CN103764393B - 热塑性塑料的层间增韧 - Google Patents
热塑性塑料的层间增韧 Download PDFInfo
- Publication number
- CN103764393B CN103764393B CN201280041845.4A CN201280041845A CN103764393B CN 103764393 B CN103764393 B CN 103764393B CN 201280041845 A CN201280041845 A CN 201280041845A CN 103764393 B CN103764393 B CN 103764393B
- Authority
- CN
- China
- Prior art keywords
- thermoplastic
- paek
- particle
- fiber
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/14—Layered products comprising a layer of metal next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/12—Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
- B32B27/286—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
- B32B27/288—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyketones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/12—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
- B32B2260/023—Two or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/04—Impregnation, embedding, or binder material
- B32B2260/046—Synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0261—Polyamide fibres
- B32B2262/0269—Aromatic polyamide fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/101—Glass fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/106—Carbon fibres, e.g. graphite fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/558—Impact strength, toughness
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249924—Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
- Y10T428/24994—Fiber embedded in or on the surface of a polymeric matrix
- Y10T428/249942—Fibers are aligned substantially parallel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
- Y10T428/256—Heavy metal or aluminum or compound thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31721—Of polyimide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/10—Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/10—Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
- Y10T442/184—Nonwoven scrim
- Y10T442/198—Coated or impregnated
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/30—Woven fabric [i.e., woven strand or strip material]
- Y10T442/3854—Woven fabric with a preformed polymeric film or sheet
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/674—Nonwoven fabric with a preformed polymeric film or sheet
Landscapes
- Laminated Bodies (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
本文中的一些实施例涉及热塑性复合结构,其具有至少一个纤维强化的热塑性树脂的结构层和至少一个邻近所述结构层的表面的增韧层。所述增韧层经配置以在复合层压件中产生层间区域且可采取以下形式:聚合物膜、织造或非织造纤维材料、游离颗粒、增韧颗粒分散于其中的聚合物层或非织造纱罩、金属网或箔。
Description
相关申请的交叉引用
本申请要求于2011年8月29日提交的美国临时申请第61/528,561号的优先权。
背景技术
按照惯例,将热塑性增韧剂添加到热固性树脂系统中以赋予韧性并降低复合材料中未使用热塑性增韧剂时会存在的脆性。举例来说,将热塑性增韧颗粒或热塑性增韧剂与结构复合物一起使用以改进基于热固性树脂的系统的韧性。与热固性树脂系统相比,通常并不使用其它增韧材料对热塑性树脂系统进行强化,这是因为普遍认为热塑性系统已具有足够韧性。然而,因航天工业及其它工业需要热塑性材料的改进的性能(例如,改进的韧性),从而影响了复合材料的演化发展。
热塑性复合物的多个益处中的一个是聚合物赋予的高基质韧性。在使用当前现有技术的热塑性复合物预浸料的加固层压件中,层间区域通常极小或不存在。这种配置可使得冲击事件更容易传递到下一板层,这会扩大损坏面积。
常规层压件需要进一步改进。赋予加固层压件改进的韧性或冲击后压缩(CAI)性能是有用的技术进步,且在所需环境中需要复合材料来运行的工业中,尤其可被大型商业运输和/或军事航天工业快速接受。
发明内容
已发现,通过增加层间区域大小和热塑性层压件的含量,冲击后压缩(CAI)性能得以改进。另外,为改进成品层压件的CAI韧性,进一步需要解决结构的板层间区域内的剩余弱点。
为解决这些问题,本文的一些实施例涉及加固或未加固的热塑性复合结构,其具有至少一个由经热塑性树脂基质浸渍的强化纤维构成的结构层和至少一个位于结构层的表面上的增韧层。所述增韧层经配置以在复合层压件中产生层间区域且可采取以下形式:聚合物膜、织造或非织造纤维材料、游离颗粒、增韧颗粒分散于其中的聚合物层或非织造纱罩、未浸渍或经浸渍的金属网或箔。
将多个结构层以堆叠布置层叠,从而将增韧层定位于两个邻近结构层之间。由于此配置,复合层压件在加固后的CAI强度大于没有增韧层的相同层压件。
附图说明
图1显示由基于CypekTMDSE基质的碳纤维强化的单向带形成的对照层压件的DSC曲线。。
图2显示由基于CypekTMDSE基质的碳纤维强化的单向带和玻璃增韧层形成的改良层压件的DSC。
图3是显示由基于APCTM-CypekTMDSE基质的碳纤维强化的单向带形成的对照层压件中的层间区域的显微照片。
图4是显示由基于CypekTMDSE基质的碳纤维强化的单向带和玻璃增韧层形成的层压件中的层间区域的显微照片。
图5是显示由基于CypekTMDSE基质的碳纤维强化的单向带和CypekTMDSE增韧膜形成的层压件中的层间区域的显微照片。
具体实施方式
与含有使用可交联的层间颗粒或层增韧的热固性树脂系统的常规复合材料相比,用于本文中的结构层的热塑性树脂基质并不依赖于与增韧材料进行交联以形成增韧层。在一些方面中,增韧层在加工温度下并不熔化或具有高熔化粘度,且增韧材料因此不会广泛地迁移或共混到纤维强化的结构层中的热塑性基质树脂中。因此,纤维强化的结构层的热塑性基质树脂形成层间区域的清晰边界,此继而得到在邻近结构层之间提供离散间隔的中间层(或中间板层)。相比之下,由于增韧层可能因树脂与增韧材料之间交联而形成较不离散的层,所以一些基于热固性树脂的复合物具有较不清晰的层间区域。基于热固性树脂且不含增韧剂的早期复合物具有极小层间区。然而,增韧剂已用于一些基于热固性树脂的复合物中以产生板层间区域。然而,可适于热固性树脂系统中的增韧材料可能与热塑性树脂系统不相容。具体来说,基于热塑性树脂的复合物的加固温度通常高于基于热固性树脂的复合物,且在一些情形下加固温度几乎为典型热固性树脂固化温度的两倍。因此,热固性复合物中使用的在热塑性塑料加工温度之前熔化并可能热降解的增韧材料会不相容。
加工温度是指在层压热塑性结构层期间的操作温度,其通常在高于半结晶聚合物的差示扫描量热法(DSC)扫描中的峰值熔点20℃-40℃的范围内,且在高于非晶型聚合物的玻璃化转变温度(Tg)80℃-150℃的范围内。
在此情况下的热塑性复合物或层压件包括多个呈堆叠布置的结构层,每个结构层都由经热塑性树脂基质浸渍的强化纤维构成。树脂基质包含一种或一种以上热塑性树脂作为主要组分。因此,树脂基质具有热塑性;然而,树脂基质可含有少量添加剂,例如增塑剂、流变改良剂、无机填料等。举例来说,可将无机填料粒子(例如云母、二氧化硅、碳化硅、氮化铝、氮化硼、氧化铝)与热塑性树脂混合。适宜热塑性树脂包括:聚醚酰亚胺(PEI)、聚芳醚酮(PAEK)、聚苯硫醚(PPS)、聚酰胺(尼龙(Nylon))及其组合。聚芳醚酮(PAEK)是结晶聚合物且可包含但不限于聚醚酮(PEK)、聚醚醚酮(PEEK)、聚醚酮酮(PEKK)和聚醚酮醚酮酮(PEKEKK)。这些热塑性树脂具有固有韧性,且因此通常认为典型热塑性树脂是不需要增韧的材料。此韧性赋予成品层压件良好的冲击性能。然而,已发现,可将增韧层添加到热塑性复合物中以进一步改进韧性特性。可使用测试方法ASTM D7136以冲击后压缩(CAI)性能形式来测量复合物韧性。在一些情形下,可得到超过50KSI的CAI性能。更具体地,CAI性能可超过55KSI、60KSI、65KSI或70KSI。例如,由半结晶单向带及增韧层形成的层压件可提供55KSI的CAI。“单向带”是指经树脂浸渍的纤维层,其中纤维沿一个方向对准。
市售PAEK聚合物包含PEEK、或DSE或FC以及其均购自氰特工程材料/氰特工业公司(Cytec Engineered Materials/Cytec Industries Inc.)。CypekTMDSE、DSM、FC、HTE是购自氰特工业公司的聚合物级PEKK。DS代表德克拉(Declar)规格,M代表模制。HTE代表高温挤出,且FC代表“快速结晶”。
增韧材料
增韧层可采取以下形式:连续或多孔聚合物膜、织造或非织造纤维材料、游离颗粒、含有分散于其中的颗粒的聚合物层、含有分散于其中的增韧颗粒的随机布置的聚合纤维的非织造纱罩、未浸渍或浸渍的织造金属网或箔。适于增韧层的材料包含:高熔点高分子量的热塑性聚合物;增塑的热塑性聚合物;高流动性聚合物;半结晶或快速结晶热塑性聚合物;基质树脂的聚合物杂合物;多聚合物合金;热固性聚合物,例如聚酰亚胺;陶瓷,例如氧化铝和硅酸盐;金属,例如铜、银、钛、铝及其合金;及任一种上述材料的组合。
对用于增韧层的材料或材料组合的选择取决于纤维强化的结构层中增韧层及热塑性树脂基质的配置。对于含有增韧颗粒的聚合物膜或纱罩来说,选择材料以在聚合物膜或纱罩与层间区域中的增韧颗粒之间产生协同效应。
“高熔点热塑性聚合物”是指熔化温度(Tm)如通过DSC所测量高于或等于280℃且加工温度(T加工)高于或等于300℃的任一种热塑性聚合物。
“高分子量热塑性聚合物”是指数均分子量(MW)大于10,000的聚合物。
“高流动性聚合物”是指在10s-1的表观剪切速率及熔化加工温度下熔化粘度小于600Pa·s的聚合物,例如340℃的CypekTMDS-M。
“半结晶聚合物”是指如通过DSC所测量显示熔化放热的任一种热塑性聚合物,例如PEEK。
“快速结晶聚合物”是指在以10℃/min或更高速率冷却时可达到大于或等于15%的结晶含量的半结晶热塑性聚合物,例如PEEK。
“基质树脂的聚合物杂合物”是指与基础基质聚合物的共聚物或接枝聚合物。
“多聚合物合金”是指两种不同聚合物的相容或不相容聚合物共混物。
增塑的热塑性聚合物是指其中共混有增塑剂的热塑性聚合物。实例是共混到PEEK中的二苯基砜。
对于含有增韧颗粒的热塑性层和纱罩来说,所述颗粒包含微球体,例如玻璃微珠或陶瓷微球体(例如白色陶瓷微珠(Zeosphere))。或者,增韧颗粒可由与分散有颗粒的热塑性层或热塑性纱罩不同的热塑性聚合物形成。
在某些实施例中,可挤出两种或两种以上增韧材料,且然后研磨以形成颗粒。然后将这些颗粒置于结构层上。可使用具有不同粒径的不同类型的颗粒的共混物作为增韧材料。可将颗粒及其混合物喷洒到结构层的表面上并使其熔化以形成增韧层。作为一个实例,可将PEEK颗粒与硅酸铝或其它类型的无机颗粒混合且然后通过喷洒施加在结构层上,随后任选地通过加热进行熔化层压。在另一个实施例中,将两种具有不同熔点和/或熔化粘度的不同热塑性聚合物颗粒在两种聚合物的较低熔化加工温度下层压。作为一个实例,将CypekTMDSM(峰值熔点=300℃)颗粒与CypekTMHTE(峰值熔点=355-360℃)颗粒的颗粒混合物置于结构层上且然后在340℃下实施熔化层压。
在另一个实施例中,为增加韧性且产生板层间区域,可将金属颗粒沉积于结构层(例如经热塑性聚合物浸渍的单向碳纤维的单向带)的一个或两个表面上。金属材料可为不规则形状、丝状或球形颗粒,且具有改进复合物的导电性的额外益处。
在使用颗粒的实施例中,颗粒可具有微小尺寸。优选地,颗粒的粒径大于3微米。
在另一个实施例中,增韧层是金属网或箔,或金属网与金属箔呈多层层压件形式的组合。在多个纤维强化的结构层的叠层中,在层间区域中存在多个所述金属增韧层。
在另一个实施例中,增韧层是玻璃纤维布。此外,可对玻璃纤维布进行化学气相沉积(CVD)以将极薄金属(例如铝)层沉积于玻璃纤维上。金属涂层可各自向板层间区域提供导电性。另外,此金属涂层可赋予平面内导电性,其有助于减弱复合物部分中的边缘辉光(例如机翼油箱等大型复合结构中的电容性放电)。
在另一个实施例中,热塑性基质树脂及增韧层是由相同热塑性树脂(例如PAEK)制得。
在一些实施例中,可使用增韧聚合物与一种或一种以上增韧颗粒的组合。例如,可在挤出机中将颗粒与增韧聚合物复合以产生用于层间增韧的材料。例如,将玻璃颗粒或纤维复合至PEEK或PEKK聚合物中以形成丸粒或膜。随后,可通过层压或其它工艺将丸粒或膜施加到结构层上。作为另一个实例,可组合CypekTMDS-M(峰值熔点=300℃)颗粒及PEEK(峰值熔点=340℃)树脂,将其挤出,且以膜形式施加并层压到结构层上。类似地,可组合PEEK颗粒和CypekTMDS-M树脂,将其挤出,且以膜形式施加并层压到结构层上,借此PEEK颗粒仅部分地熔化于完全熔化的CypekTMDS-M中。可使用较高熔点聚合物颗粒与较低熔点聚合物基质的组合,例如在CypekTMDS-M树脂中的CypekTMFC(峰值熔点=338℃)或CypekTMHT-E(峰值熔点=355℃-360℃)颗粒。
在一些实施例中,增韧层在整个层中至少半结晶—这意味着所述层在整个层中半结晶,或含有均匀分散于整个层中的结晶部分。因此,不会将邻近结晶层的非晶型层视为在各处至少半结晶,这是因为材料层在其各部分中主要是非晶型。具体来说,不会将非晶型部分视为在所述部分中至少半结晶,且因此不认为其在整个层中至少半结晶。在一些实施例中,结构层是含有半结晶聚合物的单向带且增韧层是由半结晶聚合物制得。通常,非晶型树脂更易受溶剂侵袭,这并非所需效应。两种半结晶聚合物基于其化学配方可具有不同熔点和不同结晶速率,从而使得对于给定冷却速率来说,每一半结晶聚合物将在层中得到彼此不同的结晶含量,且结晶含量较低的聚合物(结晶速率较慢)层提供增韧层。可能协同使用较高或较低熔点的聚合物来增韧材料。
增韧层也可呈织造纤维(例如织造织物)或非织造纤维(例如随机布置纤维的纱罩或垫)的形式。如果存在纤维,则其直径通常优选地为结构层中的结构强化纤维的至少一半。在一些情形下,增韧纤维及结构纤维的直径大致相同。例如,强化或结构纤维(例如碳纤维)的单丝直径可为约7μm,而打算用作增韧材料的玻璃纤维的单丝直径可为约5-9μm。与具有与结构纤维大致相同的直径的增韧纤维相比,具有相对较小直径的增韧纤维的制备较为昂贵。因此,亚微米直径纤维通常并非优选。
通常,更具结晶性的热塑性塑料(即具有较高结晶度)产生较高压缩强度及较低冲击强度。与之相比,非晶型热塑性塑料产生较低压缩强度及较高冲击强度。在本文各方面中,使用结晶度来抵抗溶剂降解。较高结晶度值(至多35%)改进聚合物抵抗此溶剂侵袭的性能。通过DSC测量结晶度。此类热塑性塑料适于结构层和增韧层二者的树脂基质。
众所周知,可通过调节对苯二酰("T")对间苯二酰("I")的比率("T:I比率")来改变一些PAEK聚合物(例如PEKK和PEKEKK)的熔点和结晶速率。在PEKK的当前合成中,通过对苯二酰氯和间苯二酰氯的相对量来控制"T"和"I"以制备嵌段共聚物。不期望受到理论的限制,据信,增加"I"链段的量会在聚合物主链中产生较多"扭结",由此减缓链旋转的速率和活化能,以达成结晶形成的最低能量配置。此得到较低熔化温度和较慢结晶速率。
对于上文所论述的大部分实施例来说,基于层压件中的基质树脂的总重量,增韧材料的含量高达20重量%。增韧材料的量足以在树脂浸渍的强化纤维的邻近层之间产生清晰的层间区域。
在结构层的热塑性树脂基质基于PAEK聚合物(例如PEEK或PEKK)时,尤其适宜的增韧材料包含(i)由PEKK、PEEK、PEK或聚酰亚胺制得的聚合物膜;(ii)呈短切纤维形式的玻璃纤维、碳纤维或聚芳酰胺(aramid)纤维、非织造垫或织造织物(例如,面积重量为0.55oz/yd2的玻璃纤维布);(iii)由聚酰亚胺、PEEK、PEKK、PEK或玻璃制得的颗粒及其颗粒共混物;(iv)由铝、铜、钛、镍或其组合制得的金属箔、网、薄片、纤维或颗粒。
在结构层的热塑性树脂基质是基于聚苯硫醚(PPS)聚合物时,尤其适宜的增韧材料包含(i)由PPS、PEEK、PEK、PEKK、PEKEKK、聚酰亚胺或聚酰胺(尼龙)制得的聚合物膜;(ii)呈短切纤维形式的玻璃纤维、碳纤维或聚芳酰胺纤维、非织造垫或织造织物;(iii)由PEEK、PEKK、PEK、PEKEKK或玻璃制得的颗粒及其颗粒共混物;(iv)由铝或不锈钢制得的金属箔、网、薄片、纤维或颗粒。
当增韧材料包括金属箔或网时,可将金属箔或网嵌入诸如PEEK或PEKK等增韧聚合物中。
在一个实施例中,结构层是由经热塑性基质树脂浸渍的强化纤维构成,且增韧层是其中分散有热塑性颗粒的随机布置的热塑性纤维的纱罩,其中热塑性基质树脂、纱罩和颗粒是由不同热塑性材料制得。作为一个实例,结构层是由经PPS浸渍的强化纤维构成,纱罩是由PEKK纤维构成且颗粒是由PEEK制得,或另一选择为,纱罩是由PEEK纤维构成且颗粒是由PEKK制得。
热塑性塑料的结构层和层压件
可通过在产生单向带之后使用各种方式施加(例如热层压、表面施加方法(包含静电施加))增韧材料来将增韧材料添加到纤维强化复合物层(例如单向纤维强化的复合物带,即,具有树脂和纤维的产物)中。此工艺将增韧材料维持于材料外周边处,其在此处最有效。进一步增加增韧材料的重量百分比需要额外树脂膜以防止缺胶现象(starvation),即层压件中树脂不足将因局部较高纤维体积而具有空隙的情形。此努力展示层压件内有利的低孔隙率,但却是通过从单向带中抽离树脂来达成。
在某些实施例中,通过将增韧层线上层压到产物来增加通过水性浆液及熔化浸渍方法制得的热塑性单向带的韧性。
如本文所用的术语“纤维”具有所属领域技术人员已知的普通含义且可包含一种或一种以上适于强化复合物的纤维材料。纤维可采取颗粒、薄片、晶须、短纤维、连续纤维、片材、板层及其组合物中的任一种形式。连续纤维可进一步采用单向、多维(例如,二维或三维)、非织造、织造、针织、编缝、卷绕及编织配置,以及卷曲垫、毛毡垫及短切垫结构中的任一种。织造纤维结构可包括多个具有小于约1000条单丝、小于约3000条单丝、小于约6000条单丝、小于约12000条单丝、小于约24000条单丝、小于约48000条单丝、小于约56000条单丝、小于约125000条单丝及大于约125000条单丝的织造纤维束。在其它实施例中,纤维束可通过交叉纤维束编缝、纬丝插入针织编缝或少量树脂(例如上胶)保持在适当位置。结构层中的强化纤维优选地具有大于3500MPa的拉伸强度。基于结构层的总重量,结构层中的强化纤维的含量优选地为至少55重量%。
在一些方面中,结构组分中所使用的纤维通常具有均匀直径且通常具有常规直径,例如约数微米到约毫米范围。因此,在一些方面中,小直径纤维可较为昂贵且可能难以在层间区域中辨别,且因此不提供可用于本文所揭示层压件中的离散层间区域。
纤维的组成可根据需要而变化。纤维组成的实施例可包含但不限于玻璃、碳、聚芳酰胺、石英、玄武岩、聚乙烯、聚酯、聚对亚苯基-苯并二噁唑(PBO)、硼、碳化硅、聚酰胺和石墨及其组合。在一个实施例中,纤维是碳、玻璃纤维、聚芳酰胺或其它热塑性材料。强化纤维可以是有机或无机纤维。另外,纤维可包含纺织构造,包含那些呈连续或非连续形式者。
结构纤维可包含单向带或网片、纤维、纤维束/预浸料或织物及非织造材料(例如垫或纱罩)。纤维强化的复合材料通常分类为带、织造布、非织造布、纸张及其混合物。“带”通常是指沿条带材料的单一轴延伸的单轴强化纤维。术语“布”通常是指沿条带材料内的至少两个不同轴铺放的强化纤维。布是以双轴、三轴和四轴形式购得,其分别指示纤维在两个、三个或四个不同轴中延伸。纤维可任选地彼此织造,或可制成非织造布。市场上可购得大量复合强化纤维,例如碳纤维、纤维、玻璃纤维及聚芳酰胺纤维。
如本文所用的术语“基质”、“树脂”和“基质树脂”是指结构层中的树脂组合物,且可包含少量可选添加剂(例如无机填料)。
如本文所用的术语“预浸料”包含至少一部分体积内已经基质材料浸渍的纤维片材或层。通常,预浸料呈准备好模制成特定形状并固化成成品复合物部分的可延展形式。这些复合物部分常用于制造承重结构部分,且特别是航天复合物部分,例如机翼、机身、舱壁、控制表面、机动艇及韧性和冲击性较为重要的其它应用。
如本文所用的术语“中间叶”具有其为所属领域技术人员已知的普通含义且包括置于其它层之间的层。在一个实施例中,中间叶可定位于复合物平面的中央。例如,中间叶通常发现于结构纤维层之间。
“层间”是指两个邻近层之间的区域。
层压件可由多个纤维强化的树脂或预浸料的结构层构成。
如本文所用的术语“叠层”具有其为所属领域技术人员已知的普通含义且可包括一种或一种以上彼此邻近放置的预浸料。在某些实施例中,叠层内的预浸料可相对于彼此以所选定向进行定位。在另一个实施例中,可任选地使用攻丝材料将预浸料编缝在一起,以抑制其偏离所选定向的相对运动。在其它实施例中,“叠层”可包括如本文所论述的完全浸渍预浸料、部分浸渍预浸料和多孔预浸料的任一个组合。叠层可通过包括但不限于手动叠层、自动带叠层(ATL)、高级纤维铺放(AFP)以及单丝卷绕的技术来制造。然后可通过(例如)高压釜将叠层固化以形成复合物件,其中增韧颗粒位于中间叶中并因颗粒即使在固化工艺之后仍为离散颗粒而增加复合物件的韧性和容损。
如本文所用的术语“加固的”和“未加固的”具有其为所属领域技术人员已知的普通含义。熔化可熔热塑性塑料的加固通常包括充分加热以使热塑性树脂变形,加固树脂和冷却。热层压是典型加固工艺。
在一些情况下,热塑性树脂在室温下为固体。
在一些方面中,制造方法包括将增韧剂热层压到单向带外侧,这是业内使用的典型方法。
如本文所用的术语“大约”、“约”及“实质上”代表接近所述量且仍执行所需功能或获得所需结果的量。举例来说,术语“大约”、“约”及“实质上”可是指在小于所数量的10%、小于5%、小于1%、小于0.1%及小于0.01%范围内的量。
如本文所用的术语“至少一部分”代表总体的量,其包括可包含所述总体在内的总体的量。举例来说,术语“一部分”可指大于总体的0.01%、大于0.1%、大于1%、大于10%、大于20%、大于30%、大于40%、大于50%、大于60%、大于70%、大于80%、大于90%、大于95%、大于99%及为100%的量。
实例
实例1-用玻璃增韧
测试层压件是通过将BGF104I617成品玻璃织物(玻璃强化为.55oz/yd2)的两个板层置于含有CypekTM-DSE树脂及Hexcel AS4碳纤维的单向带板层之间来形成,所述碳纤维是通常用于7μm公称直径的12K纤维(12,000根单丝)的未上胶碳纤维。不使用额外的树脂膜。还形成对照层压件,其与上述测试层压件相同,但并未使用玻璃织物增韧。使用ASTM D7136测量CAI性能。表1和表2展示基于4份测试样品的测试结果。
表1–对照
表2-用玻璃增韧
当与对照层压件相比时,发现玻璃织物改良CAI性能。玻璃板层间增韧材料将CAI增加到57KSI(正规化以改正板层厚度),相对于对照产物改良了2ksi。玻璃增韧层压件的未正规化CAI强度为55.1ksi,而未正规化对照为53.6ksi。
图1显示由基于CypekTMDSE基质的碳纤维强化的单向带形成的对照层压件的DSC曲线,且图2显示具有玻璃增韧层的层压件的DSC。
图3是显示由基于CypekTMDSE基质的碳纤维强化的单向带形成的对照层压件中的层间区域的显微照片。图4是显示由基于CypekTMDSE基质的碳纤维强化的单向带及玻璃增韧层形成的层压件中的层间区域的显微照片。
实例2-用热塑性膜增韧
使用相同方法形成如上文实例1中所述的测试层压件,但使用0.25密耳CypekTM-DSE膜代替玻璃织物作为增韧用中间叶。使用ASTM D7136测量CAI性能。表3显示基于4份测试样品的测试结果。
表3–用CypekTMDSE增韧
发现CypekTMDSE膜改进冲击后压缩性能。相对于对照的53.6ksi(未正规化),达到55.1ksi(未正规化)。
图5是显示根据此实例形成的层压件的层间区域的显微照片。
实例3–用玻璃和热塑性膜增韧
测试层压件是通过层叠经CypekTMDSE树脂浸渍的AS4碳纤维的单向带并在邻近单向带之间插入2个玻璃纤维布(0.72oz/yd2)板层及2个0.24密耳CypekTMDSE膜板层来制造。使用710°F/100psi的标准固化工艺条件横靠对照层压件来加工这些测试层压件。使用ASTMD7136测量CAI强度。表4和表5显示基于4份测试样品的测试结果。
表4–对照
表5–用玻璃/CypekTMPEKK增韧
对于基于CypekTMDSE基质的碳纤维强化的对照层压件来说,在1500in-lb/in冲击能量测试之后,CAI强度是49.8ksi。对于使用玻璃织物和CypekTMDSE膜增韧的层压件来说,得到平均为55.0ksi的CAI强度。
尽管已在本揭示内容中阐述了具体实施例,但应理解,所述说明并不旨在限制,这是因为所属领域技术人员可明了或可联想到其它修改和变化。本申请打算将所有这些修改及变化涵盖在所附权利要求书的范围内。
Claims (9)
1.一种热塑性复合层压件,其包括:
多个呈堆叠布置的结构层,每个结构层均包括经热塑性基质树脂浸渍的强化纤维,所述热塑性基质树脂主要组成为聚芳醚酮PAEK聚合物;和
多个层间区域,每个层间区域均形成于两个邻近结构层之间,其中每个层间区域包括选自以下的增韧材料:
(a)聚芳醚酮PAEK聚合物膜,其具有分散于其中的增韧颗粒,其中,所述颗粒是由相对于所述PAEK聚合物膜的熔点具有较高熔点的PAEK聚合物制得;
(b)PAEK聚合物膜,其包括不同PAEK聚合物的颗粒或由玻璃和PAEK聚合物的共混物制得的颗粒;
(c)包括随机布置的热塑性纤维的非织造纱罩,其具有或不具有分散于所述纱罩中的增韧颗粒,其中所述热塑性纤维具有直径,其为所述结构层中的所述强化纤维的所述直径的至少一半,并且所述热塑性纤维由高熔点热塑性聚合物制得,所述高熔点热塑性聚合物具有通过差示扫描量热法所测量的高于或等于280℃的熔化温度Tm,且当所述增韧颗粒存在时,所述颗粒是由选自以下的材料制得:PAEK聚合物、玻璃、陶瓷及其组合;
(d)具有不同熔点和大于3微米粒径的不同PAEK增韧颗粒的混合物。
2.根据权利要求1所述的热塑性复合层压件,其中所述结构层中的所述热塑性基质树脂包括聚醚醚酮PEEK或聚醚酮酮PEKK。
3.根据权利要求1或2所述的热塑性复合层压件,其中所述强化纤维是由碳或玻璃制得。
4.根据权利要求1所述的热塑性复合层压件,其中所述结构层中的所述强化纤维是单向对准的纤维。
5.根据权利要求1所述的热塑性复合层压件,其中用于所述增韧颗粒(d)的所述PAEK聚合物是选自:聚醚酮PEK、聚醚醚酮PEEK、聚醚酮酮PEKK和聚醚酮醚酮酮PEKEKK。
6.根据权利要求1所述的热塑性复合层压件,其中基于所述层压件中所述基质树脂的总重量,所述增韧材料的含量高达20重量%。
7.根据权利要求1所述的热塑性复合层压件,其中所述增韧材料是具有不同熔点的不同PAEK颗粒的混合物。
8.根据权利要求1所述的热塑性复合层压件,其中所述增韧材料是(c)随机布置的PAEK纤维的非织造纱罩,其具有分散于其中的增韧颗粒,其中所述强化纤维和所述非织造纱罩的所述纤维具有相同的直径。
9.一种复合结构,其是通过加固根据权利要求1所述的热塑性复合层压件产生,其中所述复合结构在加固后的冲击后压缩CAI强度大于53ksi。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161528561P | 2011-08-29 | 2011-08-29 | |
US61/528,561 | 2011-08-29 | ||
PCT/US2012/049152 WO2013032620A1 (en) | 2011-08-29 | 2012-08-01 | Interlaminar toughening of thermoplastics |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103764393A CN103764393A (zh) | 2014-04-30 |
CN103764393B true CN103764393B (zh) | 2017-07-28 |
Family
ID=46724621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201280041845.4A Active CN103764393B (zh) | 2011-08-29 | 2012-08-01 | 热塑性塑料的层间增韧 |
Country Status (14)
Country | Link |
---|---|
US (1) | US20130052897A1 (zh) |
EP (1) | EP2750889B1 (zh) |
JP (1) | JP2014529536A (zh) |
KR (1) | KR20140066201A (zh) |
CN (1) | CN103764393B (zh) |
AU (1) | AU2012301482B2 (zh) |
BR (1) | BR112014003350B1 (zh) |
CA (1) | CA2845504A1 (zh) |
ES (1) | ES2718450T3 (zh) |
MX (1) | MX2014001657A (zh) |
MY (1) | MY163302A (zh) |
RU (1) | RU2590539C2 (zh) |
TW (1) | TWI584960B (zh) |
WO (1) | WO2013032620A1 (zh) |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8796164B2 (en) * | 2010-12-28 | 2014-08-05 | Cytec Technology Corp. | Multilayer and composition gradient structures with improved damping properties |
BR112015008752B1 (pt) * | 2012-10-18 | 2021-02-23 | Cytec Industries Inc | método para deposição de fita automatizada de material compósito reforçado com fibra termoplástica in situ |
EP3024644B1 (en) | 2013-07-24 | 2018-06-06 | Integrated Composite Products Inc. | Composite structural article |
CN103625040A (zh) * | 2013-11-04 | 2014-03-12 | 孙直 | 具有纤维界面增韧的复合材料-金属材料层合结构及方法 |
WO2015130375A2 (en) * | 2013-12-23 | 2015-09-03 | Cytec Industries Inc. | Toughened composite materials and methods of manufacturing thereof |
CA2933117A1 (en) * | 2013-12-26 | 2015-07-02 | Katholieke Universiteit Leuven | Preform, sheet material, and composite sheet material |
FR3023746B1 (fr) | 2014-07-21 | 2016-07-29 | Univ Paul Sabatier - Toulouse Iii | Procede de preparation d'une structure composite stratifiee electriquement conductrice |
US10046539B2 (en) | 2014-07-22 | 2018-08-14 | United Technologies Corporation | Secondary reinforcement at interface of laminate structure |
US10195818B2 (en) | 2014-08-13 | 2019-02-05 | Integrated Composite Products, Inc. | Reinforcing article |
US10026522B1 (en) * | 2014-08-19 | 2018-07-17 | Superior Essex International LP | Flame retardant insulation material for use in a plenum cable |
EP3197674B1 (en) * | 2014-09-22 | 2021-11-10 | Cytec Industries Inc. | Composite materials with high z-direction electrical conductivity |
US10632718B2 (en) | 2014-09-30 | 2020-04-28 | The Boeing Company | Filament network for a composite structure |
US20200139642A1 (en) * | 2014-12-17 | 2020-05-07 | E.I. Dupont De Nemours And Company | Glass and carbon fiber composites and uses thereof |
EP3256309B1 (en) | 2015-02-12 | 2018-10-17 | Integrated Composite Products Inc. | Pre-stressed fiber reinforcing member and method for its manufacture |
EP3056337A1 (en) * | 2015-02-13 | 2016-08-17 | Advanced Materials Technology Innovation Company | Composite laminate with reinforcement of metal mesh |
KR102017178B1 (ko) | 2015-03-10 | 2019-09-02 | 화이바 레인포스드 써모플라스틱스 비.브이. | 단방향 섬유-강화 테이프를 제조하기 위한 스프레더 부재 |
NL2014630B1 (en) * | 2015-04-14 | 2016-12-16 | Advanced Mat Tech Innovation Company | Composite Laminate with Reinforcement of Metal Mesh. |
CN104842619B (zh) * | 2015-05-06 | 2017-09-12 | 江苏恒神股份有限公司 | 高韧性多层结构预浸料制造工艺 |
CN104985180B (zh) * | 2015-07-31 | 2017-08-18 | 中国航空工业集团公司北京航空制造工程研究所 | 一种金属间化合物及其制备方法及设备 |
AU2016354491B2 (en) * | 2015-11-12 | 2022-03-03 | Cytec Industries Inc. | Hybrid veil as interlayer in composite materials |
ES2954423T3 (es) * | 2015-11-30 | 2023-11-22 | Cytec Ind Inc | Materiales de revestimiento para estructuras de material compuesto |
US10370530B2 (en) | 2016-02-26 | 2019-08-06 | Ricoh Company, Ltd. | Methods for solid freeform fabrication |
EP3251827B1 (en) * | 2016-05-30 | 2021-07-28 | Covestro Deutschland AG | Combined carbon- and glass-fiber reinforced thermoplastic polyurethane and polyamide composites and its manufacturing |
WO2018024744A1 (en) * | 2016-08-02 | 2018-02-08 | Solvay Specialty Polymers Usa, Llc | Poly(aryl ether ketone) (paek) compositions including a low molecular weight aromatic compound |
JP6929932B2 (ja) * | 2016-08-02 | 2021-09-01 | ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー | 低分子量芳香族化合物を含むポリ(アリールエーテルケトン)(paek)組成物 |
US11014337B2 (en) | 2016-12-14 | 2021-05-25 | The Boeing Company | Laminate structures comprising fiber-reinforced thermoplastic prepreg plies |
US11077644B2 (en) | 2016-12-14 | 2021-08-03 | The Boeing Company | Material systems and methods of manufacturing material systems |
US11273622B2 (en) | 2016-12-14 | 2022-03-15 | The Boeing Company | Stiffening elements that comprise integral current flowpaths |
KR102253106B1 (ko) * | 2017-05-30 | 2021-05-14 | (주)엘지하우시스 | 연속섬유 복합재 및 그 제조 방법 |
US10710348B2 (en) | 2017-07-26 | 2020-07-14 | The Boeing Company | Methods and apparatus to increase fire resistance and fracture toughness of a composite structure |
GB201803802D0 (en) * | 2018-03-09 | 2018-04-25 | Rolls Royce Plc | Composite fan blade and manufacturing method thereof |
US10717245B2 (en) * | 2018-04-03 | 2020-07-21 | Johns Manville | System for producing a fully impregnated thermoplastic prepreg |
CN108975765B (zh) * | 2018-07-16 | 2021-04-06 | 江苏省苏安能节能建材科技有限公司 | 一种真空绝热板及其制备和应用 |
JP7196464B2 (ja) * | 2018-08-24 | 2022-12-27 | 東レ株式会社 | 繊維強化熱可塑性樹脂基材およびそれを用いた成形品 |
CN109467726A (zh) * | 2018-10-16 | 2019-03-15 | 厦门大学 | 采用玻璃微珠增强纤维/树脂基复合材料层合板层间强度的增强方法 |
RU209510U1 (ru) * | 2019-08-22 | 2022-03-16 | РусКомПолимер | Композитный материал |
EP3889208B1 (en) * | 2020-04-03 | 2022-11-30 | SHPP Global Technologies B.V. | Method of making a high filled fiber-mesh reinforced ceramic-thermoplastic polymer composites with outstanding mechanical performance |
WO2022043387A1 (en) * | 2020-08-28 | 2022-03-03 | Toray Advanced Composites | Ud tape with improved processing characteristics and roughened surface and method for production thereof |
CN112721230B (zh) * | 2020-11-16 | 2022-03-25 | 浙江大学 | 制造三维增强碳纤维复合材料的微细纤维高能植入装备 |
US20240391220A1 (en) * | 2021-08-30 | 2024-11-28 | Massachusetts Institute Of Technology | Alternative nanoporous network materials and processes |
GB202112659D0 (en) * | 2021-09-06 | 2021-10-20 | Victrex Mfg Ltd | Robots |
CN114425891B (zh) * | 2022-02-25 | 2023-06-30 | 中国船舶重工集团公司第十二研究所 | 高渗透性插层增韧材料及其制备方法 |
CN114773844A (zh) * | 2022-06-21 | 2022-07-22 | 北京玻钢院复合材料有限公司 | 一种聚酰亚胺增韧邻苯二甲腈树脂组合物、复合材料以及其制备方法 |
CN117143376A (zh) * | 2023-09-05 | 2023-12-01 | 东华大学 | 一种用于液体成型碳纤维复合材料的层间增韧复合薄膜的制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4590027A (en) * | 1976-06-10 | 1986-05-20 | Murphy David J | Method of producing a thermoplastics material |
CN1923506A (zh) * | 2006-07-19 | 2007-03-07 | 中国航空工业第一集团公司北京航空材料研究院 | 一种增韧的复合材料层合板及其制备方法 |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4604319B1 (en) * | 1984-06-01 | 1995-07-04 | American Cyanamid Co | Thermoplastic interleafed resin matrix composites with improved impact strength and toughness |
US5141804A (en) * | 1988-11-01 | 1992-08-25 | American Cyanamid Company | Interleaf layer in fiber reinforced resin laminate composites |
JP2892061B2 (ja) * | 1989-11-24 | 1999-05-17 | 旭化成工業株式会社 | 積層体 |
WO1990008802A1 (en) * | 1989-01-25 | 1990-08-09 | Asahi Kasei Kogyo Kabushiki Kaisha | New prepreg and composite molding, and production of composite molding |
US4957801A (en) * | 1989-05-17 | 1990-09-18 | American Cyanamid Company | Advance composites with thermoplastic particles at the interface between layers |
CA2056034C (en) * | 1990-11-29 | 2001-04-17 | Toshihiro Hattori | Prepregs, process for producing the same and laminates produced with the same |
JPH07238174A (ja) * | 1991-03-01 | 1995-09-12 | E I Du Pont De Nemours & Co | 繊維強化複合材料 |
US5660901A (en) * | 1991-04-30 | 1997-08-26 | Dexter Corporation | Oriented expanded molded products |
JPH05269909A (ja) * | 1992-03-30 | 1993-10-19 | Aisin Seiki Co Ltd | 繊維強化樹脂成形品 |
JPH0797465A (ja) * | 1993-08-05 | 1995-04-11 | Mitsui Toatsu Chem Inc | プリプレグ及び積層構造体 |
JP3089984B2 (ja) * | 1994-03-07 | 2000-09-18 | 東レ株式会社 | 補強織物とその製造方法および製造装置 |
JP3440615B2 (ja) * | 1995-03-22 | 2003-08-25 | 東レ株式会社 | プリプレグおよび繊維強化複合材料 |
US6265333B1 (en) * | 1998-06-02 | 2001-07-24 | Board Of Regents, University Of Nebraska-Lincoln | Delamination resistant composites prepared by small diameter fiber reinforcement at ply interfaces |
JP3877996B2 (ja) * | 2001-10-31 | 2007-02-07 | 敏夫 谷本 | 繊維強化プラスチック複合材料およびその製造方法 |
US7087296B2 (en) * | 2001-11-29 | 2006-08-08 | Saint-Gobain Technical Fabrics Canada, Ltd. | Energy absorbent laminate |
US6977247B2 (en) * | 2002-02-21 | 2005-12-20 | Supergen, Inc. | Sequential therapy comprising a 20(S)-camptothecin and a pyrimidine base analog |
FR2859943B1 (fr) * | 2003-09-23 | 2007-07-13 | Rhodia Industrial Yarns Ag | Structure composite |
TWI353303B (en) * | 2004-09-07 | 2011-12-01 | Toray Industries | Sandwich structure and integrated molding using th |
EP1937774A2 (en) * | 2005-09-16 | 2008-07-02 | General Electric Company | Blends of poly aryl ether ketones and polyetherimide sulfones |
GB0522960D0 (en) * | 2005-11-10 | 2005-12-21 | B I Group Plc | Composite material |
US7759267B2 (en) * | 2006-04-05 | 2010-07-20 | Azdel, Inc. | Lightweight composite thermoplastic sheets including reinforcing skins |
GB0619401D0 (en) * | 2006-10-02 | 2006-11-08 | Hexcel Composites Ltd | Composite materials with improved performance |
GB0717507D0 (en) * | 2007-09-07 | 2007-10-17 | Cytec Tech Corp | Composite materials and their use |
GB0805640D0 (en) * | 2008-03-28 | 2008-04-30 | Hexcel Composites Ltd | Improved composite materials |
AU2010204209B2 (en) * | 2009-01-06 | 2014-10-23 | Cytec Technology Corp. | Structural composite material with improved acoustic and vibrational damping properties |
DE102009006130B4 (de) * | 2009-01-26 | 2011-09-15 | Daimler Ag | Verbundbauteil mit Deckschicht |
EP2393857B1 (en) * | 2009-02-05 | 2019-05-29 | Arkema Inc. | Assemblies containing polyetherketoneketone tie layers |
US8158245B2 (en) * | 2009-09-24 | 2012-04-17 | Cytec Technology Corp. | Thermoplastic composites and methods of making and using same |
TWI496820B (zh) * | 2009-12-17 | 2015-08-21 | Cytec Tech Corp | 用於層間靭化之工程化交聯熱塑性顆粒 |
AU2010332128B2 (en) * | 2009-12-18 | 2013-10-17 | Cytec Technology Corp. | Methods of imparting conductivity to materials used in composite article fabrication & materials thereof |
JP5920690B2 (ja) * | 2011-05-30 | 2016-05-18 | 福井県 | プリプレグシート材及びその製造方法 |
-
2012
- 2012-08-01 RU RU2014111809/05A patent/RU2590539C2/ru active
- 2012-08-01 MY MYPI2014000178A patent/MY163302A/en unknown
- 2012-08-01 CN CN201280041845.4A patent/CN103764393B/zh active Active
- 2012-08-01 AU AU2012301482A patent/AU2012301482B2/en not_active Ceased
- 2012-08-01 MX MX2014001657A patent/MX2014001657A/es unknown
- 2012-08-01 BR BR112014003350-1A patent/BR112014003350B1/pt not_active IP Right Cessation
- 2012-08-01 JP JP2014528404A patent/JP2014529536A/ja active Pending
- 2012-08-01 KR KR20147007868A patent/KR20140066201A/ko not_active Withdrawn
- 2012-08-01 WO PCT/US2012/049152 patent/WO2013032620A1/en active Application Filing
- 2012-08-01 ES ES12750648T patent/ES2718450T3/es active Active
- 2012-08-01 EP EP12750648.3A patent/EP2750889B1/en active Active
- 2012-08-01 CA CA2845504A patent/CA2845504A1/en not_active Abandoned
- 2012-08-07 US US13/568,710 patent/US20130052897A1/en not_active Abandoned
- 2012-08-21 TW TW101130298A patent/TWI584960B/zh not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4590027A (en) * | 1976-06-10 | 1986-05-20 | Murphy David J | Method of producing a thermoplastics material |
CN1923506A (zh) * | 2006-07-19 | 2007-03-07 | 中国航空工业第一集团公司北京航空材料研究院 | 一种增韧的复合材料层合板及其制备方法 |
Non-Patent Citations (1)
Title |
---|
Structure properties relations in titanium based thermoplastic fiber metal laminates;P. Cortes,W.J. Cantwell;《Polymer Composites》;20060601;第27卷(第3期);第265页第1栏第2段 * |
Also Published As
Publication number | Publication date |
---|---|
CN103764393A (zh) | 2014-04-30 |
WO2013032620A1 (en) | 2013-03-07 |
RU2014111809A (ru) | 2015-10-10 |
CA2845504A1 (en) | 2013-03-07 |
EP2750889A1 (en) | 2014-07-09 |
TWI584960B (zh) | 2017-06-01 |
BR112014003350A2 (pt) | 2017-03-14 |
MY163302A (en) | 2017-09-15 |
US20130052897A1 (en) | 2013-02-28 |
TW201311457A (zh) | 2013-03-16 |
EP2750889B1 (en) | 2019-01-02 |
MX2014001657A (es) | 2014-03-21 |
KR20140066201A (ko) | 2014-05-30 |
ES2718450T3 (es) | 2019-07-02 |
AU2012301482A1 (en) | 2014-01-30 |
AU2012301482B2 (en) | 2014-11-13 |
BR112014003350B1 (pt) | 2020-02-18 |
RU2590539C2 (ru) | 2016-07-10 |
JP2014529536A (ja) | 2014-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103764393B (zh) | 热塑性塑料的层间增韧 | |
CA2775053C (en) | Thermoplastic composites and methods of making and using same | |
CN104379650B (zh) | 复合材料的改进 | |
US10675785B2 (en) | Fibrous material impregnated with thermoplastic polymer | |
US9447260B2 (en) | Methods for preparing nanoparticle-containing thermoplastic composite laminates | |
CN113427841B (zh) | 作为复合材料中的夹层的混合面纱 | |
CN102046367B (zh) | 改进的复合材料 | |
JP7123052B2 (ja) | 粉末形態の熱可塑性ポリマーを予備含浸させた繊維材料の製造方法 | |
CN108431098B (zh) | 结构体 | |
TW201343735A (zh) | 複合材料 | |
WO2021249875A1 (en) | Fiber reinforced thermoplastic matrix composite material | |
JP2024069200A (ja) | 三次元コンポジット部品を生産するための、含浸繊維材料のウェブ、その生産方法およびその使用 | |
AU2010298260B2 (en) | Thermoplastic composites and methods of making and using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |