CN103757702A - Method for preparing high-temperature inorganic scintillation crystal - Google Patents
Method for preparing high-temperature inorganic scintillation crystal Download PDFInfo
- Publication number
- CN103757702A CN103757702A CN201410024264.0A CN201410024264A CN103757702A CN 103757702 A CN103757702 A CN 103757702A CN 201410024264 A CN201410024264 A CN 201410024264A CN 103757702 A CN103757702 A CN 103757702A
- Authority
- CN
- China
- Prior art keywords
- crystal
- crucible
- temperature
- temperature inorganic
- crystal growth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims description 105
- 238000000034 method Methods 0.000 title claims description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 16
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 14
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 10
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 8
- 150000004645 aluminates Chemical class 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 7
- 229910052786 argon Inorganic materials 0.000 claims description 7
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 6
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- 229910001182 Mo alloy Inorganic materials 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- MGRWKWACZDFZJT-UHFFFAOYSA-N molybdenum tungsten Chemical compound [Mo].[W] MGRWKWACZDFZJT-UHFFFAOYSA-N 0.000 claims description 2
- 239000002994 raw material Substances 0.000 description 33
- -1 Rare earth orthosilicate Chemical class 0.000 description 16
- 229910052741 iridium Inorganic materials 0.000 description 13
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 13
- 238000005245 sintering Methods 0.000 description 12
- 238000001514 detection method Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 239000000155 melt Substances 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 229910052684 Cerium Inorganic materials 0.000 description 7
- 238000000137 annealing Methods 0.000 description 6
- 230000006698 induction Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000005855 radiation Effects 0.000 description 6
- 229910052765 Lutetium Inorganic materials 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000007790 solid phase Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 229910052727 yttrium Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229910052593 corundum Inorganic materials 0.000 description 3
- 239000010431 corundum Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000004033 diameter control Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000002223 garnet Substances 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 229910004283 SiO 4 Inorganic materials 0.000 description 2
- ANDNPYOOQLLLIU-UHFFFAOYSA-N [Y].[Lu] Chemical compound [Y].[Lu] ANDNPYOOQLLLIU-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- JNDMLEXHDPKVFC-UHFFFAOYSA-N aluminum;oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Y+3] JNDMLEXHDPKVFC-UHFFFAOYSA-N 0.000 description 2
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 2
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910021644 lanthanide ion Inorganic materials 0.000 description 2
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- PXXKQOPKNFECSZ-UHFFFAOYSA-N platinum rhodium Chemical compound [Rh].[Pt] PXXKQOPKNFECSZ-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000003746 solid phase reaction Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- UYVZCGGFTICJMW-UHFFFAOYSA-N [Ir].[Au] Chemical compound [Ir].[Au] UYVZCGGFTICJMW-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229910019990 cerium-doped yttrium aluminum garnet Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000009206 nuclear medicine Methods 0.000 description 1
- 230000005658 nuclear physics Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000010671 solid-state reaction Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000002277 temperature effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Luminescent Compositions (AREA)
Abstract
一种高温无机闪烁晶体的制备方法,采用钼金属、钨金属坩埚或钨钼合金坩埚替代常规使用的铱金属坩埚进行晶体生长;并且采用还原性气氛替代常规单一的氮气或氩气的晶体生长气氛,在保证坩埚材料不被氧化的同时,避免掺杂铈离子的价态变换,从而大幅度降低晶体生长的制备成本并获得高质量的晶体。A method for preparing high-temperature inorganic scintillation crystals, using a molybdenum metal, tungsten metal crucible or a tungsten-molybdenum alloy crucible to replace the conventionally used iridium metal crucible for crystal growth; and using a reducing atmosphere to replace the conventional single nitrogen or argon crystal growth atmosphere , while ensuring that the crucible material is not oxidized, the valence state change of doped cerium ions is avoided, thereby greatly reducing the preparation cost of crystal growth and obtaining high-quality crystals.
Description
技术领域technical field
本发明涉及射线探测材料领域,特别涉及一种高温无机闪烁晶体的制备方法。The invention relates to the field of radiation detection materials, in particular to a preparation method of high-temperature inorganic scintillation crystals.
背景技术Background technique
无机闪烁晶体是一种能将高能光子(X/γ射线)或粒子(质子,电子等)的能量转换成易于探测的紫外/可见光子的晶态能量转换体。闪烁晶体可以做成探测器,闪烁晶体探测器在高能物理、核物理、影像核医学诊断(XCT、PET)、地质勘探、天文空间物理学以及安全稽查等领域中有着巨大的应用前景。随着核科学技术以及其它相关技术的飞速发展,其应用领域在不断的拓宽。不同应用领域对无机闪烁体也提出了更多更高的要求,传统的NaI(Tl)、BGO等闪烁晶体探测器已经无法满足新的应用领域的特殊要求。Inorganic scintillation crystals are crystalline energy converters that can convert the energy of high-energy photons (X/γ-rays) or particles (protons, electrons, etc.) into easily detectable ultraviolet/visible photons. Scintillation crystals can be made into detectors, and scintillation crystal detectors have great application prospects in the fields of high-energy physics, nuclear physics, imaging nuclear medicine diagnosis (XCT, PET), geological exploration, astronomy and space physics, and safety inspection. With the rapid development of nuclear science and technology and other related technologies, its application fields are constantly expanding. Different application fields also put forward more and higher requirements for inorganic scintillators. Traditional scintillation crystal detectors such as NaI(Tl) and BGO cannot meet the special requirements of new application fields.
目前闪烁晶体的发展趋势是围绕高输出、快响应、高密度等性能为中心,开展新型闪烁晶体的探索研究,通过离子取代,改善现有闪烁晶体的某些不足,提高其闪烁性能,降低其生长难度;优化晶体生长工艺,进行工程化生长研究,降低生长成本;研究晶体的缺陷与其闪烁性能之间的相互关系。通过减少晶体中各种缺陷,提高晶体的光学均匀性,来改善其闪烁性能。掺铈硅酸盐和铝酸盐晶体是今年来受业内关注的两类重要的高温无机闪烁晶体。At present, the development trend of scintillation crystals is to carry out exploration and research on new scintillation crystals centering on the performance of high output, fast response, and high density. Growth difficulty; optimize crystal growth process, conduct engineering growth research, reduce growth cost; study the relationship between crystal defects and their scintillation performance. By reducing various defects in the crystal and improving the optical uniformity of the crystal, its scintillation performance can be improved. Cerium-doped silicate and aluminate crystals are two important types of high-temperature inorganic scintillation crystals that have attracted the attention of the industry this year.
稀土正硅酸盐晶体Ln2SiO5(Ln-镧系离子,如:Y、Gd、Lu)是一类性能相对优秀的高温闪烁晶体,以LSO、YSO、GSO、LYSO等为代表。根据镧系离子尺寸的差异,Ln2SiO5具有“单斜P21/c或单斜C2/c”两种不同的空间结构。单斜P21/c(以GSO为代表)中,Ln2SiO5在空间结构上形成由(OLn4)四面体顶点连接的二维网状结构,网状结构层与层间空隙由(SiO4)四面体填充,稀土离子的氧配位数分别是7和9;单斜C2/c(以LSO、YSO为代表)中,Ln2SiO5在空间结构上形成由(SiO4)四面体和(OLn4)四面体共边形成由分离的(SiO4)四面体连接的链,稀土离子氧配位数分别是6和7。Ln2SiO5晶体以Ce3+为激活离子,Ce3+的5d——4f跃迁对其周围的点阵环境非常敏感,不同的晶体基质,闪烁性能差异很大。YSO、LSO和LYSO晶体光输出高,但YSO密度低,LSO、LYSO略有放射性;GSO有较强抗辐照能力,但转换效率略低,而且晶体易解离。LSO、LYSO是综合性能优良的闪烁晶体,与其它闪烁晶体相比,明显优势有:1)光输出高,可达25000~295000ph/Mev,相当于NaI(Tl)的76%、BGO的4~5倍;2)衰减时间短,可达40ns,远远优于BGO的300ns、NaI(Tl)的230ns、CsI(Tl)的700ns,即使与CeF3的30ns相比也不逊色;3)具有高密度和高原子序数,辐射长度与BGO相当,对X射线和γ射线的吸收好,探测效率高,远远优于NaI(Tl)、CsI(Tl)等晶体,并且使用晶体尺寸也比较小,有利于器件小型化并最终降低PET整机成本;4)发光主波长在420nm位于光电倍增管的敏感区域,可有效探测光脉冲;5)抗辐照硬度高,在辐射剂量为106时不会出现损伤,在剂量达108时表现出微小的损伤。Rare earth orthosilicate crystal Ln 2 SiO 5 (Ln-lanthanide ions, such as: Y, Gd, Lu) is a kind of high-temperature scintillation crystal with relatively excellent performance, represented by LSO, YSO, GSO, LYSO, etc. According to the difference in the size of lanthanide ions, Ln 2 SiO 5 has two different spatial structures: "monoclinic P21/c or monoclinic C2/c". In monoclinic P21/c (represented by GSO), Ln 2 SiO 5 forms a two-dimensional network structure connected by vertices of (OLn 4 ) tetrahedrons in the spatial structure, and the network structure layer and the interlayer gap are composed of (SiO 4 ) tetrahedral filling, and the oxygen coordination numbers of rare earth ions are 7 and 9 respectively; (OLn 4 ) tetrahedra share edges to form a chain connected by separated (SiO 4 ) tetrahedra, and the oxygen coordination numbers of the rare earth ions are 6 and 7, respectively. Ln 2 SiO 5 crystal uses Ce 3+ as the active ion, and the 5d-4f transition of Ce 3+ is very sensitive to its surrounding lattice environment. Different crystal matrixes have great differences in scintillation performance. YSO, LSO and LYSO crystals have high light output, but YSO has low density, and LSO and LYSO are slightly radioactive; GSO has strong radiation resistance, but the conversion efficiency is slightly low, and the crystal is easy to dissociate. LSO and LYSO are scintillation crystals with excellent comprehensive performance. Compared with other scintillation crystals, they have obvious advantages: 1) High light output, up to 25,000-295,000ph/Mev, which is equivalent to 76% of NaI(Tl) and 4-4% of BGO. 5 times; 2) The decay time is short, up to 40ns, far better than 300ns of BGO, 230ns of NaI(Tl), 700ns of CsI(Tl), even compared with 30ns of CeF 3 ; 3) has High density and high atomic number, the radiation length is equivalent to BGO, good absorption of X-rays and γ-rays, high detection efficiency, far superior to NaI(Tl), CsI(Tl) and other crystals, and the crystal size is relatively small , which is conducive to the miniaturization of the device and ultimately reduces the cost of the PET machine; 4) The dominant wavelength of light is at 420nm and is located in the sensitive area of the photomultiplier tube, which can effectively detect light pulses; 5) The hardness against radiation is high, and when the radiation dose is 10 6 No damage occurred, and slight damage was shown at doses up to 10 8 .
掺铈铝酸盐是一类重要的高温无机闪烁晶体,主要包括2类4种晶体,即Ce:YAG(钇铝石榴石)、Ce:LuAG(钇镥石榴石)、Ce:YAP(铝酸钇)、Ce:LuAP(铝酸镥),其中Ce:LuAG和Ce:LuAP晶体相对来说更具有实际应用价值。Ce:LuAG晶体发光中心波长为550nm,可以与硅光二极管等探测设备有效耦合,同CsI闪烁晶体相比,Ce:LuAG闪烁晶体具有快衰减时间(约60ns,而CsI衰减时间约为300ns)。Ce:LuAG晶体还具有较好的光脉冲区分γ射线和α粒子的能力,而且Ce:LuAG闪烁晶体不潮解、耐高温、热力学性能稳定,可以应用于极端的探测环境中。Ce:LuAG高温闪烁晶体主要应用在轻粒子探测、α粒子探测、gamma射线探测等领域,另外它还可以应用于电子探测成像(SEM)、高分辨率显微成像荧光屏等领域。Ce:LuAP晶体的衰减时间为18ns,是迄今为止已知氧化物闪烁体中最快的,而且其在100~600K的范围之内其衰减时间近似为常数,荧光中心的量子效率Q也基本恒定,其光产额为12000ph/MeV,具有高密度和高原子序数,辐射长度与BGO相当,对X射线和γ射线的吸收好,探测效率高,远远优于NaI(TI)、CsI(T1)等晶体,有利于器件小型化;其在100~600K的范围内其光输出的温度效应小,温度高于600K后热猝灭效应才开始显现出来,而Ce:LSO在高于300K后光输出即开始有明显的降低。Cerium-doped aluminates are an important class of high-temperature inorganic scintillation crystals, mainly including 2 types of 4 types of crystals, namely Ce:YAG (yttrium aluminum garnet), Ce:LuAG (yttrium lutetium garnet), Ce:YAP (aluminate Yttrium), Ce:LuAP (lutetium aluminate), among which Ce:LuAG and Ce:LuAP crystals are relatively more practical. The Ce:LuAG crystal luminescence center wavelength is 550nm, which can be effectively coupled with detection equipment such as silicon photodiodes. Compared with CsI scintillation crystal, Ce:LuAG scintillation crystal has a fast decay time (about 60ns, while CsI decay time is about 300ns). Ce:LuAG crystals also have a good ability to distinguish gamma rays and alpha particles by light pulses, and Ce:LuAG scintillation crystals are non-deliquescent, high temperature resistant, and thermodynamically stable, and can be used in extreme detection environments. Ce:LuAG high-temperature scintillation crystal is mainly used in light particle detection, alpha particle detection, gamma ray detection and other fields. In addition, it can also be used in electronic detection imaging (SEM), high-resolution microscopic imaging fluorescent screen and other fields. The decay time of Ce:LuAP crystal is 18ns, which is the fastest known oxide scintillator so far, and its decay time is approximately constant in the range of 100-600K, and the quantum efficiency Q of the fluorescent center is also basically constant , its light yield is 12000ph/MeV, it has high density and high atomic number, its radiation length is equivalent to that of BGO, it has good absorption of X-rays and γ-rays, and its detection efficiency is high, which is far superior to that of NaI (TI) and CsI (T1 ) and other crystals, which are conducive to the miniaturization of devices; the temperature effect of its light output is small in the range of 100-600K, and the thermal quenching effect begins to appear after the temperature is higher than 600K, while Ce:LSO is higher than 300K. The output starts to drop significantly.
掺铈硅酸盐和铝酸盐晶体进入民用化领域,还存在三个重要的问题。一是制备成本高:目前常规的晶体生长技术必须使用铱金坩埚作为容器和感应加热体进行晶体生长,而铱金的价格昂贵(每公斤铱金的价格超过10万元,每个坩埚根据尺寸的不同,重量一般在3到10公斤,同时铱金坩埚的加工费用和铱金加工损耗很大,导致晶体生长的成本很高。二是晶体内部包裹缺陷严重:LYSO、LSO熔点超过2100℃,YAG、LuAP熔点超过1900℃,常规的晶体生长技术必须使用铱金坩埚作为容器进行感应法晶体生长,但是如此高的生长温度,已经达到铱金坩埚的工作极限,坩埚中铱金属特别容易被氧化成为杂质进入熔体中,形成包裹物,导致晶体无法正常使用。三是晶体闪烁性能波动大:硅酸盐、铝酸盐闪烁晶体的发光中心是Ce3+,它替代基质阳离子(Lu3+、Y3+等)进入晶体,因为二者半径差较大,Ce3+在硅酸盐晶体中分凝系数偏低(k=0.28),导致Ce3+分布极不均匀,同时铈离子在晶体内主要以Ce3+存在,部分为Ce4+,生长和退火气氛等都会对二者分布和比例产生影响。Ce4+(没有弱束缚的4f电子)本身不发光,还会吸收来自Ce3+离子的闪烁光子,它的存在及其所占比例对晶体的发光效率、响应均匀性均有较大负面影响。Ce3+的两种格位(Ce1和Ce2)中,Ce2本身由于较强的荧光猝灭,几乎没有光子发射,会影响Ce1的闪烁光子的透过。2个Ce格点发光存在竞争,也会使得晶体的能量分辨率降低。When cerium-doped silicate and aluminate crystals enter the field of civilian use, there are still three important problems. One is the high cost of preparation: the current conventional crystal growth technology must use an iridium crucible as a container and an induction heating body for crystal growth, and the price of iridium is expensive (the price per kilogram of iridium exceeds 100,000 yuan, and each crucible depends on the size The weight is generally 3 to 10 kg. At the same time, the processing cost of the iridium crucible and the iridium processing loss are very large, resulting in a high cost of crystal growth. The second is that the internal packaging defects of the crystal are serious: the melting point of LYSO and LSO exceeds 2100 ° C, The melting point of YAG and LuAP exceeds 1900°C. The conventional crystal growth technology must use an iridium crucible as a container for induction crystal growth. However, such a high growth temperature has reached the working limit of the iridium crucible, and the iridium metal in the crucible is particularly easy to be oxidized. Become impurities into the melt and form inclusions, resulting in crystals that cannot be used normally. Third, crystal scintillation performance fluctuates greatly: the luminescent center of silicate and aluminate scintillation crystals is Ce 3+ , which replaces matrix cations (Lu 3+ , Y 3+, etc.) into the crystal, because the radius difference between the two is large, the segregation coefficient of Ce 3+ in the silicate crystal is low (k=0.28), resulting in extremely uneven distribution of Ce 3+ , and at the same time, the cerium ion in the crystal is mainly in the form of Ce 3+ exists, partly Ce 4+ , the growth and annealing atmosphere will affect the distribution and ratio of the two. Ce 4+ (without weakly bound 4f electrons) does not emit light by itself, but also absorbs the scintillation photons from Ce 3+ ions, which The existence and proportion of the crystal have a greater negative impact on the luminous efficiency and response uniformity of the crystal. Among the two sites of Ce 3+ (Ce 1 and Ce 2 ), Ce 2 itself is due to the strong fluorescence quenching , there is almost no photon emission, which will affect the transmission of scintillation photons of Ce 1. There is competition between the two Ce lattice points for light emission, which will also reduce the energy resolution of the crystal.
发明内容Contents of the invention
为了克服现有技术的缺点,本发明提供了一种高温无机闪烁晶体的制备方法,该方法可以在同等条件下大幅度降低晶体的制备成本,并抑制晶体闪烁性能的波动。In order to overcome the disadvantages of the prior art, the present invention provides a method for preparing high-temperature inorganic scintillation crystals, which can greatly reduce the cost of crystal preparation under the same conditions and suppress fluctuations in crystal scintillation performance.
本发明通过以下技术手段实现:一是采用钼金属、钨金属坩埚或钨钼合金坩埚替代常规使用的铱金坩埚进行晶体生长,从而大幅度降低晶体生长的制备成本;二是采用在氮气或氩气的惰性气氛中掺入浓度为0.1%—5%的氢气或一氧化碳的还原性气氛,替代传统的氮气或氩气的晶体生长气氛,在保证坩埚材料不被氧化的同时,避免掺杂铈离子的价态变换,抑制晶体闪烁性能的波动。The present invention is realized through the following technical means: one is to use molybdenum metal, tungsten metal crucible or tungsten-molybdenum alloy crucible to replace the conventionally used iridium gold crucible for crystal growth, thereby greatly reducing the preparation cost of crystal growth; the other is to use nitrogen or argon The inert atmosphere of gas is mixed with a reducing atmosphere of hydrogen or carbon monoxide with a concentration of 0.1%-5%, replacing the traditional nitrogen or argon crystal growth atmosphere, while ensuring that the crucible material is not oxidized, avoid doping with cerium ions The valence state transformation can suppress the fluctuation of crystal scintillation performance.
在坩埚材质和形状设计方面:提拉法最常用的加热方法是感应加热,坩埚本身常常就是加热器。坩埚材料必须能够承受所需的工作温度,不污染熔体、也不与生长气氛和周围的绝缘材料起反应,有良好的抗热振性能和机械加工性能等。通过改变坩埚的几何条件(如直径与高度之比)以及改变坩埚在生长装置中的相对位置,可以改变熔体中的液流状况和温度分布。常用的坩埚材料为铂、铱、钼、石墨、二氧化硅或其他高熔点氧化物。掺铈硅酸盐和铝酸盐晶体的熔点很高,超过白金的使用温度,所以一般采用铱坩埚作为生长容器,所用的坩埚尺寸规格一般为圆桶型,坩埚的高度与直径一般是一样的,如一个最常用的规格是外径126mm,高度123mm,壁厚3mm。发明人采用通过尺寸规格,加工了钼坩埚进行晶体生长,试验发现由于钼金属在中频感应下的发热性能与铱坩埚完成不一样,采用上述规格的钼坩埚,熔体的对流非常紊乱,根本无法进行晶体等径生长。本发明是结合掺铈硅酸盐和铝酸盐熔体的特点,设计了广口异型坩埚,可以有效稳定熔体对流,形成稳定的生长温场,可以满足晶体等径生长的需求。In terms of crucible material and shape design: the most commonly used heating method for the pulling method is induction heating, and the crucible itself is often a heater. The crucible material must be able to withstand the required working temperature, not pollute the melt, nor react with the growth atmosphere and surrounding insulating materials, and have good thermal shock resistance and machining performance. By changing the geometric conditions of the crucible (such as the ratio of diameter to height) and changing the relative position of the crucible in the growth device, the liquid flow conditions and temperature distribution in the melt can be changed. Commonly used crucible materials are platinum, iridium, molybdenum, graphite, silicon dioxide or other high melting point oxides. The melting point of cerium-doped silicate and aluminate crystals is very high, exceeding the use temperature of platinum, so iridium crucibles are generally used as growth vessels. The size of the crucibles used is generally barrel-shaped, and the height and diameter of the crucibles are generally the same. , For example, one of the most commonly used specifications is an outer diameter of 126mm, a height of 123mm, and a wall thickness of 3mm. The inventor used the size specifications to process the molybdenum crucible for crystal growth. The test found that the heating performance of molybdenum metal under intermediate frequency induction is different from that of the iridium crucible. Using the molybdenum crucible with the above specifications, the convection of the melt is very disordered, and it is impossible to Crystal isodiametric growth is carried out. The present invention combines the characteristics of cerium-doped silicate and aluminate melts to design a wide-mouth special-shaped crucible, which can effectively stabilize the melt convection, form a stable growth temperature field, and meet the requirements of crystal growth with equal diameters.
在晶体生长气氛方面:由于生长温度较高,而坩埚材料为铱、钨或钼金属,它们在高温下会被氧化,必须使用惰性气氛(一般为高纯氮气)进行保护。但是由于多晶原料烧结过程中无法保证原始原料中CeO2组分完全分解,在晶体生长过程中,熔体组剩余的微量CeO2组分仍然会分解出氧气,它会将铱、钨或钼金属氧化成为杂质进入熔体中,形成包裹物,导致晶体无法正常使用;同时微量的氧气也会使得激活离子Ce3+变价为Ce4+,而Ce4+由于没有弱束缚的4f电子,不但本身不发光,还会吸收来自Ce3+离子的闪烁光子,它的存在对晶体的发光效率、响应均匀性均有较大负面影响。本发明采用还原性气氛,替代常规单一的氮气或氩气的惰性气氛,在保证坩埚材料不被氧化的同时,避免掺杂铈离子的价态变换。本发明所描述的还原气氛为混合气体,即氮气或氩气的惰性气氛中掺入0.1%-5%的氢气或一氧化碳;同时为了避免氢气罐容易爆炸和一氧化碳容易使人中毒的问题,本发明要求在工厂内事先将特定比例的惰性气体氮气或氩气,与还原性气体氢气或一氧化碳直接混合好后灌入气瓶中,这样可以有效避免还原性气体使用过程中带来的人身危险。In terms of crystal growth atmosphere: due to the high growth temperature, the crucible material is iridium, tungsten or molybdenum metal, which will be oxidized at high temperature and must be protected by an inert atmosphere (generally high-purity nitrogen). However, since the CeO2 component in the original raw material cannot be completely decomposed during the sintering process of the polycrystalline raw material, during the crystal growth process, the remaining trace CeO2 component of the melt group will still decompose oxygen, which will decompose iridium, tungsten or molybdenum The metal oxidizes into impurities and enters the melt, forming inclusions, which makes the crystal unable to be used normally; at the same time, a small amount of oxygen will also make the activated ion Ce 3+ change into Ce 4+ , and Ce 4+ not only does not emit light itself because it has no weakly bound 4f electrons , will also absorb scintillation photons from Ce 3+ ions, and its existence will have a great negative impact on the luminous efficiency and response uniformity of the crystal. The present invention adopts a reducing atmosphere instead of the conventional single nitrogen or argon inert atmosphere, and avoids the valence change of doping cerium ions while ensuring that the crucible material is not oxidized. The reducing atmosphere described in the present invention is a mixed gas, that is, the inert atmosphere of nitrogen or argon is mixed with 0.1%-5% hydrogen or carbon monoxide; at the same time, in order to avoid the problems that hydrogen tanks are easy to explode and carbon monoxide is easy to poison people, the present invention It is required to mix a specific proportion of inert gas nitrogen or argon with reducing gas hydrogen or carbon monoxide in the factory in advance and then pour it into the cylinder, which can effectively avoid the personal danger caused by the use of reducing gas.
具体实施方式Detailed ways
实施例一:掺铈硅酸镥晶体生长Example 1: Crystal growth of cerium-doped lutetium silicate
1.固相原料合成方法合成原料1. Synthesis of raw materials by solid-phase raw material synthesis method
假设合成掺铈离子浓度为x的Ce2x:Lu2(1-x)SiO5多晶原料,固相原料烧结的化学合作反应式为:Assuming that the Ce 2x :Lu 2(1-x) SiO 5 polycrystalline raw material doped with cerium ion concentration is x to be synthesized, the chemical cooperation reaction formula for sintering the solid phase raw material is:
2x CeO2+(1-x)Lu2O3+SiO2=Ce2x:Lu2(1-x)SiO5+x/2O2↑2x CeO 2 +(1-x)Lu 2 O 3 +SiO 2 =Ce 2x :Lu 2(1-x) SiO 5 +x/2O 2 ↑
若计划配制激活离子浓度为0.5mol%的原料,则x=0.5mol%,按照0.01:0.995:1的摩尔比,分别称取纯度为99.95%的CeO2、Lu2O3和SiO2粉末原料。If it is planned to prepare raw materials with an active ion concentration of 0.5 mol%, then x=0.5 mol%, according to the molar ratio of 0.01:0.995:1, respectively weigh CeO 2 , Lu 2 O3 and SiO 2 powder raw materials with a purity of 99.95%.
将三种原料装入玛瑙罐中,在混料机上混料12h,保证三种组分均匀混料;然后加入少量纯净水,利用液压设备,将混合好的原料压成直径80mm、厚度20mm的圆柱形原料块。将原料块装入刚玉坩埚中,先在电烤箱内在200℃下进行预烧结,以除去原料中的H2O,然后在马弗炉里进行烧结,烧结温度为1300℃~1400℃,烧结时间为24h。烧结后的原料就完成了三个组分的固相反应,形成了Ce0.01:Lu1.99SiO5多晶原料。Put the three raw materials into an agate tank, and mix them on the mixer for 12 hours to ensure that the three components are evenly mixed; then add a small amount of pure water, and use hydraulic equipment to press the mixed raw materials into a 80mm in diameter and 20mm in thickness Cylindrical block of raw material. Put the raw material block into the corundum crucible, first pre-sinter in the electric oven at 200°C to remove the H 2 O in the raw material, and then sinter in the muffle furnace, the sintering temperature is 1300°C ~ 1400°C, the sintering time for 24h. The raw material after sintering has completed the solid phase reaction of the three components to form Ce 0.01 : Lu 1.99 SiO 5 polycrystalline raw material.
2.晶体生长2. Crystal Growth
采用国产DJL-800型引上法单晶生长炉,50KW晶闸管中频感应电源加热,双铂铑(Pt/Rh30-Pt/Rh10)热电偶,英国欧陆818型温度调节器,控温精度达±0.1℃。Adopt domestic DJL-800 type lead-up method single crystal growth furnace, 50KW thyristor intermediate frequency induction power supply heating, double platinum rhodium (Pt/Rh30-Pt/Rh10) thermocouple, British Continental 818 temperature regulator, temperature control accuracy up to ±0.1 ℃.
典型的晶体生长参数为:Typical crystal growth parameters are:
表1提拉法生长掺铈硅酸镥晶体的技术参数Table 1 Technical parameters of growing cerium-doped lutetium silicate crystals by pulling method
晶体生长步骤:1)晶体生长前的准备工作:包括炉膛的清洁处理,化料,籽晶对中以及给炉内充入保护气氛;2)引晶、收颈与放肩:将籽晶引近液面,稳定一段时间(约10min)后,进行引晶。提拉一个小时后,调节温度使晶体逐渐往径向长大(放肩);3)直径的控制:当晶体放肩至既定直径(例)时,采用适量升温,以控制晶体直径的继续增大。这样,晶体的生长界面会逐渐地高出液面1~2mm,控径完成;4)晶体等径生长:生长过程中必须根据生长情况,调节温度,控制晶体的等径生长;5)收径过程:当晶体长到预定的长度,需要停止生长时,保持拉速不变,改用较大升温速率(如15~40℃/h)继续提拉后,晶体尾部成平界面或微凸面,很快就会脱离液面,随后停止提拉,转入退火阶段;6)炉内退火:在高温区(>1200℃)内,采用20~50K/h的降温速度。在1200℃以下,一般采用80~100℃/h降温速度;6)炉外退火:将晶体装在Al2O3刚玉埚中,放入马弗炉中,在大气气氛下高温(1200℃)、长时间(12h)退火,升温和降温分别为50K/h。Crystal growth steps: 1) Preparatory work before crystal growth: including cleaning of the furnace, chemical materials, centering of the seed crystal and filling the furnace with a protective atmosphere; 2) Seeding, necking and shouldering: introducing the seed crystal Near the liquid surface, after a period of stability (about 10min), seeding is performed. After pulling for an hour, adjust the temperature so that the crystals gradually grow radially (shouldering); 3) Diameter control: when the crystals are shouldered to a predetermined diameter (for example ), use an appropriate amount of temperature rise to control the continued increase of the crystal diameter. In this way, the growth interface of the crystal will gradually be 1-2 mm higher than the liquid level, and the diameter control is completed; 4) Equal-diameter growth of the crystal: During the growth process, the temperature must be adjusted according to the growth situation to control the equi-diameter growth of the crystal; 5) Diameter reduction Process: When the crystal grows to a predetermined length and needs to stop growing, keep the pulling speed unchanged, and use a higher heating rate (such as 15-40°C/h) to continue pulling. After the crystal tail becomes a flat interface or a slightly convex surface, it is very It will be out of the liquid level soon, then stop pulling, and turn to the annealing stage; 6) Furnace annealing: In the high temperature zone (>1200°C), use a cooling rate of 20-50K/h. Below 1200°C, generally adopt a cooling rate of 80-100°C/h; 6) Out-of-furnace annealing: put the crystal in an Al 2 O 3 corundum crucible, put it in a muffle furnace, and heat it at high temperature (1200°C) in the atmosphere , Long time (12h) annealing, heating and cooling were 50K/h.
实施例二:掺铈硅酸钇镥晶体生长Embodiment 2: Crystal growth of cerium-doped yttrium-lutetium silicate
假设合成掺铈离子浓度为x、钇离子浓度为y的Ce2x:Y2yLu2(1-x-y)SiO5多晶原料,固相原料烧结的化学合作反应式为:Assuming the synthesis of Ce 2x : Y 2y Lu 2(1-xy) SiO 5 polycrystalline raw materials doped with cerium ion concentration x and yttrium ion concentration y, the chemical cooperation reaction formula for sintering solid phase raw materials is:
2x CeO2+y Y2O3+(1-x-y)Lu2O3+SiO2=Ce2x:Y2yLu2(1-x-y)SiO5+x/2O2↑2x CeO 2 +y Y 2 O 3 +(1-xy)Lu 2 O 3 +SiO 2 =Ce 2x :Y 2y Lu 2(1-xy) SiO 5 +x/2O 2 ↑
若计划配制激活离子浓度为0.5mol%,钇离子掺杂比例为10mol%,则x=0.5mol%、y=10mol%,按照0.01:0.1:0.895:1的摩尔比,分别称取纯度为99.95%的CeO2、Y2O3、Lu2O3和SiO2粉末原料。If the concentration of activated ions is planned to be 0.5mol%, and the doping ratio of yttrium ions is 10mol%, then x=0.5mol%, y=10mol%, according to the molar ratio of 0.01:0.1:0.895:1, the purity is 99.95 % CeO 2 , Y 2 O 3 , Lu 2 O 3 and SiO 2 powder raw materials.
后续的多晶原料烧结和晶体生长参数与步骤,与实施例一一致。Subsequent parameters and steps of polycrystalline raw material sintering and crystal growth are consistent with Embodiment 1.
实施例三:掺铈镥铝石榴石晶体生长Embodiment 3: Crystal growth of cerium-doped lutetium aluminum garnet
假设合成掺铈离子浓度为x的Ce3x:Lu3-3xAl5O12多晶原料,固相原料烧结的化学合作反应式为:Assuming the synthesis of Ce 3x : Lu 3-3x Al 5 O 12 polycrystalline raw materials with a cerium ion concentration of x, the chemical cooperation reaction formula for sintering of solid-phase raw materials is:
6x CeO2+3(1-x)Lu2O3+5Al2O3=2Ce3x:Lu3-3xAl5O12+4.5O2↑6x CeO 2 +3(1-x)Lu 2 O 3 +5Al 2 O 3 =2Ce 3x :Lu 3-3x Al 5 O 12 +4.5O 2 ↑
若计划配制激活离子浓度为0.5mol%,则x=0.5mol%,按照0.03:2.985:5的摩尔比,分别称取纯度为99.95%的CeO2、Lu2O3和Al2O3粉末原料。If the active ion concentration is planned to be 0.5mol%, then x=0.5mol%, according to the molar ratio of 0.03:2.985:5, respectively weigh CeO 2 , Lu 2 O 3 and Al 2 O 3 powder raw materials with a purity of 99.95% .
将三种原料装入玛瑙罐中,在混料机上混料12h,保证三种组分均匀混料;然后加入少量纯净水,利用液压设备,将混合好的原料压成直径60mm、厚度10mm的圆柱形原料块。将原料块装入刚玉坩埚中,先在电烤箱内在200℃下进行预烧结,以除去原料中的H2O,然后在马弗炉里进行烧结,烧结温度为1100℃~1200℃,烧结时间为8h。烧结后的原料就完成了三个组分的固相反应,形成了Ce3x:Lu3-3xAl5O12多晶原料。Put the three raw materials into an agate tank, and mix them on the mixer for 12 hours to ensure that the three components are evenly mixed; then add a small amount of pure water, and use hydraulic equipment to press the mixed raw materials into a 60mm in diameter and 10mm in thickness Cylindrical block of raw material. Put the raw material block into the corundum crucible, first pre-sinter in the electric oven at 200°C to remove H2O in the raw material, and then sinter in the muffle furnace, the sintering temperature is 1100°C ~ 1200°C, the sintering time for 8h. The sintered raw material has completed the solid-state reaction of the three components to form a Ce 3x : Lu 3-3x Al 5 O 12 polycrystalline raw material.
2.晶体生长2. Crystal Growth
采用国产DJL-400型引上法单晶生长炉,25KW晶闸管中频感应电源加热,双铂铑(Pt/Rh30-Pt/Rh10)热电偶,英国欧陆818型温度调节器,控温精度达±0.1℃。Adopt domestic DJL-400 type lead-up method single crystal growth furnace, 25KW thyristor medium frequency induction power supply heating, double platinum rhodium (Pt/Rh30-Pt/Rh10) thermocouple, British Continental 818 temperature regulator, temperature control accuracy up to ±0.1 ℃.
典型的晶体生长参数为:Typical crystal growth parameters are:
表2提拉法生长掺铈镥铝石榴石晶体的技术参数Table 2 Technical parameters of growing cerium-doped lutetium aluminum garnet crystals by pulling method
晶体生长步骤包括:晶体生长前的准备工作,引晶、收颈与放肩、等径控制、等径生长、收径过程、炉内退火、晶体取出。The crystal growth steps include: preparatory work before crystal growth, seeding, necking and shouldering, equal diameter control, equal diameter growth, diameter narrowing process, furnace annealing, and crystal removal.
实施例四:掺铈铝酸镥晶体生长Example 4: Crystal growth of cerium-doped lutetium aluminate
假设合成掺铈离子浓度为x的Cex:Lu1-xAlO3多晶原料,固相原料烧结的化学合作反应式为:Assuming that Cex :Lu 1-x AlO 3 polycrystalline raw materials doped with cerium ion concentration x is synthesized, the chemical cooperation reaction formula for sintering solid-phase raw materials is:
2x CeO2+(1-x)Lu2O3+Al2O3=2Cex:Lu1-xAlO3+0.5O2↑2x CeO 2 +(1-x)Lu 2 O 3 +Al 2 O 3 =2Ce x :Lu 1-x AlO 3 +0.5O 2 ↑
若计划配制激活离子浓度为0.5mol%,则x=0.5mol%,按照0.01:0.995:1的摩尔比,分别称取纯度为99.95%的CeO2、Lu2O3和Al2O3粉末原料。If the active ion concentration is planned to be 0.5mol%, then x=0.5mol%, according to the molar ratio of 0.01:0.995:1, respectively weigh CeO 2 , Lu 2 O 3 and Al 2 O 3 powder raw materials with a purity of 99.95% .
后续的多晶原料烧结和晶体生长参数与步骤,与实施例三一致。The subsequent parameters and steps of polycrystalline raw material sintering and crystal growth are the same as those in Embodiment 3.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410024264.0A CN103757702A (en) | 2014-01-20 | 2014-01-20 | Method for preparing high-temperature inorganic scintillation crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410024264.0A CN103757702A (en) | 2014-01-20 | 2014-01-20 | Method for preparing high-temperature inorganic scintillation crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103757702A true CN103757702A (en) | 2014-04-30 |
Family
ID=50525012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410024264.0A Pending CN103757702A (en) | 2014-01-20 | 2014-01-20 | Method for preparing high-temperature inorganic scintillation crystal |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103757702A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104073877A (en) * | 2014-06-27 | 2014-10-01 | 成都东骏激光股份有限公司 | Method for growing cerium-doped lutetium yttrium scintillation orthosilicate crystal by virtue of Bridgman-Stockbarger method |
CN104451882A (en) * | 2014-12-19 | 2015-03-25 | 单县晶瑞光电有限公司 | Garnet production technology |
CN104294365B (en) * | 2014-10-11 | 2017-06-06 | 成都东骏激光股份有限公司 | The technique that cerium yttrium luetcium silicate scintillation crystal is mixed in a kind of molybdenum crucible growth |
CN111995397A (en) * | 2020-08-14 | 2020-11-27 | 中国科学院宁波材料技术与工程研究所 | A kind of fluorescent ceramic and its preparation method and application |
US20210180209A1 (en) * | 2019-08-21 | 2021-06-17 | Meishan Boya Advanced Materials Co., Ltd. | Methods and devices for growing oxide crystals in oxygen atmosphere |
US12018399B2 (en) | 2019-08-21 | 2024-06-25 | Meishan Boya Advanced Materials Co., Ltd. | Crystals for detecting neutrons, gamma rays, and x rays and preparation methods thereof |
US12054848B2 (en) | 2019-08-21 | 2024-08-06 | Meishan Boya Advanced Materials Co., Ltd. | Crystals for detecting neutrons, gamma rays, and x rays and preparation methods thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1485467A (en) * | 2003-08-08 | 2004-03-31 | 中国科学院上海光学精密机械研究所 | Temperature-gradient growth device for large-area crystals and method for growing crystals |
CN1544709A (en) * | 2003-11-14 | 2004-11-10 | 中国科学院上海光学精密机械研究所 | Growth method of gadolinium silicate scintillation crystal |
CN1544711A (en) * | 2003-11-21 | 2004-11-10 | 中国科学院上海光学精密机械研究所 | Growth method of gadolinium silicate single crystal |
CN2745959Y (en) * | 2004-09-06 | 2005-12-14 | 周永宗 | Crystal growing device by biheating temperature gradient method |
CN101575730A (en) * | 2009-06-09 | 2009-11-11 | 中国科学院上海光学精密机械研究所 | Method for Inductively Heating and Pulling Growing Crystals in Reducing Atmosphere |
CN103370452A (en) * | 2011-02-17 | 2013-10-23 | 克莱托斯波尔公司 | Preparation of doped garnet structure single crystals with diameters of up to 500 mm |
CN103757708A (en) * | 2014-01-17 | 2014-04-30 | 中国科学院福建物质结构研究所 | High temperature inorganic scintillation crystal growth crucible |
-
2014
- 2014-01-20 CN CN201410024264.0A patent/CN103757702A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1485467A (en) * | 2003-08-08 | 2004-03-31 | 中国科学院上海光学精密机械研究所 | Temperature-gradient growth device for large-area crystals and method for growing crystals |
CN1544709A (en) * | 2003-11-14 | 2004-11-10 | 中国科学院上海光学精密机械研究所 | Growth method of gadolinium silicate scintillation crystal |
CN1544711A (en) * | 2003-11-21 | 2004-11-10 | 中国科学院上海光学精密机械研究所 | Growth method of gadolinium silicate single crystal |
CN2745959Y (en) * | 2004-09-06 | 2005-12-14 | 周永宗 | Crystal growing device by biheating temperature gradient method |
CN101575730A (en) * | 2009-06-09 | 2009-11-11 | 中国科学院上海光学精密机械研究所 | Method for Inductively Heating and Pulling Growing Crystals in Reducing Atmosphere |
CN103370452A (en) * | 2011-02-17 | 2013-10-23 | 克莱托斯波尔公司 | Preparation of doped garnet structure single crystals with diameters of up to 500 mm |
CN103757708A (en) * | 2014-01-17 | 2014-04-30 | 中国科学院福建物质结构研究所 | High temperature inorganic scintillation crystal growth crucible |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104073877A (en) * | 2014-06-27 | 2014-10-01 | 成都东骏激光股份有限公司 | Method for growing cerium-doped lutetium yttrium scintillation orthosilicate crystal by virtue of Bridgman-Stockbarger method |
CN104294365B (en) * | 2014-10-11 | 2017-06-06 | 成都东骏激光股份有限公司 | The technique that cerium yttrium luetcium silicate scintillation crystal is mixed in a kind of molybdenum crucible growth |
CN104451882A (en) * | 2014-12-19 | 2015-03-25 | 单县晶瑞光电有限公司 | Garnet production technology |
US20210180209A1 (en) * | 2019-08-21 | 2021-06-17 | Meishan Boya Advanced Materials Co., Ltd. | Methods and devices for growing oxide crystals in oxygen atmosphere |
CN113073388A (en) * | 2019-08-21 | 2021-07-06 | 眉山博雅新材料有限公司 | Crystal |
US11319645B2 (en) * | 2019-08-21 | 2022-05-03 | Meishan Boya Advanced Materials Co., Ltd. | Methods and devices for growing oxide crystals in oxygen atmosphere |
US11828001B2 (en) | 2019-08-21 | 2023-11-28 | Meishan Boya Advanced Materials Co., Ltd. | Methods and devices for growing oxide crystals in oxygen atmosphere |
US12018399B2 (en) | 2019-08-21 | 2024-06-25 | Meishan Boya Advanced Materials Co., Ltd. | Crystals for detecting neutrons, gamma rays, and x rays and preparation methods thereof |
US12054848B2 (en) | 2019-08-21 | 2024-08-06 | Meishan Boya Advanced Materials Co., Ltd. | Crystals for detecting neutrons, gamma rays, and x rays and preparation methods thereof |
CN111995397A (en) * | 2020-08-14 | 2020-11-27 | 中国科学院宁波材料技术与工程研究所 | A kind of fluorescent ceramic and its preparation method and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103757702A (en) | Method for preparing high-temperature inorganic scintillation crystal | |
CN104508192B (en) | With many doping lutetium base oxygen orthosilicate scintillators for improving optical characteristics | |
CN102021651B (en) | Cerium-doped rare earth borate scintillating crystal and Bridgman preparation method thereof | |
CN112573905B (en) | Anion-doped garnet scintillator and preparation method and application thereof | |
CN103757708A (en) | High temperature inorganic scintillation crystal growth crucible | |
Vedda et al. | Trap-center recombination processes by rare earth activators in YAlO 3 single crystal host | |
CN102534775B (en) | Method for growing cerium-doped lanthanum bromide scintillation crystal by using out-of-phase seed crystal | |
CN101377020A (en) | Rare earth silicates polycrystal material doped with Ce<3+> and preparing method thereof | |
CN105332056A (en) | Divalent metal cation and cerium co-doped lutetium aluminum garnet crystal for laser illumination and preparation method thereof | |
Wu et al. | A homogeneity study on (Ce, Gd) 3 Ga 2 Al 3 O 12 crystal scintillators grown by an optical floating zone method and a traveling solvent floating zone method | |
Chen et al. | Transparent Y 3 Al 5 O 12: Li, Ce ceramics for thermal neutron detection | |
CN106048725B (en) | Silicon ytterbium ion is co-doped with YAG fast flashing crystal and preparation method thereof | |
CN105908257B (en) | Calcium ytterbium ion is co-doped with YAG fast flashing crystal and preparation method thereof | |
CN115367766A (en) | Lithium sodium lutetium borate, rare earth doped compound and crystal thereof, and preparation method and application thereof | |
CN108441960A (en) | Divalent metal is co-doped with lutetium aluminum carbuncle crystal preparation method with cerium | |
CN106149054A (en) | Mix Cerium aluminate gadolinium yttrogarnet high temperature scintillation crystal and preparation method thereof | |
CN108441959A (en) | Mix Cerium aluminate gadolinium lutetium garnet crystal preparation method | |
CN112630818A (en) | Silicon-site-doped improved rare earth orthosilicate scintillation material and preparation method and application thereof | |
CN108264234A (en) | One kind is embedded with GYAGG:Flicker devitrified glass of Ce crystallite phases and preparation method thereof | |
CN106048724B (en) | Sodium barium ytterbium ion is co-doped with YAG fast flashing crystal and preparation method thereof | |
CN115367767B (en) | Lithium sodium yttrium borate and cerium doped compound and crystal thereof, and preparation methods and application thereof | |
CN108893779A (en) | A kind of calcium ions and magnesium ions and cerium co-doped yttrium aluminium garnet scintillation crystal and preparation method thereof | |
CN113512757B (en) | A kind of bulk high-quality scintillation crystal and its preparation method and application | |
CN112390278B (en) | Strong electron-withdrawing element doped rare earth orthosilicate scintillation material and preparation method and application thereof | |
CN104058578B (en) | Ce is prepared in a kind of air atmosphere3+Activate the preparation method of scintillation glass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140430 |
|
WD01 | Invention patent application deemed withdrawn after publication |