light source and the detector module; the output of the microprocessor The terminals are respectively connected with the peristaltic pump control module, the multi-channel switching valve control module, the multi-position valve control module, the three-way valve control module and the data storage module.
由上述对本发明的描述可知,与现有技术相比,本发明具有如下有益效果:As can be seen from the above description of the present invention, compared with the prior art, the present invention has the following beneficial effects:
(1)自动化程度高,结合了自动进样和在线混合,整个分析过程无需人为干预。(1) High degree of automation, combined with automatic sampling and online mixing, the entire analysis process does not require human intervention.
(2)本发明的光度检测不受流路中气泡的干扰。(2) The photometric detection of the present invention is not disturbed by air bubbles in the flow path.
(3)消耗的试剂量极少,且无需重复添加试剂,有效地提高了试剂的利用率,节省了试剂的使用量,因而降低了分析测试的成本。(3) The consumption of reagents is very small, and there is no need to add reagents repeatedly, which effectively improves the utilization rate of reagents and saves the amount of reagents used, thus reducing the cost of analysis and testing.
(4)运行灵活,可以通过调整混合时间来控制反应程度,从而调整仪器的灵敏度,以满足不同浓度目标物的测定需求。(4) The operation is flexible, and the reaction degree can be controlled by adjusting the mixing time, thereby adjusting the sensitivity of the instrument to meet the determination requirements of different concentrations of target substances.
(5)测样速度快,抽取一次水样即可满足不同形态目标物的测定需求;且具有良好的准确度和精密度。(5) The sampling speed is fast, and one water sample can be taken to meet the measurement requirements of different forms of targets; and it has good accuracy and precision.
附图说明Description of drawings
图1a为本发明混合器的结构示意图;Fig. 1 a is the structural representation of mixer of the present invention;
图1b为本发明流通式光度检测自动化分析仪实施例一的结构示意图;Figure 1b is a schematic structural view of
图2为本发明流通式光度检测自动化分析仪的控制电路组成框图;Fig. 2 is the composition block diagram of the control circuit of flow-through photometric detection automatic analyzer of the present invention;
图3为本发明流通式光度检测自动化分析仪的控制电路的电路组成原理图;Fig. 3 is the schematic diagram of the circuit composition of the control circuit of the flow-through photometric detection automatic analyzer of the present invention;
图4为本发明一种流通式光度检测自动化分析仪处于进样状态的结构示意图(实施例一);Fig. 4 is a schematic structural diagram of a flow-through photometric detection automatic analyzer in the sample injection state of the present invention (embodiment 1);
图5为本发明一种流通式光度检测自动化分析仪处于混合/检测状态的结构示意图(实施例一);Fig. 5 is a structural schematic diagram of a flow-through photometric detection automatic analyzer in the mixing/detecting state of the present invention (embodiment 1);
图6为本发明实施使用液芯波导长光程流通池且八通阀处于进样状态的结构示意图(实施例二、实施例三);Figure 6 is a structural schematic diagram of the present invention using a liquid core waveguide long optical path flow cell and the eight-way valve is in the sample injection state (Example 2, Example 3);
图7为本发明实施例使用液芯波导长光程流通池且八通阀处于混合/检测状态的结构示意图(实施例二、实施例三);Fig. 7 is a schematic structural diagram of an embodiment of the present invention using a liquid core waveguide long optical path flow cell and an eight-way valve in a mixing/detecting state (Example 2, Example 3);
图8为本发明配有3个试剂瓶且八通阀处于进样状态的结构示意图(实施例四);Fig. 8 is a structural schematic diagram of the present invention equipped with 3 reagent bottles and the eight-way valve is in the sampling state (embodiment 4);
图9为本发明配有3个试剂瓶且八通阀处于混合/检测状态的结构示意图(实施例四)。Fig. 9 is a schematic structural diagram of the present invention equipped with 3 reagent bottles and the eight-way valve is in the mixing/detecting state (embodiment 4).
具体实施方式Detailed ways
以下通过具体实施方式对本发明作进一步的描述。The present invention will be further described below through specific embodiments.
参照图1a,本发明提出一种混合器,用于光度检测中实现试剂和水样的混合并消除流路中的气泡对分光光度检测的影响,包括进液管1、T型三通5、混合体4及与混合体内腔连通的上出液管2和下出液管3。该进液管1一端由下而上竖直插入混合体4并与其内腔连通,该上出液管2与混合体4顶部相连,该下出液管3与混合体4底部相连;该混合体4为内径上大下小的圆锥形混合体。图1a中的实线箭头指示混合状态时溶液的流动方向,虚线箭头为检测状态时溶液的流动方向。进液管1和出液管均为聚四氟乙烯管,内径0.75mm、外径1.6mm。混合体4为一个聚乙烯材质的圆锥,其两端的分别开有直径为8mm和3mm的孔,并在较细的一端连接聚乙烯材质的T型三通5。进液管1经T型三通5从底部伸入混合体4,直至其出口离腔体顶端5-10mm;混合体4的顶端接上出液管2,T型三通5的另一端接下出液管3。Referring to Figure 1a, the present invention proposes a mixer for photometric detection to realize the mixing of reagents and water samples and eliminate the influence of air bubbles in the flow path on spectrophotometric detection, including a
本发明的混合器应用于光度检测分析仪时,参照图1b,上出液管2的另一端可用于连接分析仪的三通阀14,下出液管3的另一端则接至分析仪的流通池12,经流通池12后再连接到三通阀14。当进行混合反应操作时,分析仪管路中的溶液从进液管1流入混合体4,在此经历流路管径的突变以实现水样和试剂的混合;切换三通阀14、进入混合/检测状态时,从进液管1流入混合体4的溶液只能从下出液管3流出,进入分析仪的流通池12进行分光检测。此时流路中若出现气泡,气泡在浮力的作用下自然上升而停留在混合体4顶部,从而避免气泡进入流通池12而影响分光检测。停留在混合体4顶部的气泡在分析仪切换至进样状态时随废液排除。When the mixer of the present invention is applied to a photometric detection analyzer, with reference to Fig. 1b, the other end of the
本发明还提出一种流通式光度检测自动化分析仪,并装配了上述的混合器,列举下述几个实施例。The present invention also proposes a flow-through automatic analyzer for photometric detection, which is equipped with the above-mentioned mixer, and several examples are listed below.
实施例一Embodiment one
一种流通式光度检测自动化分析仪,包括上述的混合器、自动进样阀6、试剂选择阀17、三通阀14、试剂泵18、水样泵10、多通道切换阀、试剂定量环19、分光检测装置和控制电路。自动进样阀6的各个水样入口分别用于连接各个待测水样,中间的公共通道8与多通道切换阀的第二连接口连接。水样泵10的入口和出口分别与多通道切换阀的第一连接口和混合器的进液管1连接。分光检测装置包括光源11、光电检测器13和流通池12。混合器的上出液管2直接连至三通阀14的第一连接口,混合器的下出液管3连接至流通池12的液体入口,流通池12的液体出口连接至三通阀14的第二连接口,流通池12的光学入口和出口分别连接至光源11和光电检测器13。三通阀14的公共接口再连接至多通道切换阀的第四接口。多通道切换阀的第三接口作为废液出口20用于连接废液瓶,试剂定量环19的两端分别与多通道切换阀的第五、第八接口连接。试剂选择阀17的各个试剂入口15分别用于连接各个试剂瓶,其公共通道16与多通道切换阀的第七接口连接。试剂泵18的入口连接至多通道切换阀的第六接口,出口作为废液出口20再连接至废液瓶。A flow-through automatic analyzer for photometric detection, comprising the above-mentioned mixer, an
本发明中的流通池12采用Z型流通池。自动进样阀6和试剂选择阀17可采用四位、八位或十六位选择阀,本发明采用八位选择阀。多通道切换阀可采用八通阀9。试剂定量环19为环形管,用于量取并储存固定体积的试剂,其内径为0.25mm-2mm,长度为3cm-30cm。可以用流通时光度检测自动化分析及水中可溶态铁的测定。The
控制电路密封于机箱内部,泵、阀、混合器、试剂瓶(袋)和分光检测装置亦均装配于机箱内部或固定于机箱外壳上,液体流通管路及其接口均置于机箱外部。参照图2、图3,具体的控制电路包括微处理器U1、蠕动泵控制模块、多通道切换阀控制模块、多位阀控制模块、三通阀控制模块、通信模块、数据存储模块、光源和检测器模块。蠕动泵控制模块包括第一功率模块Q21和RS485接口芯片U2分别连接控制两蠕动泵B21、B22(水样泵10和试剂泵18)。多通道切换阀控制模块与多通道切换阀相连包括第二功率模块Q22和第三功率模块Q23,从微处理器U1发出的信号经该第二功率模块Q22和第三功率模块Q23控制多通道切换阀的切换。多位阀控制模块与自动进样阀6和试剂选择阀17相连,包括RS232接口芯片U3,经过此RS232接口芯片U3实现对两个多位阀P3、P4(自动进样阀6和试剂选择阀17)的控制。三通阀控制模块与三通阀14相连包括第四功率模块Q24,从微处理器U1发出信号经过第四功率模块Q24控制三通阀14(图3中的P5)的切换。通信模块由USB接口P1组成,经过此USB接口实现仪器与外界的通信。数据存储模块由2GTF卡存储器U4组成,用来存储检测数据。光源和检测器模块由光电检测器13(芯片U5)、恒流源U6和发光二极管(L1)组成,其中光电检测器13检测光强变化,输出不同频率的方波到微处理器U1。发射波长为558nm的发光二极管作为光源11,由恒流源U6驱动。微处理器U1还有内置程序存储器,用来储存仪器的控制程序。微处理器U1的输入端分别与通信模块、数据存储模块、光源和检测器模块连接。微处理器U1的输出端分别与蠕动泵控制模块、多通道切换阀控制模块、多位阀控制模块、三通阀控制模块和数据存储模块连接。各器件和原件的代号、参考型号及参数如下:U1——微处理器STM32F103VBT6;U2——RS485接口芯片SP3485;U3——RS232接口芯片MAX3232;U4——Kingston2GTF卡存储器;U5——可编程光频转换器TSL230RD;Q21,Q22,Q23,Q24——第一至第四功率模块IRFM210A;P1——USB通信口mini-USB-B;B21——保定兰格蠕动泵OEMBJ60-01/WX10;B22——保定兰格蠕动泵BT100-2J;P2——八通阀C22Z-3188EH;P3、P4——多位选择阀C25Z-3188EMH;P5——三通阀100T3MP12-62。The control circuit is sealed inside the case, and the pump, valve, mixer, reagent bottle (bag) and spectroscopic detection device are also assembled inside the case or fixed on the case shell, and the liquid circulation pipeline and its interface are placed outside the case. Referring to Figure 2 and Figure 3, the specific control circuit includes a microprocessor U1, a peristaltic pump control module, a multi-channel switching valve control module, a multi-position valve control module, a three-way valve control module, a communication module, a data storage module, a light source and detector module. The peristaltic pump control module includes a first power module Q21 and an RS485 interface chip U2 respectively connected to control two peristaltic pumps B21 and B22 (
八位选择阀作为自动进样阀6,其各个水样入口7分别连接至各个待测水样或标准溶液,以自动选择待测的水样。水样在测定之前,不经过滤、直接加入盐酸酸化至pH值约1.7,并保存24小时,依此预处理测得的即为可溶态总铁,包含溶解态和部分颗粒态的铁。The eight-position selector valve is used as the
所用试剂主要是菲咯嗪溶液和抗坏血酸溶液,分别装于显色剂试剂瓶22和还原剂试剂瓶23。其中,菲咯嗪溶液的浓度为0.01mol/L,配制于pH值为5.5的醋酸-醋酸铵缓冲液中,它能与Fe(II)发生络合显色反应,显色产物在562nm波长处具有最大吸收;抗坏血酸溶液的浓度为0.001mol/L,用于将水样中的Fe(III)还原成Fe(II)以测定水样中可溶态总铁的浓度。The reagents used are mainly phenanthrolazine solution and ascorbic acid solution, which are respectively contained in the
测定水样时,分析仪首先处于图4的进样状态,即八通阀切换接通第一接口和第二接口,第三接口和第四接口,第五接口和第六接口,第七接口和第八接口。启动水样泵10将待测样经水样入口7泵入分析仪,并通过切换三通阀14,使水样充满整个管路、混合体4和Z型的流通池12,多余的水样经废液出口20排出,光电检测器13记录此时的光强作为空白光强并调整吸光度为零;与此同时,切换试剂选择阀17的阀位、连接至显色剂试剂瓶22,启动试剂泵18将菲咯嗪溶液泵入分析仪并充满试剂定量环19,多余的试剂经废液出口20排出。切换八通阀9,使分析仪处于图5的混合/检测状态,即接通第一接口和第八接口,第二接口和第三接口,第四接口和第五接口,第六接口和第七接口。三通阀14连接至混合器上出液管2,启动水样泵10驱动水样与显色剂混合,使水样中的Fe(II)与菲咯嗪发生显色反应,生成紫红色络合物。混合反应60s后,停止水样泵10,切换八通阀9,使分析仪回到图4的进样状态,切换试剂选择阀17的阀位、连接至还原剂试剂瓶23,启动试剂泵18将抗坏血酸溶液泵入分析仪并充满试剂定量环19,多余的试剂经废液出口20排出。切换八通阀9,分析仪处于图5的混合/检测状态,三通阀14连接至混合器上出液管2,启动水样泵10驱动试样与抗坏血酸混合,则Fe(III)被还原成Fe(II)并与菲咯嗪发生显色反应;混合反应120s后,切换三通阀14使试样从混合器下出液管3流入Z型流通池12,通过光电检测器13记录试样的吸光度,再代入标准工作曲线方程计算,即可确定水样中可溶态总铁的浓度。When measuring water samples, the analyzer is first in the sampling state shown in Figure 4, that is, the eight-way valve is switched to connect the first port and the second port, the third port and the fourth port, the fifth port and the sixth port, and the seventh port and the eighth interface. Start the
得到的工作曲线线性方程为A=0.0223C铁-0.0082(R2=0.9988),其中A为光电检测器13记录的吸光度,C铁为可溶态总铁的浓度,单位μmol/L,线性范围在0.10μmol/L-45μmol/L之间。用该仪器测得九龙江口表层水中可溶态总铁的浓度并与常规的手工添加试剂比色法测得的浓度对比,结果列于表1。拟合二者的线性关系,得y=0.9791x+0.0585(R2=0.9940),其中y为本分析仪测得的浓度,x为常规比色法测得的浓度,由此可见本分析仪的检测结果与常规比色法的吻合程度良好。The linear equation of the obtained working curve is A= 0.0223CFe -0.0082 (R 2 =0.9988), where A is the absorbance recorded by the
表1本发明分析仪与常规比色法测定水中可溶态总铁的结果比较Table 1 Analyzer of the present invention compares with the result comparison of conventional colorimetric method measuring soluble state total iron in water
实施例二Embodiment two
采用液芯波导长光程流通池的流通式光度检测自动化学分析仪及水中溶解态痕量Fe(II)和Fe(II+III)的同时测定Flow-through Photometric Automatic Chemical Analyzer Using Liquid Core Waveguide Long Optical Path Flow Cell and Simultaneous Determination of Dissolved Trace Fe(II) and Fe(II+III) in Water
如图6和图7所示,除了用光程长为250cm的液芯波导长光程流通池12替换实施例一中的Z型流通池外,本实施例的仪器部件、管路连接、控制电路和所用试剂及其浓度等均与实施例一一致。As shown in Figure 6 and Figure 7, in addition to replacing the Z-shaped flow cell in
测定水样时,分析仪首先处于图6的进样状态,接通第一接口和第二接口,第三接口和第四接口,第五接口和第六接口,第七接口和第八接口。启动水样泵10将待测样经水样入口7泵入分析仪,并通过切换三通阀14,使水样充满整个管路、混合体4和液芯波导长光程流通池12,多余的水样经废液出口20排出,光电检测器13记录此时的光强作为空白光强并调整吸光度为零;与此同时,切换试剂选择阀17的阀位、连接至显色剂试剂瓶22,启动试剂泵18将菲咯嗪溶液泵入分析仪并充满试剂定量环19,多余的试剂经废液出口20排出。切换八通阀9,使分析仪处于图7的混合/检测状态,三通阀14连接至混合器上出液管2,启动水样泵10驱动水样与显色剂混合,使水样中的Fe(II)与菲咯嗪发生显色反应,生成紫红色络合物。混合反应60s后,切换三通阀14使试样从混合器下出液管3流入液芯波导长光程流通池12,此时光电检测器13记录的即是水样中Fe(II)显色后的吸光度。When measuring water samples, the analyzer is first in the sampling state shown in Figure 6, and connects the first interface and the second interface, the third interface and the fourth interface, the fifth interface and the sixth interface, and the seventh interface and the eighth interface. Start the
停止水样泵10,切换三通阀14和八通阀9,使分析仪回到图6的进样状态,切换试剂选择阀17的阀位、连接至还原剂试剂瓶23,启动试剂泵18将抗坏血酸溶液泵入分析仪并充满试剂定量环19,多余的试剂经废液出口20排出。切换八通阀9,分析仪处于图7的混合/检测状态,即接通第一接口和第八接口,第二接口和第三接口,第四接口和第五接口,第六接口和第七接口。三通阀14连接至混合器上出液管2,启动水样泵10驱动试样与抗坏血酸混合,则Fe(III)被还原成Fe(II)并与菲咯嗪发生显色反应;混合反应120s后,切换三通阀14使试样从混合器下出液管3流入液芯波导长光程流通池12,此时光电检测器13记录的吸光度包括了水样中由Fe(III)还原得到的Fe(II)和原有的Fe(II),即为Fe(II+III)。分别将得到的Fe(II)和Fe(II+III)显色后的吸光度代入相应的标准工作曲线方程,即可计算得水样中Fe(II)和Fe(II+III)的浓度。Stop the
得到Fe(II)和Fe(II+III)的工作曲线线性方程分别为A=0.0065CFe(II)+0.0546(R2=0.9993)和A=0.0057CFe(II+III)+0.0464(R2=0.9989),其中A为光电检测器13记录的吸光度,CFe(II)和CFe(II+III)分别为Fe(II)和Fe(II+III)的浓度,单位nmol/L,线性范围分别为0.5nmol/L-145nmol/L和0.5nmol/L-165nmol/L。用本分析仪测定采自中国南海及九龙江口、经0.4μm滤膜过滤且酸化至pH1.7的水样,并与现有的手工添加试剂的长光程比色法对比,结果列于表2。拟合二者的线性关系,得溶解态痕量Fe(II)的线性关系为y=0.9969x+0.0180(R2=0.9913),溶解态痕量Fe(II+III)的线性关系为y=0.9923x+0.0167(R2=0.9992),其中y为本分析仪测得的浓度,x为手工比色法测得的浓度。由此可见,对于溶解态痕量Fe(II)和Fe(II+III),本分析仪的检测结果均与手工比色法具有良好的一致性。此外,本分析仪还用于测定加拿大国家研究委员会提供的海水标准参考样品CASS-4和NASS-5,所得的结果如表3所列,本分析仪测得的结果在参考值范围内,具有良好的准确度。The linear equations of the working curves of Fe(II) and Fe(II+III) are A=0.0065C Fe(II) +0.0546 (R 2 =0.9993) and A=0.0057C Fe(II+III) +0.0464 (R 2 =0.9989), where A is the absorbance recorded by the
表2本发明分析仪与现有方法测定水中溶解态痕量Fe(II)和Fe(II+III)的结果比较Table 2 Analyzer of the present invention compares with the result of existing method measurement dissolved state trace Fe(II) and Fe(II+III) in water
表3本发明分析仪测定海水标准参考样品的结果Table 3 Analyzer of the present invention measures the result of seawater standard reference sample
实施例三Embodiment Three
采用液芯波导长光程流通池的流通式光度检测自动化学分析仪及海水中痕量亚硝酸盐的测定Flow-through photometric detection automatic chemical analyzer using liquid core waveguide long optical path flow cell and determination of trace nitrite in seawater
如图6和图7所示,本实施例的仪器部件、管路连接、控制电路和流通池12等均与实施例二一致,只是将显色试剂瓶22和还原试剂瓶23中的试剂分别换成浓度为6.4g/L的磺胺溶液和浓度为0.72g/L的盐酸萘乙二胺溶液,其中磺胺溶液配制于1.4mol/L的盐酸溶液中;光源11改用发射波长为540nm的发光二极管。As shown in Figures 6 and 7, the instrument parts, pipeline connections, control circuit and flow
本实施例的运行步骤与实施例一一致,即分析仪首先处于图6的进样状态,启动水样泵10将待测样经水样入口7泵入分析仪,并通过切换三通阀14,使水样充满整个管路、混合体4和液芯波导长光程流通池12,多余的水样经废液出口20排出,光电检测器13记录此时的光强作为空白光强并调整吸光度为零;与此同时,切换试剂选择阀17的阀位、连接至显色试剂瓶22,启动试剂泵18将磺胺溶液泵入分析仪并充满试剂定量环19,多余的试剂经废液出口20排出。切换八通阀9,使分析仪处于图7的混合/检测状态,三通阀14连接至混合器上出液管2,启动水样泵10驱动水样与磺胺溶液混合。60s后,停止水样泵10,切换八通阀9,使分析仪回到图6的进样状态,切换试剂选择阀17的阀位、连接至还原试剂瓶23,启动试剂泵18将盐酸萘乙二胺溶液泵入分析仪并充满试剂定量环19,多余的溶液经废液出口20排出。切换八通阀9,分析仪处于图7的混合/检测状态,三通阀14连接至混合器上出液管2,启动水样泵10驱动试样与盐酸萘乙二胺溶液混合;120s后,切换三通阀14使试样从混合器下出液管3流入液芯波导长光程流通池12,通过光电检测器13记录试样的吸光度,再代入标准工作曲线方程计算,即可确定水样中亚硝酸盐的浓度。The operation steps of this embodiment are consistent with
得到的工作曲线线性方程为A=0.0127CNO2+0.0709(R2=0.9996),其中A为光电检测器13记录的吸光度,CNO2为亚硝酸盐的浓度,单位nmol/L,线性范围在0.6nmol/L-85nmol/L之间。用该分析仪测定中国南海海水样中的亚硝酸盐浓度,并与手工添加试剂的长光程比色法测得的浓度对比,结果列于表4。拟合二者的线性关系,得y=1.0102x-0.0063(R2=0.9984),其中y为本分析仪测得的浓度,x为手工添加试剂比色法测得的浓度,由此可见本分析仪的检测结果与常规手工比色法具有极好的吻合度。The linear equation of the obtained working curve is A=0.0127C NO2 +0.0709 (R 2 =0.9996), where A is the absorbance recorded by the
表4本发明分析仪与参考方法测定海水中痕量亚硝酸盐的结果比较Table 4 Analyzer of the present invention and reference method measure the result comparison of trace nitrite in seawater
实施例四Embodiment Four
采用U型流通池的流通式光度检测自动化学分析仪及海水中活性硅酸盐的测定Flow-through photometric detection automatic chemical analyzer using U-shaped flow cell and determination of active silicate in seawater
如图8和图9所示,与实施例三相比,本实施例的分光检测系统采用光程5cm的U型流通池12和发射波长为810nm的发光二极管为光源11,并在试剂选择阀17上的试剂入口15多接一个试剂瓶24。三个试剂瓶22、23和24分别装浓度为32g/L钼酸铵-2%硫酸的混合溶液、100g/L酒石酸溶液和10g/L抗坏血酸溶液。As shown in Figure 8 and Figure 9, compared with
测定水样时,分析仪首先处于图8的进样状态,即八通阀切换接通第一接口和第二接口,第三接口和第四接口,第五接口和第六接口,第七接口和第八接口。启动水样泵10将待测样经水样入口7泵入分析仪,并通过切换三通阀14,使水样充满整个管路、混合体4和U型流通池12,多余的水样经废液出口20排出,光电检测器13记录此时的光强作为空白光强并调整吸光度为零;与此同时,切换试剂选择阀17的阀位、连接至试剂瓶22,启动试剂泵18将钼酸铵-硫酸混合溶液泵入分析仪并充满试剂定量环19,多余的试剂经废液出口20排出。切换八通阀9,使分析仪处于图9的混合/检测状态,即接通第一接口和第八接口,第二接口和第三接口,第四接口和第五接口,第六接口和第七接口。三通阀14连接至混合器上出液管2,启动水样泵10驱动水样与钼酸铵-硫酸混合溶液混合,水样中的活性硅酸盐与钼酸铵发生显色反应,生成黄色的硅钼杂多酸。混合反应60s后,停止水样泵10,切换八通阀9,使分析仪回到图8的进样状态,切换试剂选择阀17的阀位、连接至试剂瓶23,启动试剂泵18将酒石酸溶液泵入分析仪并充满试剂定量环19,多余的试剂经废液出口20排出。切换八通阀9,分析仪处于图9的混合/检测状态,三通阀14连接至混合器上出液管2,启动水样泵10驱动试样与酒石酸溶液混合,以消除磷酸盐的干扰。混合反应60s后,停止水样泵10,切换八通阀9,使分析仪再次回到图8的进样状态,切换试剂选择阀17的阀位、连接至试剂24,启动试剂泵18将抗坏血酸溶液泵入分析仪并充满试剂定量环19,多余的试剂经废液出口20排出。切换八通阀9,分析仪处于图9的混合/检测状态,三通阀14连接至混合器上出液管2,启动水样泵10驱动试样与抗坏血酸溶液混合,试样中黄色的硅钼杂多酸被还原成蓝色的硅钼杂多酸;混合反应90s后,切换三通阀14使试样从混合器下出液管3流入U型流通池12,通过光电检测器13记录试样的吸光度,再代入标准工作曲线方程,计算即可确定水样中活性硅酸盐的浓度。When measuring water samples, the analyzer is first in the sampling state shown in Figure 8, that is, the eight-way valve is switched to connect the first port and the second port, the third port and the fourth port, the fifth port and the sixth port, and the seventh port and the eighth interface. Start the
得到的工作曲线线性方程为A=0.0133CSi-0.0156(R2=0.9994),其中A为光电检测器13记录的吸光度,CSi为活性硅酸盐的浓度,单位μmol/L,线性范围在0.2μmol/L-80μmol/L之间。用该仪器测得南海海水及九龙江口表层水中活性硅酸盐的浓度并与常规的手工添加试剂比色法测得的浓度对比,结果列于表5。拟合二者的线性关系,得y=0.9933x-1.0814(R2=0.9950),其中y为本分析仪测得的浓度,x为常规比色法测得的浓度,由此可见本分析仪的检测结果与常规比色法的吻合程度良好。The linear equation of the obtained working curve is A=0.0133C Si -0.0156 (R 2 =0.9994), where A is the absorbance recorded by the
表5本发明分析仪与常规手工比色法测定海水中活性硅酸盐的结果比较Table 5 Analyzer of the present invention compares with the result comparison of routine manual colorimetry measuring active silicate in seawater
本实施例的分析仪还可用于次溴酸盐氧化法或靛酚蓝分光光度法测定水体中的氨氮。而其他需要加入更多试剂的目标物的测定只需在试剂选择阀17的试剂入口15上接入所需试剂,并依次加入混合反应显色,同时根据显色后目标物的最大吸收波长更换相应的发光二极管,即可完成目标物的测定。The analyzer in this embodiment can also be used for the determination of ammonia nitrogen in water by the hypobromite oxidation method or the indophenol blue spectrophotometric method. For the determination of other target objects that need to add more reagents, only the required reagents need to be connected to the
上述仅为本发明的具体实施方式,但本发明的设计构思并不局限于此,凡利用此构思对本发明进行非实质性的改动,均应属于侵犯本发明保护范围的行为。The above is only a specific embodiment of the present invention, but the design concept of the present invention is not limited thereto, and any non-substantial changes made to the present invention by using this concept should be an act of violating the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410076336.6A CN103785314B (en) | 2014-03-04 | 2014-03-04 | A kind of blender and flow type photometric detection automated analysis instrument |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410076336.6A CN103785314B (en) | 2014-03-04 | 2014-03-04 | A kind of blender and flow type photometric detection automated analysis instrument |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103785314A true CN103785314A (en) | 2014-05-14 |
CN103785314B CN103785314B (en) | 2016-05-11 |
Family
ID=50661624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410076336.6A Expired - Fee Related CN103785314B (en) | 2014-03-04 | 2014-03-04 | A kind of blender and flow type photometric detection automated analysis instrument |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103785314B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104062168A (en) * | 2014-06-23 | 2014-09-24 | 青岛普仁仪器有限公司 | Automatic online micro-scale sample dilution and mixing system and mixing method |
CN104265952A (en) * | 2014-10-24 | 2015-01-07 | 北京佰纯润宇生物科技有限公司 | Eight-way valve and chromatographic system based on eight-way valve |
CN106442087A (en) * | 2016-10-28 | 2017-02-22 | 江苏大学 | Automatic chemical feeding and mixing method and device for detecting nitrite nitrogen content |
CN108918899A (en) * | 2018-05-18 | 2018-11-30 | 北京大学深圳研究生院 | A kind of high throughput screening system of chemical reaction, device and method |
CN109112528A (en) * | 2018-10-16 | 2019-01-01 | 广州钛尔锐科技有限公司 | A kind of metal conditioner detects chemicals dosing plant automatically |
CN110244008A (en) * | 2019-07-12 | 2019-09-17 | 贝士德仪器科技(北京)有限公司 | Multicomponent competitive adsorption breakthrough curve analyzer |
CN110411967A (en) * | 2019-09-03 | 2019-11-05 | 南京信息工程大学 | A measurement system for gaseous nitrous acid in the atmosphere |
CN111257313A (en) * | 2020-03-03 | 2020-06-09 | 江苏一脉科技有限公司 | High-precision alkali passing amount online analysis system and method |
CN112834767A (en) * | 2021-02-02 | 2021-05-25 | 厦门大学 | Fully automatic chemical analysis and detection device and detection method |
CN113877485A (en) * | 2021-10-18 | 2022-01-04 | 江苏汉邦科技有限公司 | A nucleic acid synthesizer |
CN115931451A (en) * | 2023-03-10 | 2023-04-07 | 中绿环保科技股份有限公司 | Sampling analysis unit suitable for surface water monitoring |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108519334B (en) * | 2018-04-08 | 2020-09-22 | 河南农业大学 | Automatic detection system and detection method for soil nutrients |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61257214A (en) * | 1985-05-09 | 1986-11-14 | Mitsubishi Electric Corp | Bubble removing apparatus |
WO2001090727A1 (en) * | 2000-05-22 | 2001-11-29 | C. Uyemura & Co., Ltd. | Automatic analyzing/controlling device for electroless composite plating solution |
CN2514351Y (en) * | 2001-12-20 | 2002-10-02 | 孙墨杰 | Batch-type on-line automatic washing turbidimeter |
CN1629635A (en) * | 2003-12-19 | 2005-06-22 | 株式会社日立高新技术 | Automatic analysis device |
-
2014
- 2014-03-04 CN CN201410076336.6A patent/CN103785314B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61257214A (en) * | 1985-05-09 | 1986-11-14 | Mitsubishi Electric Corp | Bubble removing apparatus |
WO2001090727A1 (en) * | 2000-05-22 | 2001-11-29 | C. Uyemura & Co., Ltd. | Automatic analyzing/controlling device for electroless composite plating solution |
CN2514351Y (en) * | 2001-12-20 | 2002-10-02 | 孙墨杰 | Batch-type on-line automatic washing turbidimeter |
CN1629635A (en) * | 2003-12-19 | 2005-06-22 | 株式会社日立高新技术 | Automatic analysis device |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104062168A (en) * | 2014-06-23 | 2014-09-24 | 青岛普仁仪器有限公司 | Automatic online micro-scale sample dilution and mixing system and mixing method |
CN104265952A (en) * | 2014-10-24 | 2015-01-07 | 北京佰纯润宇生物科技有限公司 | Eight-way valve and chromatographic system based on eight-way valve |
CN106442087A (en) * | 2016-10-28 | 2017-02-22 | 江苏大学 | Automatic chemical feeding and mixing method and device for detecting nitrite nitrogen content |
CN106442087B (en) * | 2016-10-28 | 2018-12-14 | 江苏大学 | Detect the Automatic Dosing mixed method and device of nitrite nitrogen content |
CN108918899B (en) * | 2018-05-18 | 2021-12-28 | 北京大学深圳研究生院 | High-throughput screening system, device and method for chemical reaction |
CN108918899A (en) * | 2018-05-18 | 2018-11-30 | 北京大学深圳研究生院 | A kind of high throughput screening system of chemical reaction, device and method |
CN109112528A (en) * | 2018-10-16 | 2019-01-01 | 广州钛尔锐科技有限公司 | A kind of metal conditioner detects chemicals dosing plant automatically |
CN110244008A (en) * | 2019-07-12 | 2019-09-17 | 贝士德仪器科技(北京)有限公司 | Multicomponent competitive adsorption breakthrough curve analyzer |
CN110244008B (en) * | 2019-07-12 | 2024-05-17 | 贝士德仪器科技(北京)有限公司 | Multicomponent competitive adsorption penetration curve analyzer |
CN110411967A (en) * | 2019-09-03 | 2019-11-05 | 南京信息工程大学 | A measurement system for gaseous nitrous acid in the atmosphere |
CN111257313A (en) * | 2020-03-03 | 2020-06-09 | 江苏一脉科技有限公司 | High-precision alkali passing amount online analysis system and method |
CN112834767A (en) * | 2021-02-02 | 2021-05-25 | 厦门大学 | Fully automatic chemical analysis and detection device and detection method |
CN113877485A (en) * | 2021-10-18 | 2022-01-04 | 江苏汉邦科技有限公司 | A nucleic acid synthesizer |
CN115931451A (en) * | 2023-03-10 | 2023-04-07 | 中绿环保科技股份有限公司 | Sampling analysis unit suitable for surface water monitoring |
CN115931451B (en) * | 2023-03-10 | 2023-09-01 | 中绿环保科技股份有限公司 | Sampling analysis unit suitable for surface water monitoring |
Also Published As
Publication number | Publication date |
---|---|
CN103785314B (en) | 2016-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103785314B (en) | A kind of blender and flow type photometric detection automated analysis instrument | |
CN204536209U (en) | Nutritive salt in-situ automatic analyzer instrument | |
CN102375068B (en) | Full-automatic nutrient salt analyzer and analysis method thereof | |
CN105388309B (en) | The automatic quick determination method of trace iron ions and system and application in Power Plant Water Vapor | |
CN101793902A (en) | Device for fluidly injecting and rapidly analyzing residual chlorine of water quality and analysis method thereof | |
CN205426779U (en) | On --spot autoanalyzer of sulphion | |
CN102650590A (en) | Method for determining content of nitrogen in nitrate and/or nitrite of water sample and device thereof | |
CN103439258B (en) | A kind of water nutrition in situ detection instrument based on integrated valve terminal device and detection method | |
CN104122217A (en) | Microfluidic-circulation analysis-based high-precision in-situ seawater pH analysis system and method | |
CN101806744B (en) | Method and device for fast analyzing fluoride by flow injection | |
CN102980858B (en) | Small-size sequential injection nitride analysis system | |
CN110596031A (en) | A device for quantitative analysis of ammonia nitrogen in seawater | |
CN201765189U (en) | Water hexavalent chromium flow-injection on-line analyzer | |
CN100478678C (en) | Method for analyzing phosphate in sea water and estuary water | |
EP3924724B1 (en) | Colorimetric detection of aluminum in an aqueous sample | |
CN101187637B (en) | Automatic Analysis Method of Phenolic Compounds in Seawater | |
CN205080143U (en) | Automatic quick detecting system of trace iron ion in power plant's steam | |
CN207248898U (en) | flow analyzer based on Android system | |
CN101101264A (en) | Automatic Analysis Method of Sulfide in Seawater | |
CN102042981B (en) | In-situ tester of dissolved inorganic carbon | |
CN202710577U (en) | Peroxide online detection device | |
CN202024965U (en) | Real-time on-line detecting device for concentration of nitrate ions in seawater | |
CN102590540A (en) | In-situ detection system for concentration of deep sea micro-ions | |
CN201765236U (en) | Full-automatic nutritive salt analyzer | |
CN202903672U (en) | Small-scale analytical system for sequential injection of nitrite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160511 |