CN103774141A - Preparation method of tungsten coating component of plasma facing body - Google Patents
Preparation method of tungsten coating component of plasma facing body Download PDFInfo
- Publication number
- CN103774141A CN103774141A CN201310488060.8A CN201310488060A CN103774141A CN 103774141 A CN103774141 A CN 103774141A CN 201310488060 A CN201310488060 A CN 201310488060A CN 103774141 A CN103774141 A CN 103774141A
- Authority
- CN
- China
- Prior art keywords
- tungsten
- zirconium
- copper alloy
- tungsten coating
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 title claims abstract description 61
- 229910052721 tungsten Inorganic materials 0.000 title claims abstract description 61
- 239000010937 tungsten Substances 0.000 title claims abstract description 61
- 238000000576 coating method Methods 0.000 title claims abstract description 53
- 239000011248 coating agent Substances 0.000 title claims abstract description 48
- 238000002360 preparation method Methods 0.000 title claims description 16
- 239000000758 substrate Substances 0.000 claims abstract description 62
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 49
- 229910052802 copper Inorganic materials 0.000 claims abstract description 37
- 239000010949 copper Substances 0.000 claims abstract description 37
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 35
- 230000006978 adaptation Effects 0.000 claims abstract description 26
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 22
- 239000007789 gas Substances 0.000 claims abstract description 16
- 239000001257 hydrogen Substances 0.000 claims abstract description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 6
- 239000002994 raw material Substances 0.000 claims abstract description 6
- NXHILIPIEUBEPD-UHFFFAOYSA-H tungsten hexafluoride Chemical compound F[W](F)(F)(F)(F)F NXHILIPIEUBEPD-UHFFFAOYSA-H 0.000 claims abstract description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000000463 material Substances 0.000 claims description 23
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 15
- 238000000151 deposition Methods 0.000 claims description 13
- 230000008021 deposition Effects 0.000 claims description 12
- 229910052726 zirconium Inorganic materials 0.000 claims description 11
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 10
- 229910052804 chromium Inorganic materials 0.000 claims description 10
- 239000011651 chromium Substances 0.000 claims description 10
- 238000004544 sputter deposition Methods 0.000 claims description 5
- 238000004140 cleaning Methods 0.000 claims description 4
- 238000007733 ion plating Methods 0.000 claims description 3
- 238000007738 vacuum evaporation Methods 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- XTYUEDCPRIMJNG-UHFFFAOYSA-N copper zirconium Chemical compound [Cu].[Zr] XTYUEDCPRIMJNG-UHFFFAOYSA-N 0.000 claims 5
- QZLJNVMRJXHARQ-UHFFFAOYSA-N [Zr].[Cr].[Cu] Chemical compound [Zr].[Cr].[Cu] QZLJNVMRJXHARQ-UHFFFAOYSA-N 0.000 abstract description 42
- 238000000034 method Methods 0.000 abstract description 37
- 238000005240 physical vapour deposition Methods 0.000 abstract description 11
- 238000009792 diffusion process Methods 0.000 abstract description 8
- 238000003466 welding Methods 0.000 abstract description 8
- 238000005096 rolling process Methods 0.000 abstract description 4
- 239000002360 explosive Substances 0.000 abstract description 3
- 238000003475 lamination Methods 0.000 abstract description 3
- 238000013329 compounding Methods 0.000 abstract description 2
- 238000003912 environmental pollution Methods 0.000 abstract 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 16
- 239000002131 composite material Substances 0.000 description 9
- 229910052786 argon Inorganic materials 0.000 description 8
- 230000004927 fusion Effects 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229910001873 dinitrogen Inorganic materials 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 238000007750 plasma spraying Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000003754 machining Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 238000005137 deposition process Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- SBYXRAKIOMOBFF-UHFFFAOYSA-N copper tungsten Chemical compound [Cu].[W] SBYXRAKIOMOBFF-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Natural products CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 1
- ALKZAGKDWUSJED-UHFFFAOYSA-N dinuclear copper ion Chemical compound [Cu].[Cu] ALKZAGKDWUSJED-UHFFFAOYSA-N 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000007603 infrared drying Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- -1 molybdenum (Mo) Chemical compound 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 229910052722 tritium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
本发明公开了一种面对等离子体的钨涂层部件的制备方法,包括如下步骤:(1)将铬锆铜合金基材根据面对等离子体部件的尺寸加工成所需的几何形状;(2)将加工好的铬锆铜合金基材的表面清洗干净,去除表面氧化层,并保持基材的温度在480℃以下,采用物理气相沉积法在铬锆铜合金基材表面形成5-100μm厚的纯度高于99.9wt%的铜中间适配层;(3)以六氟化钨气体为原料,以氢气为还原气体,在280-480℃的基材温度条件下,在铜中间适配层上进行化学气相沉积,以形成0.02-2mm厚度的钨涂层,即制得所述面对等离子体的钨涂层部件。本发明的方法相比热等静压扩散焊接、热压扩散焊接、叠层轧制、爆破复合等,工艺过程简单、成本低、易于实现,同时不会污染环境。The invention discloses a method for preparing a plasma-facing tungsten-coated component, which includes the following steps: (1) processing a chromium-zirconium-copper alloy substrate into a required geometric shape according to the size of the plasma-facing component; ( 2) Clean the surface of the processed chromium-zirconium-copper alloy substrate, remove the surface oxide layer, and keep the temperature of the substrate below 480°C, and form a 5-100μm layer on the surface of the chromium-zirconium-copper alloy substrate by physical vapor deposition. Thick copper intermediate adaptation layer with a purity higher than 99.9wt%; (3) Using tungsten hexafluoride gas as the raw material and hydrogen as the reducing gas, under the substrate temperature of 280-480°C, it is adapted in the middle of copper Chemical vapor deposition is carried out on the layer to form a tungsten coating with a thickness of 0.02-2mm, that is, the tungsten-coated part facing the plasma is produced. Compared with hot isostatic pressure diffusion welding, hot pressure diffusion welding, lamination rolling, explosive compounding, etc., the method of the present invention has simple process, low cost, easy realization and no environmental pollution.
Description
技术领域 technical field
本发明属于冶金材料技术领域,具体涉及一种面对等离子体的钨涂层部件的制备方法。 The invention belongs to the technical field of metallurgical materials, and in particular relates to a preparation method of a tungsten-coated component facing plasma. the
背景技术 Background technique
钨具有高熔点、优良的导热性能、低溅射产额和高自溅射阈值、低蒸气压以及低的氚滞留性能,被认为是当今聚变实验装置和未来聚变堆最有希望的偏滤器和第一壁的面对等离子体材料。聚变装置中的面对等离子体部件要求具有优良的抗热冲击性能,同时部分构件形状复杂,要求制造方便、简单、易于更换。由于钨的硬度高,脆性大,机加工十分困难,涂层技术成为制备形状复杂的偏滤器和第一壁部件的理想方法,其制备工艺简单、经济,可以在不用改变原有部件的结构条件下方便地完成面对等离子体材料的变更,尽管其抗热负荷能力稍逊于块体-热沉的冶金连接,但对于中等壁负载(5-7MW/m2)以下的面对等离子体部件,无疑是首选的制作方式。 Tungsten has high melting point, excellent thermal conductivity, low sputtering yield and high self-sputtering threshold, low vapor pressure, and low tritium retention performance. It is considered to be the most promising divertor and divertor for fusion experimental devices and future fusion reactors. The first wall faces the plasma material. The plasma-facing components in the fusion device are required to have excellent thermal shock resistance, and at the same time, some components have complex shapes, which require convenient, simple and easy to replace. Due to the high hardness and high brittleness of tungsten, machining is very difficult. Coating technology has become an ideal method for preparing divertors and first wall parts with complex shapes. The preparation process is simple and economical, and it can be used without changing the structural conditions of the original parts. The change of plasma-facing material is easily accomplished under the control of plasma-facing components, although its resistance to thermal loads is slightly inferior to that of block-heat sink metallurgical connections, but for plasma-facing components below moderate wall loads (5-7MW/m 2 ) , is undoubtedly the preferred production method.
钨涂层制备技术主要有等离子体喷涂(PS)、物理气相沉积(物理气相沉积)、化学气相沉积(CVD)等方式。其中,PS工艺简单、制备效率高、造价低、可原位修复且不受工件形状限制,是目前大多数研究者所采用的制备技术。但PS钨涂层的纯度低,致密度仅为烧结纯钨的90%,热导率比纯钨低25-60%。此外PS钨涂层的拉伸强度仅为烧结钨的15%,涂层与基体结合强度低,大面积制备难度较大。物理气相沉积主要的问题是低的结合力和高的杂质含量(如氧和碳),同时得到的钨涂层也只从几微米到几十微米厚, 总体来说还不是很成熟。而CVD制备的钨涂层在纯度高,可到达99.99%以上,涂层的致密度、热导率和强度与锻造纯钨相当;CVD钨具有柱状晶结构使得其具有优良的耐高热负荷性能,其裂纹仅在沿着柱状晶的方向出现;同时,CVD还可以在弯曲的基体表面上沉积涂层,能够制备复杂形状的涂层部件。因此,CVD钨涂层在制造面对等离子体部件方面,具有非常好的应用前景。 Tungsten coating preparation technologies mainly include plasma spraying (PS), physical vapor deposition (physical vapor deposition), chemical vapor deposition (CVD) and other methods. Among them, PS has simple process, high preparation efficiency, low cost, can be repaired in situ and is not limited by the shape of the workpiece, so it is the preparation technology adopted by most researchers at present. However, the purity of PS tungsten coating is low, the density is only 90% of sintered pure tungsten, and the thermal conductivity is 25-60% lower than that of pure tungsten. In addition, the tensile strength of the PS tungsten coating is only 15% of that of sintered tungsten, and the bonding strength between the coating and the substrate is low, making it difficult to prepare a large area. The main problem of physical vapor deposition is low binding force and high impurity content (such as oxygen and carbon). At the same time, the tungsten coating obtained is only from a few microns to tens of microns thick, which is not very mature in general. The tungsten coating prepared by CVD has a high purity, which can reach more than 99.99%. The density, thermal conductivity and strength of the coating are equivalent to those of forged pure tungsten; the columnar crystal structure of CVD tungsten makes it have excellent high heat load resistance. The cracks only appear along the direction of the columnar crystals; at the same time, CVD can also deposit coatings on the surface of curved substrates, and can prepare coated parts with complex shapes. Therefore, CVD tungsten coating has a very good application prospect in the manufacture of plasma-facing components. the
目前,采用CVD工艺制备面对等离子体部件的方法主要有以下几种: At present, there are mainly the following methods for preparing plasma-facing components by CVD process:
方法1:采用CVD法在钼(Mo)、钨铜(W-铜)合金等热膨胀系数接近纯钨的基材上沉积钨涂层;(S.Tamura等,Journal of Nuclear Materials307-311(2002)735-738;J.Boscary等,Fusion Engineering and Design39-40(1998)537-542;J.Song等,Journal of Nuclear Materials442(2013)S208-S213) Method 1: Depositing a tungsten coating on a substrate with a thermal expansion coefficient close to pure tungsten such as molybdenum (Mo), tungsten copper (W-copper) alloy by CVD method; (S.Tamura et al., Journal of Nuclear Materials307-311(2002) 735-738; J.Boscary et al., Fusion Engineering and Design39-40(1998)537-542; J.Song et al., Journal of Nuclear Materials442(2013)S208-S213)
方法2:采用CVD方法在纯铜(铜)或高纯无氧铜(OFHC)等热导率高塑性好的基材上沉积钨涂层;(J.Boscary等,Fusion Engineering and Design39-40(1998)537-542;T.Hirai等Fusion Engineering and Design81(2006)175-180) Method 2: Deposit tungsten coating on substrates with good thermal conductivity and high plasticity such as pure copper (copper) or high-purity oxygen-free copper (OFHC) by CVD method; (J.Boscary et al., Fusion Engineering and Design39-40( 1998) 537-542; T.Hirai et al. Fusion Engineering and Design81(2006) 175-180)
方法3:采用CVD方法在铬锆铜合金(铬锆铜合金合金)基材上沉积钨涂层,基材与涂层之间采用铜或OFHC作为中间适配层,在沉积之前通过电镀方法在铬锆铜合金基材镀上一层1-3毫米厚的铜中间适配层或采用热等静压方法将厚度为1-3毫米厚的OFHC板材与铬锆铜合金基材焊接,然后再进行钨涂层沉积。(赵四祥等,水冷却平板层状铬锆铜合金合金/OFHC-铜/CVD-W面向等离子体部件及其制作方法,专利申请号201210260306.1) Method 3: Deposit tungsten coating on chromium-zirconium copper alloy (chromium-zirconium-copper alloy) substrate by CVD method. Copper or OFHC is used as the intermediate adaptation layer between the substrate and the coating. The chromium-zirconium-copper alloy substrate is coated with a 1-3mm thick copper intermediate adaptation layer or the OFHC plate with a thickness of 1-3mm is welded to the chromium-zirconium-copper alloy substrate by hot isostatic pressing, and then Perform tungsten coating deposition. (Zhao Sixiang et al., water-cooled flat layered chromium-zirconium-copper alloy/OFHC-copper/CVD-W plasma-oriented components and its manufacturing method, patent application number 201210260306.1)
采用上述工艺制造面对等离子体CVD钨涂层部件存在以下问题: The following problems exist in the manufacture of plasma CVD tungsten coated parts by the above process:
(1)方法1在采用钼、钨铜等材料作为基材,但是这类材料的热导率相对较低,不适合作为热沉材料,用于水冷模块中;
(1)
(2)方法2采用铜或OFHC作为基材,虽然热导率高,利于传热,但是材料的力学性能低,不能作为结构材料用于水冷模块;
(2)
(3)方法3采用的铬锆铜合金属于沉积硬化铜合金,具有很好的导热性能和力学性能,被国际热核聚变实验堆(ITER)及其他聚变装置广泛选作第一壁和偏滤器的热沉和结构材料。铜或OFHC常被用作中间适配层,用来缓解W和铬锆铜合金之间因为热膨胀系数差异而引起的界面应力。方法3采用1-3毫米厚的铜或OFHC做中间层,通过电镀方法难以实现,且污染性大;而采用热等净压工艺将OFHC板材和铬锆铜合金基材在500℃以上扩散焊接在一起,这会大大降低铬锆铜合金的力学性能(铬锆铜合金的最高使用温度一般在480℃以下),且工艺复杂,成本高。
(3) The chromium-zirconium copper alloy used in
发明内容 Contents of the invention
本发明的目的在于克服现有技术缺陷,提供一种面对等离子体的钨涂层部件的制备方法 The purpose of the present invention is to overcome the defects of the prior art and provide a method for preparing a plasma-facing tungsten-coated component
本发明的技术方案如下: Technical scheme of the present invention is as follows:
一种面对等离子体的钨涂层部件的制备方法,包括如下步骤: A method for preparing a plasma-facing tungsten-coated component, comprising the steps of:
(1)将铬锆铜合金基材根据面对等离子体部件的尺寸加工成所需的几何形状; (1) Process the chromium-zirconium-copper alloy substrate into the required geometric shape according to the size of the plasma-facing components;
(2)将加工好的铬锆铜合金基材的表面清洗干净,去除表面氧化层,并保持基材的温度480℃以下,采用物理气相沉积法在铬锆铜合金基材表面形成5-100μm厚的纯度高于99.9wt%的铜中间适配层; (2) Clean the surface of the processed chromium-zirconium-copper alloy substrate, remove the surface oxide layer, and keep the temperature of the substrate below 480°C, and form a 5-100μm layer on the surface of the chromium-zirconium-copper alloy substrate by physical vapor deposition. A thick copper intermediate adaptation layer with a purity higher than 99.9 wt%;
(3)以六氟化钨气体为原料,以氢气为还原气体,在280-480℃的基材温度条件下,在铜中间适配层上进行化学气相沉积,以形成0.02-2mm厚度 的钨涂层,即制得所述面对等离子体的钨涂层部件。 (3) Using tungsten hexafluoride gas as the raw material and hydrogen as the reducing gas, chemical vapor deposition is carried out on the copper intermediate adaptation layer at a substrate temperature of 280-480°C to form tungsten with a thickness of 0.02-2mm Coating, ie making said plasma-facing tungsten-coated part. the
在本发明的一个优选实施方案中,所述铬锆铜合金基材的锆含量为0.5-1.5wt%,铬含量为0.03-0.3wt%。 In a preferred embodiment of the present invention, the zirconium content of the chromium-zirconium-copper alloy substrate is 0.5-1.5 wt%, and the chromium content is 0.03-0.3 wt%. the
在本发明的一个优选实施方案中,所述铬锆铜合金基材的锆含量为0.6-0.9wt%,铬含量为0.07-0.15wt%。 In a preferred embodiment of the present invention, the zirconium content of the chromium-zirconium-copper alloy substrate is 0.6-0.9 wt%, and the chromium content is 0.07-0.15 wt%. the
在本发明的一个优选实施方案中,所述步骤(2)中将基材的温度保持在300℃以下。 In a preferred embodiment of the present invention, in the step (2), the temperature of the substrate is kept below 300°C. the
在本发明的一个优选实施方案中,所述步骤(2)中所述铜层的厚度为10-50μm。 In a preferred embodiment of the present invention, the thickness of the copper layer in the step (2) is 10-50 μm. the
在本发明的一个优选实施方案中,所述步骤(3)中的基材温度为300-450℃。 In a preferred embodiment of the present invention, the temperature of the substrate in the step (3) is 300-450°C. the
在本发明的一个优选实施方案中,所述步骤(3)的钨涂层的厚度为0.05-0.5mm。 In a preferred embodiment of the present invention, the thickness of the tungsten coating in step (3) is 0.05-0.5 mm. the
在本发明的一个优选实施方案中,所述物理气相沉积法包括溅射镀膜、离子镀和真空蒸镀。 In a preferred embodiment of the present invention, the physical vapor deposition method includes sputter coating, ion plating and vacuum evaporation. the
本发明的有益效果是: The beneficial effects of the present invention are:
1、本发明的方法采用物理气相沉积法在铬锆铜合金基材表面形成5-100μm厚的纯度高于99.99wt%的铜中间适配层,该铜中间适配层塑性好,可以缓解化学气相沉积制备钨涂层的过程中及制备在面对等离子体部件过程中钨涂层与基材界面的应力,且该铜中间适配层与钨涂层的界面结合力较大; 1. The method of the present invention adopts the physical vapor deposition method to form a 5-100 μm thick copper intermediate adaptation layer with a purity higher than 99.99wt% on the surface of the chromium-zirconium copper alloy substrate. The copper intermediate adaptation layer has good plasticity and can relieve chemical stress. The stress at the interface between the tungsten coating and the substrate during the preparation of the tungsten coating by vapor deposition and during the preparation of the plasma components, and the interface bonding force between the copper intermediate adaptation layer and the tungsten coating is relatively large;
2、本发明的方法在物理气相沉积过程中控制基材的温度在480℃以下(优选在350℃范围内),保持了铬锆铜合金基材的力学性能; 2. The method of the present invention controls the temperature of the substrate below 480°C (preferably in the range of 350°C) during the physical vapor deposition process, maintaining the mechanical properties of the chromium-zirconium-copper alloy substrate;
3、本发明的方法相比热等静压扩散焊接、热压扩散焊接、叠层轧制、爆破复合等,工艺过程简单、成本低、易于实现,同时不会污染环境; 3. Compared with hot isostatic pressure diffusion welding, hot pressure diffusion welding, lamination rolling, blasting compounding, etc., the method of the present invention has simple process, low cost, easy implementation, and will not pollute the environment;
4、本发明的方法由于采用物理气相沉积制备中间适配层,铬锆铜合金基材可以是复杂的几何形状,不局限于平板结构,相比热等静压扩散焊接、热压扩散焊接、叠层轧制、爆炸复合等工艺的适应性广; 4. Since the method of the present invention adopts physical vapor deposition to prepare the intermediate adaptation layer, the chromium-zirconium-copper alloy substrate can have complex geometric shapes and is not limited to a flat plate structure. Compared with hot isostatic pressure diffusion welding, hot pressure diffusion welding, Laminated rolling, explosive cladding and other processes have wide adaptability;
5、本发明的方法先将铬锆铜合金基材加工成所需的形状,然后采用物理气相沉积工艺制备纯铜中间适配层,此后直接进行化学气相沉积以制备钨涂层,中间适配层铜与铬锆铜合金基材的界面结合力好,尤其是采用真空溅射或离子镀工艺,绕镀性好,致密度高,没有缺陷;而采用热等静压扩散焊接、热压扩散焊接、叠层轧制、爆炸复合等工艺则需要将中间适配层铜与铬锆铜合金基材连接后再采用机加工方法,得到所需的几何形状,然后再进行化学气相沉积以制备钨涂层,在机加工过程中的切削力很容易破坏中间适配层铜与铬锆铜合金基材之间的已有的结合,造成界面缺陷; 5. In the method of the present invention, the chromium-zirconium-copper alloy base material is first processed into the desired shape, and then the pure copper intermediate adaptation layer is prepared by physical vapor deposition, and then chemical vapor deposition is directly carried out to prepare the tungsten coating, and the intermediate adaptation The interface bonding force between layer copper and chromium-zirconium copper alloy substrate is good, especially when vacuum sputtering or ion plating is adopted, the plating property is good, the density is high, and there are no defects; while hot isostatic pressure diffusion welding and hot pressure diffusion Welding, lamination rolling, explosive composite and other processes need to connect the intermediate adaptation layer copper with the chromium-zirconium copper alloy substrate and then use machining methods to obtain the required geometry, and then perform chemical vapor deposition to prepare tungsten coating, the cutting force during machining can easily destroy the existing bond between the copper in the middle adaptation layer and the chromium-zirconium-copper alloy substrate, resulting in interface defects;
6、本方法将钨涂层的厚度控制在0.02-2mm范围内(优选在0.05-0.5mm范围内),将沉积温度(即所述基材温度)降低到280-480℃的温度范围内(优选在300-450℃范围内),可以不降低铬锆铜合金基材的力学性能,同时可以适当降低沉积速率,细化晶粒尺寸,提高涂层的热学和力学性能,同时增加涂层厚度的控制精度和均匀性; 6. This method controls the thickness of the tungsten coating within the range of 0.02-2mm (preferably within the range of 0.05-0.5mm), and reduces the deposition temperature (that is, the temperature of the substrate) to a temperature range of 280-480°C ( Preferably in the range of 300-450°C), without reducing the mechanical properties of the chromium-zirconium-copper alloy substrate, at the same time, the deposition rate can be appropriately reduced, the grain size can be refined, the thermal and mechanical properties of the coating can be improved, and the coating thickness can be increased at the same time control accuracy and uniformity;
7、本发明的方法可以先将铬锆铜合金与不锈钢等其他材料焊接在一起,形成复合基材,再通过机加工得到所需的几何形状,然后在复合基材的铬锆铜合金一侧进行物理气相沉积,制备铜中间适配层,最后用化学气相沉积方法制备面对等离子体的钨涂层。 7. The method of the present invention can first weld the chromium-zirconium-copper alloy and other materials such as stainless steel to form a composite base material, and then obtain the required geometric shape by machining, and then weld the chromium-zirconium-copper alloy on the side of the composite base material Physical vapor deposition is carried out to prepare a copper intermediate adaptation layer, and finally a tungsten coating facing the plasma is prepared by chemical vapor deposition. the
附图说明 Description of drawings
图1为实施例1所制备的平板钨涂层模块的横截面结构示意图;
Fig. 1 is the cross-sectional structure schematic diagram of the flat tungsten coating module prepared by
图2为实施例2所制备的复杂形状的钨涂层模块的横截面结构示意图;
Fig. 2 is the cross-sectional structure schematic diagram of the complex shape tungsten coating module prepared in
图3为实施例3所制备的含钨涂层的不锈钢/铬锆铜合金复合基材模块的横截面结构示意图。 3 is a schematic diagram of the cross-sectional structure of the tungsten-coated stainless steel/chrome-zirconium-copper alloy composite substrate module prepared in Example 3. the
具体实施方式 Detailed ways
以下通过具体实施方式对本发明的技术方案进行进一步的说明和描述。 The technical solutions of the present invention will be further illustrated and described below through specific embodiments. the
实施例1 Example 1
本实施例用于制备一种带圆倒角的平板钨涂层模块(如图1),具体实施步骤如下: This example is used to prepare a flat tungsten-coated module with rounded corners (as shown in Figure 1), and the specific implementation steps are as follows:
(1)将铬锆铜合金基材1根据面对等离子体部件的尺寸加工成所需的几何形状,该铬锆铜合金基材1的锆含量为0.5-1.5wt%,铬含量为0.03-0.3wt%,进一步优选的,该铬锆铜合金基材1的锆含量为0.6-0.9wt%,铬含量为0.07-0.15wt%;
(1) The chromium-zirconium-
(2)将加工好的铬锆铜合金基材1的表面清洗干净,去除表面氧化层,用碳酸钠溶液超声中和,用丙酮和无水酒精超声脱水,最后用氩气吹干;对真空室抽真空,当真空度优于1.3×10-2Pa时,开启加热电源进行加热烘烤,当加热温度达到350℃,真空度达到3.0×10-3Pa时,烘烤除气过程完成;向真空室中充入氩气,开启偏压电源,对工件进行辉光清洗,辉光清洗的温度是200℃,真空度是3~5Pa,电压是1000V,清洗时间是10分钟;打开无 氧铜靶磁控溅射电源,在铬锆铜合金基材1表面制备铜中间适配层2,控制参数为:磁控源功率6.6kW,脉冲电压300-600V,占空比为20%,直流电压50-100V,镀膜时间为7h,铜中间适配层2厚度为40μm,镀膜工艺结束后,继续向真空室中充入氩气,待工件冷却后将工件从真空室取出。以上步骤在磁控溅射镀膜机上实现。
(2) Clean the surface of the processed chromium-zirconium-
(3)将上述具有铜中间适配层2的铬锆铜基材1放入化学气相沉积反应室,并抽真空至1.0×10-1Pa左右,通入氮气吹扫,将基材温度加热至300℃;通入六氟化钨原料气体和和还原气体氢气,二者的摩尔比为1:3,在铜中间适配层2上进行化学气相沉积,沉积时间为4h,钨涂层3的厚度为0.2mm;沉积工艺结束后,继续向真空室中充入氮气,待工件冷却后将工件从反应室取出,即制得所述面对等离子体的钨涂层部件。
(3) Put the above-mentioned chromium-zirconium-
实施例2 Example 2
本实施例用于制备一种复杂形状的钨涂层模块(图2)。具体实施步骤如下: This example is used to prepare a complex-shaped tungsten-coated module (Figure 2). The specific implementation steps are as follows:
(1)将铬锆铜合金基材1根据面对等离子体部件的尺寸加工成所需的几何形状,该铬锆铜合金基材1的锆含量为0.5-1.5wt%,铬含量为0.03-0.3wt%,进一步优选的,该铬锆铜合金基材1的锆含量为0.6-0.9wt%,铬含量为0.07-0.15wt%;
(1) The chromium-zirconium-
(2)将加工好的铬锆铜合金基材1的表面用丙酮清洗干净,去除表面氧化层,无水酒精超声脱水,最后用氩气吹干,经红外烘烤干燥后,将样品放入多弧离子镀膜机的真空室内,放置在工件台上,抽真空至6×10-3Pa进行 预处理,预处理基体偏压-450V,基体预处理时间15min,采用纯铜(纯度大于99.9wt.%)靶材,充入氩气分压为2×10-2Pa,弧流为60A,基体温度220℃,沉积基体偏压-600V,沉积时间100min,铜中间适配层2厚度90μm,镀膜工艺结束后,向真空室中充入氩气,待工件冷却后将工件从真空室取出。
(2) Clean the surface of the processed chromium-zirconium-
(3)将上述具有铜中间适配层2的铬锆铜基材1放入化学气相沉积反应室,并抽真空至8.0×10-1Pa左右,通入氮气吹扫,将基材温度加热至450℃;通入六氟化钨原料气体和和还原气体氢气,二者的摩尔比为1:2.5,在铜中间适配层2上进行化学气相沉积,沉积时间为3h,钨涂层3的厚度为1mm;沉积工艺结束后,继续向真空室中充入氮气,待工件冷却后将工件从反应室取出,即制得所述面对等离子体的钨涂层部件。
(3) Put the above-mentioned chromium-zirconium-
实施例3 Example 3
本实施例用于制备含钨涂层的不锈钢/铬锆铜合金复合基材模块(图3)。具体实施步骤如下: This example is used to prepare a stainless steel/chrome-zirconium-copper alloy composite substrate module containing a tungsten coating (Figure 3). The specific implementation steps are as follows:
(1)根据面对等离子体部件的尺寸,将焊接好的316L不锈钢4和铬锆铜合金基材1加工成所需的几何形状的复合基材,该铬锆铜合金基材1的锆含量为0.5-1.5wt%,铬含量为0.03-0.3wt%,进一步优选的,该铬锆铜合金1的锆含量为0.6-0.9wt%,铬含量为0.07-0.15wt%;
(1) Process the welded 316L
(2)将复合基材的铬锆铜合金基材1一侧的表面用丙酮清洗干净,去除表面氧化层,无水酒精超声脱水,最后用氩气吹干,将复合基材(1和4)放入真空整蒸镀机真空室内的工件架上,采用高纯无氧铜(OFHC)作为镀料,放置在钨舟中,抽真空至1.0×10-2Pa以下,开动真空室内的加热器对基材6 加热除气,加热温度在200℃,并在镀膜过程中维持该温度直至镀膜完毕,对钨舟通以80A的电流,加热至1650℃,沉积时间为8h,铜中间适配层2厚度为20μm,镀膜工艺结束后,向真空室中充入氩气,待工件冷却后将工件从真空室取出。
(2) Clean the surface of the chromium-zirconium-
(3)将含有铜中间适配层2的复合基材放入化学气相沉积反应室,并抽真空至8.0×10-1Pa左右,通入氮气吹扫,将基材温度加热至400℃;通入六氟化钨原料气体和和还原气体氢气,二者的摩尔比为1:2,在铜中间适配层2上进行化学气相沉积,沉积时间为1h,钨涂层3的厚度为0.1mm;沉积工艺结束后,继续向真空室中充入氮气,待工件冷却后将工件从反应室取出,即制得所述面对等离子体的钨涂层部件。
(3) Put the composite substrate containing the copper
以上所述,仅为本发明的较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。 The above is only a preferred embodiment of the present invention, so the scope of the present invention cannot be limited accordingly, that is, equivalent changes and modifications made according to the patent scope of the present invention and the content of the specification should still be covered by the present invention In the range. the
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310488060.8A CN103774141A (en) | 2013-10-17 | 2013-10-17 | Preparation method of tungsten coating component of plasma facing body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310488060.8A CN103774141A (en) | 2013-10-17 | 2013-10-17 | Preparation method of tungsten coating component of plasma facing body |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103774141A true CN103774141A (en) | 2014-05-07 |
Family
ID=50566880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310488060.8A Pending CN103774141A (en) | 2013-10-17 | 2013-10-17 | Preparation method of tungsten coating component of plasma facing body |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103774141A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109609926A (en) * | 2019-02-21 | 2019-04-12 | 苏州鑫沣电子科技有限公司 | A kind of chemical vapor deposition high purity tungsten sputtering target material production method |
CN109825814A (en) * | 2019-04-10 | 2019-05-31 | 北京工业大学 | A method for preparing strong adhesion tungsten layer on titanium alloy surface |
CN115710688A (en) * | 2022-10-13 | 2023-02-24 | 苏州热工研究院有限公司 | Anti-irradiation film material and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1995439A (en) * | 2006-12-30 | 2007-07-11 | 广州有色金属研究院 | Method for spraying thick tungsten coating on pure copper or copper alloy plate |
CN101165873A (en) * | 2006-10-17 | 2008-04-23 | 株式会社瑞萨科技 | Method for manufacturing semiconductor device |
CN102560333A (en) * | 2012-01-10 | 2012-07-11 | 北京工业大学 | Method for improving abrasion and corrosion resistance of magnesium alloy |
CN103029370A (en) * | 2012-12-20 | 2013-04-10 | 桂林电子科技大学 | Iron-based electrode material with pure copper transition layer and surface pure metal molybdenum or tungsten coating and preparation method for electrode material |
CN103352222A (en) * | 2013-06-24 | 2013-10-16 | 核工业西南物理研究院 | Preparation method of carbon-based tungsten coating for tokamak device |
-
2013
- 2013-10-17 CN CN201310488060.8A patent/CN103774141A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101165873A (en) * | 2006-10-17 | 2008-04-23 | 株式会社瑞萨科技 | Method for manufacturing semiconductor device |
CN1995439A (en) * | 2006-12-30 | 2007-07-11 | 广州有色金属研究院 | Method for spraying thick tungsten coating on pure copper or copper alloy plate |
CN102560333A (en) * | 2012-01-10 | 2012-07-11 | 北京工业大学 | Method for improving abrasion and corrosion resistance of magnesium alloy |
CN103029370A (en) * | 2012-12-20 | 2013-04-10 | 桂林电子科技大学 | Iron-based electrode material with pure copper transition layer and surface pure metal molybdenum or tungsten coating and preparation method for electrode material |
CN103352222A (en) * | 2013-06-24 | 2013-10-16 | 核工业西南物理研究院 | Preparation method of carbon-based tungsten coating for tokamak device |
Non-Patent Citations (1)
Title |
---|
张庆玲等: "W与CrCrZr焊接应力的有限元分析及剪切强度的研究", 《材料导报B:研究篇》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109609926A (en) * | 2019-02-21 | 2019-04-12 | 苏州鑫沣电子科技有限公司 | A kind of chemical vapor deposition high purity tungsten sputtering target material production method |
CN109825814A (en) * | 2019-04-10 | 2019-05-31 | 北京工业大学 | A method for preparing strong adhesion tungsten layer on titanium alloy surface |
CN115710688A (en) * | 2022-10-13 | 2023-02-24 | 苏州热工研究院有限公司 | Anti-irradiation film material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104308360B (en) | A kind of diffusion bonding method of graphite and low carbon steel, stainless steel | |
CN103894695B (en) | A kind of welding method of CVD diamond thick film and cemented carbide | |
CN112496518B (en) | A kind of diffusion joining method of tungsten and low activation steel | |
CN109048030B (en) | A kind of SPS diffusion welding method of TZM and graphite dissimilar materials | |
CN102500909A (en) | Welding method of target and back plate | |
CN106695043A (en) | Carbon base material and copper brazing connection method | |
CN104694897B (en) | A kind of graphite surface titanium method and its product of preparation | |
CN106476395B (en) | A kind of fast preparation method of titanium copper layered electrode composite material | |
CN110756982A (en) | Amorphous alloy/metal micro-laminate composite material and preparation method thereof | |
CN107486619A (en) | TZM and WRe xenogenesis refractory alloys a kind of SPS diffusion welding methods | |
CN103540931A (en) | Method and device for alloying composite processing of laser surface through mechanical vibration assisted induction heating | |
CN102260869A (en) | Method for preparing tungsten coating by using cold air dynamic spraying technology | |
CN114250444A (en) | Method for plasma-assisted chemical vapor deposition of high-purity tungsten sputtering target material | |
CN103774141A (en) | Preparation method of tungsten coating component of plasma facing body | |
CN112676782B (en) | Method for assembling titanium target and copper back plate | |
CN101733623B (en) | A method for preparing metal layered composite material discharge plasma | |
CN106181015A (en) | The U-shaped manufacturing process containing runner the first wall components of the attached tungsten of a kind of fusion reactor blanket | |
CN102094173B (en) | In-situ plasma Ti/Cu composite coating plating process | |
CN110872692B (en) | A molybdenum-silver layered composite material, its preparation method and application | |
CN101148102B (en) | A carbon-based tungsten coating and its preparation method | |
CN107442922B (en) | Method for diffusion bonding of dissimilar materials by using amorphous interlayer | |
CN113909801B (en) | Preparation method of low-activation steel and tungsten complete solid solution joint | |
CN102398035A (en) | Nickel target blank and method for manufacturing target material | |
CN112620847A (en) | Method for enhancing brazing connection between carbon-based material and copper alloy | |
CN104725066A (en) | Hot pressing reaction sintering connection method for ceramic material titanium silicon carbide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140507 |
|
RJ01 | Rejection of invention patent application after publication |