CN103765292B - Eyepiece system and image observation device - Google Patents
Eyepiece system and image observation device Download PDFInfo
- Publication number
- CN103765292B CN103765292B CN201280034980.6A CN201280034980A CN103765292B CN 103765292 B CN103765292 B CN 103765292B CN 201280034980 A CN201280034980 A CN 201280034980A CN 103765292 B CN103765292 B CN 103765292B
- Authority
- CN
- China
- Prior art keywords
- image
- group
- lens
- eyepiece system
- observation device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B25/00—Eyepieces; Magnifying glasses
- G02B25/001—Eyepieces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/16—Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/22—Telecentric objectives or lens systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/02—Viewing or reading apparatus
- G02B27/022—Viewing apparatus
- G02B27/027—Viewing apparatus comprising magnifying means
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
实现在物体侧带有良好的远心性,可进行良好的像差校正的目镜系统。是将观察物体的像作为虚像放大成像的目镜系统,具有配置于图像显示元件侧、带有负屈光力的第一组G1、以及配置于该第一组的眼球侧、带有正屈光力的第二组G2,第一组是双凹透镜和双凸透镜的接合透镜,第二组G2由两块或三块正透镜构成,在物体侧是远心的,满足条件(1)、(2)。
Realizes an eyepiece system that can perform excellent aberration correction with good telecentricity on the object side. It is an eyepiece system that magnifies and forms the image of the observed object as a virtual image. It has the first group G1 with negative refractive power arranged on the side of the image display element, and the second group G1 with positive refractive power arranged on the eyeball side of the first group. Group G2, the first group is a cemented lens of biconcave lens and biconvex lens, and the second group G2 is composed of two or three positive lenses, which are telecentric on the object side and satisfy conditions (1) and (2).
Description
技术领域technical field
本发明涉及目镜(接眼レンズ)系统及图像观察装置。The present invention relates to an eyepiece system and an image observation device.
背景技术Background technique
将物体像作为虚像放大成像的目镜系统,以往广泛用于放大镜(loupe)、显微镜等的各种的光学设备中。An eyepiece system that magnifies an object image as a virtual image has been widely used in various optical devices such as loupes and microscopes.
或者,也进行以下的操作:使观察对象部位的像在内视镜的“采用光纤束的像传输体”的对物侧端面成像,使该像向光纤束的接眼侧端面传输,将传输的像作为观察物体,利用目镜系统作为虚像来放大观察。Alternatively, the following operation is also performed: imaging the object-side end face of the "image transmission body using an optical fiber bundle" of the endoscope, transmitting the image to the eye-connecting end face of the optical fiber bundle, and transferring the transmitted image to the end face of the optical fiber bundle. The image is used as the observation object, and the eyepiece system is used as a virtual image to magnify the observation.
而且,近年来,也有如下的操作:将虚拟现实用或者电影、游戏之类的影像内容在液晶显示元件、EL显示元件等的小型的图像显示元件上二维地显示,将显示的二维图像作为观察物体,利用目镜系统作为虚像而放大观察。Moreover, in recent years, there has also been an operation of two-dimensionally displaying video contents such as virtual reality, movies, and games on small image display elements such as liquid crystal display elements and EL display elements, and displaying the displayed two-dimensional image As an observation object, use the eyepiece system as a virtual image to magnify and observe.
目镜系统多将其安装于观察者的头部或脸部使用,优选重量轻且紧凑。The eyepiece system is often used by attaching it to the observer's head or face, and it is preferable to be lightweight and compact.
迄今已知能用四块这样较少的透镜块数轻量/紧凑地构成目镜系统。Conventionally, it is known that an eyepiece system can be configured light-weight and compact with as few as four lenses.
迄今已知的目镜系统中,物体侧的远心(telecentric)性低。In conventionally known eyepiece systems, the telecentricity on the object side is low.
在经由目镜系统观察在液晶显示元件、有机EL显示元件等显示的二维图像、或在内视镜的光纤束的对物侧端面成像的观察对象部位的像时,物体侧的远心性低,则导致亮度或颜色随视角而不同,难以良好地得到高清晰度的观察图像。When observing a two-dimensional image displayed on a liquid crystal display element, an organic EL display element, etc., or an image of an observation target part formed on the object-side end surface of an endoscope fiber bundle through the eyepiece system, the telecentricity on the object side is low, This results in differences in brightness or color depending on the viewing angle, making it difficult to obtain a high-definition observation image well.
近来,用内视镜或电影、游戏之类的影像内容观察的放大虚像,要求有高分辨率,需要寻求在目镜系统中良好地校正像差。Recently, high resolution is required for magnified virtual images observed with endoscopes, video content such as movies and games, and it is necessary to seek good correction of aberrations in the eyepiece system.
现有技术文献prior art literature
专利文献patent documents
专利文献1:日本特开平11-23984号公报Patent Document 1: Japanese Patent Application Laid-Open No. 11-23984
发明内容Contents of the invention
发明要解决的课题The problem to be solved by the invention
本发明要解决的课题是实现在物体侧具有良好的远心性、可进行良好的像差校正的目镜系统及使用它的图像观察装置。The problem to be solved by the present invention is to realize an eyepiece system that has good telecentricity on the object side and can perform good aberration correction, and an image observation device using the same.
解决课题的手段means of solving problems
1.目镜系统是将观察物体的像作为虚像放大成像的目镜系统,具有如下的特征。即,目镜系统通过具有配置于物体侧、带有负屈光力的第一组、以及配置于该第一组的眼球侧、带有正屈光力的第二组而构成。第一组是双凹透镜和双凸透镜的接合透镜,第二组由两块或三块正透镜构成。1. The eyepiece system is an eyepiece system that enlarges and forms the image of the observed object as a virtual image, and has the following characteristics. That is, the eyepiece system is configured by including a first group having a negative refractive power arranged on the object side, and a second group having a positive refractive power arranged on the eyeball side of the first group. The first group is a cemented lens of biconcave and biconvex lenses, and the second group consists of two or three positive lenses.
物体侧是远心的,整个系统的焦点距离F(>0)、第一组的焦点距离F1(<0)、第二组的焦点距离F2(>0)满足以下的条件(1)、(2)。The object side is telecentric, the focal distance F (>0) of the whole system, the focal distance F1 (<0) of the first group, and the focal distance F2 (>0) of the second group satisfy the following conditions (1), ( 2).
(1)-5<Fl/F<-1(1) -5<Fl/F<-1
(2)0.5<F2/F<3(2) 0.5<F2/F<3
2.上述1的目镜系统能够在第一组的图像显示元件侧,还附加配置凹面朝向物体侧、两面为非球面的正弯月透镜作为像面弯曲校正透镜。2. In the eyepiece system of 1 above, on the image display element side of the first group, a positive meniscus lens with a concave surface facing the object side and two aspherical surfaces can be additionally arranged as a field curvature correction lens.
3.一种图像观察装置,是以二维方式显示的图像的、把虚像放大观察的图像观察装置,其特征在于,作为形成图像的虚像的光学系统,使用上述1或2的目镜系统。3. An image observation device, which is an image observation device for magnifying and observing a virtual image of a two-dimensionally displayed image, characterized in that the eyepiece system of 1 or 2 above is used as an optical system for forming the virtual image of the image.
4.上述3的图像观察装置能够是使用显示二维图像的图像显示元件、以及上述1或2的目镜系统的头戴型的图像观察装置。4. The image observation device of the above 3 can be a head-mounted image observation device using an image display device for displaying a two-dimensional image and the eyepiece system of the above 1 or 2.
补充说明:Supplementary note:
条件(1)、(2)是确定相对于目镜系统整个系统的屈光力的、第一组和第二组的屈光力的适当范围的条件。Conditions (1) and (2) are conditions for determining an appropriate range of the refractive power of the first group and the second group with respect to the refractive power of the entire system of the eyepiece system.
第一组具有负屈光力,因而带有使来自观察物体的光向眼球侧发散的作用。The first group has negative refractive power, so it has the effect of diverging the light from the observed object to the side of the eyeball.
通过使第一组带有这样的发散作用,即使在观察小的观察物体时也能够扩大视角,能够使观察物体成像为广视角的放大虚像,放大虚像变得易于观察。By making the first group have such a diverging effect, the viewing angle can be expanded even when observing a small observation object, and the observation object can be formed into a magnified virtual image with a wide viewing angle, and the magnified virtual image becomes easy to observe.
条件(1)的参数Fl/F的绝对值越小,第一组的负屈光力越强,使物体光向眼球侧发散的效果越大,但超过条件(1)的下限时,上述发散效果变得过度,需要增大使来自观察物体的光束向眼球集光的第二组的“透镜直径”,有目镜系统整体大型化,成本也变高的不良之处。此外,难以确保物体侧的远心性。The smaller the absolute value of the parameter Fl/F in the condition (1), the stronger the negative refractive power of the first group, and the greater the effect of diverging the object light to the eyeball side, but when the lower limit of the condition (1) is exceeded, the above-mentioned divergence effect becomes smaller. If it is too large, it is necessary to increase the "lens diameter" of the second group that collects the light beam from the observed object to the eyeball, which has the disadvantage of increasing the size of the entire eyepiece system and increasing the cost. In addition, it is difficult to secure telecentricity on the object side.
超过条件(1)的上限时,所述发散效果变得不充分,要实现例如水平视角40度至45度的范围作为易于观察的范围时,需要使第二组具有大的正屈光力,随着第二组的正屈光力的增大,容易产生像差,其校正也变得困难起来。When the upper limit of the condition (1) is exceeded, the diverging effect becomes insufficient, and to realize, for example, a horizontal viewing angle of 40° to 45° as an easy-to-observe range, it is necessary to make the second group have a large positive refractive power. The increase of the positive refractive power of the second group tends to produce aberrations, and their correction becomes difficult.
第二组具有正屈光力,因而使利用第一组而赋予了发散趋势的光束向眼球收敛。The second group has positive refractive power, so that the light beams imparted with a tendency to diverge by the first group converge toward the eyeball.
从像差校正的观点来看,难以用一块正透镜构成第二组,优选使用如上所述的两至三块的正透镜将像差校正功能分散给它们。From the viewpoint of aberration correction, it is difficult to constitute the second group with one positive lens, and it is preferable to use two to three positive lenses as described above to distribute the aberration correction function to them.
条件(2)的参数F2/F越小,第二组带有的正屈光力越大,超过条件(4)的下限时,正屈光力变得过度,容易产生大的像差,像差校正变得困难起来。The smaller the parameter F2/F of the condition (2), the greater the positive refractive power of the second group. When the lower limit of the condition (4) is exceeded, the positive refractive power becomes excessive, and large aberrations are likely to occur, and the aberration correction becomes difficult.
超过条件(2)的上限时,第二组带有的正屈光力有点不足,目镜系统和眼球的间隔容易变小,难以实现作为易于观察的范围的、以上例示的水平视角40度至45度。When the upper limit of condition (2) is exceeded, the positive refractive power of the second group is somewhat insufficient, and the distance between the eyepiece system and the eyeball tends to be narrowed, making it difficult to realize the horizontal viewing angle of 40° to 45° as an easy-to-observe range.
发明的效果The effect of the invention
如以上说明的那样,依据本发明,能够实现新的目镜系统及图像观察装置。As described above, according to the present invention, a new eyepiece system and an image observation device can be realized.
如上所述,目镜系统在物体侧带有良好的远心性,观察图像的亮度或颜色不会随视角而不同,能够如后述的实施例那样,得到性能良好且高清晰度的放大虚像。As described above, the eyepiece system has good telecentricity on the object side, and the brightness or color of the observed image does not vary depending on the viewing angle. As in the embodiments described later, a magnified virtual image with good performance and high definition can be obtained.
此外,如上述2的目镜系统那样,通过在第一组的图像显示元件侧还附加配置像面弯曲校正透镜,在观察的放大虚像变大时,也能够有效减轻像面弯曲带来的像的变形。In addition, as in the eyepiece system of the above-mentioned 2, by additionally disposing a field curvature correction lens on the image display element side of the first group, even when the magnified virtual image to be observed becomes larger, the distortion of the image caused by field curvature can be effectively reduced. out of shape.
附图说明Description of drawings
图1是示出实施例1的目镜系统的透镜结构的图。FIG. 1 is a diagram showing a lens configuration of an eyepiece system of Embodiment 1. FIG.
图2是示出实施例2的目镜系统的透镜结构的图。FIG. 2 is a diagram showing a lens configuration of an eyepiece system of Embodiment 2. FIG.
图3是示出实施例3的目镜系统的透镜结构的图。FIG. 3 is a diagram showing a lens structure of an eyepiece system of Embodiment 3. FIG.
图4是说明图像观察装置的实施的一方式的图。FIG. 4 is a diagram illustrating an embodiment of an image observation device.
图5(a)是实施例1的像差图。FIG. 5( a ) is an aberration diagram of Example 1. FIG.
图5(b)是实施例1的像差图。FIG. 5( b ) is an aberration diagram of Example 1. FIG.
图6(a)是实施例2的像差图。FIG. 6( a ) is an aberration diagram of Example 2. FIG.
图6(b)是实施例2的像差图。FIG. 6( b ) is an aberration diagram of Example 2. FIG.
图7(a)是实施例3的像差图。FIG. 7( a ) is an aberration diagram of Example 3. FIG.
图7(b)是实施例3的像差图。FIG. 7( b ) is an aberration diagram of Example 3. FIG.
具体实施方式detailed description
以下,说明实施方式。Embodiments will be described below.
图1至图3例示目镜系统的三个实施方式。这些目镜系统分别对应后述的实施例1~3的目镜。这些实施方式的目镜系统假设了如下的情况:把在液晶显示元件、有机EL显示元件等(以下称为图像显示元件。)显示的二维图像作为观察物体来进行观察。Figures 1 to 3 illustrate three embodiments of eyepiece systems. These eyepiece systems respectively correspond to the eyepieces of Examples 1 to 3 described later. The eyepiece systems of these embodiments assume that a two-dimensional image displayed on a liquid crystal display element, an organic EL display element, or the like (hereinafter referred to as an image display element) is observed as an observation object.
为了避免繁杂,在图1至图3中使符号同一化。即,在图1至图3中,设图的左方为“图像显示元件侧”,右方为“眼球侧”,以符号IS表示“图像显示元件的图像显示面”。图像在图像显示面IS作为二维图像显示。In order to avoid complexity, the symbols are unified in FIGS. 1 to 3 . That is, in FIGS. 1 to 3 , the left side of the drawing is "image display element side", the right side is "eyeball side", and the "image display surface of the image display element" is indicated by IS. The image is displayed as a two-dimensional image on the image display surface IS.
以符号G1表示第一组,以符号G2表示第二组。此外,符号E表示眼球中的瞳孔。此外,对构成目镜系统的透镜从图像显示面IS侧标记编号,如图1至图3所示,设为透镜L1~L6。The first group is denoted by the symbol G1 and the second group is denoted by the symbol G2. In addition, the symbol E represents the pupil in the eyeball. In addition, the lenses constituting the eyepiece system are numbered from the image display surface IS side, and as shown in FIGS. 1 to 3 , they are lenses L1 to L6.
在图1示出实施方式的目镜系统,如图所示,由四块透镜L1~L4构成。在图像显示面IS侧的两块透镜L1、L2构成负屈光力的第一组G1。An eyepiece system according to an embodiment is shown in FIG. 1 , and is composed of four lenses L1 to L4 as shown in the figure. The two lenses L1 and L2 on the side of the image display surface IS constitute the first group G1 of negative refractive power.
透镜L1是“图像显示面侧的曲率大的双凹透镜”,透镜L2是“双凸透镜”,这些透镜L1、L2接合起来成为“接合透镜”。The lens L1 is a "biconcave lens with a large curvature on the image display surface side", the lens L2 is a "biconvex lens", and these lenses L1 and L2 are joined to form a "cemented lens".
透镜L3和L4构成正屈光力的第二组G2。这些透镜L3、L4都是正透镜,透镜L3是使凸面朝向图像显示面IS侧的正弯月透镜,透镜L4是双凸透镜。透镜L4两面都是非球面,图像显示面IS侧的面中,周边部分的曲率(负)与光轴附近的曲率(正)相反。Lenses L3 and L4 constitute a second group G2 of positive refractive power. These lenses L3 and L4 are both positive lenses. The lens L3 is a positive meniscus lens with a convex surface facing the image display surface IS side, and the lens L4 is a biconvex lens. Both surfaces of the lens L4 are aspherical, and the curvature (negative) of the peripheral portion is opposite to the curvature (positive) near the optical axis in the surface on the image display surface IS side.
即,通过用两块透镜L3、L4构成第二组G2,使像差校正功能分散到这些透镜L3、L4,设最靠眼球侧的透镜L4的两面为非球面,进行扭曲或像面弯曲的校正。That is, by constituting the second group G2 with two lenses L3 and L4, the aberration correction function is dispersed among these lenses L3 and L4, and the both surfaces of the lens L4 on the most eyeball side are aspherical to perform distortion or curvature of field. Correction.
在图2示出实施方式的目镜系统,如图所示,由六块透镜L1~L6构成。最靠近图像显示面IS侧的透镜L1是“凹面朝向物体侧、两面为非球面的正弯月透镜”,是“像面弯曲校正透镜”。The eyepiece system of the embodiment is shown in FIG. 2 , and is composed of six lenses L1 to L6 as shown in the figure. The lens L1 closest to the image display surface IS side is a "positive meniscus lens with a concave surface facing the object side and both surfaces are aspherical", and is a "field curvature correction lens".
像面弯曲校正透镜L1是减轻像面弯曲、平坦化虚像的成像面的所谓“视场致平透镜(field flattener lens)”,“其自身的功率”较弱。The field curvature correction lens L1 is a so-called "field flattener lens" that reduces field curvature and flattens the imaging surface of a virtual image, and its "power" is relatively weak.
继透镜L1后的透镜L2、L3构成第一组G1,而配置于眼球侧的三块透镜L4、L5、L6构成第二组G2。The lenses L2, L3 following the lens L1 constitute the first group G1, and the three lenses L4, L5, L6 disposed on the eyeball side constitute the second group G2.
构成第一组G1的透镜L2、L3是相互接合的接合透镜。透镜L1是图像显示面IS侧的曲率大的双凹透镜,透镜L2是双凸透镜。The lenses L2 and L3 constituting the first group G1 are cemented lenses cemented to each other. The lens L1 is a biconcave lens with a large curvature on the image display surface IS side, and the lens L2 is a biconvex lens.
构成第二组G2的三块透镜L4、L5、L6都是正透镜,透镜L4是使凹面朝向图像显示面IS侧的正弯月透镜,透镜L5是双凸透镜,透镜L6是使凸面朝向图像显示面IS侧的正弯月透镜。透镜L6的两面是非球面。The three lenses L4, L5, and L6 constituting the second group G2 are all positive lenses. The lens L4 is a positive meniscus lens with the concave surface facing the image display surface IS side, the lens L5 is a biconvex lens, and the lens L6 is a convex surface facing the image display surface. Positive meniscus lens on IS side. Both surfaces of lens L6 are aspherical.
在图3示出实施方式的目镜系统,如图所示,由五块透镜L1~L5构成。最靠近图像显示面IS侧的透镜L1使凹面朝向物体侧,是两面为非球面的正弯月透镜,是像面弯曲校正透镜。像面弯曲校正透镜L1是视场致平透镜,是功率较弱的透镜。The eyepiece system of the embodiment is shown in FIG. 3 , and is composed of five lenses L1 to L5 as shown in the figure. The lens L1 closest to the image display surface IS side has a concave surface facing the object side, is a positive meniscus lens whose both surfaces are aspherical, and is a field curvature correction lens. The field curvature correction lens L1 is a field-flattening lens, and is a relatively weak lens.
继透镜L1之后的两块透镜L2、L3构成第一组G1,而配置于眼球侧的两块透镜L4、L5构成第二组G2。The two lenses L2, L3 following the lens L1 constitute the first group G1, and the two lenses L4, L5 disposed on the eyeball side constitute the second group G2.
构成第一组G1的透镜L2、L3是互相接合的接合透镜,透镜L1是图像显示面侧的曲率大的双凹透镜,透镜L2是双凸透镜。The lenses L2 and L3 constituting the first group G1 are cemented lenses cemented to each other, the lens L1 is a biconcave lens with a large curvature on the image display surface side, and the lens L2 is a biconvex lens.
构成第二组G2的透镜L4、L5都是正透镜,透镜L4为双凸透镜,透镜L5也是双凸透镜。透镜L5的两面是非球面。The lenses L4 and L5 constituting the second group G2 are both positive lenses, the lens L4 is a biconvex lens, and the lens L5 is also a biconvex lens. Both surfaces of the lens L5 are aspherical.
在图4,作为目镜系统的使用的一个方式,示出使用目镜系统的头戴型的图像观察装置的一个方式。在图4中,符号10表示图像观察装置,符号20表示观察者的头部。FIG. 4 shows one form of a head-mounted image observation device using the eyepiece system as one form of use of the eyepiece system. In FIG. 4 , reference numeral 10 denotes an image observation device, and reference numeral 20 denotes an observer's head.
图像观察装置10中,作为其主要部分的目镜系统11L、11R和图像显示元件12L、12R以既定的位置关系收纳于壳体13内。而且,壳体13利用带或框架等的适当的安装方式安装于在观察者的头部20。In the image observation device 10 , eyepiece systems 11L, 11R and image display elements 12L, 12R, which are main parts thereof, are housed in a casing 13 with a predetermined positional relationship. Furthermore, the casing 13 is attached to the observer's head 20 by an appropriate attachment method such as a belt or a frame.
目镜系统11L、图像显示元件12L是左眼用的,目镜11R、图像显示元件12R是右眼用的。作为目镜系统11L、11R,使用如上述1或2所记载的装置、具体而言后述的实施例1~3所记载的装置。The eyepiece system 11L and the image display element 12L are for the left eye, and the eyepiece 11R and the image display element 12R are for the right eye. As the eyepiece systems 11L and 11R, the devices described in 1 or 2 above, specifically, the devices described in Examples 1 to 3 described later are used.
作为图像显示元件12L、12R,使用液晶显示元件或EL显示元件等,在这些中作为二维图像而显示的图像,是相对于目镜系统11L、11R的观察物体。As the image display elements 12L, 12R, a liquid crystal display element, an EL display element, etc. are used, and the image displayed as a two-dimensional image in these is an observation object with respect to the eyepiece system 11L, 11R.
实施例Example
以下,说明三个具体的实施例。Hereinafter, three specific examples will be described.
在以下列举的实施例1~3中,面编号是从物体侧开始数的透镜面的编号,R表示各透镜面的曲率半径,D表示邻接透镜面的透镜面间距离。N表示透镜材质的d线的折射率,v表示阿贝数。In Examples 1 to 3 listed below, the surface number is the number of the lens surface counted from the object side, R represents the radius of curvature of each lens surface, and D represents the distance between adjacent lens surfaces. N represents the refractive index of the d-line of the lens material, and v represents the Abbe number.
此外,非球面用以下的众所周知的式子表示。In addition, the aspherical surface is represented by the following well-known formula.
X=(H2/R)/[1+(1-k(H/r)2}1/2]X=(H 2 /R)/[1+(1-k(H/r) 2 } 1/2 ]
+A·H4+B·H6+C·H8+D·H10+E·H12…+A·H 4 +B·H 6 +C·H 8 +D·H 10 +E·H 12 …
在该式中,X是以面的顶点为基准时在离光轴高度H的位置处的光轴方向的位移,k是圆锥系数,A~E……是高次非球面系数,R是近轴曲率半径。此外,带有长度的基准的量的单位是mm。In this formula, X is the displacement in the direction of the optical axis at the height H from the optical axis based on the vertex of the surface, k is the conic coefficient, A~E... are high-order aspheric coefficients, and R is the approximate Shaft radius of curvature. In addition, the unit of the quantity with reference to the length is mm.
实施例1Example 1
实施例1是结合图1说明了实施方式的目镜系统的具体例。表1示出实施例1的透镜数据,表2示出非球面数据。Example 1 is a specific example of the eyepiece system of the embodiment described with reference to FIG. 1 . Table 1 shows lens data of Example 1, and Table 2 shows aspherical surface data.
表1Table 1
表2Table 2
此外,在非球面的显示中,例如“1.6.E-04”表示“1.6×10-4”。在其他实施例中也是同样的。In addition, in the display of an aspheric surface, for example, "1.6.E-04" means "1.6×10 -4 ". The same applies to other examples.
在实施例1的目镜系统中,整个系统的焦点距离F=19.2mm,第一组G1的焦点距离F1=-46.8mm,第二组的焦点距离F2=27.6mm。因此,条件(1)的参数F1/F=-2.4,条件(2)的参数F2/F=1.4。In the eyepiece system of Embodiment 1, the focal length of the entire system is F=19.2 mm, the focal length of the first group G1 is F1=-46.8 mm, and the focal length of the second group is F2=27.6 mm. Therefore, the parameter F1/F=-2.4 of the condition (1), and the parameter F2/F=1.4 of the condition (2).
瞳孔E的直径为9mm,出瞳距离(eye relief)(离眼球最近的透镜面与眼球(瞳孔)的距离)为24mm,虚像的观察距离为10m,水平视角为45度。The diameter of the pupil E is 9mm, the eye relief (the distance between the lens surface closest to the eyeball and the eyeball (pupil)) is 24mm, the viewing distance of the virtual image is 10m, and the horizontal viewing angle is 45 degrees.
因此,在将实施例1的目镜系统在图4的图像观察装置中用作目镜系统11L、11R时,这些目镜径11L、11R的光轴所成的辐辏角(convergence angle),设定成在观察距离10m的位置与观察图像重合。Therefore, when the eyepiece system of Example 1 is used as the eyepiece systems 11L, 11R in the image observation device of FIG. The position at an observation distance of 10m overlaps with the observation image.
实施例1的目镜系统是取瞳孔直径为较大的9mm、重视轴上的分辨率的类型。The eyepiece system of Example 1 is a type in which the pupil diameter is 9 mm, which is large, and the axial resolution is emphasized.
在图5示出与实施例1的目镜系统相关的像差图。图5(a)示出纵像差,图5(b)示出横像差。FIG. 5 shows an aberration diagram related to the eyepiece system of Example 1. As shown in FIG. FIG. 5( a ) shows longitudinal aberration, and FIG. 5( b ) shows lateral aberration.
像差图中,R表示波长629nm的光,G表示波长538nm的光,B表示波长458nm的光。在以下的实施例的像差图中也是同样的。In the aberration diagram, R represents light with a wavelength of 629 nm, G represents light with a wavelength of 538 nm, and B represents light with a wavelength of 458 nm. The same applies to the aberration diagrams of the following examples.
实施例2Example 2
实施例2是根据图2说明了实施方式的目镜系统的具体例。表3表示实施例2的透镜数据,表4表示非球面数据。Example 2 is a specific example of the eyepiece system according to the embodiment described with reference to FIG. 2 . Table 3 shows lens data of Example 2, and Table 4 shows aspherical surface data.
表3table 3
表4Table 4
在实施例2的目镜系统中,整个系统的焦点距离F=19.0mm,第一组G1的焦点距离Fl=-43.1mm,第二组的焦点距离F2=24.2mm。因此,条件(1)的参数F1/F=-2.3,条件(2)的参数:F2/F=1.3。In the eyepiece system of Example 2, the focal length of the entire system is F=19.0 mm, the focal length of the first group G1 is Fl=-43.1 mm, and the focal length of the second group is F2=24.2 mm. Therefore, the parameter F1/F=-2.3 of the condition (1), and the parameter of the condition (2): F2/F=1.3.
瞳孔E的直径是4mm,出瞳距离25mm,虚像的观察距离10m,水平视角是45度。在将实施例2的目镜系统在图4的图像观察装置中用作目镜系统11L、11R时,这些目镜径11L、11R的光轴所成的辐辏角,设定为在观察距离10m的位置与观察图像重合。The diameter of the pupil E is 4mm, the exit pupil distance is 25mm, the observation distance of the virtual image is 10m, and the horizontal viewing angle is 45 degrees. When the eyepiece system of Embodiment 2 is used as the eyepiece systems 11L, 11R in the image observation device of FIG. Observe that the images overlap.
实施例2的目镜系统是如下的类型:使瞳孔直径与等于通常的瞳孔的平均值的4mm相等,与轴上的分辨率相比,更重视降低瞳孔的偏移/倾斜导致的观察图像的劣化。The eyepiece system of Example 2 is a type in which the pupil diameter is equal to 4mm, which is equal to the average value of normal pupils, and the reduction of the deterioration of the observed image due to the deviation/inclination of the pupil is more important than the axial resolution. .
图6示出实施例2的目镜系统涉及的像差图。图6(a)表示纵像差,图6(b)表示横像差。FIG. 6 shows aberration diagrams related to the eyepiece system of Example 2. FIG. Fig. 6(a) shows longitudinal aberration, and Fig. 6(b) shows transverse aberration.
实施例3Example 3
实施例3是根据图3说明了实施方式的目镜系统的具体例。表5示出实施例3的透镜数据,表6示出非球面数据。Example 3 is a specific example of the eyepiece system according to the embodiment described with reference to FIG. 3 . Table 5 shows lens data of Example 3, and Table 6 shows aspherical surface data.
表5table 5
表6Table 6
在实施例3的目镜系统中,整个系统的焦点距离F=18.9mm,第一组G1的焦点距离Fl=-55.0mm,第二组的焦点距离F2=26.9mm。因此,条件(3)的参数F1/F=-2.9,条件(4)的参数F2/F=1.4。In the eyepiece system of Example 3, the focal length of the entire system is F=18.9mm, the focal length of the first group G1 is Fl=-55.0mm, and the focal length of the second group is F2=26.9mm. Therefore, the parameter F1/F=-2.9 of the condition (3), and the parameter F2/F=1.4 of the condition (4).
瞳孔E的直径为4mm,出瞳距离25mm,虚像的观察距离10m,水平视角是45度。The diameter of the pupil E is 4 mm, the exit pupil distance is 25 mm, the observation distance of the virtual image is 10 m, and the horizontal viewing angle is 45 degrees.
在将实施例3的目镜系统在图4的图像观察装置中用作目镜系统11L、11R时,这些目镜径11L、11R的光轴所成的辐辏角,设定为在观察距离10m的位置与观察图像重合。When the eyepiece system of Embodiment 3 is used as the eyepiece systems 11L, 11R in the image observation device of FIG. Observe that the images overlap.
实施例3的目镜系统也是如下的类型:使瞳孔直径与等于通常的瞳孔的平均值的4mm相等,与轴上的分辨率相比,更重视降低瞳孔的偏移/倾斜带来的观察图像劣化,瞳孔的偏移/倾斜带来的观察图像的变差,比实施例2进一步有所降低。The eyepiece system of Example 3 is also a type in which the pupil diameter is equal to 4mm, which is equal to the average value of normal pupils, and the reduction of the observed image degradation caused by the shift/inclination of the pupil is more important than the axial resolution. , the deterioration of the observed image caused by the shift/inclination of the pupil is further reduced compared to Example 2.
图7示出实施例3的目镜系统涉及的像差图。图7(a)表示纵像差,图7(b)表示横像差。FIG. 7 shows aberration diagrams related to the eyepiece system of Example 3. FIG. FIG. 7( a ) shows longitudinal aberration, and FIG. 7( b ) shows lateral aberration.
实施例1~3的目镜系统的各像差都得到良好地校正,性能良好。The various aberrations of the eyepiece systems of Examples 1 to 3 were well corrected and had good performance.
实施例2、3的目镜最靠近图像显示面IS侧的透镜L1使凹面朝向物体侧,是两面为非球面的正弯月透镜,是像面弯曲校正透镜。由于该像面弯曲校正透镜L1的存在,可知与实施例1的目镜系统相比,像散、图像面弯曲得到更有效地校正。The lens L1 of the eyepiece closest to the image display surface IS in Examples 2 and 3 has a concave surface facing the object side, is a positive meniscus lens with both aspherical surfaces, and is a field curvature correction lens. Due to the presence of the field curvature correcting lens L1, it can be seen that astigmatism and image surface curvature are corrected more effectively than in the eyepiece system of Example 1.
在物体侧带有良好的远心性、性能良好且能得到高清晰度的放大虚像的目镜系统,在头戴型等的图像观察装置中,能够实现观察图像的亮度或颜色不会随视角而不同的观察图像。The eyepiece system with good telecentricity on the object side, good performance, and high-definition magnified virtual image can realize that the brightness or color of the observed image does not change depending on the viewing angle in head-mounted image observation devices. observation image.
符号说明Symbol Description
G1、第一组 G2、第二组G1, the first group G2, the second group
18、图像显示面 E、瞳孔18. Image display surface E, pupil
10、图像观察装置 11L、11R、目镜系统10. Image observation device 11L, 11R, eyepiece system
12L、12R、图像显示元件12L, 12R, image display components
Claims (3)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-184048 | 2011-08-25 | ||
JP2011184048A JP5851157B2 (en) | 2011-08-25 | 2011-08-25 | Eyepiece lens system and image observation apparatus |
PCT/JP2012/071752 WO2013027855A1 (en) | 2011-08-25 | 2012-08-22 | Eyepiece lens system and image observation device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103765292A CN103765292A (en) | 2014-04-30 |
CN103765292B true CN103765292B (en) | 2016-11-09 |
Family
ID=47746587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201280034980.6A Active CN103765292B (en) | 2011-08-25 | 2012-08-22 | Eyepiece system and image observation device |
Country Status (5)
Country | Link |
---|---|
US (1) | US9323040B2 (en) |
EP (1) | EP2749929B1 (en) |
JP (1) | JP5851157B2 (en) |
CN (1) | CN103765292B (en) |
WO (1) | WO2013027855A1 (en) |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104583842B (en) | 2013-04-11 | 2019-02-15 | 索尼公司 | Image display device and display equipment |
EP2985651B1 (en) | 2013-04-11 | 2020-07-15 | Sony Corporation | Image display device and display device |
WO2015008531A1 (en) | 2013-07-16 | 2015-01-22 | ソニー株式会社 | Display device |
CN104737060B (en) * | 2013-07-16 | 2018-12-11 | 索尼公司 | Display device |
JP6185787B2 (en) * | 2013-08-09 | 2017-08-23 | リコーインダストリアルソリューションズ株式会社 | Eyepiece lens system and image observation apparatus |
KR102229498B1 (en) * | 2014-07-07 | 2021-03-18 | 엘지전자 주식회사 | Optical apparatus and HMD having the same |
US20160062104A1 (en) * | 2014-08-29 | 2016-03-03 | Canon Kabushiki Kaisha | Eyepiece lens, observation device including the same, and imaging apparatus |
US10761313B2 (en) | 2014-08-29 | 2020-09-01 | Canon Kabushiki Kaisha | Eyepiece lens, observation apparatus, and imaging apparatus including the same |
CN106249399B (en) * | 2015-01-26 | 2018-06-12 | 歌尔科技有限公司 | One kind wears eyepiece system and wears display equipment |
US10215978B2 (en) | 2015-11-13 | 2019-02-26 | Shenzhen Ned Optics Co., Ltd. | Eyepiece optical system with large field-of-view angle and head-mounted display apparatus |
CN105527713B (en) * | 2016-01-26 | 2018-05-01 | 深圳市谛源光科有限公司 | A kind of optical system for virtual reality device |
US10422976B2 (en) * | 2016-02-26 | 2019-09-24 | Samsung Electronics Co., Ltd. | Aberration corrected optical system for near-eye displays |
CN105589208B (en) * | 2016-02-29 | 2018-06-01 | 中山联合光电科技股份有限公司 | Internal focusing virtual reality optical system |
US10571692B2 (en) * | 2016-03-02 | 2020-02-25 | Facebook Technologies, Llc | Field curvature corrected display |
CN105652445B (en) * | 2016-03-03 | 2018-06-01 | 中山联合光电科技股份有限公司 | Ultra-high definition and internal focusing virtual reality optical system |
CN105739084B (en) * | 2016-04-29 | 2018-03-02 | 青岛宇科软件有限公司 | A kind of optical lens system and head-mounted display apparatus |
CN107783294A (en) * | 2016-08-31 | 2018-03-09 | 深圳超多维科技有限公司 | A kind of VR display devices and VR display devices |
CN106970464B (en) * | 2017-01-11 | 2019-06-21 | 玉晶光电(厦门)有限公司 | Eyepiece optical system |
CN106970466B (en) * | 2017-01-11 | 2019-09-17 | 玉晶光电(厦门)有限公司 | Eyepiece optical system |
CN109643024A (en) * | 2017-08-15 | 2019-04-16 | 深圳市柔宇科技有限公司 | Wear display equipment |
CN109407264B (en) * | 2017-08-17 | 2021-04-06 | 信泰光学(深圳)有限公司 | Thin type lens |
WO2019054358A1 (en) * | 2017-09-15 | 2019-03-21 | 株式会社ニコン | Eyepiece optical system, optical device, and method for producing eyepiece optical system |
WO2019095215A1 (en) * | 2017-11-16 | 2019-05-23 | 深圳市柔宇科技有限公司 | Near-eye display device |
CN109932806B (en) * | 2017-12-18 | 2021-06-08 | 中强光电股份有限公司 | Optical lens |
CN109932820A (en) * | 2017-12-18 | 2019-06-25 | 中强光电股份有限公司 | monitor |
CN107861247B (en) * | 2017-12-22 | 2020-08-25 | 联想(北京)有限公司 | Optical component and augmented reality device |
US11454783B2 (en) | 2018-04-25 | 2022-09-27 | Samsung Electronics Co., Ltd. | Tiled triplet lenses providing a wide field of view |
JP2020020935A (en) * | 2018-07-31 | 2020-02-06 | ソニー株式会社 | Display device |
JP7285263B2 (en) | 2018-08-28 | 2023-06-01 | 株式会社ソニー・インタラクティブエンタテインメント | Eyepiece optical system and image observation device |
US20210325634A1 (en) | 2018-08-28 | 2021-10-21 | Sony Interactive Entertainment Inc. | Lens unit and image observing device |
CN109875202B (en) * | 2019-04-02 | 2024-05-14 | 胡惠 | Nanometer micro-engraving display body for 3D display of stereoscopic imaging graph, manufacturing method and jewelry |
TWI707171B (en) * | 2019-12-04 | 2020-10-11 | 佐臻股份有限公司 | Ocular optical system |
CN113311563B (en) * | 2020-02-27 | 2024-02-06 | 中强光电股份有限公司 | Optical lens |
DE102020134017A1 (en) * | 2020-08-13 | 2022-02-17 | Carl Zeiss Ag | optical system |
CN112558274B (en) * | 2020-12-15 | 2025-03-11 | 江门英讯通光电科技有限公司 | A telecentric laser field mirror lens and laser scanning system thereof |
WO2022165102A1 (en) | 2021-01-29 | 2022-08-04 | Caronia Ronald Michael | Opthalmic instrument eyepiece extender |
CN112946861B (en) * | 2021-02-05 | 2023-02-24 | 惠州市星聚宇光学有限公司 | Infrared lens and infrared imaging module |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02222914A (en) * | 1988-11-10 | 1990-09-05 | Olympus Optical Co Ltd | Wide-field ocular |
JPH06194583A (en) * | 1992-12-24 | 1994-07-15 | Canon Inc | Eyepiece lens and additional optical system constituted by using the lens |
US5973847A (en) * | 1994-05-19 | 1999-10-26 | Canon Kabushiki Kaisha | Eyepiece lens |
US5726808A (en) * | 1995-09-04 | 1998-03-10 | Nikon Corporation | Eyepiece lens with wide apparent field of view |
JPH09251133A (en) * | 1996-03-14 | 1997-09-22 | Nikon Corp | Wide visual field eyepiece |
JPH10221614A (en) * | 1997-02-10 | 1998-08-21 | Nikon Corp | Wide field eyepiece |
JP3617257B2 (en) | 1997-07-01 | 2005-02-02 | 三菱電機株式会社 | Eyepiece optical system and eyepiece image display device |
JPH11174345A (en) * | 1997-12-08 | 1999-07-02 | Fuji Photo Optical Co Ltd | Wide visual field ocular |
US6282030B1 (en) * | 2000-04-24 | 2001-08-28 | The United States Of America As Represented By The Secretary Of The Army | Eyepiece assembly using plastic aspheric element |
US6280030B1 (en) * | 2000-09-06 | 2001-08-28 | Wu Meihua Chen | Eyeglasses assembly |
JP3548539B2 (en) * | 2001-03-09 | 2004-07-28 | キヤノン株式会社 | Observation optics and binoculars |
US6785054B1 (en) | 2003-02-24 | 2004-08-31 | Eastman Kodak Company | Optical magnifier suitable for use with a microdisplay device |
JP2006519421A (en) * | 2003-03-05 | 2006-08-24 | スリーエム イノベイティブ プロパティズ カンパニー | Diffractive lens |
JP2005134867A (en) | 2003-10-08 | 2005-05-26 | Nikon Corp | Image display device |
JP2005308957A (en) * | 2004-04-20 | 2005-11-04 | Olympus Corp | Eyepiece |
JP4800644B2 (en) * | 2005-03-18 | 2011-10-26 | オリンパスイメージング株式会社 | Eyepiece optical system and relay type finder optical system |
JP2006259478A (en) * | 2005-03-18 | 2006-09-28 | Olympus Corp | Relay finder optical system and single-lens reflex camera |
JP2007003652A (en) * | 2005-06-22 | 2007-01-11 | Konica Minolta Photo Imaging Inc | Reduction optical system |
CN101470262B (en) * | 2007-12-27 | 2011-08-17 | 比亚迪股份有限公司 | Optical imaging device of miniature display eyepiece |
JP5021565B2 (en) * | 2008-06-06 | 2012-09-12 | 富士フイルム株式会社 | Five-lens imaging lens and imaging device |
JP5073590B2 (en) * | 2008-06-06 | 2012-11-14 | 富士フイルム株式会社 | Five-lens imaging lens and imaging device |
JP5629996B2 (en) * | 2009-03-13 | 2014-11-26 | 株式会社ニコン | Stereoscopic optical device and imaging optical device |
CN101609208B (en) * | 2009-07-20 | 2011-04-27 | 北京理工大学 | eyepiece |
US8736967B1 (en) * | 2010-11-19 | 2014-05-27 | SA Photonics, Inc. | Anamorphic eyepiece |
US9030503B2 (en) * | 2011-01-18 | 2015-05-12 | The United States Of America As Represented By The Secretary Of The Army | Anamorphic eyepiece with a microlens array for a panoramic field of view |
-
2011
- 2011-08-25 JP JP2011184048A patent/JP5851157B2/en active Active
-
2012
- 2012-08-22 EP EP12825129.5A patent/EP2749929B1/en active Active
- 2012-08-22 WO PCT/JP2012/071752 patent/WO2013027855A1/en active Application Filing
- 2012-08-22 CN CN201280034980.6A patent/CN103765292B/en active Active
- 2012-08-22 US US14/240,840 patent/US9323040B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US20140218806A1 (en) | 2014-08-07 |
JP5851157B2 (en) | 2016-02-03 |
EP2749929B1 (en) | 2019-10-02 |
EP2749929A4 (en) | 2015-04-08 |
JP2013045020A (en) | 2013-03-04 |
EP2749929A1 (en) | 2014-07-02 |
WO2013027855A1 (en) | 2013-02-28 |
CN103765292A (en) | 2014-04-30 |
US9323040B2 (en) | 2016-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103765292B (en) | Eyepiece system and image observation device | |
JP6257171B2 (en) | Eyepiece optical system and imaging apparatus having the same | |
JP6098838B2 (en) | Eyepiece optical system and imaging apparatus | |
JP2016001209A (en) | Eyepiece and imaging apparatus | |
CN103282817B (en) | Objective lens optical system for endoscope | |
JP2017003763A (en) | Observation optical system and image display device including the same | |
JP5745186B2 (en) | Eyepiece and imaging device | |
WO2017022670A1 (en) | Eyepiece optical system and electronic viewfinder | |
JP6618278B2 (en) | Eyepiece and observation apparatus having the same | |
JP2006215501A (en) | Projection lens and projection type display device using the same | |
JP7191005B2 (en) | Eyepieces, viewing optics, and optics | |
JP2009003105A (en) | Finder optical system and imaging apparatus | |
JP2022136208A (en) | Observation device | |
EP3032313B1 (en) | Ocular lens system, and image observation device | |
US9551864B2 (en) | Eyepiece lens and observation apparatus having the same | |
JP2023046217A (en) | Observation optics and optical equipment | |
JP2020030421A (en) | Ocular lens and image capturing device | |
JP2006106491A (en) | View finder | |
JPH06308423A (en) | Visual display device | |
JP4817758B2 (en) | Eyepiece optical system and viewfinder system using the same | |
WO2014073027A1 (en) | Ocular optical system and finder optical system | |
JPH07113966A (en) | Eyepiece lens | |
JP2003287688A (en) | Eyepiece |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: Iwate County, Japan Patentee after: RICOH INDUSTRIAL SOLUTIONS Inc. Country or region after: Japan Patentee after: Sony Corp. Address before: Iwate County, Japan Patentee before: RICOH OPTICAL IND Co. Country or region before: Japan Patentee before: Sony Corp. |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20250319 Address after: Iwate County, Japan Patentee after: Otto Vision Co.,Ltd. Country or region after: Japan Patentee after: Sony Corp. Address before: Iwate County, Japan Patentee before: RICOH INDUSTRIAL SOLUTIONS Inc. Country or region before: Japan Patentee before: Sony Corp. |