CN103776436B - The rotor type micro gyroscope detection device of time-division frequency division multiplexing - Google Patents
The rotor type micro gyroscope detection device of time-division frequency division multiplexing Download PDFInfo
- Publication number
- CN103776436B CN103776436B CN201410060040.5A CN201410060040A CN103776436B CN 103776436 B CN103776436 B CN 103776436B CN 201410060040 A CN201410060040 A CN 201410060040A CN 103776436 B CN103776436 B CN 103776436B
- Authority
- CN
- China
- Prior art keywords
- unit
- signal
- feedback control
- time
- control signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 34
- 238000006243 chemical reaction Methods 0.000 claims abstract description 51
- 238000006073 displacement reaction Methods 0.000 claims description 4
- 230000035945 sensitivity Effects 0.000 claims description 3
- 238000005086 pumping Methods 0.000 claims 15
- 230000005611 electricity Effects 0.000 claims 1
- 230000005284 excitation Effects 0.000 abstract description 30
- 239000003990 capacitor Substances 0.000 description 27
- 238000000034 method Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/02—Rotary gyroscopes
- G01C19/04—Details
- G01C19/06—Rotors
- G01C19/08—Rotors electrically driven
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/02—Rotary gyroscopes
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Gyroscopes (AREA)
Abstract
时分频分复用的转子式微陀螺检测装置,属于MEMS器件领域,本发明为解决现有两种差分电容检测方法存在问题。本发明包括转子式微陀螺敏感单元、电荷电压转换单元、相敏解调单元、模数转换单元、信号处理单元、数模转换单元、第一低高压转换单元、第二低高压转换单元和两个时分频分复用单元;两个时分频分复用单元的载波激励信号V+、V‑与反馈控制信号复用加载至转子式微陀螺敏感单元;转子式微陀螺敏感单元的等效陀螺信号输出端与相敏解调单元的输入端相连;相敏解调单元的解调信号输出检测信号;相敏解调单元的解调信号输出端与模数转换单元的模拟信号输入端相连;然后进行模数转换、信号处理、数模转换和低压变高压,反馈至两个时分频分复用单元。
The invention discloses a rotor-type micro-gyroscope detection device with time-division frequency-division multiplexing, which belongs to the field of MEMS devices. The invention solves the problems existing in two existing differential capacitance detection methods. The invention includes a rotor-type micro-gyro sensitive unit, a charge-voltage conversion unit, a phase-sensitive demodulation unit, an analog-to-digital conversion unit, a signal processing unit, a digital-to-analog conversion unit, a first low-high-voltage conversion unit, a second low-high-voltage conversion unit and two Time division frequency division multiplexing unit; the carrier excitation signal V + , V ‑ and the feedback control signal of the two time division frequency division multiplexing units are multiplexed and loaded to the rotor type micro gyro sensitive unit; the equivalent gyro signal of the rotor type micro gyro sensitive unit The output end is connected with the input end of the phase-sensitive demodulation unit; the demodulation signal output detection signal of the phase-sensitive demodulation unit; the demodulation signal output end of the phase-sensitive demodulation unit is connected with the analog signal input end of the analog-to-digital conversion unit; then Perform analog-to-digital conversion, signal processing, digital-to-analog conversion, and low-voltage to high-voltage conversion, and feed back to two time-division frequency-division multiplexing units.
Description
技术领域technical field
本发明涉一种微陀螺检测技术,属于MEMS器件领域。The invention relates to a micro-gyroscope detection technology and belongs to the field of MEMS devices.
背景技术Background technique
对于高精度微型传感器的检测电路,特别是转子式微陀螺传感器,基于转子偏转角度方法来实现角速度信号检测,采用差分电容检测方法来实现位移信号的拾取。该方法与其它检测方法相比,具有检测精度高(<10-14米)、线性度高(<10-4)、非接触测量等技术优势。目前主要有两种差分电容检测方法,第一种是采用中间电极激励(单一频率)方法,同时检测多组电容变化,然而由于电荷放大器的高阻特点,容易形成同频检测干扰,存在通道耦合现象,因此此类方法应用较少。第二种方法应用较多,各矢量方向电容(4对差分电容)加多频激励(频分复用)方法,同时检测多组电容变化,然而该方法由于电子器件的非理想特性(增益带宽积、转换速率、建立时间等参数限定)使得频分复用方法中存在相敏解调混叠现象,从而导致各矢量电容检测的交叉灵敏度问题。为避免上述问题的出现,必须将各激励信号频率差增大,并增加高阶带通滤波器,然而由于滤波器的相位温漂问题将引起微陀螺的灵敏度及零位发生漂移。同时,由于转子式微陀螺传感器的转子悬浮在腔体中,当转子受到外界干扰无法直接连线,需要闭环反馈控制,才能保证转子工作在零位。For the detection circuit of high-precision micro-sensors, especially the rotor-type micro-gyro sensor, the angular velocity signal detection is realized based on the rotor deflection angle method, and the displacement signal is picked up by using the differential capacitance detection method. Compared with other detection methods, this method has technical advantages such as high detection accuracy (<10 -14 meters), high linearity (<10 -4 ), and non-contact measurement. At present, there are mainly two differential capacitance detection methods. The first one is to use the middle electrode excitation (single frequency) method to detect multiple sets of capacitance changes at the same time. However, due to the high resistance characteristics of the charge amplifier, it is easy to form interference with the same frequency detection, and there is channel coupling. phenomenon, so such methods are rarely used. The second method is widely used. Each vector direction capacitance (4 pairs of differential capacitance) plus multi-frequency excitation (frequency division multiplexing) method can detect multiple sets of capacitance changes at the same time. However, due to the non-ideal characteristics of electronic devices (gain bandwidth Product, slew rate, settling time and other parameters) make the phase-sensitive demodulation aliasing phenomenon exist in the frequency division multiplexing method, which leads to the cross-sensitivity problem of each vector capacitance detection. In order to avoid the above problems, it is necessary to increase the frequency difference of each excitation signal and add a high-order band-pass filter. However, the sensitivity and zero position of the micro-gyroscope will drift due to the phase temperature drift of the filter. At the same time, since the rotor of the rotor-type micro-gyro sensor is suspended in the cavity, when the rotor is disturbed by the outside world, it cannot be connected directly. Closed-loop feedback control is required to ensure that the rotor works at zero position.
发明内容Contents of the invention
本发明目的是为了解决现有两种差分电容检测方法存在的问题,提供了一种时分频分复用的转子式微陀螺检测装置。The object of the present invention is to solve the problems existing in the two existing differential capacitance detection methods, and to provide a rotor-type micro-gyroscope detection device with time division and frequency division multiplexing.
本发明所述时分频分复用的转子式微陀螺检测装置,它包括转子式微陀螺敏感单元、电荷电压转换单元、相敏解调单元、模数转换单元、信号处理单元、数模转换单元、第一低高压转换单元、第二低高压转换单元、第一时分频分复用单元和第二时分频分复用单元;The time-division-frequency-division multiplexing rotor-type micro-gyroscope detection device of the present invention includes a rotor-type micro-gyroscope sensitive unit, a charge-voltage conversion unit, a phase-sensitive demodulation unit, an analog-to-digital conversion unit, a signal processing unit, a digital-to-analog conversion unit, A first low-voltage conversion unit, a second low-voltage conversion unit, a first time-division frequency-division multiplexing unit, and a second time-division frequency-division multiplexing unit;
第一时分频分复用单元的载波激励信号V+与反馈控制信号复用加载至转子式微陀螺敏感单元的第一组复用信号输入端;The carrier excitation signal V + and the feedback control signal of the first time-division frequency-division multiplexing unit are multiplexed and loaded to the first group of multiplexed signal input terminals of the rotor-type micro-gyroscope sensitive unit;
第二时分频分复用单元的载波激励信号V-与反馈控制信号复用加载至转子式微陀螺敏感单元的第二组复用信号输入端;The carrier excitation signal V- of the second time - division frequency-division multiplexing unit is multiplexed with the feedback control signal and loaded to the second group of multiplexing signal input terminals of the rotor-type micro-gyroscope sensitive unit;
转子式微陀螺敏感单元的等效陀螺信号输出端与相敏解调单元的输入端相连;The equivalent gyro signal output end of the rotor type micro gyro sensitive unit is connected with the input end of the phase sensitive demodulation unit;
相敏解调单元的解调信号输出端作为时分频分复用的转子式微陀螺检测装置的检测信号输出端;The demodulation signal output end of the phase-sensitive demodulation unit is used as the detection signal output end of the rotor type micro-gyroscope detection device with time division and frequency division multiplexing;
相敏解调单元的解调信号输出端与模数转换单元的模拟信号输入端相连;The demodulation signal output end of the phase-sensitive demodulation unit is connected with the analog signal input end of the analog-to-digital conversion unit;
模数转换单元的数字信号输出端与信号处理单元的输入端相连;The digital signal output end of the analog-to-digital conversion unit is connected to the input end of the signal processing unit;
信号处理单元的输出端与数模转换单元的数字信号输入端相连;The output end of the signal processing unit is connected with the digital signal input end of the digital-to-analog conversion unit;
数模转换单元的模拟信号输出端同时与第一低高压转换单元的低压信号输入端和第二低高压转换单元的低压信号输入端相连;The analog signal output end of the digital-to-analog conversion unit is simultaneously connected to the low-voltage signal input end of the first low-high-voltage conversion unit and the low-voltage signal input end of the second low-high-voltage conversion unit;
第一低高压转换单元的反馈信控制号输出端与第一时分频分复用单元的反馈控制信号输入端相连;The feedback signal control signal output terminal of the first low-voltage conversion unit is connected to the feedback control signal input terminal of the first time division frequency division multiplexing unit;
第二低高压转换单元的反馈控制信号输出端与第二时分频分复用单元的反馈控制信号输入端相连;The feedback control signal output end of the second low-voltage conversion unit is connected to the feedback control signal input end of the second time division frequency division multiplexing unit;
载波激励信号V+与载波激励信号V-的相位相差180°。The phase difference between the carrier excitation signal V + and the carrier excitation signal V - is 180°.
本发明的优点:为实现转子径向偏转角度的检测,本发明采用8个激励电极与转子一起构成4对差分电容和1对电荷拾取电极与转子构成1对拾取电容,实现电容变化的检测,从而间接实现转子陀螺的双轴(X轴、Y轴)角速度信号拾取。本发明采用时分复用+调制解调技术解决多频率相敏解调信号混叠现象,由于仅采用单一频率激励信号,因此彻底消除了各轴向检测的交叉灵敏度。激励信号通过两个时分频分复用单元中的φ1-φ4时序开关分时连接至四对差分电容,电容变化通过电荷放大器检测及放大,再次通过相敏解调单元中的φ1-φ4时序开关进行相敏解调,从而间接实现转子的径向偏转角度拾取。陀螺中转子位置控制采用静电力伺服原理实现。为实现伺服电压的幅值最小化、检测电容的最大化,采用电容检测电极与静电力伺服控制电极共用的方法,即在相同电极下采用RC隔离、频分复用方法实现电容检测及静电力伺服。其中静电力反馈电压信号通过数字信号处理器完成双轴角速度矢量计算、静态补偿及电压矢量动态分配。The advantages of the present invention: in order to realize the detection of the radial deflection angle of the rotor, the present invention adopts 8 excitation electrodes and the rotor together to form 4 pairs of differential capacitors and 1 pair of charge pickup electrodes and the rotor to form 1 pair of pickup capacitors to realize the detection of capacitance changes. Thus, the dual-axis (X-axis, Y-axis) angular velocity signal pickup of the rotor gyroscope is realized indirectly. The invention adopts time division multiplexing + modulation and demodulation technology to solve the aliasing phenomenon of multi-frequency phase-sensitive demodulation signals, and completely eliminates the cross-sensitivity of each axial detection because only a single-frequency excitation signal is used. The excitation signal is time-divisionally connected to four pairs of differential capacitors through the φ 1 -φ 4 timing switches in the two time division frequency division multiplexing units. The capacitance change is detected and amplified by the charge amplifier, and then passed through the φ 1 in the phase sensitive demodulation unit - φ 4 timing switches for phase-sensitive demodulation, thereby indirectly realizing the pick-up of the radial deflection angle of the rotor. The position control of the rotor in the gyroscope is realized by the principle of electrostatic force servo. In order to minimize the amplitude of the servo voltage and maximize the detection capacitance, the method of sharing the capacitance detection electrode and the electrostatic force servo control electrode is adopted, that is, RC isolation and frequency division multiplexing are used to realize capacitance detection and electrostatic force under the same electrode. servo. Among them, the electrostatic force feedback voltage signal completes the biaxial angular velocity vector calculation, static compensation and dynamic distribution of the voltage vector through the digital signal processor.
附图说明Description of drawings
图1是本发明所述时分频分复用的转子式微陀螺检测装置的原理框图;Fig. 1 is the functional block diagram of the rotor type micro-gyroscope detection device of time division frequency division multiplexing of the present invention;
图2是相敏解调单元的电路图。Fig. 2 is a circuit diagram of a phase-sensitive demodulation unit.
具体实施方式detailed description
具体实施方式一:下面结合图1说明本实施方式,本实施方式所述时分频分复用的转子式微陀螺检测装置,它包括转子式微陀螺敏感单元100、电荷电压转换单元101、相敏解调单元102、模数转换单元103、信号处理单元104、数模转换单元105、第一低高压转换单元106、第二低高压转换单元107、第一时分频分复用单元108和第二时分频分复用单元109;Specific embodiment one: the present embodiment is described below in conjunction with Fig. 1, the rotor-type micro-gyroscope detection device of time-division frequency-division multiplexing described in the present embodiment, it comprises rotor-type micro-gyroscope sensitive unit 100, charge-voltage conversion unit 101, phase-sensitive solution Tuning unit 102, analog-to-digital conversion unit 103, signal processing unit 104, digital-to-analog conversion unit 105, first low-voltage conversion unit 106, second low-voltage conversion unit 107, first time division frequency division multiplexing unit 108 and second Time division frequency division multiplexing unit 109;
第一时分频分复用单元108的载波激励信号V+与反馈控制信号复用加载至转子式微陀螺敏感单元100的第一组复用信号输入端;The carrier excitation signal V + and the feedback control signal of the first time-division frequency-division multiplexing unit 108 are multiplexed and loaded to the first group of multiplexed signal input terminals of the rotor-type micro-gyroscope sensing unit 100;
第二时分频分复用单元109的载波激励信号V-与反馈控制信号复用加载至转子式微陀螺敏感单元100的第二组复用信号输入端;The carrier excitation signal V of the second time - division frequency-division multiplexing unit 109 is multiplexed with the feedback control signal and loaded to the second group of multiplexing signal input terminals of the rotor-type micro-gyroscope sensing unit 100;
转子式微陀螺敏感单元100的等效陀螺信号输出端与相敏解调单元102的输入端相连:The equivalent gyro signal output end of the rotor type micro gyro sensitive unit 100 is connected with the input end of the phase sensitive demodulation unit 102:
相敏解调单元102的解调信号输出端作为时分频分复用的转子式微陀螺检测装置的检测信号输出端;The demodulation signal output end of the phase-sensitive demodulation unit 102 is used as the detection signal output end of the rotor type micro-gyroscope detection device with time division frequency division multiplexing;
相敏解调单元102的解调信号输出端与模数转换单元103的模拟信号输入端相连;The demodulation signal output end of the phase-sensitive demodulation unit 102 is connected with the analog signal input end of the analog-to-digital conversion unit 103;
模数转换单元103的数字信号输出端与信号处理单元104的输入端相连;The digital signal output end of the analog-to-digital conversion unit 103 is connected to the input end of the signal processing unit 104;
信号处理单元104的输出端与数模转换单元105的数字信号输入端相连;The output end of the signal processing unit 104 is connected with the digital signal input end of the digital-to-analog conversion unit 105;
数模转换单元105的模拟信号输出端同时与第一低高压转换单元106的低压信号输入端和第二低高压转换单元107的低压信号输入端相连;The analog signal output end of the digital-to-analog conversion unit 105 is simultaneously connected with the low-voltage signal input end of the first low-voltage high-voltage conversion unit 106 and the low-voltage signal input end of the second low-high-voltage conversion unit 107;
第一低高压转换单元106的反馈信控制号输出端与第一时分频分复用单元108的反馈控制信号输入端相连;The output terminal of the feedback signal control signal of the first low-voltage conversion unit 106 is connected to the input terminal of the feedback control signal of the first time division frequency division multiplexing unit 108;
第二低高压转换单元107的反馈控制信号输出端与第二时分频分复用单元109的反馈控制信号输入端相连;The feedback control signal output end of the second low-voltage high-voltage conversion unit 107 is connected to the feedback control signal input end of the second time division frequency division multiplexing unit 109;
载波激励信号V+与载波激励信号V-的相位相差180°。The phase difference between the carrier excitation signal V + and the carrier excitation signal V - is 180°.
具体实施方式二:本实施方式对实施方式一作进一步说明,转子式微陀螺敏感单元100包括四对差分电容和一对拾取电容,所述四对差分电容为C1、C5;C2、C6;C3、C7;和C4、C8;所述一对拾取电容为C9、C10;拾取电容C9和C10并联;Embodiment 2: This embodiment will further explain Embodiment 1. The rotor-type micro-gyroscope sensitive unit 100 includes four pairs of differential capacitors and a pair of pickup capacitors. The four pairs of differential capacitors are C1, C5; C2, C6; C3, C7 ; With C4, C8; the pair of pickup capacitors are C9, C10; pickup capacitors C9 and C10 are connected in parallel;
差分电容C1、C2、C3和C4加载的复用信号为载波激励信号V+和反馈控制信号;差分电容C5、C6、C7和C8加载的复用信号为载波激励信号V-和反馈控制信号;The multiplexing signals loaded by the differential capacitors C1, C2, C3 and C4 are the carrier excitation signal V + and the feedback control signal; the multiplexing signals loaded by the differential capacitors C5, C6, C7 and C8 are the carrier excitation signal V - and the feedback control signal;
差分电容C1复用加载载波激励信号V+和反馈控制信号V+ΔVx;The differential capacitor C1 multiplexes and loads the carrier excitation signal V + and the feedback control signal V+ΔV x ;
差分电容C2复用加载载波激励信号V+和反馈控制信号V+ΔVy;The differential capacitor C2 multiplexes and loads the carrier excitation signal V + and the feedback control signal V+ΔV y ;
差分电容C3复用加载载波激励信号V+和反馈控制信号V-ΔVx;The differential capacitor C3 multiplexes and loads the carrier excitation signal V + and the feedback control signal V-ΔV x ;
差分电容C4复用加载载波激励信号V+和反馈控制信号V-ΔVy;The differential capacitor C4 multiplexes and loads the carrier excitation signal V + and the feedback control signal V-ΔV y ;
差分电容C5复用加载载波激励信号V-和反馈控制信号V-ΔVx;The differential capacitor C5 multiplexes and loads the carrier excitation signal V - and the feedback control signal V-ΔV x ;
差分电容C6复用加载载波激励信号V-和反馈控制信号V-ΔVy;The differential capacitor C6 multiplexes and loads the carrier excitation signal V - and the feedback control signal V-ΔV y ;
差分电容C7复用加载载波激励信号V-和反馈控制信号V+ΔVx;The differential capacitor C7 multiplexes and loads the carrier excitation signal V - and the feedback control signal V+ΔV x ;
差分电容C8复用加载载波激励信号V-和反馈控制信号V+ΔVy;The differential capacitor C8 multiplexes and loads the carrier excitation signal V - and the feedback control signal V+ΔV y ;
四对差分电容的输出端同时与并联的一对拾取电容的输入端相连,并联的一对拾取电容的输出端作为转子式微陀螺敏感单元100的等效陀螺信号输出端。The output terminals of the four pairs of differential capacitors are simultaneously connected to the input terminals of a pair of parallel pickup capacitors, and the output terminals of the parallel pair of pickup capacitors serve as the equivalent gyro signal output terminals of the rotor-type micro-gyro sensing unit 100 .
其中:V为载波激励信号V+、V-的等效电压值,ΔVx为在X轴方向,为使转子回到平衡位置所需施加的相对电压值;ΔVy为在Y轴方向,为使转子回到平衡位置所需施加的相对电压值。Among them: V is the equivalent voltage value of the carrier excitation signal V + , V - , ΔV x is the relative voltage value in the X-axis direction to bring the rotor back to the equilibrium position; ΔV y is in the Y-axis direction, The relative voltage value required to bring the rotor back to the equilibrium position.
具体实施方式三:本实施方式对实施方式一作进一步说明,第一时分频分复用单元108和第二时分频分复用单元109结构相同,均由开关网络和求和单元组成,所述开关网络为一组分时开关φ1、φ2、φ3、φ4;由分时开关控制,并通过求和单元加载复用信号;Specific embodiment three: this embodiment will further explain embodiment one. The first time division frequency division multiplexing unit 108 and the second time division frequency division multiplexing unit 109 have the same structure, and are both composed of a switch network and a summation unit. The switch network described above is a group of time switches φ 1 , φ 2 , φ 3 , φ 4 ; it is controlled by a time-sharing switch and loaded with a multiplexing signal through a summation unit;
第一时分频分复用单元108中的分时开关φ1、φ2、φ3、φ4分别控制差分电容C1、C2、C3和C4的加载;The time-division switches φ 1 , φ 2 , φ 3 , and φ 4 in the first time-division frequency-division multiplexing unit 108 respectively control the loading of differential capacitors C1, C2, C3, and C4;
第二时分频分复用单元109中的分时开关φ1、φ2、φ3、φ4分别控制差分电容C5、C6、C7和C8的加载。The time-division switches φ 1 , φ 2 , φ 3 , φ 4 in the second time-division-frequency-division multiplexing unit 109 respectively control the loading of differential capacitors C5, C6, C7 and C8.
具体实施方式四:下面结合图2说明本实施方式,本实施方式对实施方式一作进一步说明,相敏解调单元102由一组φ1-φ4时序开关和四路相敏解调器构成,相敏解调单元102将电荷电压转换单元101输出的信号进行解调,输出四路位移信号。Specific embodiment four: the present embodiment is described below in conjunction with Fig. 2, and this embodiment is further described to embodiment one, phase-sensitive demodulation unit 102 is made up of a group of φ 1 -φ 4 timing switches and four-way phase-sensitive demodulator, The phase-sensitive demodulation unit 102 demodulates the signal output by the charge-to-voltage conversion unit 101, and outputs four shift signals.
相敏解调器将已放大的交流电压信号还原为直流电压信号,其中f0为载波激励信号V+和V-的频率。The phase-sensitive demodulator restores the amplified AC voltage signal to a DC voltage signal, where f 0 is the frequency of the carrier excitation signals V + and V - .
工作原理:working principle:
第一时分频分复用单元108和第二时分频分复用单元109中的时分开关φ1-φ4与相敏解调单元102中的时分开关φ1-φ4一起实现了信号的时分复用;第一时分频分复用单元108和第二时分频分复用单元109中通过求和单元∑将激励信号V+、V-与第一低高压转换单元106和第二低高压转换单元107输出的反馈控制信号复用在一起实现信号的频分复用。Time-division switches φ 1 -φ 4 in the first time-division frequency-division multiplexing unit 108 and the second time-division frequency-division multiplexing unit 109 together with time-division switches φ 1 -φ 4 in the phase-sensitive demodulation unit 102 have realized the signal time-division multiplexing; in the first time-division frequency-division multiplexing unit 108 and the second time-division frequency-division multiplexing unit 109, the excitation signal V + , V- is combined with the first low - voltage conversion unit 106 and the second time-division frequency division multiplexing unit 109 through the summation unit Σ The feedback control signals output by the two low-voltage and high-voltage conversion units 107 are multiplexed together to implement frequency division multiplexing of signals.
复用信号被108和109时分开关φ1-φ4分时加载在差分电容C1-C8上,并由并联的拾取电容C9、C10输出等效陀螺信号v1,该等效陀螺信号由进行检测及放大处理后输出电压信号v2;相敏解调单元102将电压信号v2解调输出四路位移信号S1、S2、S3、S4;模数转换单元103将四路位移信号S1、S2、S3、S4转换成相应的比特流信号d1、d2、d3、d4;信号处理单元104将比特流信号d1、d2、d3、d4进行处理,完成双轴角速度矢量计算、静态补偿及电压矢量动态分配,输出处理后四路数字比特流信号d11、d12、d13、d14;数模转换单元105将数字比特流信号d11、d12、d13、d14进行转换,输出相应的模拟电压值S11、S12、S13、S14,作为控制反馈电压;第一低高压转换单元106、第二低高压转换单元107将控制反馈电压S11、S12、S13、S14进行放大,由低压信号转变为高压信号V+ΔVx、V-ΔVx、V+ΔVy、V-ΔVy。The multiplexing signal is loaded on the differential capacitors C1-C8 by the time-division switches 108 and 109 φ 1 -φ 4 , and the equivalent gyro signal v 1 is output by the parallel pickup capacitors C9 and C10, and the equivalent gyro signal is detected by and amplified output voltage signal v 2 ; phase-sensitive demodulation unit 102 demodulates voltage signal v 2 to output four-way displacement signals S 1 , S 2 , S 3 , S 4 ; analog-to-digital conversion unit 103 converts four-way displacement signals S 1 , S 2 , S 3 , S 4 are converted into corresponding bit stream signals d 1 , d 2 , d 3 , d 4 ; the signal processing unit 104 performs bit stream signal d 1 , d 2 , d 3 , d 4 processing, complete the biaxial angular velocity vector calculation, static compensation and voltage vector dynamic distribution, and output the processed four-way digital bit stream signals d 11 , d 12 , d 13 , d 14 ; the digital-to-analog conversion unit 105 converts the digital bit stream signal d 11 , d 12 , d 13 , d 14 are converted, and the corresponding analog voltage values S 11 , S 12 , S 13 , S 14 are output as control feedback voltages; the first low-high-voltage conversion unit 106 and the second low-high-voltage conversion unit 107 The control feedback voltages S 11 , S 12 , S 13 , and S 14 are amplified, and the low-voltage signals are transformed into high-voltage signals V+ΔV x , V-ΔV x , V+ΔV y , V-ΔV y .
第一时分频分复用单元108将第一低高电压转换单元106的输出高电压信号和载波激励信号V+通过RC隔离、频分复用方法加载到微陀螺敏感单元100的转子的差分电容C1-C4上,第二时分频分复用单元109将第二低高电压转换单元107的输出高电压信号和载波激励信号V-通过RC隔离、频分复用方法加载到微陀螺敏感单元100的差分电容C5-C8上,共同将微陀螺敏感单元100的转子位置控制在初始位置上。其中该检测电路不受高频信号解调混频现象的影响,适合于高精度微陀螺的检测电路。The first time-division frequency-division multiplexing unit 108 loads the output high-voltage signal of the first low-high voltage conversion unit 106 and the carrier excitation signal V + to the differential of the rotor of the micro-gyro sensitive unit 100 through RC isolation and frequency division multiplexing. On the capacitors C1-C4, the second time-division frequency-division multiplexing unit 109 loads the output high-voltage signal and the carrier excitation signal V of the second low-high voltage conversion unit 107 to the micro-gyroscope sensitive The differential capacitors C5-C8 of the unit 100 jointly control the rotor position of the micro-gyroscope sensing unit 100 at the initial position. The detection circuit is not affected by the demodulation and mixing phenomenon of high-frequency signals, and is suitable for a detection circuit of a high-precision micro-gyroscope.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410060040.5A CN103776436B (en) | 2014-02-21 | 2014-02-21 | The rotor type micro gyroscope detection device of time-division frequency division multiplexing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410060040.5A CN103776436B (en) | 2014-02-21 | 2014-02-21 | The rotor type micro gyroscope detection device of time-division frequency division multiplexing |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103776436A CN103776436A (en) | 2014-05-07 |
CN103776436B true CN103776436B (en) | 2016-08-03 |
Family
ID=50568962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410060040.5A Active CN103776436B (en) | 2014-02-21 | 2014-02-21 | The rotor type micro gyroscope detection device of time-division frequency division multiplexing |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103776436B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105486327B (en) * | 2015-11-25 | 2018-10-12 | 哈尔滨工业大学 | Micromechanical gyro test angular speed generating means |
CN115824182B (en) * | 2022-12-07 | 2024-01-16 | 中国船舶集团有限公司第七〇七研究所 | Hemispherical resonator gyroscope excitation detection method and hemispherical resonator gyroscope excitation detection system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013090724A1 (en) * | 2011-12-16 | 2013-06-20 | Analog Devices, Inc. | System and method of reducing noise in a mems device |
-
2014
- 2014-02-21 CN CN201410060040.5A patent/CN103776436B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013090724A1 (en) * | 2011-12-16 | 2013-06-20 | Analog Devices, Inc. | System and method of reducing noise in a mems device |
Non-Patent Citations (2)
Title |
---|
High resolution capacitance detection circuit for rotor micro-gyroscope;Ming-Yuan Ren, et al.;《AIP ADVANCES》;20140319;第4卷;031336-1—031336-7 * |
电容检测型微机械陀螺的信号检测电路;莫冰等;《仪器仪表学报》;20050831;第26卷(第8期);324-326 * |
Also Published As
Publication number | Publication date |
---|---|
CN103776436A (en) | 2014-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6038152B2 (en) | Capacitive transducer system for detecting physical quantities | |
CN103593097B (en) | A kind of touch detecting system of terminal unit and terminal unit | |
CN111051820B (en) | Detection circuit, chip and detection system of bridge sensor | |
CN102662109B (en) | Balanced bridge | |
CN104237605B (en) | A kind of high-pressure electrostatic voltage measuring apparatus | |
JP2009097932A (en) | Capacitive detector | |
CN101424533B (en) | Compensation method and circuit for offset capacitance in MEMS gyroscope capacitance readout circuit | |
CN103776436B (en) | The rotor type micro gyroscope detection device of time-division frequency division multiplexing | |
CN103842778B (en) | Surface charge reduction technique for capacitive sensors | |
JP2004279261A (en) | Physical quantity detector | |
JP2011179822A (en) | Physical quantity sensor | |
CN102981021B (en) | Differential capacitance-voltage conversion circuit and acceleration sensor detection system | |
CN104569610A (en) | Measuring circuit of micro differential capacitor | |
JP2015125088A (en) | Capacity trimming circuit | |
CN105004259B (en) | A kind of capacitive MEMS sensor detection circuit | |
CN107132372A (en) | Structure for capacitance detection of capacitive micro-mechanical accelerometer | |
CN102778585B (en) | Sensing device | |
CN105021176A (en) | Mems gyroscope measurement and control circuit | |
CN208187334U (en) | A kind of capacitive displacement sensing device transmitted at a distance based on primary | |
CN203149016U (en) | Super capacitor single body voltage sampling measuring circuit | |
CN208187335U (en) | A kind of capacitive displacement sensing device that transmission is isolated at a distance based on dual transformer | |
CN211085271U (en) | Detection circuit, chip and detection system of bridge sensor | |
CN204944423U (en) | A kind of capacitive MEMS sensor detection circuit | |
CN208187333U (en) | A kind of capacitive displacement sensing device transmitted at a distance based on transformer secondary output | |
CN103308721B (en) | Capacitance reading circuit of inertia detecting element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |