CN103757586A - Method of infiltrating metal infiltrating agent to cerium-containing neodymium iron boron magnetic material - Google Patents
Method of infiltrating metal infiltrating agent to cerium-containing neodymium iron boron magnetic material Download PDFInfo
- Publication number
- CN103757586A CN103757586A CN201410024032.5A CN201410024032A CN103757586A CN 103757586 A CN103757586 A CN 103757586A CN 201410024032 A CN201410024032 A CN 201410024032A CN 103757586 A CN103757586 A CN 103757586A
- Authority
- CN
- China
- Prior art keywords
- cerium
- magnetic material
- neodymium
- iron
- boron magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001172 neodymium magnet Inorganic materials 0.000 title claims abstract description 54
- 229910052684 Cerium Inorganic materials 0.000 title claims abstract description 50
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 title claims abstract description 48
- 239000003795 chemical substances by application Substances 0.000 title claims abstract description 33
- 239000000696 magnetic material Substances 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 29
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 19
- 239000002184 metal Substances 0.000 title claims abstract description 19
- QJVKUMXDEUEQLH-UHFFFAOYSA-N [B].[Fe].[Nd] Chemical compound [B].[Fe].[Nd] QJVKUMXDEUEQLH-UHFFFAOYSA-N 0.000 title claims description 21
- 229910052692 Dysprosium Inorganic materials 0.000 claims abstract description 25
- 229910052771 Terbium Inorganic materials 0.000 claims abstract description 23
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 22
- 239000000956 alloy Substances 0.000 claims abstract description 22
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 16
- 229910052777 Praseodymium Inorganic materials 0.000 claims abstract description 15
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 11
- 229910052689 Holmium Inorganic materials 0.000 claims abstract description 10
- 229910052802 copper Inorganic materials 0.000 claims abstract description 8
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 6
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 5
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 5
- 229910052688 Gadolinium Inorganic materials 0.000 claims abstract description 4
- 238000005275 alloying Methods 0.000 claims abstract description 4
- 239000000203 mixture Substances 0.000 claims description 23
- 239000000843 powder Substances 0.000 claims description 22
- 239000001257 hydrogen Substances 0.000 claims description 17
- 229910052739 hydrogen Inorganic materials 0.000 claims description 17
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 9
- 239000010949 copper Substances 0.000 claims description 8
- 150000002431 hydrogen Chemical class 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims description 2
- 239000003961 penetration enhancing agent Substances 0.000 claims 10
- 230000000149 penetrating effect Effects 0.000 claims 7
- 238000003801 milling Methods 0.000 claims 3
- JSQFSWNWYZNVSY-UHFFFAOYSA-N [B].[Fe].[Nd].[Ce] Chemical compound [B].[Fe].[Nd].[Ce] JSQFSWNWYZNVSY-UHFFFAOYSA-N 0.000 claims 2
- 229910052774 Proactinium Inorganic materials 0.000 claims 1
- 230000000630 rising effect Effects 0.000 claims 1
- 238000005245 sintering Methods 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 22
- 229910052761 rare earth metal Inorganic materials 0.000 abstract description 21
- 150000002910 rare earth metals Chemical class 0.000 abstract description 21
- 238000001465 metallisation Methods 0.000 abstract description 9
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 abstract description 8
- 230000008595 infiltration Effects 0.000 abstract description 8
- 238000001764 infiltration Methods 0.000 abstract description 8
- RZJQYRCNDBMIAG-UHFFFAOYSA-N [Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Zn].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn] Chemical class [Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Zn].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn] RZJQYRCNDBMIAG-UHFFFAOYSA-N 0.000 abstract description 5
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 abstract description 5
- 230000007797 corrosion Effects 0.000 abstract description 3
- 238000005260 corrosion Methods 0.000 abstract description 3
- 230000009977 dual effect Effects 0.000 abstract description 3
- 238000006467 substitution reaction Methods 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 229910052742 iron Inorganic materials 0.000 abstract description 2
- 239000002245 particle Substances 0.000 description 11
- 238000009792 diffusion process Methods 0.000 description 6
- 238000010902 jet-milling Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 238000002653 magnetic therapy Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Hard Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明公开了一种含铈的钕铁硼磁性材料掺渗金属渗剂的方法,通过将RxTM1-x金属渗剂与含铈的钕铁硼磁性材料混合均匀,在一定负压条件下加热,使金属渗剂的重稀土及其合金元素渗入到含铈的钕铁硼磁性材料表面及其晶界中,RxTM1-x中R代表Dy、Tb、Ho元素的一种或几种,TM为Ga,Co,Cu,Nb,Al、Zr元素中的一种或几种,其中Dy,Tb,Ho元素与含铈钕铁硼磁性材料硬磁主相中的Ce,Nd,Pr,Gd等发生置换反应,同时金属渗剂中的合金元素Co,Al等取代了硬磁主相中的铁,能提升含铈的钕铁硼的矫顽力;渗镝、铽及其合金元素后的含铈钕铁硼磁性材料经双主相合金工艺,可制备节约Nd、Pr、Dy、Tb、Ho元素、具有较高矫顽力与耐蚀性的含铈烧结钕铁硼磁体。The invention discloses a method for doping a metallizing agent containing cerium-containing NdFeB magnetic material. By uniformly mixing R x TM 1-x metallizing agent and cerium-containing NdFeB magnetic material, under certain negative pressure conditions Under heating, the heavy rare earth and its alloy elements of the metal infiltrant infiltrate into the surface of the cerium-containing NdFeB magnetic material and its grain boundary. In R x TM 1-x , R represents one of Dy, Tb, and Ho elements or Several, TM is one or more of Ga, Co, Cu, Nb, Al, Zr elements, among which Dy, Tb, Ho elements and Ce, Nd in the hard magnetic main phase of cerium-containing NdFeB magnetic materials, Pr, Gd, etc. undergo substitution reactions, and the alloying elements Co, Al, etc. in the metallization agent replace the iron in the hard magnetic main phase, which can increase the coercive force of cerium-containing NdFeB; infiltration of dysprosium, terbium and their alloys The cerium-containing NdFeB magnetic material after the elements can be prepared through the dual main phase alloy process to prepare cerium-containing sintered NdFeB magnets that save Nd, Pr, Dy, Tb, and Ho elements and have high coercive force and corrosion resistance.
Description
技术领域technical field
本发明属于永磁材料领域,特别是涉及一种含铈的钕铁硼磁性材料掺渗金属渗剂的方法。The invention belongs to the field of permanent magnet materials, in particular to a method for doping a cerium-containing neodymium-iron-boron magnetic material with a metallization agent.
背景技术Background technique
作为新材料产业重要组成部分的稀土永磁材料,广泛应用于能源、交通、机械、医疗、IT、家电等行业,如制造各种永磁电机、振动马达、永磁仪表、电子工业、核磁共振装置、音响器材和磁疗设备等方面,其产品涉及国民经济的很多领域。As an important part of the new material industry, rare earth permanent magnet materials are widely used in energy, transportation, machinery, medical, IT, home appliances and other industries, such as manufacturing various permanent magnet motors, vibration motors, permanent magnet instruments, electronics industry, nuclear magnetic resonance Devices, audio equipment and magnetic therapy equipment, etc., its products involve many fields of the national economy.
目前用来制制备钕铁硼稀土永磁材料的稀土原料主要是钕、镨、镝、铽等。随着钕铁硼稀土永磁材料用量越来越大,钕、镨、镝、铽等稀土金属成为稀缺资源,急需寻找能够替代这些稀缺资源的稀土金属。At present, the rare earth raw materials used to prepare NdFeB rare earth permanent magnet materials are mainly neodymium, praseodymium, dysprosium, terbium, etc. With the increasing use of NdFeB rare earth permanent magnet materials, rare earth metals such as neodymium, praseodymium, dysprosium, and terbium have become scarce resources, and it is urgent to find rare earth metals that can replace these scarce resources.
稀土矿中,Ce的配分远远高于除Nd、Pr,且价格低廉。然而,Ce2Fe14B的磁矩Js和各向异性场HA远低于Nd2Fe14B。采用传统的制备方法制备的Ce2Fe14B磁体无法满足用户对性能的要求。In rare earth ores, the distribution of Ce is much higher than that of Nd and Pr, and the price is low. However, the magnetic moment Js and anisotropy field H A of Ce 2 Fe 14 B are much lower than those of Nd 2 Fe 14 B. Ce 2 Fe 14 B magnets prepared by traditional preparation methods cannot meet the performance requirements of users.
1990年,OtsukiE等人在匹斯堡召开的国际稀土永磁和应用会议上提出了双合金法,即按主相正比成分熔炼合金,被称为第一合金,再按富钕相和富硼相组成的晶界相的成分熔炼第二合金;两种合金可以分别用真空速凝工艺熔炼,熔炼后按一定比例混合,后续的工艺与其它工艺相同。为了提高磁体的矫顽力,有人在第二相合金的稀土主要以Dy、Tb为主。In 1990, OtsukiE and others proposed the double alloy method at the International Rare Earth Permanent Magnet and Application Conference held in Pittsburgh, that is, the alloy is smelted according to the proportion of the main phase, which is called the first alloy, and then according to the neodymium-rich phase and boron-rich phase The second alloy is smelted according to the composition of the grain boundary phase of the phase composition; the two alloys can be smelted by the vacuum quick-setting process respectively, and mixed in a certain proportion after smelting, and the subsequent process is the same as other processes. In order to improve the coercive force of the magnet, some people mainly use Dy and Tb as the rare earth in the second phase alloy.
2003年,大阪大学的町田等人采用溅射的方法轰击作为靶材的重稀土Dy、Tb使其覆到磁体表面,而后进行扩散热处理,并进行回火,最终得到剩磁基本不降低,矫顽力提高的磁体。In 2003, Machida et al. from Osaka University bombarded the heavy rare earths Dy and Tb as targets by sputtering to cover the surface of the magnet, and then carried out diffusion heat treatment and tempering. Finally, the residual magnetism was basically not reduced, and the rectification A magnet with increased coercive force.
由于溅射方法应用于量产存在难度,2005年信越公司的中村元等人开发了浸涂法进行晶界热扩散重稀土。采用浸渍于溶液的方式将重稀土Dv、Tb的化合物附着到烧结磁体表面,而后进行热扩散和回火。他们发现,Dy扩散使得矫顽力提高3.14-5.02kOe,Tb扩散使得提高矫顽力8.16~10.0kOe。Due to the difficulty in applying the sputtering method to mass production, in 2005, Nakamura Moto and others from Shin-Etsu Corporation developed a dip-coating method for grain boundary thermal diffusion of heavy rare earths. The heavy rare earth Dv and Tb compounds are attached to the surface of the sintered magnet by immersing in the solution, followed by heat diffusion and tempering. They found that the Dy diffusion increased the coercive force by 3.14-5.02kOe, and the Tb diffusion increased the coercive force by 8.16-10.0kOe.
2008年6月,日立金属宣布开发的重稀土金属蒸镀扩散法已在相同剩磁条件下成功将内禀矫顽力提高4.02kOe,而在同样矫顽力条件下剩磁提高0.4kGs;2009年9月,ULVAC称利用其所开发的超高真空Dy升华技术制造Nd基磁体,能大幅节约Dy使用量(最大可能节约80%的Dy)。In June 2008, Hitachi Metals announced that the developed heavy rare earth metal vapor deposition diffusion method had successfully increased the intrinsic coercive force by 4.02kOe under the same remanence conditions, and the remanence increased by 0.4kGs under the same coercive force conditions; 2009 In September 2009, ULVAC stated that using its ultra-high vacuum Dy sublimation technology to manufacture Nd-based magnets can greatly save Dy usage (up to 80% of Dy can be saved).
中国专利ZL200610089124.7公开了北京工业大学的岳明等人用纳米Dy、Tb粉做第二相,与第一相混合制作高矫顽力钕铁硼的技术。在相同条件下,节省了重稀土的用量。Chinese patent ZL200610089124.7 discloses that Yue Ming et al. from Beijing University of Technology use nano Dy and Tb powder as the second phase, and mix it with the first phase to produce high coercivity NdFeB technology. Under the same conditions, the amount of heavy rare earth is saved.
公开号为CN102347126A的专利申请公布了采用成分为Ra-Al或Ra-Al-X(Ra代表Dy或Tb;X代表Co、Cu、Ga、Zr元素中的一种或多种)的金属渗入剂涂敷到合金片的表面,然后加热渗入到钕铁硼速凝合金片的晶界中,获得了节约重稀土Dy或Tb的效果。The patent application whose publication number is CN102347126A discloses the use of a metal infiltrant with a composition of Ra-Al or Ra-Al-X (Ra represents Dy or Tb; X represents one or more of Co, Cu, Ga, Zr elements) It is applied to the surface of the alloy sheet, and then heated and infiltrated into the grain boundary of the NdFeB quick-setting alloy sheet to obtain the effect of saving the heavy rare earth Dy or Tb.
以上文献及专利涉及渗镝、铽技术对象的硬磁相为(Nd,Pr,Dy,Tb,Ho、Gd)FeB,并未提及含铈的钕铁硼,含铈的钕铁硼的矫顽力低,Nd,Pr及重稀土的用量较多,采用该材料制得的磁体综合性能较差。The above documents and patents related to the hard magnetic phase of dysprosium and terbium technical objects are (Nd, Pr, Dy, Tb, Ho, Gd) FeB, and there is no mention of cerium-containing neodymium iron boron, and the correction of cerium-containing neodymium iron boron. The coercive force is low, and the amount of Nd, Pr and heavy rare earth is more, and the magnet made by this material has poor comprehensive performance.
发明内容Contents of the invention
本发明的目的是针对含铈的钕铁硼一些缺陷,提供一种含铈的钕铁硼磁性材料掺渗金属渗剂的方法,能够提升含铈的钕铁硼磁粉主相的矫顽力,显著减少Nd,Pr及重稀土的用量。The purpose of the present invention is to aim at some defects of cerium-containing NdFeB magnetic materials, and provide a method for doping cerium-containing NdFeB magnetic materials with a metallization agent, which can improve the coercive force of the main phase of cerium-containing NdFeB magnetic powder, Significantly reduce the amount of Nd, Pr and heavy rare earth.
为了解决上述技术问题,本发明提供了一种含铈的钕铁硼磁性材料掺渗金属渗剂的方法,包括以下步骤:In order to solve the above technical problems, the invention provides a method for doping a cerium-containing NdFeB magnetic material with a metallizing agent, comprising the following steps:
1)将成分为RxTM1-x的金属渗剂合金熔体制成粉体,其中R为Dy、Tb、Ho元素的一种或几种,TM为Ga、Co、Cu、Nb、Al、Zr元素中的一种或几种,x为元素的重量百分比含量,且40%≤x≤92%;1) The metal infiltration agent alloy melt whose composition is R x TM 1-x is made into powder, wherein R is one or more elements of Dy, Tb, and Ho, and TM is Ga, Co, Cu, Nb, Al , one or more of Zr elements, x is the weight percentage content of elements, and 40%≤x≤92%;
2)将步骤1)所得的金属渗剂与含铈的钕铁硼磁性材混合均匀,放入真空炉内,抽真空待真空度达到10-2pa以上时进行预热,其中,金属渗剂与含铈的钕铁硼的比例≤10%;2) Mix the metallizing agent obtained in step 1) with the cerium-containing NdFeB magnetic material evenly, put it into a vacuum furnace, evacuate and preheat when the vacuum degree reaches above 10 -2 Pa, wherein the metallizing agent The ratio to NdFeB containing cerium is ≤10%;
3)待真空度再次达到10-2Pa以上,升温到550~650℃,待真空度稳定在10-2Pa以上后,充入氢气或惰性气体到-0.04~-0.08MPa;3) When the vacuum degree reaches above 10 -2 Pa again, heat up to 550~650°C, and after the vacuum degree is stable above 10 -2 Pa, fill it with hydrogen or inert gas to -0.04~-0.08MPa;
4)升高温度并保持在700-900℃,时间为3-10小时,同时维持炉内真空度在-0.04~-0.08MPa,进行掺渗Dy,Tb,Ho及金属渗剂的其他合金元素;4) Raise the temperature and keep it at 700-900°C for 3-10 hours, while maintaining the vacuum in the furnace at -0.04~-0.08MPa, doping Dy, Tb, Ho and other alloying elements of the metal infiltrant ;
通过上述步骤完成含铈的钕铁硼磁性材料掺渗金属渗剂的处理。The treatment of the cerium-containing neodymium-iron-boron magnetic material doped with a metallization agent is completed through the above steps.
所述的含铈的钕铁硼磁性材的成分为(CeηReζRE1-η-ζ)αFe100-α-β-γBβTMγ,其中Re为Dy、Tb、Ho元素中的一种或几种,RE为Nd、Pr、Gd元素中的一种或几种,TM为Ga、Co、Cu、Nb、Al、Zr元素中的一种或几种,η、ζ、α、β、γ为各元素的重量百分比含量,0.1≤η≤0.8,0≤ζ≤2%,29≤α≤33,0.8≤β≤1.4,0.5≤γ≤3.6。The composition of the cerium-containing NdFeB magnetic material is (Ce η Re ζ RE 1-η-ζ ) α Fe 100-α-β-γ B β TM γ , wherein Re is Dy, Tb, Ho element One or more of elements, RE is one or more of Nd, Pr, Gd elements, TM is one or more of Ga, Co, Cu, Nb, Al, Zr elements, η, ζ, α , β, γ are the weight percent content of each element, 0.1≤η≤0.8, 0≤ζ≤2%, 29≤α≤33, 0.8≤β≤1.4, 0.5≤γ≤3.6.
步骤1中将合金熔体制成金属渗剂粉体时,在惰性气体气氛保护下将RxTM1-x合金熔体经水冷铜辊速凝制成厚度小于0.5mm的速凝片,后经氢破及气流磨制成粒度小于3μm的金属渗剂;或者在惰性气体气氛保护下将RxTM1-x合金熔体经高速旋转圆盘快凝及气流磨,制成粒度小于3μm的金属渗剂。When the alloy melt is made into metal infiltration agent powder in step 1, under the protection of an inert gas atmosphere, the R x TM 1-x alloy melt is quickly solidified by a water-cooled copper roller to form a quick-setting sheet with a thickness of less than 0.5mm, and then Metal infiltration agents with a particle size of less than 3 μm are made by hydrogen breaking and jet milling; or the R x TM 1-x alloy melt is subjected to rapid solidification on a high-speed rotating disc and jet milling to make a metal infiltration agent with a particle size of less than 3 μm under the protection of an inert gas atmosphere. metal penetration agent.
所述含铈的钕铁硼磁性材料为含铈的钕铁硼速凝片或者其氢破粉体。The cerium-containing NdFeB magnetic material is a cerium-containing NdFeB quick-setting sheet or its hydrogen broken powder.
以通过上述方法处理得到的磁性材料为第二主相,以不含铈的钕铁硼磁性材料为第一主相,将两主相经氢破、气流磨制成粉体,然后采用双主相合金法将两主相粉体混合均匀、压制、烧结得含铈钕铁硼磁体。所得的磁体可节约Nd、Pr、Dy、Tb元素、具有较高矫顽力与耐蚀性,具有良好的综合性能。The magnetic material obtained by the above method is used as the second main phase, and the cerium-free NdFeB magnetic material is used as the first main phase. The two main phases are made into powder by hydrogen breaking and jet milling, and then double main phase is used The phase alloy method mixes the two main phase powders uniformly, presses and sinters to obtain a cerium-containing NdFeB magnet. The obtained magnet can save Nd, Pr, Dy, and Tb elements, has high coercive force and corrosion resistance, and has good comprehensive performance.
本发明针对含铈的钕铁硼的矫顽力低的缺点,通过掺渗重稀土及其合金元素的金属渗剂的方法,将RxTM1-x金属渗剂与含铈的钕铁硼速凝合金片或其氢破粉混合均匀,在一定负压条件下加热,使重稀土及其合金元素渗入到含铈的钕铁硼速凝合金片或其氢破粉的表面及其晶界中,其中Dy,Tb,Ho元素与含铈钕铁硼速凝合金片或其氢破粉硬磁主相中的Ce,Nd,Pr,Gd等发生置换反应,同时RxTM1-x金属渗剂中的合金元素Co,Al等取代了硬磁主相中的铁,能提升含铈的钕铁硼的矫顽力,显著减少Nd,Pr及重稀土的用量。渗镝、铽及其合金元素后的含铈钕铁硼磁性材料经双主相合金工艺,可制备节约Nd、Pr、Dy、Tb元素、具有较高矫顽力与耐蚀性的含铈烧结钕铁硼磁体。The present invention aims at the shortcoming of the low coercive force of cerium-containing NdFeB, through the method of doping the metallization agent of heavy rare earth and its alloy elements, the R x TM 1-x metallization agent is combined with the cerium-containing NdFeB The quick-setting alloy flakes or their hydrogen broken powders are mixed evenly, heated under certain negative pressure conditions, so that the heavy rare earth and its alloy elements penetrate into the surface and grain boundary of the cerium-containing NdFeB quick-setting alloy flakes or their hydrogen broken powders Among them, Dy, Tb, Ho elements have substitution reactions with Ce, Nd, Pr, Gd, etc. in the cerium-containing NdFeB quick-setting alloy sheet or its hydrogen-breaking hard magnetic main phase, and at the same time R x TM 1-x metal The alloying elements Co, Al, etc. in the infiltration agent replace the iron in the hard magnetic main phase, which can increase the coercive force of the cerium-containing NdFeB, and significantly reduce the amount of Nd, Pr and heavy rare earth. The cerium-containing NdFeB magnetic material infiltrated with dysprosium, terbium and its alloy elements can be used to prepare cerium-containing sintered materials that save Nd, Pr, Dy, and Tb elements, and have high coercive force and corrosion resistance. NdFeB magnets.
具体实施方式Detailed ways
下面结合实施例来进一步说明本发明,但本发明要求保护的范围并不局限于实施例表述的范围。The present invention will be further described below in conjunction with the examples, but the protection scope of the present invention is not limited to the scope expressed in the examples.
实施例1:Example 1:
采用双主相合金法,第一主相经氢破、气流磨粒度为0.35μm的Nd30FebalB1TM0.8,质量百分含量为20%。The dual-main-phase alloy method is adopted, and the first main phase is hydrogen-broken and air-ground Nd 30 Fe bal B 1 TM 0.8 with a particle size of 0.35 μm, and the mass percentage is 20%.
采用厚度为0.3mm的(Ce0.8Nd0.2)30FebalB1TM0.8速凝片,以粒度小于2μm的Dy80Al20为金属渗剂。以金属渗剂与速凝片重量比为1.5%的比例将Dy80Al20的金属渗剂与(Ce0.8Nd0.2)30FebalB1TM0.8混合均匀,置于真空炉中,抽真空达到10-2Pa以上时给低功率预热,待真空度再次达到10-2pa以上,升高功率升温到650℃左右,待真空度稳定在10-2Pa以上后,充入高纯氢气到-0.06MPa;升高功率保持温度在800℃6小时,同时维持炉内真空度在-0.04MPa,进行渗镝及铝,后经氢破,气流磨制成粒度为0.30μm的粉体,构成第二主相,质量百分含量分别为80%。(Ce 0.8 Nd 0.2 ) 30 Fe bal B 1 TM 0.8 quick-setting sheet with a thickness of 0.3 mm was used, and Dy 80 Al 20 with a particle size of less than 2 μm was used as the metallization agent. Mix the metallizing agent of Dy 80 Al 20 with (Ce 0.8 Nd 0.2 ) 30 Fe bal B 1 TM 0.8 evenly in a ratio of 1.5% by weight of the metallizing agent to the quick-setting sheet, place in a vacuum furnace, and evacuate to When the vacuum is above 10 -2 Pa, preheat with low power. When the vacuum degree reaches above 10 -2 Pa again, increase the power and heat up to about 650°C. After the vacuum degree is stable above 10 -2 Pa, fill high-purity hydrogen to -0.06MPa; increase the power to keep the temperature at 800°C for 6 hours, and at the same time maintain the vacuum in the furnace at -0.04MPa to infiltrate dysprosium and aluminum, and then undergo hydrogen breakdown and jet milling to make a powder with a particle size of 0.30μm. The mass percentage of the second main phase is 80%.
将两主相粉体混合均匀、压制、烧结得名义成分为(Ce06154Nd03462Dy0.0384)30FebalB1TM0.8含铈钕铁硼磁体。Mix the two main phase powders uniformly, press and sinter to obtain a cerium-containing NdFeB magnet with a nominal composition of (Ce 06154 Nd 03462 Dy 0.0384 ) 30 Fe bal B 1 TM 0.8 .
该磁体的相关磁性能参数见表1:The relevant magnetic performance parameters of the magnet are shown in Table 1:
表1Table 1
实施例2:Example 2:
采用双主相合金法,第一主相经氢破、气流磨粒度为0.30μm的Nd30FebalB1TM0.8,质量百分含量为40%;Using the dual main phase alloy method, the first main phase is broken by hydrogen, and the Nd 30 Fe bal B 1 TM 0.8 with a particle size of 0.30 μm is air-fed, and the mass percentage is 40%;
采用厚度为0.3mm的(Ce0.6Nd0.4)30FebalB1TM0.8(wt%)速凝片,以粒度小于2μm的Dy91Al9为金属渗剂。按金属渗剂与钕铁硼速凝片重量比为2%的比例将Dy91Al9的金属渗剂与(Ce0.6Nd0.4)30FebalB1TM0.8(wt%)混合均匀,置于真空炉中,抽真空达到10-2Pa以上时给低功率预热,待真空度再次达到10-2pa以上,升高功率升温到600℃左右,待真空度稳定在10-2pa以上后,充入H2与氩气的混合气到-0.06MPa;升高功率保持温度在880℃4小时,同时维持炉内真空度在-0.04MPa,进行渗镝及铝,后经氢破,气流磨制成粒度为0.35μm的粉体,构成第二主相,质量百分含量分别为60%。(Ce 0.6 Nd 0.4 ) 30 Fe bal B 1 TM 0.8 (wt%) quick-setting sheet with a thickness of 0.3 mm is used, and Dy 91 Al 9 with a particle size of less than 2 μm is used as a metallization agent. Mix the metallizing agent of Dy 91 Al 9 with (Ce 0.6 Nd 0.4 ) 30 Fe bal B 1 TM 0.8 (wt%) uniformly in a ratio of 2% by weight of the metallizing agent and the NdFeB quick-setting sheet, place In the vacuum furnace, preheat with low power when the vacuum reaches above 10 -2 Pa. When the vacuum degree reaches above 10 -2 Pa again, increase the power and heat up to about 600°C. After the vacuum degree is stable above 10 -2 Pa , fill the mixed gas of H 2 and argon to -0.06MPa; increase the power to keep the temperature at 880°C for 4 hours, and maintain the vacuum in the furnace at -0.04MPa at the same time, carry out dysprosium and aluminum infiltration, and then break through hydrogen, and the air flow Grinding into a powder with a particle size of 0.35 μm constitutes the second main phase, and the mass percentages are 60% respectively.
将两主相粉体混合均匀、压制、烧结得名义成分为(Ce0.3374Nd0.6175Dy0.0351)30FebalB1TM0.8(wt%)磁体。The two main phase powders were uniformly mixed, pressed and sintered to obtain a magnet with a nominal composition of (Ce 0.3374 Nd 0.6175 Dy 0.0351 ) 30 Fe bal B 1 TM 0.8 (wt%).
该磁体的相关磁性能参数见表2:The relevant magnetic performance parameters of the magnet are shown in Table 2:
表2Table 2
实施例3:Example 3:
采用双主相合金法,第一主相经氢破、气流磨粒度为0.35μm的Nd30FebalB1TM0.8,质量百分含量为50%;Using the dual main phase alloy method, the first main phase is broken by hydrogen, and the Nd 30 Fe bal B 1 TM 0.8 with a particle size of 0.35 μm is air-fed, and the mass percentage is 50%;
采用厚度为0.35mm的(Ce0.5Nd0.5)30FebalB1TM0.8(wt%)速凝片,以粒度小于2μm的Dy80Al10Cu10为金属渗剂。以金属渗剂与含铈钕铁硼速凝片重量比为3%的比例将两者混合均匀,置于真空炉中,抽真空达到10-2Pa以上时给低功率预热,待真空度稳定在10-2pa以上后,升高功率升温到550℃左右,充入高纯氩气到-0.07MPa;升高功率保持温度在780℃10小时,同时维持炉内真空度在-0.04MPa,进行渗镝及铝,后经氢破,气流磨制成粒度为0.25μm的粉体,构成第二主相,质量百分含量分别为50%。(Ce 0.5 Nd 0.5 ) 30 Fe bal B 1 TM 0.8 (wt%) quick-setting sheet with a thickness of 0.35 mm is used, and Dy 80 Al 10 Cu 10 with a particle size of less than 2 μm is used as the metallization agent. Mix the metal infiltration agent and the cerium-containing NdFeB quick-setting sheet at a weight ratio of 3%, and mix them evenly, place them in a vacuum furnace, preheat with low power when the vacuum reaches 10 -2 Pa, and wait until the vacuum degree After stabilizing above 10 -2 pa, increase the power to raise the temperature to about 550°C and fill it with high-purity argon to -0.07MPa; increase the power to keep the temperature at 780°C for 10 hours while maintaining the vacuum in the furnace at -0.04MPa , infiltrate dysprosium and aluminum, and then undergo hydrogen breakdown and jet milling to make a powder with a particle size of 0.25 μm, which constitutes the second main phase, and the mass percentages are 50% respectively.
将两主相粉体混合均匀、压制、烧结得名义成分为(Ce0.2404Nd0.7211Dy0.0385)30FebalB1TM0.8(wt%)的磁体。The two main phase powders were uniformly mixed, pressed and sintered to obtain a magnet with a nominal composition of (Ce 0.2404 Nd 0.7211 Dy 0.0385 ) 30 Fe bal B 1 TM 0.8 (wt%).
该磁体的相关磁性能参数见表3:The relevant magnetic performance parameters of the magnet are shown in Table 3:
表3table 3
从上述实施例可以看出,含铈的钕铁硼速凝片及其氢破粉体掺渗重稀土及合金元素的方法处理后,采用双主相合金法制成磁材,显著减少Nd,Pr及重稀土的用量。It can be seen from the above examples that after the cerium-containing NdFeB quick-setting sheet and its hydrogen breaking powder are doped with heavy rare earth and alloy elements, the magnetic material is made by the dual-main-phase alloy method, which significantly reduces Nd, Pr and the amount of heavy rare earth.
以上所述实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形、改进及替代,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express the preferred implementation of the present invention, and the description thereof is relatively specific and detailed, but should not be construed as limiting the patent scope of the present invention. It should be noted that those skilled in the art can make several modifications, improvements and substitutions without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410024032.5A CN103757586A (en) | 2014-01-13 | 2014-01-13 | Method of infiltrating metal infiltrating agent to cerium-containing neodymium iron boron magnetic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410024032.5A CN103757586A (en) | 2014-01-13 | 2014-01-13 | Method of infiltrating metal infiltrating agent to cerium-containing neodymium iron boron magnetic material |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103757586A true CN103757586A (en) | 2014-04-30 |
Family
ID=50524900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410024032.5A Pending CN103757586A (en) | 2014-01-13 | 2014-01-13 | Method of infiltrating metal infiltrating agent to cerium-containing neodymium iron boron magnetic material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103757586A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105321644A (en) * | 2015-10-21 | 2016-02-10 | 钢铁研究总院 | High coercivity sintering state Ce magnet or Ce-rich magnet and preparation method therefor |
CN105702403A (en) * | 2016-01-18 | 2016-06-22 | 浙江东阳东磁稀土有限公司 | Sintered neodymium-iron-boron magnet and preparation method thereof |
CN105938757A (en) * | 2016-04-20 | 2016-09-14 | 北京科技大学 | Preparation method capable of improving magnetic property of high-abundance rare-earth permanent magnet material |
CN107845464A (en) * | 2017-11-23 | 2018-03-27 | 安徽大地熊新材料股份有限公司 | A kind of method for preparing high-coercive force Nd-Fe-B series permanent magnet |
CN108257753A (en) * | 2016-12-28 | 2018-07-06 | 丰田自动车株式会社 | Rare-earth magnet |
CN108735413A (en) * | 2018-05-18 | 2018-11-02 | 宁波科田磁业有限公司 | One kind high-coercivity magnet of high-performance containing Tb and preparation method thereof |
CN111312509A (en) * | 2020-04-24 | 2020-06-19 | 有研稀土(荣成)有限公司 | Process method for carrying out dysprosium and terbium permeation on high-end neodymium iron boron product |
CN111968819A (en) * | 2020-09-09 | 2020-11-20 | 宁波科田磁业有限公司 | Low-heavy rare earth high-performance sintered neodymium-iron-boron magnet and preparation method thereof |
CN114783754A (en) * | 2022-04-14 | 2022-07-22 | 浙江大学 | Grain boundary diffusion method for improving corrosion resistance and coercive force of mixed rare earth permanent magnetic material at same ratio of 1:2 |
-
2014
- 2014-01-13 CN CN201410024032.5A patent/CN103757586A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105321644A (en) * | 2015-10-21 | 2016-02-10 | 钢铁研究总院 | High coercivity sintering state Ce magnet or Ce-rich magnet and preparation method therefor |
CN105321644B (en) * | 2015-10-21 | 2017-07-25 | 钢铁研究总院 | A kind of high-coercive force sintered state Ce magnets or richness Ce magnets and preparation method thereof |
CN105702403A (en) * | 2016-01-18 | 2016-06-22 | 浙江东阳东磁稀土有限公司 | Sintered neodymium-iron-boron magnet and preparation method thereof |
CN105702403B (en) * | 2016-01-18 | 2017-09-12 | 浙江东阳东磁稀土有限公司 | A kind of Sintered NdFeB magnet and preparation method |
CN105938757A (en) * | 2016-04-20 | 2016-09-14 | 北京科技大学 | Preparation method capable of improving magnetic property of high-abundance rare-earth permanent magnet material |
CN108257753A (en) * | 2016-12-28 | 2018-07-06 | 丰田自动车株式会社 | Rare-earth magnet |
CN107845464A (en) * | 2017-11-23 | 2018-03-27 | 安徽大地熊新材料股份有限公司 | A kind of method for preparing high-coercive force Nd-Fe-B series permanent magnet |
CN108735413A (en) * | 2018-05-18 | 2018-11-02 | 宁波科田磁业有限公司 | One kind high-coercivity magnet of high-performance containing Tb and preparation method thereof |
CN111312509A (en) * | 2020-04-24 | 2020-06-19 | 有研稀土(荣成)有限公司 | Process method for carrying out dysprosium and terbium permeation on high-end neodymium iron boron product |
CN111968819A (en) * | 2020-09-09 | 2020-11-20 | 宁波科田磁业有限公司 | Low-heavy rare earth high-performance sintered neodymium-iron-boron magnet and preparation method thereof |
CN114783754A (en) * | 2022-04-14 | 2022-07-22 | 浙江大学 | Grain boundary diffusion method for improving corrosion resistance and coercive force of mixed rare earth permanent magnetic material at same ratio of 1:2 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103757586A (en) | Method of infiltrating metal infiltrating agent to cerium-containing neodymium iron boron magnetic material | |
CN102280240B (en) | Method for preparing sintered NdFeB with low dysprosium content and high performance | |
CN103794322B (en) | A kind of ultra-high coercive force sintered Nd-Fe-B magnet and preparation method thereof | |
CN104700973B (en) | A kind of rare-earth permanent magnet being made up of the common association raw ore mischmetal of Bayan Obo and preparation method thereof | |
CN102655050A (en) | Method for preparing high-performance high-temperature-resisting nanometer composite permanent magnet | |
CN106409497A (en) | Grain boundary diffusion method for neodymium-iron-boron magnet | |
JP7101448B2 (en) | Manufacturing method of sintered magnetic material | |
CN102347126A (en) | High-performance sintered neodymium-iron-boron (Nd-Fe-B) rare-earth permanent magnet material and manufacturing method thereof | |
CN108074693B (en) | A kind of neodymium iron boron permanent magnet material and preparation method thereof | |
CN106710765A (en) | High-coercivity sintered-neodymium-iron-boron magnetic body and preparing method thereof | |
CN105321702A (en) | Method for improving coercivity of sintered NdFeB magnet | |
CN103545079A (en) | Double-principal-phase yttrium-contained permanent magnet and preparing method of double-principal-phase yttrium-contained permanent magnet | |
CN110853854A (en) | A method for preparing high performance dual main phase sintered mixed rare earth iron boron magnet by two-step diffusion method | |
CN107578870A (en) | A method for preparing permanent magnet materials using high-abundance rare earth elements | |
CN104575901A (en) | Neodymium iron boron magnet added with terbium powder and preparation method thereof | |
CN103506626A (en) | Manufacturing method for improving sintered NdFeB magnet coercive force | |
CN103757587B (en) | Method for penetrating metal penetrant into sintered NdFeB permanent-magnet material | |
CN102747318A (en) | A method for improving coercive force of sintered rare earth-iron-boron permanent magnet material | |
CN113838622A (en) | High-coercivity sintered neodymium-iron-boron magnet and preparation method thereof | |
CN106783129A (en) | The preparation method of low heavy rare earth high-coercive force neodymium iron boron magnetic body | |
CN112216460B (en) | Nanocrystalline NdFeB magnet and preparation method thereof | |
CN114210976B (en) | Method for sintering neodymium-iron-boron double alloy and combining grain boundary diffusion | |
CN107845464A (en) | A kind of method for preparing high-coercive force Nd-Fe-B series permanent magnet | |
CN105206417B (en) | The preparation method of magnetic coupling sintered NdFeB is gone between a kind of main phase grain by force | |
CN108597707B (en) | Ce-containing sintered magnet and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140430 |