[go: up one dir, main page]

CN103779400A - Composite electrode and preparation method thereof - Google Patents

Composite electrode and preparation method thereof Download PDF

Info

Publication number
CN103779400A
CN103779400A CN201310231644.7A CN201310231644A CN103779400A CN 103779400 A CN103779400 A CN 103779400A CN 201310231644 A CN201310231644 A CN 201310231644A CN 103779400 A CN103779400 A CN 103779400A
Authority
CN
China
Prior art keywords
electrode
composite electrode
electrode substrate
microstructure array
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310231644.7A
Other languages
Chinese (zh)
Inventor
杨维清
王中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Nanoenergy and Nanosystems
Original Assignee
National Center for Nanosccience and Technology China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Center for Nanosccience and Technology China filed Critical National Center for Nanosccience and Technology China
Priority to CN201310231644.7A priority Critical patent/CN103779400A/en
Publication of CN103779400A publication Critical patent/CN103779400A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/205Nanosized electrodes, e.g. nanowire electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/01Manufacture or treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inert Electrodes (AREA)

Abstract

The invention provides a composite electrode, which comprises an electrode substrate, a micro structure array and a conductive film layer, wherein the micro structure array is arranged on the upper surface of the electrode substrate; and the conductive film is deposited on the surface of the electrode substrate provided with the micro structure array. Correspondingly, the invention further provides a preparation method for the composite electrode. According to the invention, a surface modification layer provided with the micro structure layer is prepared on the surface of the electrode substrate, thereby enabling the electrode surface to have the micro structure array, and being capable of effectively increasing the mutual contact area when the composite electrode and other materials are contacted or friction is generated therebetween.

Description

一种复合电极及其制备方法A kind of composite electrode and preparation method thereof

技术领域technical field

本发明涉及半导体器件领域,特别是涉及一种复合电极及其制备方法。The invention relates to the field of semiconductor devices, in particular to a composite electrode and a preparation method thereof.

背景技术Background technique

在半导体器件中,电极的表面结构对器件的性能有重要影响,通常依靠电极材料制备时自然形成的表面与器件的其它部分接触,由于这样形成的电极表面为平整表面,不能满足需要粗糙电极表面以使电极与其它材料接触或摩擦时增大接触面积的需求。In semiconductor devices, the surface structure of the electrode has an important impact on the performance of the device. Usually, the surface formed naturally when the electrode material is prepared is in contact with other parts of the device. Since the electrode surface formed in this way is a flat surface, it cannot meet the needs of the rough electrode surface. It is necessary to increase the contact area when the electrode contacts or rubs with other materials.

发明内容Contents of the invention

本发明提供一种结构简单的表面为微结构阵列的复合电极,包括:The invention provides a compound electrode with a simple structure and a microstructure array on its surface, comprising:

电极基板;electrode substrate;

设置在所述电极基板上表面的微结构阵列;a microstructure array arranged on the upper surface of the electrode substrate;

沉积在设置有所述微结构阵列的电极基板表面的导电薄膜层。A conductive thin film layer deposited on the surface of the electrode substrate provided with the microstructure array.

优选的,所述微结构阵列选自纳米线、纳米管、纳米颗粒、纳米沟槽、微米沟槽、纳米锥、微米锥、纳米球和微米球状结构的阵列。Preferably, the array of microstructures is selected from arrays of nanowires, nanotubes, nanoparticles, nanogrooves, microgrooves, nanocones, microcones, nanospheres and microsphere structures.

优选的,所述微结构阵列的材料选自氧化物半导体材料。Preferably, the material of the microstructure array is selected from oxide semiconductor materials.

优选的,所述微结构阵列为ZnO纳米线阵列。Preferably, the microstructure array is a ZnO nanowire array.

优选的,所述微结构阵列的高度在200纳米至2微米之间。Preferably, the height of the microstructure array is between 200 nanometers and 2 micrometers.

优选的,所述导电薄膜层采用金属薄膜、导电氧化物薄膜。Preferably, the conductive thin film layer is a metal thin film or a conductive oxide thin film.

优选的,所述金属选自Ag、Au、Cu、Al;所述导电氧化物选自铟锡氧化物。Preferably, the metal is selected from Ag, Au, Cu, Al; the conductive oxide is selected from indium tin oxide.

优选的,所述导电薄膜层的厚度在50纳米至400纳米之间。Preferably, the thickness of the conductive film layer is between 50 nanometers and 400 nanometers.

优选的,所述电极基板为导体。Preferably, the electrode substrate is a conductor.

优选的,所述电极基板为柔性基板。Preferably, the electrode substrate is a flexible substrate.

优选的,所述电极基板与所述导电薄膜层采用相同的材料。Preferably, the electrode substrate and the conductive film layer are made of the same material.

相应的,本发明还提供一种复合电极制备方法,包括步骤:Correspondingly, the present invention also provides a method for preparing a composite electrode, comprising the steps of:

提供电极基板;Provide electrode substrate;

在所述电极基板上表面设置微结构阵列;setting a microstructure array on the upper surface of the electrode substrate;

在设置有所述微结构阵列的电极基板表面沉积导电薄膜层。A conductive thin film layer is deposited on the surface of the electrode substrate provided with the microstructure array.

本发明提供的复合电极及其制备方法具有下列有益效果:The composite electrode provided by the invention and its preparation method have the following beneficial effects:

1、本发明提供的复合电极,在电极基板的表面制备了具有微结构阵列的表面修饰层,使电极表面具有微结构阵列,有效地增加了电极的表面积和表面能。本发明的复合电极与其它材料接触或摩擦时,可以有效的增加互相之间的接触面积,可以应用在需要增大电极与其它材料接触或摩擦时接触面积的器件如静电脉冲发电机、气敏传感器、燃料电池等器件中。1. In the composite electrode provided by the present invention, a surface modification layer with a microstructure array is prepared on the surface of the electrode substrate, so that the electrode surface has a microstructure array, which effectively increases the surface area and surface energy of the electrode. When the composite electrode of the present invention contacts or rubs with other materials, it can effectively increase the contact area between each other, and can be applied to devices that need to increase the contact area when the electrode contacts or rubs with other materials, such as electrostatic pulse generators, gas sensors, etc. Sensors, fuel cells and other devices.

2、纳米结构的复合电极可以有效地增加电极的表面积和表面能,从而显著地增强了复合电极的表面效应,对器件的小型化、智能化等快速实现具有重要的应用价值和科学意义。2. The nanostructured composite electrode can effectively increase the surface area and surface energy of the electrode, thereby significantly enhancing the surface effect of the composite electrode, which has important application value and scientific significance for the rapid realization of the miniaturization and intelligence of devices.

3、采用柔性材料电极基板的复合电极可以作为柔性电极应用在柔性器件上。3. The composite electrode using a flexible material electrode substrate can be used as a flexible electrode on a flexible device.

4、本发明提供的复合电极制备方法,在电极基板表面设置微结构阵列后再沉积导电薄膜层,各步骤可以根据设计需要精确控制,该方法简便,并可与其它半导体器件制备过程兼容。4. The composite electrode preparation method provided by the present invention is to deposit a conductive thin film layer after setting a microstructure array on the surface of the electrode substrate. Each step can be precisely controlled according to design requirements. The method is simple and compatible with other semiconductor device preparation processes.

附图说明Description of drawings

通过附图所示,本发明的上述及其它目的、特征和优势将更加清晰。在全部附图中相同的附图标记指示相同的部分。并未刻意按实际尺寸等比例缩放绘制附图,重点在于示出本发明的主旨。The above and other objects, features and advantages of the present invention will be more clearly illustrated by the accompanying drawings. Like reference numerals designate like parts throughout the drawings. The drawings are not intentionally scaled according to the actual size, and the emphasis is on illustrating the gist of the present invention.

图1为本发明复合电极的结构示意图;Fig. 1 is the structural representation of composite electrode of the present invention;

图2为本发明复合电极的制备流程图;Fig. 2 is the preparation flowchart of composite electrode of the present invention;

图3和图4为制备复合电极过程示意图。Figure 3 and Figure 4 are schematic diagrams of the preparation process of the composite electrode.

具体实施方式Detailed ways

在半导体器件中,电极的表面结构对器件的性能有重要影响,通常依靠电极材料制备时自然形成的表面与器件的其它部分接触,由于这样形成的电极表面为平整表面,对于需要电极与其它材料接触或摩擦的器件,不能满足电极与其它材料接触或摩擦时增大接触面积的需求。In semiconductor devices, the surface structure of the electrode has an important impact on the performance of the device. Usually, the surface formed naturally when the electrode material is prepared is in contact with other parts of the device. Contact or friction devices cannot meet the need to increase the contact area when the electrode contacts or rubs with other materials.

本发明提供一种可以表面为微结构阵列的的复合电极,其技术方案是在基板表面沉积微结构阵列作为模板,然后再沉积导电薄膜层材料,获得表面具有微结构阵列修饰层的电极。The invention provides a composite electrode whose surface can be a microstructure array. The technical solution is to deposit a microstructure array on the surface of a substrate as a template, and then deposit a conductive thin film layer material to obtain an electrode with a microstructure array modification layer on the surface.

具体的,可以在电极基板表面采用化学方法制备微结构阵列,然后用物理方法沉积导电薄膜层,以达到增加电极材料表面粗糙度的目的。本发明人认为,这种材料表面的化学和物理综合改性方法获得的纳米阵列结构和另一种材料相互接触时,这些纳米阵列可以插入另一种材料以增加摩擦和接触面积。有研究表明,额外的摩擦和增加的接触面积能够有效地增大接触电荷密度,因此,本发明的复合电极可以应用在静电纳米发电机中,同时作为发电机的一个摩擦层,与其它材料摩擦时可以获得更高的输出功率。在气敏传感器、燃料电池等器件中,采用本发明的复合电极,可以增加气体或液体与电极表面的接触面积,从而可以获得更高的输出。Specifically, a microstructure array can be prepared on the surface of the electrode substrate by a chemical method, and then a conductive thin film layer can be deposited by a physical method to achieve the purpose of increasing the surface roughness of the electrode material. The inventor believes that when the nano-array structure obtained by the comprehensive chemical and physical modification method of the surface of the material is in contact with another material, these nano-arrays can be inserted into the other material to increase the friction and contact area. Studies have shown that additional friction and increased contact area can effectively increase the contact charge density. Therefore, the composite electrode of the present invention can be used in electrostatic nanogenerators, and at the same time as a friction layer of the generator, friction with other materials higher output power can be obtained. In devices such as gas sensors, fuel cells, etc., the composite electrode of the invention can increase the contact area between gas or liquid and the electrode surface, thereby obtaining higher output.

下面结合附图详细介绍本发明悬臂式脉冲发电机的具体实施方式。The specific implementation of the cantilever pulse generator of the present invention will be described in detail below in conjunction with the accompanying drawings.

图1为本发明的复合电极结构示意图,所述复合电极包括电极基板10,设置在电极基板10上表面的微结构阵列20,以及沉积在设置有微结构阵列20的电极基板10表面的导电薄膜层30。Fig. 1 is the structure diagram of composite electrode of the present invention, and described composite electrode comprises electrode substrate 10, the microstructure array 20 that is arranged on the upper surface of electrode substrate 10, and the conductive film deposited on the surface of electrode substrate 10 that is provided with microstructure array 20 Layer 30.

本发明中,电极基板10为根据实际需要选择的基板材料,这里不做特别限定,可以为导体、半导体或绝缘体。优选的,电极基板10为导体。更优选的,导电薄膜层30与电极基板10采用相同的材料。In the present invention, the electrode substrate 10 is a substrate material selected according to actual needs, which is not particularly limited here, and may be a conductor, a semiconductor or an insulator. Preferably, the electrode substrate 10 is a conductor. More preferably, the conductive film layer 30 is made of the same material as the electrode substrate 10 .

电极基板10的材料可以为硬性的,例如玻璃、铝板等硬性基板,也可以为柔性的,例如PMMA薄膜、铜箔等。采用柔性的电极基板的复合电极可以应用在柔性器件中。The material of the electrode substrate 10 can be rigid, such as rigid substrates such as glass and aluminum plate, or flexible, such as PMMA film, copper foil, etc. Composite electrodes using flexible electrode substrates can be used in flexible devices.

本发明中,微结构阵列20可以为选自纳米线、纳米管、纳米颗粒、纳米沟槽、微米沟槽、纳米锥、微米锥、纳米球和微米球状结构的阵列,其中,每个阵列单元的尺寸在20纳米到2微米之间。微结构阵列20的高度优选在200纳米至2微米之间。In the present invention, the microstructure array 20 may be an array selected from nanowires, nanotubes, nanoparticles, nanogrooves, microgrooves, nanocones, microcones, nanospheres and microsphere structures, wherein each array unit The size is between 20 nanometers and 2 micrometers. The height of the microstructure array 20 is preferably between 200 nm and 2 microns.

在本发明中,微结构阵列20相当于在电极基板表面设置微结构模板,因此微结构阵列的材料选择无特殊要求,可以为任意能够制备成微米或纳米尺寸微结构的导体、半导体或绝缘体材料,本发明中优选为氧化物半导体材料,例如ZnO、SnO2等半导体材料,更具体的,可以为ZnO纳米线阵列。微结构阵列20可以是采用物理或化学方法直接在电极基板表面上生长获得的微结构阵列,也可以是采用微纳加工技术将预先制备好的微结构直接放置在电极基板的表面来获得微结构阵列。In the present invention, the microstructure array 20 is equivalent to setting a microstructure template on the surface of the electrode substrate, so there is no special requirement for the material selection of the microstructure array, and it can be any conductor, semiconductor or insulator material that can be prepared into a microstructure of micron or nanometer size In the present invention, it is preferably an oxide semiconductor material, such as ZnO, SnO 2 and other semiconductor materials, and more specifically, it can be a ZnO nanowire array. The microstructure array 20 can be a microstructure array obtained by directly growing on the surface of the electrode substrate by physical or chemical methods, or it can be obtained by placing a pre-prepared microstructure directly on the surface of the electrode substrate by using micro-nano processing technology. array.

导电薄膜层30的材料可以选择金属薄膜材料或导电氧化物材料,金属材料优选Ag、Au、Cu、Al等薄膜,导电氧化物薄膜优选为铟锡氧化物(ITO)薄膜。本发明的复合电极中,导电薄膜层30采用溅射、蒸镀等常规薄膜制备方法沉积形成薄膜。导电薄膜层30的沉积厚度范围优选为在50纳米至400纳米之间。The material of the conductive thin film layer 30 can be metal thin film material or conductive oxide material, the metal material is preferably Ag, Au, Cu, Al and other thin films, and the conductive oxide thin film is preferably indium tin oxide (ITO) thin film. In the composite electrode of the present invention, the conductive thin film layer 30 is deposited to form a thin film by conventional thin film preparation methods such as sputtering and evaporation. The deposition thickness of the conductive thin film layer 30 is preferably within a range of 50 nm to 400 nm.

相应的,本发明还提供一种复合电极的制备方法,图2为制备复合电极的流程图,包括:Correspondingly, the present invention also provides a method for preparing a composite electrode. FIG. 2 is a flow chart for preparing a composite electrode, including:

步骤S1,提供电极基板。Step S1, providing an electrode substrate.

本发明中,电极基板可以为柔性基板,也可以为硬性基板。所述电极基板根据实际器件需要可以为导电基板,也可以为半导体或绝缘体基板。In the present invention, the electrode substrate may be a flexible substrate or a rigid substrate. The electrode substrate may be a conductive substrate, or a semiconductor or insulator substrate according to actual device requirements.

步骤S2,在所述电极基板的上表面设置微结构阵列。Step S2, setting a microstructure array on the upper surface of the electrode substrate.

本发明中,所述微结构阵列的材料可以选择任意能够制备成微米或纳米尺寸微结构的导体、半导体或绝缘体材料。In the present invention, the material of the microstructure array can be selected from any conductor, semiconductor or insulator material that can be prepared into microstructures of micron or nanometer size.

步骤S3,在设置有所述微结构阵列的电极基板上表面沉积导电薄膜层。Step S3, depositing a conductive film layer on the surface of the electrode substrate provided with the microstructure array.

本发明中,所述导电薄膜层可以为金属或导电氧化物薄膜层,该导电薄膜层可以采用溅射、蒸镀等常规薄膜制备方法进行沉积。In the present invention, the conductive thin film layer may be a metal or conductive oxide thin film layer, and the conductive thin film layer may be deposited by conventional thin film preparation methods such as sputtering and evaporation.

本发明提供的复合电极制备方法,在电极基板表面设置微结构阵列后再沉积导电薄膜层,各步骤可以根据需要精确控制,该方法简便,并可与其它半导体器件制备过程兼容。下面以一个具体例子介绍本发明的复合电极的制备过程。The preparation method of the composite electrode provided by the invention is to deposit a conductive thin film layer after setting the microstructure array on the surface of the electrode substrate, and each step can be precisely controlled according to the needs. The method is simple and compatible with other semiconductor device preparation processes. The preparation process of the composite electrode of the present invention will be described below with a specific example.

选择铍铜合金片作为电极基板,参见图3,在铍铜合金电极基板10的上表面上采用水热合成法制备ZnO纳米线阵列20,ZnO纳米线基本垂直与电极基板10的表面,ZnO纳米线的长度纳米线的长度约为500纳米。Select the beryllium-copper alloy sheet as the electrode substrate, see Fig. 3, adopt the hydrothermal synthesis method to prepare the ZnO nanowire array 20 on the upper surface of the beryllium-copper alloy electrode substrate 10, the ZnO nanowire is basically perpendicular to the surface of the electrode substrate 10, the ZnO nanometer Wire Length The length of the nanowire is about 500 nanometers.

参见图4,在制备有ZnO纳米线阵列20的电极基板10表面采用磁控溅射方法沉积厚度约为200纳米的Au薄膜层30,在铍铜合金表面获得了具有微结构阵列修饰层,完成复合电极的制备。Referring to Fig. 4, on the surface of the electrode substrate 10 prepared with the ZnO nanowire array 20, the Au film layer 30 with a thickness of about 200 nanometers is deposited by the magnetron sputtering method, and a modified layer with a microstructure array is obtained on the surface of the beryllium copper alloy. Preparation of composite electrodes.

以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。The above descriptions are only preferred embodiments of the present invention, and do not limit the present invention in any form. Any person familiar with the art, without departing from the scope of the technical solution of the present invention, can use the methods and technical content disclosed above to make many possible changes and modifications to the technical solution of the present invention, or modify it into an equivalent of equivalent change Example. Therefore, any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention, which do not deviate from the technical solution of the present invention, still fall within the protection scope of the technical solution of the present invention.

Claims (12)

1.一种复合电极,其特征在于,包括:1. A composite electrode, characterized in that, comprising: 电极基板;electrode substrate; 设置在所述电极基板上表面的微结构阵列;a microstructure array arranged on the upper surface of the electrode substrate; 沉积在设置有所述微结构阵列的电极基板表面的导电薄膜层。A conductive thin film layer deposited on the surface of the electrode substrate provided with the microstructure array. 2.根据权利要求1所述的复合电极,其特征在于,所述微结构阵列选自纳米线、纳米管、纳米颗粒、纳米沟槽、微米沟槽、纳米锥、微米锥、纳米球和微米球状结构的阵列。2. The composite electrode according to claim 1, wherein the microstructure array is selected from the group consisting of nanowires, nanotubes, nanoparticles, nanogrooves, microgrooves, nanocones, microcones, nanospheres and microstructures. Array of spherical structures. 3.根据权利要求1或2所述的复合电极,其特征在于,所述微结构阵列的材料选自氧化物半导体材料。3. The composite electrode according to claim 1 or 2, characterized in that, the material of the microstructure array is selected from oxide semiconductor materials. 4.根据权利要求3所述的复合电极,其特征在于,所述微结构阵列为ZnO纳米线阵列。4. The composite electrode according to claim 3, wherein the microstructure array is a ZnO nanowire array. 5.根据权利要求1-4任一项所述的复合电极,其特征在于,所述微结构阵列的高度在200纳米至2微米之间。5. The composite electrode according to any one of claims 1-4, characterized in that the height of the microstructure array is between 200 nanometers and 2 micrometers. 6.根据权利要求1-5任一项所述的复合电极,其特征在于,所述导电薄膜层采用金属薄膜或导电氧化物薄膜。6. The composite electrode according to any one of claims 1-5, characterized in that, the conductive thin film layer is a metal thin film or a conductive oxide thin film. 7.根据权利要求6所述的复合电极,其特征在于,所述金属选自Ag、Au、Cu、Al;所述导电氧化物选自铟锡氧化物。7. The composite electrode according to claim 6, wherein the metal is selected from Ag, Au, Cu, Al; and the conductive oxide is selected from indium tin oxide. 8.根据权利要求1-7任一项所述的复合电极,其特征在于,所述导电薄膜层的厚度在50纳米至400纳米之间。8. The composite electrode according to any one of claims 1-7, characterized in that, the thickness of the conductive film layer is between 50 nanometers and 400 nanometers. 9.根据权利要求1-8任一项所述的复合电极,其特征在于,所述电极基板为导体。9. The composite electrode according to any one of claims 1-8, wherein the electrode substrate is a conductor. 10.根据权利要求1-9任一项所述的复合电极,其特征在于,所述电极基板为柔性基板。10. The composite electrode according to any one of claims 1-9, wherein the electrode substrate is a flexible substrate. 11.根据权利要求1-10任一项所述的复合电极,其特征在于,所述电极基板与所述导电薄膜层采用相同的材料。11. The composite electrode according to any one of claims 1-10, characterized in that the electrode substrate and the conductive film layer are made of the same material. 12.一种复合电极制备方法,其特征在于,包括步骤:12. A composite electrode preparation method, characterized in that, comprising the steps of: 提供电极基板;Provide electrode substrate; 在所述电极基板上表面设置微结构阵列;setting a microstructure array on the upper surface of the electrode substrate; 在设置有所述微结构阵列的电极基板表面沉积导电薄膜层。A conductive thin film layer is deposited on the surface of the electrode substrate provided with the microstructure array.
CN201310231644.7A 2013-06-09 2013-06-09 Composite electrode and preparation method thereof Pending CN103779400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310231644.7A CN103779400A (en) 2013-06-09 2013-06-09 Composite electrode and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310231644.7A CN103779400A (en) 2013-06-09 2013-06-09 Composite electrode and preparation method thereof

Publications (1)

Publication Number Publication Date
CN103779400A true CN103779400A (en) 2014-05-07

Family

ID=50571452

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310231644.7A Pending CN103779400A (en) 2013-06-09 2013-06-09 Composite electrode and preparation method thereof

Country Status (1)

Country Link
CN (1) CN103779400A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538293A (en) * 2014-12-30 2015-04-22 清华大学 Method for preparing gold nano array structure on target electrode of chip structure
CN106865491A (en) * 2015-12-14 2017-06-20 国网智能电网研究院 A kind of nano-electrode array and preparation method thereof
CN106872564A (en) * 2015-12-14 2017-06-20 国网智能电网研究院 A kind of SF6Gas sensor
CN106876259A (en) * 2015-12-11 2017-06-20 昆山工研院新型平板显示技术中心有限公司 A kind of flexible conductive wire and it is provided with the flexible back plate of the flexible conductive
CN108918599A (en) * 2018-05-08 2018-11-30 中芯集成电路(宁波)有限公司 A kind of gas sensor and forming method thereof
CN109075189A (en) * 2015-12-02 2018-12-21 于利奇研究中心有限公司 Method for manufacturing the flat contact free face of nanometer semiconductor structure
CN114551970A (en) * 2021-11-17 2022-05-27 万向一二三股份公司 Self-charging type all-solid-state battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1470083A (en) * 2000-10-20 2004-01-21 ��ʡ��ѧԺ Mesh battery structure with controlled porosity
US20080036038A1 (en) * 2006-03-10 2008-02-14 Hersee Stephen D PULSED GROWTH OF CATALYST-FREE GROWITH OF GaN NANOWIRES AND APPLICATION IN GROUP III NITRIDE SEMICONDUCTOR BULK MATERIAL
CN101217166A (en) * 2007-12-26 2008-07-09 南京大学 Dye-sensitized solar cell working electrode
CN101593675A (en) * 2008-05-28 2009-12-02 中国科学院半导体研究所 A method for growing epitaxial wafers with nanofold structure active region
CN101922015A (en) * 2010-08-25 2010-12-22 中国科学院半导体研究所 A kind of fabrication method of InGaN semiconductor photoelectrode
CN101950763A (en) * 2010-07-09 2011-01-19 清华大学 Phosphorus-doped core-shell type structural solar cell based on silicon line arrays and fabrication method thereof
CN102157617A (en) * 2011-01-31 2011-08-17 常州大学 Preparation method of silicon-based nano-wire solar cell
US20130143414A1 (en) * 2010-08-11 2013-06-06 Arizona Board Of Regents On Behalf Of The University Of Arizona Nanostructured electrodes and active polymer layers

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1470083A (en) * 2000-10-20 2004-01-21 ��ʡ��ѧԺ Mesh battery structure with controlled porosity
US20080036038A1 (en) * 2006-03-10 2008-02-14 Hersee Stephen D PULSED GROWTH OF CATALYST-FREE GROWITH OF GaN NANOWIRES AND APPLICATION IN GROUP III NITRIDE SEMICONDUCTOR BULK MATERIAL
CN101217166A (en) * 2007-12-26 2008-07-09 南京大学 Dye-sensitized solar cell working electrode
CN101593675A (en) * 2008-05-28 2009-12-02 中国科学院半导体研究所 A method for growing epitaxial wafers with nanofold structure active region
CN101950763A (en) * 2010-07-09 2011-01-19 清华大学 Phosphorus-doped core-shell type structural solar cell based on silicon line arrays and fabrication method thereof
US20130143414A1 (en) * 2010-08-11 2013-06-06 Arizona Board Of Regents On Behalf Of The University Of Arizona Nanostructured electrodes and active polymer layers
CN101922015A (en) * 2010-08-25 2010-12-22 中国科学院半导体研究所 A kind of fabrication method of InGaN semiconductor photoelectrode
CN102157617A (en) * 2011-01-31 2011-08-17 常州大学 Preparation method of silicon-based nano-wire solar cell

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538293B (en) * 2014-12-30 2017-05-24 清华大学 Method for preparing gold nano array structure on target electrode of chip structure
CN104538293A (en) * 2014-12-30 2015-04-22 清华大学 Method for preparing gold nano array structure on target electrode of chip structure
CN109075189A (en) * 2015-12-02 2018-12-21 于利奇研究中心有限公司 Method for manufacturing the flat contact free face of nanometer semiconductor structure
CN109075189B (en) * 2015-12-02 2022-03-25 于利奇研究中心有限公司 Method for producing flat free contact surfaces of semiconductor nanostructures
CN106876259A (en) * 2015-12-11 2017-06-20 昆山工研院新型平板显示技术中心有限公司 A kind of flexible conductive wire and it is provided with the flexible back plate of the flexible conductive
CN106876259B (en) * 2015-12-11 2019-12-13 昆山工研院新型平板显示技术中心有限公司 A flexible conductive wire and a flexible backplane provided with the flexible conductivity
CN106872564A (en) * 2015-12-14 2017-06-20 国网智能电网研究院 A kind of SF6Gas sensor
CN106865491B (en) * 2015-12-14 2019-07-19 国网智能电网研究院 A kind of nanometer electrode array and preparation method thereof
CN106865491A (en) * 2015-12-14 2017-06-20 国网智能电网研究院 A kind of nano-electrode array and preparation method thereof
CN108918599A (en) * 2018-05-08 2018-11-30 中芯集成电路(宁波)有限公司 A kind of gas sensor and forming method thereof
CN108918599B (en) * 2018-05-08 2022-01-11 中芯集成电路(宁波)有限公司 Gas sensor and forming method thereof
CN114551970A (en) * 2021-11-17 2022-05-27 万向一二三股份公司 Self-charging type all-solid-state battery
CN114551970B (en) * 2021-11-17 2023-08-15 万向一二三股份公司 Self-charging all-solid-state battery

Similar Documents

Publication Publication Date Title
CN103779400A (en) Composite electrode and preparation method thereof
Qian et al. Direct observation of indium conductive filaments in transparent, flexible, and transferable resistive switching memory
CN202679272U (en) A nanometer generator with mixed piezoelectric and triboelectric films
CN103368453B (en) A kind of sliding friction nano generator and electricity-generating method
CN104283453B (en) Sliding friction generator, generating method and vector displacement sensor
CN103780122B (en) A sliding friction nanogenerator set
CN103368449B (en) Nanometer electric generator utilizing sliding friction
CN103368451B (en) A kind of sliding friction nano generator
CN103294275B (en) A kind of Non-contact flexible controller and preparation method thereof
CN104616837B (en) Preparation method of planar ordered metal nanowire laminated transparent conductive film
CN109474200B (en) Friction generator based on miura-ori folding and having piezoelectric enhancement effect
WO2014198155A1 (en) Single-electrode friction nano generator, power generation method and self-driven tracker
CN105185898B (en) A flexible transparent functional device and its preparation method
CN102993820A (en) Carbon nano material/metal nano material composite nano ink
CN103253629B (en) A Method for Precise and Orderly Assembly of Nanoparticles
CN106601382A (en) Flexible transparent conductive film preparation method
CN103684044B (en) Piezoelectric film generator and manufacturing method thereof
CN104253562B (en) Enclosed single electrode friction nanometer power generator, electricity-generating method and follow-up mechanism
WO2013181952A1 (en) A hybrid piezoelectric and triboelectric nanogenerator
CN103532425A (en) Nanometer friction generator driven by magnetic field
CN105789549B (en) A method of preparing electrode in two-dimensional material
Park et al. Piezoelectric BaTiO3 microclusters and embossed ZnSnO3 microspheres-based monolayer for highly-efficient and flexible composite generator
CN107610814A (en) A kind of transparency electrode based on super thin metal grid and preparation method thereof
CN103030097A (en) Method for preparing wafer level low-dimensional nanostructures based on electrostatic field self-focusing
CN102623174B (en) Method for preparing high energy density capacitor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: BEIJING INSTITUTE OF NANOENERGY AND NANOSYSTEMS

Free format text: FORMER OWNER: STATE NANOMETER SCIENCE CENTER

Effective date: 20150228

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 100190 HAIDIAN, BEIJING TO: 100083 HAIDIAN, BEIJING

TA01 Transfer of patent application right

Effective date of registration: 20150228

Address after: 100083 Haidian District, Xueyuan Road, No. 30, building C, block

Applicant after: BEIJING INSTITUTE OF NANOENERGY AND NANOSYSTEMS

Address before: 100190 Beijing, Zhongguancun, north of a No. 11, No.

Applicant before: State Nanometer Science Center

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20140507