CN103759695A - Detecting device and method for automatically measuring outline of steel rail - Google Patents
Detecting device and method for automatically measuring outline of steel rail Download PDFInfo
- Publication number
- CN103759695A CN103759695A CN201310741503.XA CN201310741503A CN103759695A CN 103759695 A CN103759695 A CN 103759695A CN 201310741503 A CN201310741503 A CN 201310741503A CN 103759695 A CN103759695 A CN 103759695A
- Authority
- CN
- China
- Prior art keywords
- rail
- data
- movable laser
- laser profile
- sensors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 20
- 229910000831 Steel Inorganic materials 0.000 title claims description 4
- 239000010959 steel Substances 0.000 title claims description 4
- 238000001514 detection method Methods 0.000 claims abstract description 68
- 238000006073 displacement reaction Methods 0.000 claims abstract description 57
- 238000005259 measurement Methods 0.000 claims abstract description 27
- 238000004364 calculation method Methods 0.000 claims description 21
- 238000012545 processing Methods 0.000 claims description 8
- 238000012937 correction Methods 0.000 claims description 4
- 238000009434 installation Methods 0.000 claims 6
- 238000005452 bending Methods 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 claims 1
- 230000002950 deficient Effects 0.000 claims 1
- 230000005693 optoelectronics Effects 0.000 claims 1
- 238000012360 testing method Methods 0.000 claims 1
- 238000003860 storage Methods 0.000 abstract description 20
- 230000009347 mechanical transmission Effects 0.000 abstract description 10
- 238000004891 communication Methods 0.000 description 6
- 238000003466 welding Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 238000013480 data collection Methods 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000011326 mechanical measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
本发明提供一种自动测量钢轨轮廓的检测装置和检测方法。所述检测装置包括电源模块、机械传动模块、数据采集存储模块和显示报警模块,机械传动模块包括机架、导轨、同步带和用于控制钢轨运动的光电开关,钢轨在检测期间设置在机架上。检测装置还包括多个可移动激光轮廓传感器和位移传感器,多个可移动激光轮廓传感器环绕钢轨设置以测量钢轨的断面二维坐标数据,位移传感器沿着平行于钢轨的长度方向的方向设置在机架上以测量可移动激光轮廓传感器的位移数据。根据本发明的检测装置和检测方法通过结合可移动激光轮廓传感器和位移传感器能够实现钢轨的断面尺寸、平直度和扭曲度的全面测量。
The invention provides a detection device and a detection method for automatically measuring the rail profile. The detection device includes a power supply module, a mechanical transmission module, a data acquisition storage module and a display alarm module. The mechanical transmission module includes a frame, a guide rail, a timing belt and a photoelectric switch for controlling the movement of the rail. The rail is set on the frame during detection. superior. The detection device also includes a plurality of movable laser profile sensors and displacement sensors. A plurality of movable laser profile sensors are arranged around the rail to measure the two-dimensional coordinate data of the rail section. The displacement sensors are arranged on the machine along a direction parallel to the length direction of the rail. Mounted to measure displacement data from a movable laser profile sensor. The detection device and detection method according to the present invention can realize the comprehensive measurement of the section size, straightness and twist of the rail by combining the movable laser profile sensor and the displacement sensor.
Description
技术领域technical field
本发明涉及自动化检测领域,更具体地,涉及一种自动测量钢轨轮廓的检测装置和检测方法。The invention relates to the field of automatic detection, in particular to a detection device and a detection method for automatically measuring rail profiles.
背景技术Background technique
随着铁路技术的发展以及无缝钢轨的普及,长钢轨的质量越来越受重视。钢轨的外形尺寸、平直度和扭曲度等是否符合标准影响到铁路运行的安全性、平稳性和速度。钢轨焊接基地在对钢轨进行焊接前需要对钢轨外形进行检测,避免不合格的钢轨投入生产,从而造成不必要的损失。With the development of railway technology and the popularization of seamless rails, the quality of long rails has been paid more and more attention. Whether the dimensions, straightness and twist of the rail meet the standards will affect the safety, stability and speed of railway operation. The rail welding base needs to inspect the shape of the rails before welding the rails to avoid unqualified rails from being put into production, which will cause unnecessary losses.
目前,钢轨焊接生产线上主要采用样板尺对钢轨的轨高、轨头宽、轨底宽、断面不对称度、轨腰厚度、轨脚高度等指标进行测量,采用塞尺、扭曲尺等对钢轨端部的平直度、扭曲度进行检测,排除不符合标准的钢轨。这种机械式手动测量存在下面几个问题:1、由于采用人工手动操作,操作人员的作业水平对测量精度影响较大,导致测量结果的精确度不易把握;2、钢轨外形检测是长钢轨焊接的第一道工序,机械测量效率低,劳动强度大,直接影响钢轨焊接生产的整体效率;3、钢轨外形检测数据采用人工方式进行录入,数据可靠性和完整性较差。因此,为了满足钢轨焊接基地的生产要求,需要研发一种自动、精准、高效且可靠的钢轨外形检测装置。At present, the rail welding production line mainly uses a sample ruler to measure the rail height, rail head width, rail bottom width, cross-section asymmetry, rail waist thickness, rail foot height and other indicators, and uses feeler gauges, twist gauges, etc. to measure the rails. The straightness and twist of the end are tested, and the rails that do not meet the standards are excluded. This kind of mechanical manual measurement has the following problems: 1. Due to the manual operation, the operating level of the operator has a great influence on the measurement accuracy, which makes it difficult to grasp the accuracy of the measurement results; 2. The rail shape detection is long rail welding. In the first process, the mechanical measurement efficiency is low and the labor intensity is high, which directly affects the overall efficiency of rail welding production; 3. The rail shape inspection data is entered manually, and the data reliability and integrity are poor. Therefore, in order to meet the production requirements of the rail welding base, it is necessary to develop an automatic, accurate, efficient and reliable rail shape detection device.
随着钢轨检测技术的发展,利用激光测距传感器、图像处理等技术检测钢轨的方法应运而生。由于激光测距传感器不能还原整个钢轨断面,图像处理易受灯光、锈斑等环境干扰,这些测量系统在数据可靠性、测量精度上有待改进。为了适应生产效率和自动化程度日益增长的高要求,需要一种能够自动检测钢轨轮廓且同时计算断面尺寸、平直度和扭曲度等的装置和方法。With the development of rail detection technology, the method of using laser ranging sensor, image processing and other technologies to detect rail has emerged. Since the laser ranging sensor cannot restore the entire rail section, image processing is susceptible to environmental interference such as light and rust spots. These measurement systems need to be improved in terms of data reliability and measurement accuracy. In order to meet the increasing high requirements of production efficiency and automation, a device and method that can automatically detect the rail profile and simultaneously calculate the section size, straightness and twist are needed.
发明内容Contents of the invention
为了解决上述问题,本发明提供一种自动测量钢轨轮廓的检测装置和检测方法。该检测装置和检测方法通过结合可移动激光轮廓传感器和位移传感器能够实现钢轨的断面尺寸、平直度和扭曲度的全面测量。In order to solve the above problems, the present invention provides a detection device and a detection method for automatically measuring the rail profile. The detection device and detection method can realize the comprehensive measurement of the section size, straightness and twist of the rail by combining the movable laser profile sensor and the displacement sensor.
根据本发明的一个方面,一种自动测量钢轨轮廓的检测装置包括电源模块、机械传动模块、数据采集存储模块和显示报警模块,机械传动模块包括机架、导轨、同步带和用于控制钢轨运动的光电开关,钢轨在检测期间设置在机架上。检测装置还包括多个可移动激光轮廓传感器和位移传感器,多个可移动激光轮廓传感器环绕钢轨设置以测量钢轨的断面二维坐标数据,位移传感器沿着平行于钢轨的长度方向的方向设置在机架上以测量可移动激光轮廓传感器的位移数据。多个可移动激光轮廓传感器和位移传感器以通信方式与数据采集存储模块连接,从而数据采集存储模块将断面二维坐标数据和位移数据相结合以检测钢轨的轮廓。According to one aspect of the present invention, a detection device for automatically measuring rail profile includes a power supply module, a mechanical transmission module, a data acquisition and storage module, and a display and alarm module. The photoelectric switch, the rail is set on the frame during the detection. The detection device also includes a plurality of movable laser profile sensors and displacement sensors. A plurality of movable laser profile sensors are arranged around the rail to measure the two-dimensional coordinate data of the rail section. The displacement sensors are arranged on the machine along a direction parallel to the length direction of the rail. Mounted on a stand to measure displacement data from a movable laser profile sensor. A plurality of movable laser profile sensors and displacement sensors are connected to the data acquisition storage module in a communication manner, so that the data acquisition storage module combines the two-dimensional coordinate data and displacement data of the section to detect the profile of the rail.
可选地,根据本发明的检测装置还包括传感器安装板,所述传感器安装板连接到导轨并设有中央通孔,中央通孔被设置成使得钢轨穿过所述中央通孔,其中多个可移动激光轮廓传感器设置在传感器安装板的周边。Optionally, the detection device according to the present invention further includes a sensor mounting plate, the sensor mounting plate is connected to the guide rail and has a central through hole, the central through hole is set so that the steel rail passes through the central through hole, wherein a plurality of movable laser beams The profile sensor is disposed on the periphery of the sensor mounting plate.
传感器安装板设置在连接支架上,所述连接支架的两端分别设置在导轨上,并且连接支架连接到同步带。The sensor mounting plate is arranged on the connecting bracket, the two ends of the connecting bracket are respectively arranged on the guide rail, and the connecting bracket is connected to the timing belt.
可选地,多个可移动激光轮廓传感器包括四个可移动激光轮廓传感器。Optionally, the plurality of movable laser profile sensors comprises four movable laser profile sensors.
优选地,四个可移动激光轮廓传感器中的两个相对于钢轨对称地设置在传感器安装板的一侧,并且定位成分别相对于钢轨成30°角,而所述四个可移动激光轮廓传感器中的其余两个相对于钢轨对称地设置在传感器安装板的另一侧,并且定位成分别相对于钢轨成50°角。Preferably, two of the four movable laser profile sensors are arranged symmetrically on one side of the sensor mounting plate with respect to the rail, and are positioned to form an angle of 30° with respect to the rail respectively, while the four movable laser profile sensors The remaining two of them are symmetrically arranged on the other side of the sensor mounting plate with respect to the rail, and are positioned to form an angle of 50° with respect to the rail, respectively.
数据采集存储模块可以包括多个数据采集卡和计算机,数据采集卡分别设置在多个可移动激光轮廓传感器和位移传感器上,并且多个数据采集卡以通信方式与计算机连接。The data acquisition storage module may include multiple data acquisition cards and a computer, the data acquisition cards are respectively arranged on multiple movable laser profile sensors and displacement sensors, and the multiple data acquisition cards are connected to the computer in a communication manner.
根据本发明的另一个方面,一种自动测量钢轨轮廓的检测方法包括以下步骤:步骤A01:通过机械传动模块将待检测钢轨传送到轨端检测范围内并停止以等待测量;步骤A02:通过环绕钢轨设置的多个可移动激光轮廓传感器测量钢轨的断面二维坐标数据,并且通过沿着平行于钢轨的长度方向的方向设置的位移传感器测量多个可移动激光轮廓传感器的位移数据;步骤A03:以通信方式将断面二维坐标数据和位移数据传输到数据采集存储模块;步骤A04:数据采集存储模块对断面二维坐标数据和位移数据进行数据处理以获得钢轨的完整断面,并且显示钢轨的断面图像;步骤A05:数据采集存储模块根据断面二维坐标数据和位移数据计算钢轨的断面尺寸、平直度和扭曲度;和步骤A06:通过显示报警模块显示钢轨检测结果并对不合格钢轨进行报警提醒。According to another aspect of the present invention, a detection method for automatically measuring rail profile includes the following steps: Step A01: Transmit the rail to be detected to the rail end detection range through the mechanical transmission module and stop to wait for measurement; Step A02: A plurality of movable laser profile sensors arranged on the rail measure the cross-sectional two-dimensional coordinate data of the rail, and measure the displacement data of the plurality of movable laser profile sensors through a displacement sensor arranged along a direction parallel to the length direction of the rail; Step A03: Transmit the two-dimensional coordinate data and displacement data of the section to the data acquisition storage module by means of communication; Step A04: the data acquisition storage module performs data processing on the two-dimensional coordinate data and displacement data of the section to obtain a complete section of the rail, and display the section of the rail image; step A05: the data acquisition and storage module calculates the section size, straightness and twist of the rail according to the two-dimensional coordinate data and displacement data of the section; and step A06: displays the detection result of the rail through the display alarm module and gives an alarm to the unqualified rail remind.
步骤A04中的数据处理包括以下步骤:对断面二维坐标数据进行摄像坐标系与世界坐标系的转换,以将零散的钢轨曲线拼接成完整的断面轮廓;和对断面轮廓进行角度矫正。The data processing in step A04 includes the following steps: converting the two-dimensional coordinate data of the section between the camera coordinate system and the world coordinate system to splice the scattered rail curves into a complete section profile; and performing angle correction on the section profile.
步骤A05中的平直度的计算包括:通过所述多个可移动激光轮廓传感器获取轨头的最高点或轨头侧面点;采集平直度计算所需的钢轨测量长度;采用弦测法进行平直度计算;形成并显示平直度曲线;计算钢轨的垂直平直度和水平平直度;和显示平直度计算结果。The calculation of the straightness in step A05 includes: obtaining the highest point of the rail head or the side point of the rail head through the plurality of movable laser profile sensors; collecting the measured length of the rail required for the straightness calculation; Flatness calculations; forming and displaying flatness curves; calculating vertical straightness and horizontal flatness of rails; and displaying flatness calculation results.
步骤A05中的扭曲度的计算包括:根据钢轨的断面轮廓获取轨底面的四个点;采用共面法计算钢轨的扭曲度;和显示扭曲度计算结果。所述采用共面法计算扭曲度的步骤包括:获取四个点中的任意三点所位于的平面;和计算四个点中剩余一个点至所述平面的距离以获得扭曲度。The calculation of the degree of twist in step A05 includes: obtaining four points on the bottom surface of the rail according to the cross-sectional profile of the rail; calculating the degree of twist of the rail by using the coplanar method; and displaying the calculation result of the degree of twist. The step of calculating the degree of distortion by using the co-planar method includes: obtaining the plane where any three points of the four points are located; and calculating the distance from the remaining one of the four points to the plane to obtain the degree of distortion.
所述获取轨底面的四个点的步骤包括:在钢轨端部断面的下表面上取两个点;和在距离钢轨端部断面1m以内的范围内在轨底下表面上取另外的两个点。The step of obtaining four points on the bottom surface of the rail includes: taking two points on the lower surface of the rail end section; and taking another two points on the lower surface of the rail bottom within 1m from the rail end section.
进一步地,四个点中的每一个点的中心与轨底边缘之间的距离为10mm,并且四个点中的每一个点的表面积在150mm2~250mm2的范围内。Further, the distance between the center of each of the four points and the edge of the rail bottom is 10mm, and the surface area of each of the four points is in the range of 150mm 2 -250mm 2 .
可选地,在步骤A03中,多个可移动激光轮廓传感器和位移传感器通过各自设有的数据采集卡将断面二维坐标数据和位移数据传输给数据采集存储模块的计算机。Optionally, in step A03, a plurality of movable laser profile sensors and displacement sensors transmit the two-dimensional coordinate data and displacement data of the section to the computer of the data acquisition storage module through their respective data acquisition cards.
附图说明Description of drawings
本发明的上述及其它方面和特征将从以下结合附图对实施例的说明清楚呈现,其中:The above and other aspects and features of the present invention will be clearly presented from the following description of the embodiments in conjunction with the accompanying drawings, wherein:
图1是显示根据本发明的自动测量钢轨轮廓的检测装置的组成模块的示意图;Fig. 1 is a schematic diagram showing the constituent modules of the detection device for automatically measuring rail profile according to the present invention;
图2是显示根据本发明的第一实施例的检测装置的立体图,其中方框C部分以放大形式显示安装有可移动激光轮廓传感器的传感器安装板;Fig. 2 is a perspective view showing a detection device according to a first embodiment of the present invention, wherein part C of a box shows a sensor mounting plate on which a movable laser profile sensor is installed in an enlarged form;
图3是示意性地显示可移动激光轮廓传感器和位移传感器相对于钢轨的位置的视图;Figure 3 is a view schematically showing the positions of the movable laser profile sensor and the displacement sensor relative to the rail;
图4是图2中的C部分的传感器安装板的正视图,所述传感器安装板上安装有四个可移动激光轮廓传感器;Fig. 4 is the front view of the sensor mounting plate of part C in Fig. 2, and four movable laser profile sensors are installed on the sensor mounting plate;
图5是根据本发明的自动测量钢轨轮廓的检测方法的流程图;Fig. 5 is the flow chart of the detection method of automatic measurement rail profile according to the present invention;
图6是示意性地显示根据本发明的第二实施例的自动测量钢轨轮廓的检测方法的流程图;6 is a flow chart schematically showing a detection method for automatically measuring rail profile according to a second embodiment of the present invention;
图7是钢轨曲线拼接前的图像视图;Fig. 7 is the image view before rail curve splicing;
图8是钢轨曲线拼接后的图像视图,显示了钢轨断面的完整轮廓;Figure 8 is an image view after rail curve splicing, showing the complete profile of the rail section;
图9是采用弦测法计算平直度的曲线图;以及Fig. 9 is a graph of straightness calculated by the chord method; and
图10是采用共面法计算扭曲度的曲线图。Fig. 10 is a graph of calculating the degree of torsion using the coplanar method.
具体实施方式Detailed ways
下面参照附图详细描述本发明的说明性、非限制性实施例,对根据本发明的钢轨检测装置和检测方法进行进一步说明。The illustrative and non-limiting embodiments of the present invention will be described in detail below with reference to the accompanying drawings, and the rail detection device and detection method according to the present invention will be further described.
具体地,参照图1-3说明根据本发明的自动测量钢轨轮廓的检测装置,该检测装置是一种能够实现钢轨的断面尺寸、平直度和扭曲度的全面测量的自动检测装置。根据本发明的检测装置包括电源模块1、机械传动模块2、数据采集存储模块3和显示报警模块4。电源模块为检测装置提供稳定可靠的电能,以供测量、控制和记录操作过程使用。机械传动模块2包括机架10、导轨11、同步带12和光电开关,待检测钢轨5在检测期间设置在机架10上。所述检测装置还包括多个可移动激光轮廓传感器6和位移传感器7。参见图3,可移动激光轮廓传感器6环绕钢轨5设置以测量钢轨的断面二维坐标数据,并且通过机械传动模块1可沿着平行于钢轨长度方向的方向移动。位移传感器7沿着平行于钢轨5的长度方向的方向设置在机架上以测量可移动激光轮廓传感器的位移数据。可移动激光轮廓传感器6和位移传感器7以通信方式与数据采集存储模块3连接,以将可移动激光轮廓传感器检测到的断面二维坐标数据和位移传感器检测到的位移数据传输给数据采集存储模块。数据采集存储模块3进而将断面二维坐标数据和位移数据相结合,以检测钢轨的轮廓。可移动激光轮廓传感器和位移传感器可以以本领域公知的任何无线或有限通信方式与数据采集存储模块连接。Specifically, the detection device for automatically measuring the rail profile according to the present invention is described with reference to Figs. 1-3. The detection device is an automatic detection device capable of comprehensively measuring the section size, straightness and twist of the rail. The detection device according to the present invention includes a
图3示意性地显示可移动激光轮廓传感器和位移传感器相对于钢轨的位置。多个可移动激光轮廓传感器6环绕待测钢轨5设置,例如,检测装置可以包括四个可移动激光轮廓传感器,其中两个传感器位于钢轨的一侧,而其余两个传感器位于钢轨的另一侧。位移传感器7沿着平行于钢轨长度方向的方向设置以检测可移动激光轮廓传感器的位移数据。要注意的是,虽然在此仅示例性地说明具有四个可移动激光轮廓传感器的检测装置,但本领域的技术人员能够想到,可移动激光轮廓传感器不限于四个,而可以采用任何数量的激光轮廓传感器,只要能够检测钢轨断面二维坐标数据即可。在机械传动模块中,机架对可移动激光轮廓传感器和位移传感器起到支撑、保护和固定作用,导轨和同步带用于平稳且匀速地传送钢轨和可移动激光轮廓传感器。光电开关用于控制钢轨的运动,使得钢轨在运动到轨端测量范围时停止运动以等待测量。所述轨端测量范围是指钢轨的断面落入多个可移动激光轮廓传感器的测量范围内。Figure 3 schematically shows the position of the movable laser profile sensor and the displacement sensor relative to the rail. A plurality of movable
根据本发明的第一实施例,多个可移动激光轮廓传感器安装在传感器安装板上。具体地,参见图3和图4,传感器安装板20连接到导轨11且设有中央通孔21。中央通孔21被设置成使得待测钢轨穿过该中央通孔。可移动激光轮廓传感器6设置在传感器安装板20的周边。根据本发明的一个示例,传感器安装板设置在连接支架22上。连接支架22的两端分别设置在导轨11上,并且连接支架22连接到同步带12。在检测期间,连接支架22在同步带12的带动下能够沿着导轨11移动,从而带动可移动激光轮廓传感器沿着钢轨的长度方向移动。According to a first embodiment of the invention, a plurality of movable laser profile sensors are mounted on a sensor mounting plate. Specifically, referring to FIGS. 3 and 4 , the
根据本发明的一个可选实施例,检测装置可以包括四个可移动激光轮廓传感器。优选地,四个可移动激光轮廓传感器中的两个相对于钢轨对称地设置在传感器安装板20的一侧,并且定位成分别相对于钢轨成30°角。其余两个激光轮廓传感器相对于钢轨对称地设置在传感器安装板20的另一侧,并且定位成分别相对于钢轨成50°角,如图4所示。如上所述布置的可移动激光轮廓传感器能够通过检测钢轨的外形形成一个完整的测量断面。According to an optional embodiment of the present invention, the detection device may include four movable laser profile sensors. Preferably, two of the four movable laser profile sensors are symmetrically arranged on one side of the
下面,将参照图5-8说明采用上述检测装置自动测量钢轨轮廓的检测方法。Next, a detection method for automatically measuring the profile of a rail using the detection device described above will be described with reference to FIGS. 5-8.
图5是根据本发明的自动测量钢轨轮廓的检测方法的流程图。根据本发明的检测方法包括:Fig. 5 is a flow chart of the detection method for automatically measuring rail profile according to the present invention. Detection method according to the present invention comprises:
步骤A01:通过机械传动模块2将待检测钢轨5传送到轨端检测范围内并停止以等待测量;Step A01: Transmit the
步骤A02:通过环绕钢轨5设置的多个可移动激光轮廓传感器6测量钢轨的断面二维坐标数据,并且通过沿着平行于钢轨的长度方向的方向设置的位移传感器7测量可移动激光轮廓传感器6的位移数据;Step A02: Measure the cross-sectional two-dimensional coordinate data of the rail with a plurality of movable
步骤A03:以通信方式将断面二维坐标数据和位移数据传输到数据采集存储模块3;Step A03: Transmit the two-dimensional coordinate data and displacement data of the section to the data
步骤A04:数据采集存储模块3对断面二维坐标数据和位移数据进行数据处理以获得钢轨的完整断面,并且显示钢轨的断面图像;Step A04: The data acquisition and
步骤A05:数据采集存储模块3根据断面二维坐标数据和位移数据计算钢轨的断面尺寸、平直度和扭曲度;和Step A05: The data collection and
步骤A06:通过显示报警模块4显示钢轨检测结果并对不合格钢轨进行报警提醒。Step A06: displaying the detection result of the rail through the display alarm module 4 and giving an alarm reminder to the unqualified rail.
根据本发明的检测方法通过机械传动模块自动地将待检测钢轨传送到轨端检测范围内并停止,以等待检测。可移动激光轮廓传感器对钢轨进行扫描,投射的激光组成了一个完整的钢轨断面,利用本领域常用的光学三角法将钢轨轮廓转换成二维坐标数据,精度能够达到0.019mm。由此,可移动激光轮廓传感器可以直接获得钢轨完整断面的二维坐标数据,从而根据该二维坐标数据计算断面尺寸。位移传感器实时地记录激光轮廓传感器的运动位移数据,从而获得钢轨长度方向的坐标数据。激光轮廓传感器检测到的二维坐标数据和位移传感器检测到的位移数据相结合,计算出平直度和扭曲度。因此,根据本发明的钢轨轮廓检测方法与现有的检测方法相比,可以同时实现断面尺寸、平直度和扭曲度的全面测量,进而显著提高钢轨质量的检测效率。According to the detection method of the present invention, the steel rail to be detected is automatically transferred to the detection range of the rail end through the mechanical transmission module and stopped to wait for detection. The movable laser profile sensor scans the rail, and the projected laser forms a complete rail section. The rail profile is converted into two-dimensional coordinate data by using the optical triangulation method commonly used in this field, and the accuracy can reach 0.019mm. Thus, the movable laser profile sensor can directly obtain the two-dimensional coordinate data of the complete cross-section of the rail, so as to calculate the cross-sectional size according to the two-dimensional coordinate data. The displacement sensor records the movement displacement data of the laser profile sensor in real time, so as to obtain the coordinate data in the direction of the rail length. The two-dimensional coordinate data detected by the laser profile sensor and the displacement data detected by the displacement sensor are combined to calculate the flatness and twist. Therefore, compared with the existing detection methods, the rail profile detection method according to the present invention can simultaneously realize comprehensive measurement of cross-sectional size, straightness and twist, thereby significantly improving the detection efficiency of rail quality.
接下来,参照图6进一步详细说明根据本发明的第二实施例的钢轨轮廓检测方法。Next, the rail profile detection method according to the second embodiment of the present invention will be further described in detail with reference to FIG. 6 .
进一步地,数据采集存储模块在启动后将激光轮廓传感器采集的钢轨轮廓数据拼接成一个完整的断面,并在界面上显示图像。在完成对钢轨断面的角度矫正后就可以实行钢轨断面的尺寸计算、平直度计算和扭曲度计算。同时,在界面显示计算结果,绘制平直度曲线并自动将测量结果存入数据库,以备操作人员查询和管理历史数据。例如,数据采集存储模块可以包括分别设置在激光轮廓传感器和位移传感器上的数据采集卡以及与数据采集卡通信连接的计算机。激光轮廓传感器和位移传感器通过各自设有的数据采集卡将断面二维坐标数据和位移数据传输给计算机。例如,整个控制可以由两台计算机实行,一台作为客户端,连接一部分激光轮廓传感器;另一台计算机连接其余激光轮廓传感器和位移传感器,并且作为服务器进行结果计算、存储等操作。Furthermore, after the data acquisition and storage module is started, the rail profile data collected by the laser profile sensor are spliced into a complete section, and the image is displayed on the interface. After the angle correction of the rail section is completed, the size calculation, straightness calculation and twist calculation of the rail section can be carried out. At the same time, the calculation results are displayed on the interface, the flatness curve is drawn and the measurement results are automatically stored in the database for operators to query and manage historical data. For example, the data acquisition and storage module may include a data acquisition card respectively arranged on the laser profile sensor and the displacement sensor, and a computer communicated with the data acquisition card. The laser profile sensor and the displacement sensor transmit the two-dimensional coordinate data and displacement data of the section to the computer through their respective data acquisition cards. For example, the entire control can be performed by two computers, one as a client, connected to some laser profile sensors; the other computer is connected to the rest of the laser profile sensors and displacement sensors, and acts as a server for calculation and storage of results.
具体地,步骤A04中的数据处理包括:对断面二维坐标数据进行摄像坐标系与世界坐标系的转换,以将零散的钢轨曲线拼接成完整的断面轮廓;接着,对断面轮廓进行角度矫正。图7和图8分别显示了钢轨曲线拼接前和拼接后的图像,其中图8显示了检测到的钢轨断面的完整轮廓。数据采集存储模块在获得完整断面轮廓后,可以计算钢轨的断面尺寸。Specifically, the data processing in step A04 includes: converting the two-dimensional coordinate data of the section between the camera coordinate system and the world coordinate system, so as to splice the scattered rail curves into a complete section profile; and then, performing angle correction on the section profile. Figures 7 and 8 show the images of rail curves before and after splicing, respectively, where Figure 8 shows the complete profile of the detected rail section. After the data acquisition and storage module obtains the complete section profile, it can calculate the section size of the rail.
根据本发明,数据采集存储模块除了计算钢轨的断面尺寸之外还可以计算钢轨的平直度和扭曲度。钢轨平直度的计算包括:通过可移动激光轮廓传感器获取轨头的最高点或轨头侧面点;采集平直度计算所需的钢轨测量长度;采用弦测法进行平直度计算;形成并显示平直度曲线;计算钢轨的垂直平直度和水平平直度;和显示平直度计算结果。在计算平直度时所选取的钢轨测量长度根据不同轨型而不同,并且采用本领域常用的弦测法进行平直度计算。图9是采用弦测法计算平直度的曲线图。曲线P1P2为被测钢轨长度方向的表面轮廓,将首尾测量点用直线连接作为基准平面,其余测量点到该曲线的最大距离为获得的平直度。According to the present invention, the data acquisition and storage module can also calculate the straightness and twist of the rail in addition to the section size of the rail. The calculation of rail straightness includes: obtaining the highest point of the rail head or the side point of the rail head through a movable laser profile sensor; collecting the measured length of the rail required for straightness calculation; using the chord method for straightness calculation; forming and Displays the straightness curve; calculates the vertical straightness and horizontal straightness of the rail; and displays the straightness calculation results. When calculating the straightness, the measured length of the rail is different according to different rail types, and the straightness calculation is carried out by using the chord measurement method commonly used in this field. Fig. 9 is a graph of straightness calculated by the chord method. Curve P 1 P 2 is the surface profile in the length direction of the measured rail. The first and last measurement points are connected by a straight line as the reference plane, and the maximum distance between the remaining measurement points and the curve is the obtained straightness.
钢轨扭曲度的计算包括:根据钢轨的断面轮廓获取轨底面的四个点;采用共面法计算钢轨的扭曲度;和显示扭曲度计算结果。The calculation of the twist of the rail includes: obtaining four points on the bottom surface of the rail according to the section profile of the rail; calculating the twist of the rail by using the coplanar method; and displaying the calculation result of the twist.
接下来,将参照图10说明采用共面法计算扭曲度。钢轨扭曲度是指钢轨纵向的扭曲程度。首先,获取轨底面的四个点中的任意三点所位于的平面。然后,计算四个点中剩余一个点至所述平面的距离,该距离即为钢轨的扭曲度。根据一个实施例,如图10所示,在钢轨端部断面的下表面上取两个点Q1Q2,在距离钢轨端部断面1m以内的范围内在轨底下表面上取另外的两个点Q3Q4。采用共面法计算钢轨扭曲度时,先求出Q1Q2Q3所位于的平面M,Q4到平面M的距离即为钢轨的扭曲度。轨底面的四个点中的每一个点的中心与轨底边缘之间的距离为10mm,并且每一个点的表面积在150mm2~250mm2的范围内。如果计算所得的扭曲度不超过0.45mm,则表示待测钢轨的扭曲度符合要求。Next, calculation of the degree of twist by the coplanar method will be described with reference to FIG. 10 . Rail twist refers to the degree of twist in the longitudinal direction of the rail. First, obtain the plane on which any three of the four points on the bottom surface of the rail lie. Then, calculate the distance from the remaining one of the four points to the plane, and this distance is the twist of the rail. According to one embodiment, as shown in Figure 10, two points Q 1 Q 2 are taken on the lower surface of the rail end section, and two other points are taken on the lower surface of the rail bottom within 1m from the rail end section Q 3 Q 4 . When using the coplanar method to calculate the torsion of the rail, first find the plane M where Q 1 Q 2 Q 3 is located, and the distance from Q 4 to the plane M is the torsion of the rail. The distance between the center of each of the four points on the rail bottom surface and the edge of the rail bottom is 10 mm, and the surface area of each point is in the range of 150 mm 2 to 250 mm 2 . If the calculated twist does not exceed 0.45mm, it means that the twist of the rail to be tested meets the requirements.
由以上所述可知,根据本发明的自动测量钢轨轮廓的检测装置和检测方法通过两种传感器的结合可以实现整根钢轨的断面尺寸、平直度和扭曲度的全面测量,并且对不合格钢轨进行报警提示,操作方便且自动化程度高。在本发明的检测过程中,无需人工干预,对钢轨轮廓自动采集、测量和存储,因此提高了工作效率。此外,测量过程操作简单,对不合格钢轨进行报警提示,有效地降低了劳动强度,并且可自动记录钢轨轮廓数据,以为管理人员提供真实、可靠、可追溯性强的数据记录。同时,根据本发明的检测装置和检测方法采用激光轮传感器进行测量,测量精度高,解决了人工测量精度不易把握的问题。From the above, it can be known that the detection device and detection method for automatically measuring the rail profile according to the present invention can realize the comprehensive measurement of the cross-sectional size, straightness and twist of the entire rail through the combination of two sensors, and the unqualified rail Alarm prompt, convenient operation and high degree of automation. In the detection process of the present invention, the profile of the rail is automatically collected, measured and stored without manual intervention, thus improving work efficiency. In addition, the measurement process is easy to operate, and the unqualified rails are alarmed, which effectively reduces the labor intensity, and the rail profile data can be automatically recorded to provide managers with real, reliable and highly traceable data records. At the same time, the detection device and detection method according to the present invention adopt a laser wheel sensor for measurement, which has high measurement accuracy and solves the problem that manual measurement accuracy is difficult to grasp.
尽管对本发明的典型实施例进行了说明,但是显然本领域技术人员可以理解,在不背离本发明的精神和原理的情况下可以进行改变,其范围在权利要求书以及其等同物中进行了限定。While exemplary embodiments of the invention have been described, it will be apparent to those skilled in the art that changes may be made without departing from the spirit and principles of the invention, the scope of which is defined in the claims and their equivalents .
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310741503.XA CN103759695A (en) | 2013-12-27 | 2013-12-27 | Detecting device and method for automatically measuring outline of steel rail |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310741503.XA CN103759695A (en) | 2013-12-27 | 2013-12-27 | Detecting device and method for automatically measuring outline of steel rail |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103759695A true CN103759695A (en) | 2014-04-30 |
Family
ID=50526971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310741503.XA Pending CN103759695A (en) | 2013-12-27 | 2013-12-27 | Detecting device and method for automatically measuring outline of steel rail |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103759695A (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105091822A (en) * | 2015-05-07 | 2015-11-25 | 攀钢集团攀枝花钢钒有限公司 | Parametric tolerance determination method for the leg tip thickness of a heavy rail |
CN105091778A (en) * | 2015-04-28 | 2015-11-25 | 长春机械科学研究院有限公司 | Profiled guide rail one-side characteristic detection method and apparatus based on laser ray structured light |
CN105180887A (en) * | 2015-10-08 | 2015-12-23 | 重庆长安汽车股份有限公司 | Wide span beam deflection deformation measuring method |
CN105588514A (en) * | 2014-10-20 | 2016-05-18 | 南京理工大学 | T-shaped elevator guide rail mortise and tenon automatic detection system |
CN106643579A (en) * | 2015-10-28 | 2017-05-10 | 南京理工大学 | System and method for automatically detecting flatness of T-shaped guide rail of elevator |
CN107192324A (en) * | 2017-06-07 | 2017-09-22 | 安徽省建筑科学研究设计院 | A kind of full rotation type prefabricated pile type inspection instrument and the method for inspection |
CN108106565A (en) * | 2017-12-18 | 2018-06-01 | 南京先进激光技术研究院 | A kind of steel rail straightness and torsion resistance detection device and method |
CN108190437A (en) * | 2017-12-22 | 2018-06-22 | 湖北省祥康源塑料制品有限公司 | A kind of conveying device with automatic detection plastic casing appearance qualification degree |
CN108240798A (en) * | 2016-12-23 | 2018-07-03 | 中国科学院沈阳自动化研究所 | Gap size measuring method based on 2D laser profiles sensor and machine vision |
CN108802178A (en) * | 2018-04-18 | 2018-11-13 | 中国铁道科学研究院金属及化学研究所 | Steel rail weld joint quality detection apparatus and quality determining method |
CN109870094A (en) * | 2019-03-14 | 2019-06-11 | 滁州新彩家用玻璃有限公司 | A kind of not equal arcs glass detection device |
CN110588709A (en) * | 2019-09-10 | 2019-12-20 | 中国铁道科学研究院集团有限公司 | Railway Infrastructure Inspection System |
CN110954026A (en) * | 2019-11-19 | 2020-04-03 | 上海理工大学 | On-line detection device for measuring geometric profile of steel rail |
CN111561879A (en) * | 2020-05-11 | 2020-08-21 | 西安理工大学 | A detection system and method for extracting rail profile curve by infrared laser irradiation |
CN112033299A (en) * | 2020-07-24 | 2020-12-04 | 中铁物总技术有限公司 | Intelligent profile on-line detection system for steel rail |
CN112304363A (en) * | 2020-09-11 | 2021-02-02 | 中铁物总资源科技有限公司 | Intelligent detection process and device on waste steel rail processing production line |
CN112833817A (en) * | 2021-01-04 | 2021-05-25 | 中国石油天然气集团有限公司 | Method and device for detecting oil casing material object section morphology |
CN113028986A (en) * | 2021-03-03 | 2021-06-25 | 北京科技大学 | Volume measuring device and mass measuring system |
CN113046538A (en) * | 2019-12-27 | 2021-06-29 | 成都真火科技有限公司 | Control device of online steel rail surface strengthening equipment |
CN116416774A (en) * | 2022-12-16 | 2023-07-11 | 四川大学 | On-line monitoring system and monitoring method for roll forming quality of frame girder |
CN116429012A (en) * | 2023-03-30 | 2023-07-14 | 万岩铁路装备(成都)有限责任公司 | Method for detecting section profile of moving steel rail at fixed point |
CN117488606A (en) * | 2023-11-10 | 2024-02-02 | 中铁物总运维科技有限公司 | Fixed rail profile intelligent polishing equipment measurement control system |
CN117968618A (en) * | 2024-03-29 | 2024-05-03 | 包钢集团节能环保科技产业有限责任公司 | Steel rail flatness detection device |
KR20240081887A (en) * | 2022-12-01 | 2024-06-10 | 노재욱 | Guide rail non-contact dimension measurement method for linear motion guide |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2633936Y (en) * | 2003-06-26 | 2004-08-18 | 上海理工大学附属二厂 | Non contact type two-way rail straight line automatic measurer |
KR20060130934A (en) * | 2005-06-09 | 2006-12-20 | 삼성중공업 주식회사 | Apparatus and method for measuring straightness, verticality and spacing of longines |
CN202195800U (en) * | 2011-08-17 | 2012-04-18 | 武汉汉宁科技有限公司 | Automatic measuring device for steel rail |
CN202885785U (en) * | 2012-09-24 | 2013-04-17 | 同济大学 | A automatic laser non-contact measuring device used for measuring the outline of the transverse section and the vertical section of a steel rail |
CN203687917U (en) * | 2013-12-27 | 2014-07-02 | 中国铁道科学研究院金属及化学研究所 | Detecting device for automatically measuring rail profile |
-
2013
- 2013-12-27 CN CN201310741503.XA patent/CN103759695A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2633936Y (en) * | 2003-06-26 | 2004-08-18 | 上海理工大学附属二厂 | Non contact type two-way rail straight line automatic measurer |
KR20060130934A (en) * | 2005-06-09 | 2006-12-20 | 삼성중공업 주식회사 | Apparatus and method for measuring straightness, verticality and spacing of longines |
CN202195800U (en) * | 2011-08-17 | 2012-04-18 | 武汉汉宁科技有限公司 | Automatic measuring device for steel rail |
CN202885785U (en) * | 2012-09-24 | 2013-04-17 | 同济大学 | A automatic laser non-contact measuring device used for measuring the outline of the transverse section and the vertical section of a steel rail |
CN203687917U (en) * | 2013-12-27 | 2014-07-02 | 中国铁道科学研究院金属及化学研究所 | Detecting device for automatically measuring rail profile |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105588514A (en) * | 2014-10-20 | 2016-05-18 | 南京理工大学 | T-shaped elevator guide rail mortise and tenon automatic detection system |
CN105588514B (en) * | 2014-10-20 | 2018-09-04 | 南京理工大学 | A kind of T-type elevator guide rail mortise and tenon automatic checkout system |
CN105091778A (en) * | 2015-04-28 | 2015-11-25 | 长春机械科学研究院有限公司 | Profiled guide rail one-side characteristic detection method and apparatus based on laser ray structured light |
CN105091778B (en) * | 2015-04-28 | 2017-10-24 | 长春机械科学研究院有限公司 | Obform guide rail one side characteristic detection method and device based on line-structured laser |
CN105091822B (en) * | 2015-05-07 | 2017-08-25 | 攀钢集团攀枝花钢钒有限公司 | The thick parametrization tolerance decision method of heavy rail leg point |
CN105091822A (en) * | 2015-05-07 | 2015-11-25 | 攀钢集团攀枝花钢钒有限公司 | Parametric tolerance determination method for the leg tip thickness of a heavy rail |
CN105180887A (en) * | 2015-10-08 | 2015-12-23 | 重庆长安汽车股份有限公司 | Wide span beam deflection deformation measuring method |
CN106643579A (en) * | 2015-10-28 | 2017-05-10 | 南京理工大学 | System and method for automatically detecting flatness of T-shaped guide rail of elevator |
CN108240798A (en) * | 2016-12-23 | 2018-07-03 | 中国科学院沈阳自动化研究所 | Gap size measuring method based on 2D laser profiles sensor and machine vision |
CN107192324A (en) * | 2017-06-07 | 2017-09-22 | 安徽省建筑科学研究设计院 | A kind of full rotation type prefabricated pile type inspection instrument and the method for inspection |
CN108106565A (en) * | 2017-12-18 | 2018-06-01 | 南京先进激光技术研究院 | A kind of steel rail straightness and torsion resistance detection device and method |
CN108190437A (en) * | 2017-12-22 | 2018-06-22 | 湖北省祥康源塑料制品有限公司 | A kind of conveying device with automatic detection plastic casing appearance qualification degree |
CN108190437B (en) * | 2017-12-22 | 2020-02-07 | 武汉杰锐祥源智能科技有限公司 | Conveying device with automatic detection of plastic box appearance qualification degree |
CN108802178A (en) * | 2018-04-18 | 2018-11-13 | 中国铁道科学研究院金属及化学研究所 | Steel rail weld joint quality detection apparatus and quality determining method |
CN108802178B (en) * | 2018-04-18 | 2024-04-05 | 中国铁道科学研究院金属及化学研究所 | Rail welding joint quality inspection equipment and quality inspection method |
CN109870094A (en) * | 2019-03-14 | 2019-06-11 | 滁州新彩家用玻璃有限公司 | A kind of not equal arcs glass detection device |
CN110588709A (en) * | 2019-09-10 | 2019-12-20 | 中国铁道科学研究院集团有限公司 | Railway Infrastructure Inspection System |
CN110954026A (en) * | 2019-11-19 | 2020-04-03 | 上海理工大学 | On-line detection device for measuring geometric profile of steel rail |
CN113046538A (en) * | 2019-12-27 | 2021-06-29 | 成都真火科技有限公司 | Control device of online steel rail surface strengthening equipment |
CN111561879A (en) * | 2020-05-11 | 2020-08-21 | 西安理工大学 | A detection system and method for extracting rail profile curve by infrared laser irradiation |
CN112033299A (en) * | 2020-07-24 | 2020-12-04 | 中铁物总技术有限公司 | Intelligent profile on-line detection system for steel rail |
CN112304363A (en) * | 2020-09-11 | 2021-02-02 | 中铁物总资源科技有限公司 | Intelligent detection process and device on waste steel rail processing production line |
CN112833817A (en) * | 2021-01-04 | 2021-05-25 | 中国石油天然气集团有限公司 | Method and device for detecting oil casing material object section morphology |
CN113028986A (en) * | 2021-03-03 | 2021-06-25 | 北京科技大学 | Volume measuring device and mass measuring system |
KR20240081887A (en) * | 2022-12-01 | 2024-06-10 | 노재욱 | Guide rail non-contact dimension measurement method for linear motion guide |
KR102815490B1 (en) | 2022-12-01 | 2025-06-05 | 지대환 | Guide rail non-contact dimension measurement method for linear motion guide |
CN116416774A (en) * | 2022-12-16 | 2023-07-11 | 四川大学 | On-line monitoring system and monitoring method for roll forming quality of frame girder |
CN116429012A (en) * | 2023-03-30 | 2023-07-14 | 万岩铁路装备(成都)有限责任公司 | Method for detecting section profile of moving steel rail at fixed point |
CN117488606A (en) * | 2023-11-10 | 2024-02-02 | 中铁物总运维科技有限公司 | Fixed rail profile intelligent polishing equipment measurement control system |
CN117488606B (en) * | 2023-11-10 | 2024-06-21 | 中铁物总运维科技有限公司 | Fixed rail profile intelligent polishing equipment measurement control system |
CN117968618A (en) * | 2024-03-29 | 2024-05-03 | 包钢集团节能环保科技产业有限责任公司 | Steel rail flatness detection device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103759695A (en) | Detecting device and method for automatically measuring outline of steel rail | |
CN110954026B (en) | On-line detection device for measuring geometric profile of steel rail | |
CN209802322U (en) | Glass flatness detection mechanism | |
CN103712555B (en) | Automotive frame pilot hole vision on-line measurement system and method thereof | |
CN203550920U (en) | T-shaped elevator guide rail geometric tolerance full-automatic comprehensive detector | |
CN105115976B (en) | A kind of rail abrasion defect detecting system and method | |
CN206594292U (en) | A kind of laser radar range precision automatic checkout system | |
CN203079561U (en) | Crane gauge deviation value automatic monitoring device | |
CN206330548U (en) | A kind of high-speed railway platform dividing measures dolly | |
JP4857369B2 (en) | Turnout inspection device | |
CN102607503A (en) | Tilt sensor based straightness measuring instrument and method | |
CN204269081U (en) | A kind of ceramic rod detects machine | |
CN204373601U (en) | A kind of form and position tolerance pick-up unit for deadlight | |
CN102721365A (en) | Method and device for high-speed and accurate measurement of tunnel section | |
EP2527785A1 (en) | Method and device for flatness measurement | |
CN204228951U (en) | Piler stadimeter calibrating installation | |
CN104897052A (en) | Method for measuring steel rail appearance geometric dimension and surface quality and device thereof | |
CN109798842B (en) | A third rail detection device and detection method | |
CN114705134B (en) | An automatic detection device for verticality and parallelism of elevator guide rails | |
CN102445166A (en) | Driving track detection method | |
CN109141303B (en) | Component geometric defect detection system and detection method | |
CN105910553A (en) | A detector for detecting a plane and a method for detecting the same | |
CN216645248U (en) | Reinforcing bar interval detection device | |
CN103075967A (en) | Single-ring or five-ring length measuring method and measuring device for anchor chain or mooring cable | |
CN202195800U (en) | Automatic measuring device for steel rail |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
ASS | Succession or assignment of patent right |
Owner name: BEIJING RAILWELD CO., LTD. CHINA ACADEMY OF RAILWA Effective date: 20150327 |
|
TA01 | Transfer of patent application right |
Effective date of registration: 20150327 Address after: 100081 Beijing city Haidian District Daliushu Road No. 2 Applicant after: Railway Scientific Research Academy Metal And Chemical Research Institute Applicant after: Beijing China Academy of Railway Science New Material & Technology Co., Ltd. Applicant after: China Academy of Railway Sciences Address before: 100081 Beijing city Haidian District Daliushu Road No. 2 Applicant before: Railway Scientific Research Academy Metal And Chemical Research Institute |
|
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140430 |