CN103762220A - High-linearity degree-of-polarization quantum-well infrared detector with plasmon micro-cavity coupled structure - Google Patents
High-linearity degree-of-polarization quantum-well infrared detector with plasmon micro-cavity coupled structure Download PDFInfo
- Publication number
- CN103762220A CN103762220A CN201410021014.1A CN201410021014A CN103762220A CN 103762220 A CN103762220 A CN 103762220A CN 201410021014 A CN201410021014 A CN 201410021014A CN 103762220 A CN103762220 A CN 103762220A
- Authority
- CN
- China
- Prior art keywords
- metal
- quantum well
- polarization
- microcavity
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 claims abstract description 77
- 239000002184 metal Substances 0.000 claims abstract description 77
- 230000010287 polarization Effects 0.000 claims abstract description 64
- 238000001514 detection method Methods 0.000 claims abstract description 38
- 238000006243 chemical reaction Methods 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 11
- 230000007704 transition Effects 0.000 claims abstract description 8
- 230000008569 process Effects 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims description 12
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 8
- 239000010936 titanium Substances 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 7
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- 230000000737 periodic effect Effects 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims 4
- 238000000576 coating method Methods 0.000 claims 4
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims 2
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 claims 1
- 239000002131 composite material Substances 0.000 claims 1
- 238000010168 coupling process Methods 0.000 abstract description 25
- 230000008878 coupling Effects 0.000 abstract description 24
- 238000005859 coupling reaction Methods 0.000 abstract description 24
- 230000008033 biological extinction Effects 0.000 abstract description 17
- 230000004044 response Effects 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 3
- 230000004913 activation Effects 0.000 abstract description 2
- 239000000969 carrier Substances 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 6
- 238000005457 optimization Methods 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 229920002521 macromolecule Polymers 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000001808 coupling effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 230000005283 ground state Effects 0.000 description 2
- 230000004298 light response Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000007736 thin film deposition technique Methods 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Images
Landscapes
- Light Receiving Elements (AREA)
Abstract
本发明公开了一种等离激元微腔耦合结构的高线性偏振度量子阱红外探测器,该探测器由上层金属线条形成的金属光栅层、量子阱红外光电转换激活层和下层金属反射层组成。本发明的优点是:1.利用上层金属光栅与下层金属反射层之间等离激元共振所形成的电磁波近场耦合微腔的模式选择效应,使得能够进入到微腔的光子以那些能够与探测波长偏振模式形成共振的光子为主。2.进入到微腔中的光子其电矢量方向在微腔模式的调制下由x方向改变为z方向,能够被量子阱子带跃迁吸收形成光电转换过程。由于以上特点,本发明的偏振耦合结构能够极大地提高偏振响应的消光比,使探测器具有极高的偏振分辨能力。
The invention discloses a highly linearly polarized quantum well infrared detector with a plasmon microcavity coupling structure. The detector consists of a metal grating layer formed by upper metal lines, a quantum well infrared photoelectric conversion activation layer and a lower metal reflection layer. composition. The advantages of the present invention are: 1. Utilize the mode selection effect of the electromagnetic wave near-field coupling microcavity formed between the upper metal grating and the lower metal reflective layer, so that the photons that can enter the microcavity can be combined with those The detection wavelength is dominated by photons that form resonances in polarization modes. 2. The electric vector direction of the photons entering the microcavity is changed from the x direction to the z direction under the modulation of the microcavity mode, which can be absorbed by the quantum well subband transition to form a photoelectric conversion process. Due to the above characteristics, the polarization coupling structure of the present invention can greatly improve the extinction ratio of the polarization response, so that the detector has extremely high polarization resolution capability.
Description
技术领域technical field
本发明涉及具有偏振探测能力的光电探测器,具体是指采用集成在像元上的等离激元微腔耦合结构的线性偏振探测量子阱红外光电探测器。The invention relates to a photodetector with polarization detection capability, in particular to a linear polarization detection quantum well infrared photodetector adopting a plasmon microcavity coupling structure integrated on a picture element.
背景技术Background technique
光的偏振状态可分为圆偏振状态和线性偏振(简称线偏振)状态。一般地,对于光的线偏振特性测量是采用在探测器之前放置线性偏振片,通过旋转偏振片的角度而获得光电探测器响应的强度随偏振片角度之间的变化关系,从而获得入射光的线偏振特性。但该方法需要通过机械旋转,不能实时地获得入射光的偏振特性。另外的一种方法是通过分光将入射光线分成3~4路,每个分路上分别放置一块角度偏差递增45度的偏振片,再利用3~4个探测器同时测量,通过计算光的Stokes分量并通过数学计算合成获得实时入射光的偏振状态及其变化。但这种方法装置结构复杂,特别是对于偏振成像探测,需要至少3个性能一致的焦平面探测器同时工作在共焦面上,还必须完成图像的拼接校正才能够实现偏振探测成像。光学元件装配中引入的偏差或者是温度变化时各分路热胀冷缩的不一致都将影响成像的质量。为了解决这一问题,人们将偏振片集成在探测器像元的表面,使得单个光电探测器的像元只对一种偏振方向的响应最大,而对与之垂直方向的偏振响应最小,然后通过在4个探测器像元上设置4个方向的偏振片,通常是水平、垂直、左倾45度和右倾45度。工作时同时读取4个像元上的光响应信号,获得各个方向上的Stokes偏振分量,再通过数学计算来获知入射光的偏振状态。这种集成偏振片通常采用在光电探测器像元表面制作周期性的线条栅(简称线栅)所形成的一维透射光栅来实现。对于量子阱红外探测器这类对于正入射光不能直接吸收的光电探测器,则是在其背面制作一维反射光栅,一方面改变入射光的传播方向,另一方面选择反射光的偏振状态,形成偏振选择性。由于这种集成偏振片是直接将偏振片做在像元上,很容易制作成为焦平面探测器。其中取4个像元分别探测不同的偏振方向,然后合成为一个单一像元的信号,再通过由这样4元一组周期性重复排列的二维列阵探测器直接输出成像。尽管这样做将降低焦平面探测器的空间分辨率,例如原先640×512元的探测器,制作偏振片之后实际的等效像元数降低成为160×128元,但由于增加了偏振状态的探测,能够反映出原先强度图像中所不具备的偏振信息,相当于增加了一个探测信号的维度,同时仍然能够保持原先焦平面探测器的实时快速直接成像的能力,因此在医学中的肿瘤探测、遥感中的地质探测和军事侦察中的目标探测等方面都有着广阔的应用前景。The polarization state of light can be divided into circular polarization state and linear polarization state (referred to as linear polarization state). Generally, for the measurement of the linear polarization characteristics of light, a linear polarizer is placed in front of the detector, and the relationship between the intensity of the photodetector response and the angle of the polarizer is obtained by rotating the angle of the polarizer, so as to obtain the intensity of the incident light. linear polarization properties. However, this method requires mechanical rotation and cannot obtain the polarization characteristics of the incident light in real time. Another method is to divide the incident light into 3 to 4 paths through light splitting, place a polarizer with an angle deviation increasing by 45 degrees on each branch, and then use 3 to 4 detectors to measure at the same time, by calculating the Stokes component of light And the polarization state and its change of the real-time incident light are obtained through mathematical calculation synthesis. However, the device structure of this method is complex, especially for polarization imaging detection, at least three focal plane detectors with the same performance are required to work on the confocal plane at the same time, and image stitching and correction must be completed to realize polarization detection imaging. The deviation introduced in the assembly of optical components or the inconsistency of thermal expansion and contraction of each branch when the temperature changes will affect the quality of imaging. In order to solve this problem, people integrate the polarizer on the surface of the detector pixel, so that the pixel of a single photodetector only has the largest response to one polarization direction, and the polarization response to the vertical direction is the smallest, and then through Set polarizers in 4 directions on the 4 detector pixels, usually horizontal, vertical, 45 degrees to the left and 45 degrees to the right. When working, read the photoresponse signals on 4 pixels at the same time, obtain the Stokes polarization components in all directions, and then obtain the polarization state of the incident light through mathematical calculation. This kind of integrated polarizer is usually realized by a one-dimensional transmission grating formed by fabricating periodic line grids (referred to as wire grids) on the surface of photodetector pixels. For photodetectors such as quantum well infrared detectors that cannot directly absorb normal incident light, a one-dimensional reflective grating is fabricated on the back of the photodetector. On the one hand, the propagation direction of the incident light is changed, and on the other hand, the polarization state of the reflected light is selected. resulting in polarization selectivity. Since the integrated polarizer is directly made on the pixel, it is easy to make a focal plane detector. Among them, 4 pixels are taken to detect different polarization directions respectively, and then synthesized into a signal of a single pixel, and then directly output imaging through the two-dimensional array detectors which are periodically and repeatedly arranged in groups of such 4 pixels. Although this will reduce the spatial resolution of the focal plane detector, for example, the original 640×512 element detector, the actual number of equivalent pixels after the polarizer is reduced to 160×128 elements, but due to the increase in the detection of the polarization state , which can reflect the polarization information that is not available in the original intensity image, which is equivalent to adding a dimension of the detection signal, while still maintaining the real-time, fast and direct imaging capability of the original focal plane detector. Therefore, in medicine, tumor detection, Geological detection in remote sensing and target detection in military reconnaissance have broad application prospects.
在这种集成微偏振片结构中,由于探测器像元尺寸的限制,偏振片的尺寸不能超过像元尺寸因而也受到限制,导致一维线栅偏振片的工作条件远远偏离理想偏振片的工作状态,即理想的偏振片工作状态要求线栅在长度方向上的尺寸远远大于线栅的周期并大于入射光斑直径。因此,当集成微偏振片针对某种偏振状态形成最佳透射条件时,与之垂直方向上的偏振光也能够通过像元边缘耦合等方式透过偏振片,在探测器像元中引起光电响应。这样就降低了集成偏振片的偏振选择度,相应地降低了偏振探测器的消光比(定义为横磁TM偏振光响应与横电TE偏振光响应之间的比值,表示成消光比ρ=RTM/RTE,RTM、RTE分别是探测器对于TM偏振光和TE偏振光的响应)。In this integrated micro-polarizer structure, due to the limitation of the pixel size of the detector, the size of the polarizer cannot exceed the pixel size and thus is also limited, resulting in the working conditions of the one-dimensional wire grid polarizer far away from that of the ideal polarizer. The working state, that is, the ideal working state of the polarizer requires that the size of the wire grid in the length direction is much larger than the period of the wire grid and larger than the diameter of the incident light spot. Therefore, when the integrated micro-polarizer forms the best transmission condition for a certain polarization state, the polarized light in the vertical direction can also pass through the polarizer through pixel edge coupling, etc., causing a photoelectric response in the detector pixel . This reduces the polarization selectivity of the integrated polarizer and correspondingly reduces the extinction ratio of the polarization detector (defined as the ratio between the transverse magnetic TM polarized light response and the transverse electric TE polarized light response, expressed as the extinction ratio ρ=R TM /R TE , R TM , R TE are the detector's response to TM polarized light and TE polarized light respectively).
此外,在可见光波段偏振片可以采用有机大分子的线状排列来制作一维透射光栅。这种大分子的线状排列具有制作简单、价格低廉的特点。然而在红外波段特别是在中红外波段(400-4000cm-1,2.5-25μm),这些大分子对入射光将形成强烈吸收,因此不能用来制备红外偏振片。红外波段只能采用金属或者是非吸收介质材料来制作一维线栅,形成红外偏振片。In addition, polarizers in the visible light band can use linear arrangements of organic macromolecules to make one-dimensional transmission gratings. This linear arrangement of macromolecules has the characteristics of simple fabrication and low cost. However, in the infrared band, especially in the mid-infrared band (400-4000cm -1 , 2.5-25μm), these macromolecules will strongly absorb the incident light, so they cannot be used to prepare infrared polarizers. In the infrared band, only metal or non-absorbing dielectric materials can be used to make one-dimensional wire grids to form infrared polarizers.
目前报道的采用常规全固态一维线栅微偏振片集成的偏振探测器中,硅基CCD探测器在可见波段消光比能够做到60[具体见文献Viktor Gruev,RobPerkins,and Timothy York,CCD polarization imaging sensor with aluminumnanowire optical filters,OPTICS EXPRESS Vol.18,P.19087],而在红外波段的最大消光比为10[具体见文献Thomas Antoni,Alexandru Nedelcu,Xavier Marcadet,Hugues Facoetti,and Vincent Berger,High contrast polarization sensitive quantumwell infrared photodetectors,APPLIED PHYSICS LETTERS,Vol.90,P.201107]。为了更加灵敏地探测光的偏振状态,人们期待着出现具有更高偏振消光比的探测器。本发明提出采用等离激元微腔耦合结构的高线性偏振度量子阱红外光电探测器,利用等离激元微腔结构的模式选择功能和量子阱探测器中子带间跃迁量子选择定则所决定的选择性跃迁吸收的本征特性,两种特性的叠加,实现在垂直于线栅的方向上入射光TM偏振耦合最大化的基础上,成功地抑制其垂直方向TE偏振光的入射强度,因此能够获得红外波段上很高的偏振消光比,从而实现高线性偏振度红外光的光电探测。在本发明的实施例中获得的长波红外波段波长14.2-14.9微米附近偏振消光比达到65,可与可见波段的最好水平相媲美。Among the currently reported polarization detectors integrated with conventional all-solid-state one-dimensional wire grid micropolarizers, silicon-based CCD detectors can achieve an extinction ratio of 60 in the visible band [for details, see the literature Viktor Gruev, RobPerkins, and Timothy York, CCD polarization imaging sensor with aluminum nanowire optical filters, OPTICS EXPRESS Vol.18, P.19087], and the maximum extinction ratio in the infrared band is 10 [specifically see the literature Thomas Antoni, Alexandru Nedelcu, Xavier Marcadet, Hugues Facoetti, and Vincent Berger, High contrast polarization sensitive quantum well infrared photodetectors, APPLIED PHYSICS LETTERS, Vol.90, P.201107]. In order to detect the polarization state of light more sensitively, people are looking forward to the emergence of detectors with higher polarization extinction ratios. The present invention proposes a highly linearly polarized quantum well infrared photodetector using a plasmonic microcavity coupling structure, utilizing the mode selection function of the plasmonic microcavity structure and the quantum selection rule for intersubband transitions in quantum well detectors The determined intrinsic characteristic of selective transition absorption, the superposition of the two characteristics, realizes the maximization of the TM polarization coupling of the incident light in the direction perpendicular to the wire grid, and successfully suppresses the incident intensity of the TE polarized light in the vertical direction , so a high polarization extinction ratio in the infrared band can be obtained, thereby realizing the photodetection of infrared light with a high degree of linear polarization. The polarization extinction ratio obtained in the embodiment of the present invention near the wavelength of 14.2-14.9 microns in the long-wave infrared band reaches 65, which is comparable to the best level in the visible band.
发明内容Contents of the invention
本发明的目的是提出一种采用集成在像元上的等离激元微腔耦合结构的量子阱红外光电探测器实现高线性偏振度光电探测。The object of the present invention is to propose a quantum well infrared photodetector using a plasmonic microcavity coupling structure integrated on a picture element to realize high linear polarization photodetection.
本发明采用等离激元微腔耦合结构的量子阱红外光电探测器,其结构为以入射光经过先后为序依次是:上层金属线条形成的金属光栅层1,量子阱红外光电转换激活层2,下层金属反射层3。The present invention adopts a quantum well infrared photodetector with a plasmon microcavity coupling structure, and its structure is in the order of incident light passing through: a
所说的金属光栅层1为周期为p、线宽为s、厚度为h1的一维周期排列的金属线条光栅,其材质包括但不限于高导电性的金或者银。为了改善其黏附性,可在其与量子阱红外光电转换激活层2之间附加一层厚度为10~30纳米的黏性金属,其材质包括但不限于钛。其周期p、线宽s和厚度h1由理论计算得到的优化结果决定,优化计算的目标是使入射光波能够与金属中电子集体振荡形成的等离激元的局域表面模式(Localized Surface Plasmon,LSP)和表面等离极化激元模式(Surface Plasmon Polariton,SPP)发生共振耦合,在两个模式的诱导下进入耦合微腔中,形成横向的驻波腔模模式。针对中远红外波段(50-4000cm-1,2.5-200μm),理论计算给出以下金属光栅的尺寸参数设计范围:①条纹宽度s的数值为探测波长的十分之一到十分之十之间。对于共振耦合模式,金属条纹宽度s与探测波长λ之间满足s=kλ/2n关系,其中k为共振级数,n为量子阱红外光电转换激活层2中激活材料的折射率,一般取值为3-5,取决于层2的厚度。对于k=1,s最小为探测波长的十分之一。在共振级数k>2n时,s最大可到一个探测波长。但k>6后,共振耦合效果将逐渐减弱,导致偏振效果减弱。因此s的最大值不超过探测波长的十分之十。②周期p的数值为探测波长的十分之一到十分之三十。这是因为周期p必须大于条纹宽度s,所以必须大于探测波长的十分之一。但在条纹宽度s不变情况下,增加周期即是增加狭缝宽度。当狭缝宽度大于条纹宽度两倍时,理论计算表明TE偏振将增大到可以与TM偏振的共振波长位置相比拟,导致消光比减小。因此周期p的数值最大不超过探测波长的十分之三十。③金属光栅层1的厚度h1的值不小于以微米为单位的探测波长的平方根的0.0096倍。这是因为共振耦合条件要求金属光栅层1的上、下表面电磁场之间无相互作用,即要求厚度h1的值不小于2倍的趋肤深度。在中远红外波段,理论给出的电磁波在金属中的趋肤深度d~0.0048·λ1/2。The
所说的量子阱红外光电转换激活层2是指能够吸收入射光并产生光生载流子的半导体量子阱薄膜材料,由单个或多个量子阱夹持在势垒层中形成。在光照下导带基态子能级(或称子带)中的电子吸收光子跃迁到激发态上,形成光生载流子,并通过上、下金属电极之间的电场将光生载流子输运到外电路中,形成光电转换的信号。其厚度h2由理论计算得到的优化结果决定,优化计算的目标是使耦合进入耦合微腔中的电磁波所形成的横向驻波模式达到最强。按照等离激元微腔近场耦合要求,h2必须小于所探测入射光的等效光波长,即真空中的光波长除以该层物质的折射率。对于折射率的最小取值为3时,h2应不大于探测波长的三分之一。The quantum well infrared photoelectric
所说的下层金属反射层3是指厚度为h3的一层完整的金属层,h3的值必须大于探测光在金属中的趋肤深度,即以微米为单位的探测波长的平方根的0.0048倍。此时的金属层可作为电磁波的反射层。其材质包括但不限于高导电性的金或者银。为了改善其黏附性,可在其与量子阱红外光电转换激活层2之间附加一层厚度为10~30纳米的黏性金属,其材质包括但不限于钛。The lower metal
本发明基于的工作原理是:针对特定的红外探测波长所设计的金属线栅呈周期排列,且其周期小于所探测光的波长,使得光栅金属中电子的集体振荡所形成的等离激元能够与入射红外光中偏振方向沿垂直于光栅线条方向的横磁(TM)偏振光发生共振耦合,并与下层金属反射层共同作用,对光场的分布形成了新的调制,使得入射光能够耦合进入微腔中传播,并形成驻波形式的腔模。其传播方向由自由空间中的垂直于探测器平面的z方向转变成为沿着探测器平面的x方向传播,并由量子阱红外光电转换激活层2吸收之后转变成为电信号。而所探测的红外光中偏振方向平行于光栅线条方向y方向的横电(TE)偏振光则不能发生共振耦合,因此不能进入上、下金属层构成的耦合微腔,从而不被光电激活层吸收,也就不能产生电信号。由此,该结构形成对入射红外光的偏振状态高度依赖的光电响应信号,构成高偏振度光电探测器。The working principle of the present invention is: the metal wire grid designed for a specific infrared detection wavelength is arranged periodically, and its period is smaller than the wavelength of the detected light, so that the plasmons formed by the collective oscillation of electrons in the grating metal can It resonantly couples with the transverse magnetic (TM) polarized light whose polarization direction is perpendicular to the direction of the grating lines in the incident infrared light, and cooperates with the lower metal reflective layer to form a new modulation for the distribution of the light field, so that the incident light can be coupled It propagates into the microcavity and forms a cavity mode in the form of a standing wave. Its propagation direction changes from the z direction perpendicular to the detector plane in free space to the x direction along the detector plane, and is absorbed by the quantum well infrared photoelectric conversion
本发明的优点在于:The advantages of the present invention are:
1在红外集成偏振光电探测器的光电耦合结构中提出一种全新的设计,能够取代传统的线栅耦合这一主要途径,利用上层金属光栅与下层金属反射层之间等离激元共振所形成的电磁波近场耦合微腔的模式选择效应,使得能够进入到微腔的光子以那些能够与探测波长偏振模式形成共振的光子为主。1 A brand-new design is proposed in the photoelectric coupling structure of the infrared integrated polarized photodetector, which can replace the traditional wire grid coupling as the main way, and utilize the plasmon resonance formed between the upper metal grating and the lower metal reflective layer The mode selection effect of the electromagnetic wave near-field coupling microcavity makes the photons that can enter the microcavity mainly those photons that can form resonance with the detection wavelength polarization mode.
2进入到微腔中的光子其电矢量方向在微腔模式的调制下由x方向改变为z方向,能够被量子阱子带跃迁吸收形成光电转换过程。而那些不能与该偏振模式共振的光子则不能进入微腔,因此不能形成光电转换。采用本发明的偏振耦合方式能够极大地提高偏振响应的消光比,在本发明的实施例中能够实现探测器的偏振消光比为65,具有极高的偏振分辨能力。2 The electric vector direction of the photons entering the microcavity is changed from the x direction to the z direction under the modulation of the microcavity mode, which can be absorbed by the quantum well subband transition to form a photoelectric conversion process. Those photons that cannot resonate with this polarization mode cannot enter the microcavity, and therefore cannot form a photoelectric conversion. Adopting the polarization coupling method of the present invention can greatly improve the extinction ratio of the polarization response. In the embodiment of the present invention, the polarization extinction ratio of the detector can be realized to be 65, which has extremely high polarization resolution capability.
附图说明Description of drawings
图1是本发明的量子阱红外偏振探测器像元剖面结构示意图。图中1:上层金属线条形成的金属光栅层,2:量子阱红外光电转换激活层,3:下层金属反射层。FIG. 1 is a schematic diagram of a cross-sectional structure of a quantum well infrared polarization detector of the present invention. In the figure 1: the metal grating layer formed by the upper metal lines, 2: the quantum well infrared photoelectric conversion active layer, 3: the lower metal reflective layer.
图2是本发明的量子阱红外偏振探测器像元三维结构示意图。图中1:上层金属线条形成的金属光栅层,2:量子阱红外光电转换激活层,3:下层金属反射层。Fig. 2 is a schematic diagram of the three-dimensional structure of the pixel of the quantum well infrared polarization detector of the present invention. In the figure 1: the metal grating layer formed by the upper metal lines, 2: the quantum well infrared photoelectric conversion active layer, 3: the lower metal reflective layer.
图3是本发明实施例二中实际测量得到的量子阱红外偏振探测器对入射偏振光的电流响应谱随入射光路中偏振片角度的变化曲线。Fig. 3 is a curve of the current response spectrum of the quantum well infrared polarization detector to incident polarized light as a function of the angle of the polarizer in the incident light path, which is actually measured in the second embodiment of the present invention.
图4是本发明实施例二中波长在14.2-14.9μm之间的光电流的平均值随入射光路中偏振片角度的变化关系。实心圆点是实验点,数据取自图4中的实验光谱。实线是函数Sin2θ的归一化计算结果,θ是偏振片角度。该曲线代表着理想偏振片的透过率随角度变化的特性。Fig. 4 is the relationship between the average value of the photocurrent with the wavelength between 14.2-14.9 μm and the angle of the polarizer in the incident light path in the second embodiment of the present invention. The solid circle points are the experimental points, and the data are taken from the experimental spectra in Fig. 4. The solid line is the normalized calculation result of the function Sin 2 θ, where θ is the angle of the polarizer. This curve represents the transmittance of an ideal polarizer as a function of angle.
具体实施方式Detailed ways
下面以峰值探测波长为13.6μm的等离激元微腔耦合结构的高线性偏振度GaAs/AlxGal-xAs量子阱红外光电探测器为例,结合附图对本发明的具体实施方式作进一步的详细说明。Taking the high degree of linear polarization GaAs/ AlxGalxAs quantum well infrared photodetector with a peak detection wavelength of 13.6 μm and a plasmonic microcavity coupling structure as an example, the specific implementation of the present invention will be further described in conjunction with the accompanying drawings Detailed description.
见图1和图2,本发明所涉及的等离激元微腔耦合结构的高线性偏振度量子阱红外光电探测器,包括:金属光栅层1,是周期为p、线宽为s、厚度为h1的一维周期排列的金属线条光栅,本实施例中采用的金属为金。为了改善其黏附性,在其与量子阱红外光电转换激活层2之间附加了一层金属钛。金属光栅层1的周期p、线宽s和厚度h1通过有限差分时域(FDTD)方法计算决定,得到周期p的数值为探测波长的十分之一到十分之三十,线宽s的数值为以微米为单位的探测波长的十分之一到十分之十之间,厚度h1的值不小于以微米为单位的探测波长的平方根的0.0096倍。金属光栅层1通过薄膜淀积方法制备得到,并通过光刻和腐蚀形成光栅图形。See Fig. 1 and Fig. 2, the highly linearly polarized quantum well infrared photodetector of the plasmonic microcavity coupling structure involved in the present invention includes: a metal
量子阱红外光电转换激活层2,是指能够吸收入射光并产生光生载流子的半导体量子阱薄膜材料,由单个或多个量子阱夹持在势垒层中形成。在光照下导带基态子能级(或称子带)中的电子吸收光子跃迁到激发态上,形成光生载流子,并通过上、下金属电极之间的电场将光生载流子输运到外电路中,形成光电转换的信号。其厚度h2由理论计算得到的优化结果决定,优化计算的目标是使耦合进入耦合微腔中的电磁波所形成的横向驻波模式达到最强。按照等离激元微腔近场耦合要求,h2必须小于所探测入射光的等效光波长,即真空中的光波长除以该层物质的折射率。该层量子阱薄膜由分子束外延(MBE)或者金属有机化学汽相外延(MOCVD)方法制备在GaAs衬底上,之后通过衬底剥离的方法形成单独的外延层薄膜。The quantum well infrared photoelectric conversion
下层金属反射层3,是厚度h3不小于探测光波在金属中趋肤深度的一层完整金属层,即厚度h3不小于以微米为单位的探测波长的平方根的0.0048倍。该层金属反射层通过薄膜淀积方法制备得到。The lower metal
在上述尺寸范围内,严格的FDTD理论计算表明,由于金属周期性线栅与金属反射层的共同耦合作用,对入射的TM光形成耦合共振调制,使得波长大于10微米的入射光能够进入到厚度不足1微米的耦合微腔中,其传播方向由垂直于探测器表面的z方向改变成平行于探测器表面的x方向,并且形成了横向振荡的柱波。微腔中电磁波的电矢量沿z方向,平行于量子阱的生长方向,能够被量子阱子带跃迁吸收。In the above size range, strict FDTD theoretical calculations show that due to the common coupling effect of the metal periodic wire grid and the metal reflective layer, the incident TM light is coupled and resonantly modulated, so that the incident light with a wavelength greater than 10 microns can enter the thickness In a coupled microcavity of less than 1 micron, the propagation direction changes from the z direction perpendicular to the detector surface to the x direction parallel to the detector surface, and a transversely oscillating column wave is formed. The electric vector of the electromagnetic wave in the microcavity is along the z direction, parallel to the growth direction of the quantum well, and can be absorbed by the subband transition of the quantum well.
本实施例采用的耦合结构的面积为230×200μm2,该面积可根据实际需要改变。本实施例中等离激元微腔耦合结构的高线性偏振度量子阱红外光电探测器的制作过程可按照本发明人之前所获得授权的发明专利(专利号:201110082811.7,专利名称:用于光电功能器件的金属波导微腔光耦合结构的工艺制程)中的步骤方法来实现,也可通过其它微加工工艺过程实现。The coupling structure used in this embodiment has an area of 230×200 μm 2 , which can be changed according to actual needs. In this embodiment, the manufacturing process of the highly linearly polarized quantum well infrared photodetector with the plasmonic microcavity coupling structure can be made according to the invention patent (patent number: 201110082811.7, patent name: for photoelectric function) obtained by the inventor. It can be realized by the step method in the technological process of metal waveguide microcavity optical coupling structure of the device), and can also be realized by other micromachining technological processes.
针对峰值探测波长为13.6μm,本发明通过三个实施例采用不同的耦合结构尺寸参数来证明本发明的可行性和有效性。其中厚度尺寸参数h1、h2和h3固定不变,改变上层金属光栅的周期p、线宽s和黏性金属的厚度。Aiming at the peak detection wavelength of 13.6 μm, the present invention uses different coupling structure size parameters in three embodiments to prove the feasibility and effectiveness of the present invention. The thickness dimension parameters h1, h2 and h3 are fixed, and the period p, line width s and thickness of the viscous metal grating are changed.
对于厚度尺寸参数h1,本实施例中取为0.1微米,满足不小于以微米为单位的探测波长的平方根的0.0096倍的条件。The thickness dimension parameter h1 is taken as 0.1 micron in this embodiment, which satisfies the condition that it is not less than 0.0096 times the square root of the detection wavelength in micron.
对于厚度尺寸参数h2,在本发明实施例中以入射光方向为上,则该层由从下到上的5个子层组成,分别是:子层厚度为490纳米的n型掺杂GaAs下电极层,掺杂浓度为5.0×1017cm-3;子层厚度为100纳米的AlxGal-xAs下势垒层,其中x=0.15;子层厚度为7纳米的n型掺杂GaAs势阱层,掺杂浓度为2.0×1017cm-3;子层厚度为100纳米的AlxGal-xAs上势垒层,其中x=0.15;子层厚度为190纳米的n型掺杂GaAs上电极层,掺杂浓度为5.0×1017cm-3。5个子层的总厚度构成h2,其值为887纳米,即0.887微米。该数值满足厚度小于等效波长的条件(对于本实施例中探测波长范围在10-16μm时,取量子阱折射率为3.3,则等效波长为3-4.5μm)。For the thickness dimension parameter h2, in the embodiment of the present invention, the direction of the incident light is taken as the upper direction, then the layer consists of 5 sub-layers from bottom to top, which are respectively: the n-type doped GaAs lower electrode with a sub-layer thickness of 490 nanometers layer with a doping concentration of 5.0×10 17 cm -3 ; an Al x Ga lx As lower barrier layer with a sublayer thickness of 100 nanometers, where x=0.15; an n-type doped GaAs potential well with a sublayer thickness of 7 nanometers layer with a doping concentration of 2.0×10 17 cm -3 ; an Al x Ga lx As upper barrier layer with a sublayer thickness of 100 nm, where x=0.15; an n-type doped GaAs upper electrode with a sublayer thickness of 190 nm layer with a doping concentration of 5.0×10 17 cm -3 . The total thickness of the 5 sublayers constitutes h2, which has a value of 887 nanometers, or 0.887 micrometers. This value satisfies the condition that the thickness is smaller than the equivalent wavelength (for the detection wavelength range of 10-16 μm in this embodiment, if the refractive index of the quantum well is 3.3, the equivalent wavelength is 3-4.5 μm).
对于厚度尺寸参数h3,本实施例中取为0.1微米,满足不小于以微米为单位的探测波长的平方根的0.0048倍的条件。The thickness dimension parameter h3 is taken as 0.1 micron in this embodiment, which satisfies the condition that it is not less than 0.0048 times the square root of the detection wavelength in micron.
实施例一:上层金属光栅线宽s取为1.36微米,为探测波长的十分之一。周期p取为2.6微米,满足大于线宽s的条件。黏性金属钛厚度为10纳米。Embodiment 1: The line width s of the metal grating on the upper layer is set to 1.36 microns, which is one-tenth of the detection wavelength. The period p is taken as 2.6 microns, which satisfies the condition of being greater than the line width s. The sticky metal titanium is 10 nanometers thick.
实施例二:上层金属光栅线宽s取为5.5微米,周期p取为10.6微米,黏性金属钛厚度为20纳米。Embodiment 2: The line width s of the upper metal grating is 5.5 microns, the period p is 10.6 microns, and the thickness of the viscous metal titanium is 20 nanometers.
实施例三:上层金属光栅线宽s取为13.6微米,为探测波长的十分之十。周期p取为40.8微米,为探测波长的十分之三十。黏性金属钛厚度为30纳米。Embodiment 3: The line width s of the metal grating on the upper layer is set to 13.6 microns, which is ten tenths of the detection wavelength. The period p is taken as 40.8 microns, which is thirty-tenths of the detection wavelength. The viscous titanium metal is 30 nanometers thick.
上述三个实施例获得的结果相近,附图中给出了实施例二的测试结果。The results obtained in the above three embodiments are similar, and the test results of the second embodiment are shown in the accompanying drawings.
图3给出了本发明实施例二中实际测量得到的量子阱红外偏振探测器对入射偏振光的电流响应谱随入射光路中偏振片角度的变化曲线。可以看到在10-16微米的范围内,探测器光电流谱的强度随着入射光路偏振片角度的变化而逐渐变化,表现出明确的偏振选择性。FIG. 3 shows the variation curve of the current response spectrum of the quantum well infrared polarization detector to incident polarized light as a function of the angle of the polarizer in the incident light path, which is actually measured in
图4是本发明实施例二中波长在14.2-14.9μm之间的光电流的平均值随入射光路中偏振片角度的变化关系。实心圆点是实验点,数据取自图3中的实验光谱。实线是函数Sin2θ的归一化计算结果,θ是偏振片角度。该曲线代表着理想偏振片的透过率随角度变化的特性。由于偏振片角度为零度时几乎没有光子能够被耦合进入探测器,因此探测器所探测到的信号极其微弱,RTE接近为零,造成消光比的数值起伏较大(消光比ρ=RTM/RTE,RTM、RTE分别是探测器对于TM偏振光和TE偏振光的响应)。为了得到明确的偏振消光比的数值,对波长范围在14.2-14.9μm之间的光电流取平均值,给出该平均值随入射光路偏振片角度的变化关系。最大消光比由偏振片90的数值除以偏振片0度的数值得到。最大偏振消光比的波长范围在14.2-14.9μm之间,并不出现在峰值探测波长13.6μm。这是因为峰值探测波长除了受到等离激元耦合微腔中的电磁波模式的调制之外,还受到量子阱本身吸收峰形的调制。本发明实施例中获得的长波红外波段波长14.2-14.9μm附近最大偏振消光比达到65,能够与可见波段的最好水平相媲美。Fig. 4 is the relationship between the average value of the photocurrent with the wavelength between 14.2-14.9 μm and the angle of the polarizer in the incident light path in the second embodiment of the present invention. The solid circle points are the experimental points, and the data are taken from the experimental spectra in Fig. 3. The solid line is the normalized calculation result of the function Sin 2 θ, where θ is the angle of the polarizer. This curve represents the transmittance of an ideal polarizer as a function of angle. Since almost no photons can be coupled into the detector when the angle of the polarizer is zero, the signal detected by the detector is extremely weak, and R TE is close to zero, resulting in large fluctuations in the value of the extinction ratio (extinction ratio ρ=R TM / R TE , R TM , R TE are the detector's response to TM polarized light and TE polarized light respectively). In order to obtain a definite value of the polarization extinction ratio, the average value of the photocurrent in the wavelength range of 14.2-14.9 μm is obtained, and the variation relationship of the average value with the angle of the incident light path polarizer is given. The maximum extinction ratio is obtained by dividing the value of the
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410021014.1A CN103762220A (en) | 2014-01-17 | 2014-01-17 | High-linearity degree-of-polarization quantum-well infrared detector with plasmon micro-cavity coupled structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410021014.1A CN103762220A (en) | 2014-01-17 | 2014-01-17 | High-linearity degree-of-polarization quantum-well infrared detector with plasmon micro-cavity coupled structure |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103762220A true CN103762220A (en) | 2014-04-30 |
Family
ID=50529431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410021014.1A Pending CN103762220A (en) | 2014-01-17 | 2014-01-17 | High-linearity degree-of-polarization quantum-well infrared detector with plasmon micro-cavity coupled structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103762220A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104332510A (en) * | 2014-10-16 | 2015-02-04 | 中国科学院上海技术物理研究所 | Subwavelength plasmonic microcavity light coupling structure for promoting photoelectric detector response |
CN105161564A (en) * | 2015-09-22 | 2015-12-16 | 中国科学院上海技术物理研究所 | Waveband selective enhancement quantum well infrared focal plane applied to hyperspectral imaging |
CN106257692A (en) * | 2016-07-29 | 2016-12-28 | 东南大学 | A kind of polarization sensitive photodetector |
CN106783905A (en) * | 2017-01-16 | 2017-05-31 | 中国工程物理研究院电子工程研究所 | A kind of single photon polarization imaging array with convergence filter function |
CN107403781A (en) * | 2016-05-19 | 2017-11-28 | 中芯国际集成电路制造(上海)有限公司 | A kind of semiconductor devices and its detection method and electronic installation |
CN107665931A (en) * | 2017-08-30 | 2018-02-06 | 中国科学院上海技术物理研究所 | A kind of integrated enhancing quantum trap infrared detector of guide mode resonance and design method |
CN107942571A (en) * | 2017-09-22 | 2018-04-20 | 友达光电股份有限公司 | Wire grid polarizer and display panel using the same |
CN108426631A (en) * | 2018-02-09 | 2018-08-21 | 北京航空航天大学 | A kind of vibration measurement method and system of optics Echo Wall formula micro resonant cavity |
CN109459144A (en) * | 2018-11-12 | 2019-03-12 | 中国科学院长春光学精密机械与物理研究所 | Wide spectrum infrared sensor based on piezoelectric effect and compound phasmon |
CN109742173A (en) * | 2019-01-10 | 2019-05-10 | 中国科学院上海技术物理研究所 | A quantum well infrared circular polarization detector |
CN110224034A (en) * | 2019-05-17 | 2019-09-10 | 中国科学院上海技术物理研究所 | A kind of Metal Microcavity infrared detector with resonant selecting frequency function |
CN110323288A (en) * | 2019-07-05 | 2019-10-11 | 太平洋(聊城)光电科技股份有限公司 | A kind of Quantum Well infrared detector and preparation method thereof based on sub-wave length grating |
CN110631757A (en) * | 2019-10-31 | 2019-12-31 | 金华伏安光电科技有限公司 | Gas pressure detector and system based on waveguide structure |
CN111106155A (en) * | 2019-12-30 | 2020-05-05 | 武汉天马微电子有限公司 | A display panel and display device |
CN111539234A (en) * | 2020-05-28 | 2020-08-14 | 厦门大学 | Molecular barcode detection method based on modular metasurface and CMOS image sensor |
CN114384621A (en) * | 2022-02-11 | 2022-04-22 | 中国科学院上海技术物理研究所 | An Angle-Insensitive Narrow Band Filter Based on Double Plasmon Resonance |
WO2023015654A1 (en) * | 2021-08-13 | 2023-02-16 | 中国科学院上海技术物理研究所 | Spectrally separated and fully transparent composite superpixel infrared detector |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040108564A1 (en) * | 2002-12-05 | 2004-06-10 | Lockheed Martin Corporation | Multi-spectral infrared super-pixel photodetector and imager |
CN1672267A (en) * | 2002-07-25 | 2005-09-21 | 国立科学研究中心 | MSM-type photodetection device having a resonant cavity comprising a mirror with a mesh of metal electrodes |
CN102136519A (en) * | 2010-11-26 | 2011-07-27 | 中国科学院上海技术物理研究所 | Optical coupling unit of quantum well long-wave infrared detector grating waveguide micro-cavity |
CN102185025A (en) * | 2011-04-01 | 2011-09-14 | 中国科学院上海技术物理研究所 | Manufacturing process of metal waveguide microcavity optical coupling structure used for photoelectric functional devices |
CN102437228A (en) * | 2011-11-25 | 2012-05-02 | 河南理工大学 | A bottom-coupled grating quantum well infrared focal plane photosensitive element chip and its preparation method |
-
2014
- 2014-01-17 CN CN201410021014.1A patent/CN103762220A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1672267A (en) * | 2002-07-25 | 2005-09-21 | 国立科学研究中心 | MSM-type photodetection device having a resonant cavity comprising a mirror with a mesh of metal electrodes |
US20040108564A1 (en) * | 2002-12-05 | 2004-06-10 | Lockheed Martin Corporation | Multi-spectral infrared super-pixel photodetector and imager |
CN102136519A (en) * | 2010-11-26 | 2011-07-27 | 中国科学院上海技术物理研究所 | Optical coupling unit of quantum well long-wave infrared detector grating waveguide micro-cavity |
CN102185025A (en) * | 2011-04-01 | 2011-09-14 | 中国科学院上海技术物理研究所 | Manufacturing process of metal waveguide microcavity optical coupling structure used for photoelectric functional devices |
CN102437228A (en) * | 2011-11-25 | 2012-05-02 | 河南理工大学 | A bottom-coupled grating quantum well infrared focal plane photosensitive element chip and its preparation method |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104332510A (en) * | 2014-10-16 | 2015-02-04 | 中国科学院上海技术物理研究所 | Subwavelength plasmonic microcavity light coupling structure for promoting photoelectric detector response |
CN105161564A (en) * | 2015-09-22 | 2015-12-16 | 中国科学院上海技术物理研究所 | Waveband selective enhancement quantum well infrared focal plane applied to hyperspectral imaging |
CN107403781B (en) * | 2016-05-19 | 2020-03-06 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device, detection method thereof and electronic device |
CN107403781A (en) * | 2016-05-19 | 2017-11-28 | 中芯国际集成电路制造(上海)有限公司 | A kind of semiconductor devices and its detection method and electronic installation |
CN106257692A (en) * | 2016-07-29 | 2016-12-28 | 东南大学 | A kind of polarization sensitive photodetector |
CN106783905A (en) * | 2017-01-16 | 2017-05-31 | 中国工程物理研究院电子工程研究所 | A kind of single photon polarization imaging array with convergence filter function |
CN107665931A (en) * | 2017-08-30 | 2018-02-06 | 中国科学院上海技术物理研究所 | A kind of integrated enhancing quantum trap infrared detector of guide mode resonance and design method |
CN107942571A (en) * | 2017-09-22 | 2018-04-20 | 友达光电股份有限公司 | Wire grid polarizer and display panel using the same |
CN108426631B (en) * | 2018-02-09 | 2020-06-26 | 北京航空航天大学 | Vibration measurement method and system of optical echo wall type micro resonant cavity |
CN108426631A (en) * | 2018-02-09 | 2018-08-21 | 北京航空航天大学 | A kind of vibration measurement method and system of optics Echo Wall formula micro resonant cavity |
CN109459144A (en) * | 2018-11-12 | 2019-03-12 | 中国科学院长春光学精密机械与物理研究所 | Wide spectrum infrared sensor based on piezoelectric effect and compound phasmon |
CN109742173A (en) * | 2019-01-10 | 2019-05-10 | 中国科学院上海技术物理研究所 | A quantum well infrared circular polarization detector |
CN110224034A (en) * | 2019-05-17 | 2019-09-10 | 中国科学院上海技术物理研究所 | A kind of Metal Microcavity infrared detector with resonant selecting frequency function |
CN110224034B (en) * | 2019-05-17 | 2021-06-15 | 中国科学院上海技术物理研究所 | A metal microcavity infrared detector with resonance frequency selection function |
CN110323288A (en) * | 2019-07-05 | 2019-10-11 | 太平洋(聊城)光电科技股份有限公司 | A kind of Quantum Well infrared detector and preparation method thereof based on sub-wave length grating |
CN110631757A (en) * | 2019-10-31 | 2019-12-31 | 金华伏安光电科技有限公司 | Gas pressure detector and system based on waveguide structure |
CN110631757B (en) * | 2019-10-31 | 2021-10-22 | 苏州市东挺河智能科技发展有限公司 | Gas pressure detector and system based on waveguide structure |
CN111106155A (en) * | 2019-12-30 | 2020-05-05 | 武汉天马微电子有限公司 | A display panel and display device |
CN111106155B (en) * | 2019-12-30 | 2022-10-25 | 武汉天马微电子有限公司 | A display panel and display device |
CN111539234A (en) * | 2020-05-28 | 2020-08-14 | 厦门大学 | Molecular barcode detection method based on modular metasurface and CMOS image sensor |
WO2023015654A1 (en) * | 2021-08-13 | 2023-02-16 | 中国科学院上海技术物理研究所 | Spectrally separated and fully transparent composite superpixel infrared detector |
CN114384621A (en) * | 2022-02-11 | 2022-04-22 | 中国科学院上海技术物理研究所 | An Angle-Insensitive Narrow Band Filter Based on Double Plasmon Resonance |
CN114384621B (en) * | 2022-02-11 | 2023-07-04 | 中国科学院上海技术物理研究所 | Angle insensitive narrow-band filter based on double plasmon resonance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103762220A (en) | High-linearity degree-of-polarization quantum-well infrared detector with plasmon micro-cavity coupled structure | |
CN104332510A (en) | Subwavelength plasmonic microcavity light coupling structure for promoting photoelectric detector response | |
Tang et al. | Thermal imaging with plasmon resonance enhanced HgTe colloidal quantum dot photovoltaic devices | |
Tong et al. | Surface plasmon enhanced infrared photodetection | |
US7709797B2 (en) | Detection device and image forming device | |
CN109742173B (en) | Quantum well infrared circular polarization detector | |
JP5094385B2 (en) | High response high bandwidth metal-semiconductor-metal photoelectric device | |
CN105161564B (en) | Waveband selective enhancement quantum well infrared focal plane applied to hyperspectral imaging | |
US20210033462A1 (en) | Adjustable hyperspectral detection chip enhanced by multi-resonance plasmonic mechanism | |
JP6135240B2 (en) | Photoelectric converter and light detection method | |
CN103943714B (en) | The InGaAs photo-detector absorbing is strengthened based on surface plasma bulk effect | |
US9368661B2 (en) | Photodetector | |
CN102226719A (en) | Infrared Absorbing Structure and Uncooled Infrared Detector Based on the Structure | |
CN106783905A (en) | A kind of single photon polarization imaging array with convergence filter function | |
Wang et al. | Ultra-thin enhanced-absorption long-wave infrared detectors | |
CN111293188B (en) | An integrated high extinction ratio infrared circular polarization detector and design method | |
Lin et al. | Silicon-based embedded trenches of active antennas for high-responsivity omnidirectional photodetection at telecommunication wavelengths | |
US20230221416A1 (en) | Distance information acquisition apparatus and electronic apparatus including the same | |
Jin et al. | Highly efficient silicon-based thin-film Schottky barrier photodetectors | |
CN207165573U (en) | A kind of single photon polarization imaging array with convergence filter function | |
CN205039169U (en) | A infrared focal plane of waveband selection nature reinforcing quantum well for hyperspectral imager | |
CN204332979U (en) | A subwavelength plasmonic microcavity optical coupling structure | |
Kang et al. | Broadband mid-infrared thermal emission with large degree of circular polarization enabled by symmetry-broken metasurfaces | |
Verdun et al. | Guided-mode resonator for thin InGaAs PiN short-wave infrared photo-diode | |
Averin et al. | MSM-photodetector with ZnSe/ZnS/GaAs Bragg reflector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140430 |